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Hysteresis in a bimetallic holmium complex: A synergy between electronic
and nuclear magnetic interactions
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We report a bimetallic holmium(III) complex showing a S-shaped magnetic hysteresis at low temperature.
The complex is investigated by x-ray crystallography, magnetometry, single crystal microsquid measurements,
and first-principles calculations. A model Hamiltonian including electronic and nuclear magnetic moments is
used to fit all experimental data. We conclude that the Ho(III) may be described as non-Kramers doublets with
respective gaps of �A = 0.8 and �B = 10 cm−1 and that there is a small ferromagnetic coupling of J = 1 cm−1

(ĤS = −JSSSA · SSSB ). As in previous works, the hysteresis arise from the hyperfine structure of the Ho(III) ions.
The S-shaped form of the hysteresis reflects the avoided crossing of the electronic states in the non-Kramers
doublets.
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I. INTRODUCTION

The lanthanide based complexes present a large anisotropic
magnetic moment in their ground state due their unquenched
orbital moment which often leads to a single-molecule magnet
(SMM) behavior [1]. This class of molecules is promising
for molecular spintronics and opens the doors to quantum
computing [2–4]. The two-level system (arising from the two
directions of the magnetic moment) of each molecule may
act as a basic unit, namely as a qubit. In order to access
qugates, one should design molecules with two interacting
qubits [5–8] that can be lanthanide ions. But due to the inner-
shell character of the magnetic 4f electrons, the interaction
between neighboring magnetic centers is usually very weak
[9], and designing binuclear lanthanide-containing complexes
with sizable exchange coupling is a challenge. SMM behavior
mostly take place in Kramers ions such as dysprosium
complexes but some cases are known for the non-Kramers ions
of holmium complexes. Ishikawa et al. [10] have observed
the stairlike magnetization hysteresis loop in a phtalocyano
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Ho(III) complex arising from the hyperfine structure of the
Ho(III) ion. The same type of hysteresis has been recently
evidenced by Chen et al. in a pentagonal Ho(III) complex
[11]. The study of the interplay of the SMM behavior in
dinuclear complexes is quite recent and is mainly focused on
Dy-containing complexes [12–19]. Magnetization hysteresis
loops have been observed in a series of Ln(III) [20] and in
several bimetallic Dy(III) [21–24]. However, to the best of
our knowledge, no magnetic hysteresis loop was reported for
binuclear Ho(III)-containing complexes [25]. We show that
despite the nonaxial crystal field of the two Ho(III) ions that
should lead to a large mixing between their two low-lying
MJ levels and thus to the absence of a magnetic hysteresis
loop, the local hyperfine coupling together with the exchange
coupling are responsible of the blocking of the magnetization
in the binuclear complex.

In this article we present a binuclear Ho(III) complex of
formula [Ho2L3(CH3OH)] where H2L is depicted in Fig. 1.
We detail its synthesis, its characterization by x-ray crystallog-
raphy, magnetochemistry, single crystal microsquid, and the
first-principles method SO-CASSCF. A model Hamiltonian
is proposed and its parameters are either deduced from
SO-CASSCF calculations or fitted to reproduce the magnetic
data. The complex shows a hysteresis loop at low temperature.
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FIG. 1. H2L ligand.

With the help of quantum chemical tools and the model
Hamiltonian, we analyze the effect of the interplay between
the electronic magnetic moments and the hyperfine structure;
we conclude that the hysteresis is driven by the hyperfine
sublevels of the two Ho(III) ions and the electronic splitting of
the non-Kramers doublets and the magnetic coupling between
the two magnetic centers determine the shape of the loop.
Finally, this model Hamiltonian allows unraveling the role of
the electronic and nuclear degrees of freedom.

II. EXPERIMENTAL AND COMPUTATIONAL RESULTS

A. Crystal structure and magnetometry

The x-ray crystal structure shows that the two Ho(III) ions
are separated by 3.841 Å within the triple-decker-like binuclear
complex (see Fig. 2 and the Supplemental Material [26]). The
two Ho(III) sites are not equivalent; Ho1 is octacoordinated
while Ho2 is heptacoordinated. They are bridged by two
oxygen atoms belonging to the central L2− ligand. The static
magnetic behavior of the complex was investigated. The room
temperature χMT value of 26.7 cm3 K mol−1 (where χM is the
molar magnetic susceptibility and T is the temperature) is in
good agreement with the expected value for two noninteracting
Ho(III) ions (term 5I8, gJ = 5/4 χMT = 28.1 cm3 K mol−1)
and the decrease at low temperature is due to a gradual
depopulation of the Starks levels (see Fig. 3). Molecular
magnetization M as a function of applied magnetic field shows
a smooth increase and the saturation is not reached at 6 T (see
inset of Fig. 3).

