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Quantum critical (QC) phenomena can be accessed by studying quantum magnets under an applied magnetic
field (B). The QC points are located at the end points of magnetization plateaus and separate gapped and gapless
phases. In one dimension, the low-energy excitations of the gapless phase form a Luttinger liquid (LL), and
crossover lines bound insulating (plateau) and LL regimes, as well as the QC regime. Alternating ferrimagnetic
chains have a spontaneous magnetization at T = 0 and gapped excitations at zero field. Besides the plateau at
the fully polarized (FP) magnetization, due to the gap there is another magnetization plateau at the ferrimagnetic
(FRI) magnetization. We develop spin-wave theories to study the thermal properties of these chains under an
applied magnetic field: one from the FRI classical state and another from the FP state, comparing their results
with quantum Monte Carlo data. We deepen the theory from the FP state, obtaining the crossover lines in the
T vs B low-T phase diagram. In particular, from local extreme points in the susceptibility and magnetization
curves, we identify the crossover between an LL regime formed by excitations from the FRI state to another built
from excitations of the FP state. These two LL regimes are bounded by an asymmetric domelike crossover line,
as observed in the phase diagram of other quantum magnets under an applied magnetic field.
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I. INTRODUCTION

The theory of quantum phase transitions [1,2] provides
a framework from which the low-temperature behavior of
many condensed-matter systems can be understood. The
quantum critical point separates an insulating gapped phase
and a gapless conducting phase. Of particular importance
are magnetic insulators [3,4], for which the quantum critical
regime can be experimentally accessed through an applied
magnetic field. In these systems, the gapped phases are
associated to magnetization plateaus in the magnetization
curves.

In one dimension, magnetization plateaus can be under-
stood as a topological effect through the Oshikawa, Yamanaka,
and Affleck (OYA) argument [5], which generalizes the Lieb-
Schultz-Mattis theorem [6]. The OYA argument asserts that a
magnetization plateau is possible only if (Su − mu) = integer,
where mu is the ground-state magnetization and Su is the sum
of the spins in a unit period of the ground state, respectively.
If the ground state does not present spontaneous translation
symmetry breaking, Su is equal to the fully polarized magne-
tization per unit cell, while mu is the magnetization per unit
cell of the system. The OYA argument was further extended
[7] to models in higher dimensions and to charge degrees of
freedom.

Due to the gap closing a magnon excitation, the end points
of magnetization plateaus are quantum critical points. In three-
dimensional systems, this transition is in the same universality
class of the Bose-Einstein condensation [4,8] and was studied
in a variety of magnetic insulators [3,4,9]. In the magnetic
system, the magnetization and the magnetic field play the role
of the boson density and chemical potential, respectively, of the
bosonic model. In one dimension, the mapping to a hard-core
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boson model or a spinless fermion system [8] implies a square-
root singularity in the magnetization curve: m ∼ √|B − Bc|
as B → Bc; and, if three-dimensional couplings are present,
the condensate can be stabilized at temperatures below that of
the three-dimensional ordering [8].

Exactly at the quantum critical field, the magnons have a
classical dispersion relation, ω ∼ q2, where q is the lattice
wave vector. In one dimension, this quantum critical field
separates a gapped phase from a gapless Luttinger liquid (LL)
phase [10,11], with excitations showing a linear dispersion
relation, ω ∼ q. The predictions of the Luttinger liquid theory
in magnetic insulators with a magnetic field, including the
quantum critical regime, were investigated in many materials
[12–14]. For finite temperatures and B ≈ Bc, the quantum
critical regime is observed, and the crossover line [15] to the
LL regime is given by T (B) ∼ a|B − Bc|, with a universal,
model-independent coefficient a.