The magnetic behavior was investigated on a single crystal
using a microsquid set up that allows us to cool down to
30 mK [27]. The magnetic hysteresis appears below 0.15 K.
The hysteresis loop was then measured at T = 0.03 K with
different sweep rates of the magnetic field ranging from 0.28
to 0.001 T/s (see Fig. 4). Upon decreasing the sweep rate
from 0.280 to 0.001 T/s, the coercive field decreases from
770 to 257 Oe, which is the signature of a quantum tunneling
of the magnetization (QTM) and not of a collective magnetic
order.

FIG. 3. χMT versus T . The inset shows the magnetization as
a function of magnetic field for different temperatures; points:
experiment; solid line: combined SO-CASSCF and fit.

B. First-principles calculations

SO-CASSCF calculations [28–33] were performed on
Ho1Lu and LuHo2 species, noted complexes A and B, re-
spectively, where one Ho(III) ion is replaced by a diamagnetic
Lu(III) ion. According to SO-CASSCF calculations (see the
Supplemental Material for more information [26]), the ground
term of the free ion 5I8 splits into 17 nondegenerate states
by 340 and 400 cm−1 for A and B, respectively, and in both
species, the first excited state lies at 11 cm−1 above the ground
state. Since none of the states are degenerate, the magnetization
arises through second order Zeeman interaction between the
Starks levels. At low temperature, magnetic properties are
mostly determined by the two lowest states, which may be
described as a non-Kramers doublet. The g matrix is calculated
by the same method as for Kramers doublets [34] but in the
case of a non-Kramers doublet, only one of the three g factors
is nonzero; within this model space restricted to two states, a
magnetization is induced by the magnetic field when applied
along the Z direction and there is no magnetization in the
two other directions. The SO-CASSCF calculations give gA =
15.0 and gB = 15.4 for A and B, with, respectively, an angle of
57° and 20°with the metal-metal axis. The two local magnetic
moments μμμA and μμμB form an angle of 37° (see Fig. 5). The
two ground states have similar decomposition in terms of MJ

[35], with a strong mixing of MJ = ±8, ± 7, ± 5. The M vs
B and χT vs T curves calculated with SO-CASSCF [36] do
not fit well with the experimental data, and it was necessary to

FIG. 2. View of the structure of the binuclear complex [Ho2L3(MeOH)] complex (left) and of the coordination sphere of the Ho(III) ions
(right); H atoms were removed for clarity. Color code: Ho (dark blue), N (light blue), O (red), and C (black).
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FIG. 4. Magnetization loops at different temperatures with a
sweep rate of 0.002 T/s (up) and at T = 0.03 K at different sweep
rates of the magnetic field (down).

adjust the two energy gaps �A and �B to split the other excited
states and to add a magnetic coupling in order to reproduce
the experimental data. The best adjustment is provided with
�A = 0.8 cm−1, �B = 10 cm−1, and J = 1 cm−1 (see Fig. 3).
These gaps are larger than those previously determined in

FIG. 5. The [Ho2L3(CH3OH)] complex. Local magnetic mo-
ments calculated with SO-CASSCF for sites A (red) and B (blue)
corresponding to Ho1Lu and LuHo2, respectively, and for Ho1Ho2
(black). The arrows are in the direction of the moment and the length
is proportional to gI .

Ho(III) complexes which are less than 0.3 cm−1 [10,11,37,38].
In the previous studies, the environment around the Ho(III) ion
was symmetrical and the ground state was pure in terms of MJ .
Even if the SO-CASSCF calculations do not match perfectly
the experimental curves, they serve as a starting point for
the characterization of the two magnetic centers: the nature
of the ground doublet and its magnetization (both modulus
and direction) are supposed to be correctly determined, and
we adjusted as few parameters as possible. They permit an
estimation of the magnetic characteristics of each Ho(III)
site. According to the local magnetic moments determined by
the SO-CASSCF calculation, the magnetic dipolar interaction
between the two centers is slightly ferromagnetic (≈0.3 cm−1)
because of the orientation of the two local moments and the
fit of the magnetic data leads to an additional coupling of
J = 1 cm−1 [9] (see the Supplemental Material [26]). Since
one of the energy gaps needed to be strongly readjusted, this
partition between dipolar and exchange interactions should be
taken with care and one should better remember that the total
interaction is slightly ferromagnetic. Anyhow, it will be shown
in the following that this coupling has only a small impact on
the shape of the hysteresis curve.

III. SPIN HAMILTONIAN

A. Electronic spin Hamiltonian

The spin Hamiltonian for a non-Kramers doublet takes the
form for site A, with the zero-field part Ĥ0

A and the Zeeman
term ĤZe

A [39,40]:

ĤA = Ĥ0
A + ĤZe

A = �A SZA

A + μB gA SXA

A BZA, (1)

where �A and gA are the energetic splitting and the g factor of
the doublet and S is a pseudospin operator with components
SX, SY , SZ , and S = 1/2. μB is the Bohr magneton and BZA

is the external magnetic field along the ZA direction. The
eigenvectors of Ĥ0

A are the two zero-field states |1〉A and |2〉A
with vanishing magnetic moments and a energy gap of �A.
The magnetization arises from the coupling between these two
states such that the Zeeman term ĤZe

A has only off-diagonal
elements in the basis of zero-field states and is described by
SXA

A . The local magnetic states are |±〉A = 1/
√

2(|1〉A ± |2〉A)
with respective magnetic moments ± 1

2μBgA. A similar Hamil-
tonian is obtained for site B.

The coupling Hamiltonian has two contributions (i) the
magnetic dipolar one

Ĥdip = μ0

4πR3

(
μμμA · μμμB − 3μ0

Aμ0
B

)
, (2)

where R is the intermetallic distance, 0 is the intermetallic
direction, and μ0 is the magnetic constant. Due to the axial
nature of the moments, the Hamiltonian of Eq. (2) may be
written as an Ising Hamiltonian with the two local pseudospins

Ĥdip = −J SZA

A SZB

B , (3)

and according to the SO-CASSCF calculations on the
monomers, J dip = 0.3 cm−1. The exchange interaction is
carried by the spin densities and is described by a Heisenberg–
Dirac–Van Vleck (HDVV) Hamiltonian

Ĥheis = −J heis SSSA · SSSB (4)
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FIG. 6. Representation of the three Cartesian coordinates frames:
ZA(B) is the direction of μμμA(B), Z is the bisector of ZA, ZB , and Y is
common to the three frames.

involving the local spin operators SSSA(B); due to the anisotropic
local magnetic moments, it may be expressed by an Ising
Hamiltonian as well. Both interaction terms, in the space of
the ground doublet, may be grouped as

Ĥ0
AB = −J SZA

A SZB

B . (5)

Finally, the total zero-field Hamiltonian

Ĥel = ĤA + ĤB + Ĥ0
AB (6)

has the following matrix representation in the basis | ± ±〉 =
|±〉A ⊗ |±〉B and | ± ∓〉 = |±〉A ⊗ |∓〉B :

| + +〉 | + −〉 | − +〉 | − −〉
−J/4 �B/2 �A/2 0

�B/2 J/4 0 �A/2

�A/2 0 J/4 �B/2

0 �A/2 �B/2 −J/4

. (7)

Since the Hamiltonians of the two complexes A and B
are not expressed in the same system of coordinates, it
is convenient to introduce a system of coordinates for the
dinuclear complex. ZA(B) is the direction of the magnetic
moment of the doublet of A (B). X and Z are the bisectors
of directions ZA and ZB,Z being the bisector of the acute
angle and X for the obtuse one (see Fig. 6). The states of the
dinuclear species are built as | ± ±〉 = |±〉A ⊗ |±〉B , where
|±〉A(B) are the two eigenstates of ĤZe

A(B), ĤZe
A(B)|±〉A(B) =

±1/2μBgA(B)B
Z , namely the states with local magnetization

up and down.
The total magnetic moment μμμ of the dinuclear complex is

the sum of the two local magnetic moments μμμA along ZA and
μμμB along ZB . Its component along the Z axis is

μZ =μZ
A + μZ

B = −1

2
μB

(
cos

θ

2
gAS

ZA

A + cos
θ

2
gBS

ZB

B

)
,

(8)

where θ/2 is the angle between Z and both ZA and ZB . The
component along X is

μX =μX
A + μX

B = −1

2
μB

(
sin

θ

2
gAS

ZA

A − sin
θ

2
gBS

ZB

B

)
,

(9)

and the component along Y vanishes. The eigenvalues and
eigenstates for these operators are

MZ = 〈+ + |μ̂Z| + +〉 = −〈− − |μ̂Z| − −〉
= 1

2μB(gA + gB) cos θ/2, (10)

mZ = 〈+ − |μ̂Z| + −〉 = −〈− + |μ̂Z| − +〉
= 1

2μB(gA − gB) cos θ/2, (11)

mX = 〈+ + |μ̂X| + +〉 = −〈− − |μ̂X| − −〉
= 1

2μB(gA − gB) sin θ/2, (12)

MX = 〈+ − |μ̂X| + −〉 = −〈− + |μ̂X| − +〉
= 1

2μB(gA + gB) sin θ/2. (13)

The Zeeman diagram with a field along Z is shown in
Fig. 7 in the case of symmetrical Ho(III) sites and for both
ferromagnetic and antiferromagnetic couplings. These curves
show that the magnetic behavior of the dinuclear complex
may be described as the avoided crossing between the | + +〉
and the | − −〉 states due the ZFS of the local doublets �A

and �B . The two | + −〉 and | − +〉 states are entangled and
are mostly nonmagnetic due to the compensation of the local
magnetic moments in the up-down conformation. The easy
axis of magnetization for the dinuclear complex is the bisector
of the two local magnetic moments. The magnetic coupling J

affects mostly the two | + −〉 and | − +〉 states with a small

FIG. 7. Zeeman diagram with a field in direction Z for the dinuclear complex. In solid red, �A = �B = 2 cm−1, MZ = 15, mZ = 0, and
J = −2 cm−1 (left) or J = 2 cm−1 (right); in dashed red, J = 0 and in dashed gray, �A = �B = 0 cm−1 and J = 0.
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FIG. 8. Electronic Zeeman levels for the dinuclear complex for a magnetic field in directions X (left) and Z (right). In solid red,
�A = 0.8 cm−1, �B = 10 cm−1, gA = 15.0, gB = 15.4, θ = 37◦, and J = 1 cm−1; in gray, the mononuclear complex with � = 0 and g = MZ

(dashed) and � = 0.8 cm−1 and g = 2MZ (solid).

gap opening between the two curves at small field. Its effect on
the lower curve is to decrease the magnetization when J < 0
and inversely, to increase it when J > 0.

With the parameters deduced from the ab initio calculations
on the complexes A and B, gA = 15, gB = 15.4, and θ = 37◦,
one gets mX = 0.03, MX = 2.4, mZ = 0.2, and MZ = 15 μB .
The magnetization is mostly borne by the | + +〉 and | − −〉
states along the Z axis because θ is relatively small and
gA ≈ gB . The Zeeman diagrams obtained by diagonalizing the
Hamiltonian of Eq. (6) in the | ± ±〉,| ± ∓〉 basis set are shown
in Fig. 8. Since �B = 10 cm−1 is much larger than �A =
0.8 cm−1, the four states are split into two pseudodoublets
separated by �B and in each doublet there is an avoided
crossing due to �A. At very low field, the magnetization of
the ground doublet is about MZ/2 and it increases to MZ at
higher fields.

B. Spin Hamiltonian with hyperfine coupling

It has been shown in previous studies that the hyperfine
coupling (HFC) of the Ho(III) ion plays the key role in the
hysteresis in holmium complexes [10,11]. Since the hysteresis
appears in the sub-Kelvin region, the electronic Hamiltonian
of Eq. (6) in the space of the two first doublets is sufficient and
the other states will be omitted in the following.

For the free ion, in the LS coupling scheme, the interaction
between the nuclear magnetic moment and the magnetic field
of the electrons may be written as [41]

ĤHFC = AJ JJJ · III, (14)

where III is the spin operator of the nucleus and JJJ is the
total electronic angular momentum. The natural abundance
for holmium is 100% 165Ho with I = 7/2. The Hamiltonian
of Eq. (14) applies in the 2J + 1 manifold of the 5I8 term.
Its projection in the subspace of the ground doublet may be
expressed using the pseudospin operator ĤHFC = S · A · S,
where A is the hyperfine coupling tensor, the tensors g and
A have the same principal axes. Consequently, in the present
case, A is axial as g is [42] and the hyperfine coupling spin
Hamiltonian for site A takes the form

ĤHFC
A = ASZA

A I
ZA

A , (15)

with

A

g
= AJ

gJ

, (16)

where gJ is the Landé g factor [=5/4 for Ho(III)]. The value
of AJ for Ho(III) was determined by EPR measurements in
ethyl sulfates crystal to be 815 MHz [42]. This value was
confirmed by further experiments, in LiHoF4 by EPR [43]
and optical spectroscopy [44] and in yttrium hydroxide by
spin echo NMR [45]. Recently, AJ was deduced from EPR
in [Ho(III)(W5O18)2]9− and found to be slightly larger with
830 MHz [37]. It shows that the HFC constant varies little with
the environment, due to the ionic character of the bond. In the
following, we will take AJ = 830 MHz and with g = 15, one
gets A = 9960 MHz. The nuclear quadrupole and the nuclear
Zeeman interactions are neglected since they are much smaller
than the HFC term. To reduce the model space to the ground
doublet, one neglects the effect of the excited states, which
bring terms above the Ising-like magnetism. The use of the
following spin Hamiltonian is restricted to the low temperature
domain.

The two local HFC operators ĤHFC
A/B are added to the

electronic Hamiltonian

ĤT = Ĥel + ĤHFC
A + ĤHFC

B . (17)

FIG. 9. Zeeman diagram for the dinuclear complex including
nuclear degrees of freedom for a magnetic field in direction Z.
Parameters are given in Fig. 8. The colors denote the value of
MIA + MIB ; from purple to red, MIA + MIB varies from 7 to −7.
The inset zooms in the avoided crossing region. In gray, the case of
the mononuclear complex with � = 0 is depicted.

214427-5



MARTA VICIANO-CHUMILLAS et al. PHYSICAL REVIEW B 96, 214427 (2017)

FIG. 10. Experimental magnetization along the easy axis of
magnetization (points) at ω = 0.002 T/s and theoretical curves (lines)
obtained with the Hamiltonian of Eq. (17) with the same parameters
as Fig. 8 and a thermal distribution at different temperatures.

The basis set for the binuclear compound is spanned by the 256
| ± ,MI 〉A ⊗ | ± ,MI 〉B states. According to the Hamiltonian
of Eq. (15), states with different values of MI do not couple.
The Zeeman diagram for the binuclear compound including
the nuclear degrees of freedom is shown in Fig. 9.

IV. MODELING OF THE HYSTERESIS

In Fig. 4 the curves with a sweep of 0.002 T/s do not
show hysteresis except for the lowest temperature T = 0.03 K.
The thermal equilibrium is reached and the magnetization
is deduced from the Hamiltonian (17) with a Boltzmann
population; it is represented in Fig. 10 and is in good agreement
with the experimental data. The nuclear sublevels are separated
by an energy of A/2 = 0.16 cm−1; not all of these sublevels
are populated at T = 0.03 K. The energies of the MI manifold
as a function of magnetic field are not parallel such that
the sublevels do not have the same electronic magnetization;
the total magnetization will consequently depend on the
relative population of the MI sublevels. As soon as a field
is applied, the degeneracy of the ±MI states is removed
(see inset of Fig. 9) and the magnetization increases abruptly
since only the ground sublevel is populated. On the contrary,
at T = 1.2 K all the MI sublevels are populated and the
increase of the magnetization arises from the smooth change
of magnetization of the sublevels but not from their relative
population. At T = 0.03 K, the increase of magnetization is

due to the thermal population of the nuclear sublevels while at
T = 2 K, all nuclear sublevels are equally populated and the
excited electronic states (| ± ∓〉 and | ± ±〉) contribute to the
temperature dependence of the magnetization.

The hysteresis arises because when varying the field, the
system remains in the same state, even when becoming
metastable, since there is no coupling between the states
with different values of MI . The largest hysteresis would be
obtained by following the MI = 7 sublevel for decreasing field
and the MI = −7 sublevel for increasing field (see Fig. 7).
The magnetization of the MI = ±7 sublevels represents the
envelope in which the hysteresis must lie. In Fig. 11 the
magnetization of MI = ±7 sublevels are shown for different
values of �, MZ , and J in the case of a symmetrical complex
with �A = �B = �. The effect of � is the progressive mixing
between the electronic states and consequently a smoothing of
the magnetization: the larger � is, the less abrupt the change in
the magnetization and narrower the hysteresis is. An increase
in � smoothens the loop but does not impact its width, an
increase in MZ sharpens and shrinks the loop while a positive
(negative) J sharpens (smoothens) the loop without affecting
its width. The effects of � and J are very similar such that
it is difficult to deconvolute the effects of � and J from the
experimental spectra.

As expected for a noncollective phenomenon, the largest
hysteresis loop is obtained with the smallest temperature T =
0.03 K and the largest sweep rate 0.28 T/s and originates from
the population of metastable states; this magnetic hysteresis
is represented in Fig. 12 with the magnetization of the MI

sublevels of the ground manifold of Fig. 9. As stated in
the previous section, the Hamiltonian of Eq. (17) does not
couple states with different values of MI = MIA + MIB and
these sublevels may be metastable, up to some point. The
comparison of the experimental hysteresis curve with this
manifold of curves permits us to determine the pathway
of the transition between MI = 7 and −7 sublevels. For
B > 0, the lowest state corresponds to MI = 7 (purple curve)
and for B < 0 to MI = −7 (red curve). Since there is no
coupling between the MI states, the system may stay in
a metastable state. Starting from B > 0 and decreasing the
field, the experimental curve follows the purple curve until
B = −0.05 T corresponding to the maximum of energy of
this MI state; then there is a deexcitation to the green
curve (MIA + MIB = 0). Starting from B < 0 and increasing
the field, the experimental points follow the red line up to
B = 0.05 T and there a deexcitation to lower levels occur, on

FIG. 11. Effect of �, MZ , and J on the envelope of the magnetization curves. Left: MZ = 15, J = 0; center: � = 2 cm−1, J = 0; right:
MZ = 15, � = 2 cm−1. � = �A = �B .
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FIG. 12. Experimental relative magnetization along the easy axis
of magnetization (black points) at T = 0.03 K and ω = 0.28 T/s
and the magnetization of the lowest manifolds calculated with the
Hamiltonian of Eq. (17) with the same parameters as Fig. 8. The colors
denote the value of MIA + MIB ; from purple to red, MIA + MIB

varies from 7 to −7.

the green curve as well. The effect of the zero-field gap �B

is the progressive mixing between the electronic states | − −〉
and | + −〉 and leads to a smoothing of the magnetization as
compared to the previous studies: the larger the gap is, the less
abrupt the change in the magnetization is and the narrower
the hysteresis is. The purple and red curves in Fig. 12 denote
the largest loop corresponding to the Zeeman diagram; the
experimental curve lies within the envelope of the theoretical
ones. In order for the hysteresis to occur, the HFC sublevels

may be partially populated: that is why it disappears for
temperatures larger than 0.5 K.

V. CONCLUSION

In this article we have reported the magnetic hysteresis
observed in a binuclear Ho(III) complex. Using a combined
characterization of x-ray crystallography, magnetometry, and
first-principles calculations, a spin Hamiltonian has been
proposed for the dinuclear species, describing both electronic
and nuclear magnetic degrees of freedom. According to the
Hamiltonian parameters that match all the available experi-
mental data, each Ho(III) ion is a non-Kramers doublet, the
octacoordinated Ho(III) ion with a rather small gap of 0.8 cm−1

and the heptacoordinated Ho(III) ion with a larger gap of
10 cm−1, with a small ferromagnetic exchange coupling
between the two sites. The driving force of the magnetic hys-
teresis is shown to be the metastability of the hyperfine levels
while its shape is determined by the electronic parameters,
energy gaps in the local doublets, and magnetic coupling.
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