One-dimensional ferrimagnets [16,17] show spontaneous
magnetization at T = 0, as expected from the Lieb and
Mattis theorem [18], and a gap in the excitation spectrum is
responsible for a magnetization plateau in their magnetization
curves at the ground-state magnetization value. In zero field,
the critical properties in the vicinity of the thermal critical
point at T = 0 were studied in the isotropic [19,20] and
anisotropic cases [20]. Interesting physics emerges through
the introduction of destabilizing factors of the ferrimagnetic
state, such as doping [21–27] or geometric frustration [28–36].
The spin-wave theory [37] of ferrimagnetic chains [37–45]
was developed from the classical ferrimagnetic ground state,
considering free and interacting magnons, with emphasis
on zero-field properties. The magnetization curves of these
systems under an applied magnetic field were discussed mainly
through numerical methods [38,42,46–51].

In this work, we investigate the spin-wave theory of
ferrimagnetic alternating chains at low temperatures and in
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the presence of a magnetic field. We compare some results
with quantum Monte Carlo (QMC) data, obtained using the
stochastic series expansion method code from the Algorithms
and Libraries for Physics Simulations (ALPS) project [52],
with 1 × 106 Monte Carlo steps. We consider spin-wave
excitations from the ferrimagnetic and fully polarized classical
states. In the ferrimagnetic case, we consider interacting spin
waves, while in the fully polarized, only free spin waves are
discussed. Considering the whole values of magnetization,
from zero to saturation, the two approaches present similar
deviations from the QMC data. We deepen the theory from
the ferromagnetic ground state and obtain the crossover lines
bounding the plateau and LL regimes. In particular, we show
that susceptibility and magnetization data can be used to
identify a crossover between two LL regimes, one built from
excitations of the ferrimagnetic magnetic state and the other
from the fully polarized one.

This paper is organized as follows. In Sec. II, we present the
Hamiltonian model and discuss the magnetization curves from
QMC calculations. In Sec. III, the spin-wave theories from the
ferrimagnetic (FRI) and fully polarized (FP) classical states
are discussed, particularly the methodology used to obtain the
respective magnetization curves with a finite temperature, and
a comparison is made between their results and QMC data. In
Sec. IV, we study LL and plateau regimes at finite temperature
through the free spin-wave (FSW) theory from the FP vacuum
(FSW-FPv). Finally, in Sec. V, we summarize our results and
sketch the T -B phase diagram from the FSW-FPv theory of
the alternating (1/2,1) spin chain.

II. MODEL HAMILTONIAN AND QMC
MAGNETIZATION CURVES

An alternating spin (s, S) chain has two kinds of spin, S and
s, alternating on a ring with antiferromagnetic superexchange
coupling J between nearest neighbors, and described by the
Hamiltonian

H = J

N∑
j=1

(sj · Sj + sj · Sj+1) − B

N∑
j

(
Sz

j + sz
j

)
, (1)

where B is the magnetic field and N denotes the number of
unit cells. We assume S > s and consider equal g factors for
all spins, defining gμB = 1, where μB is the Bohr magneton.
The magnetization per unit cell is given by

m =
N∑
j

(
Sz

j + sz
j

)
. (2)

In Fig. 1, we show QMC results for m(B) for the (1/2, 1)
chain in the low-T regime. At T = 0, m(B) presents two mag-
netization plateaus: the ferrimagnetic (FRI) at mFRI = (S − s)
and the fully polarized (FP) at mFP = s + S. In particular, at
T = 0, m = mFRI for B = 0, with a gapless Goldstone mode.
There are quantum phase transitions at the end points of the
plateaus: B = Bc,FRI and B = Bc,FP, respectively, which have
the values Bc,FRI = 1.76J and Bc,FP = 3.00J for the (1/2, 1)
chain. At the critical fields, there is a transition from a gapped
plateau phase to a gapless Luttinger liquid (LL) phase, as B →
Bc,FRI from magnetic fields B < Bc,FRI, or B → Bc,FP from

FIG. 1. Magnetization plateaus at finite temperature, Luttinger
liquid phase, and crossovers: quantum Monte Carlo (QMC) data.
Magnetization per cell m and the susceptibility χ = ∂m/∂B as a
function of magnetic field B for an alternating (s = 1/2, S = 1)
chain with N = 256 unit cells and the indicated values of temperature
T . The critical end points of the ferrimagnetic (FRI) and the
fully polarized (FP) plateaus are Bc,FRI = 1.76J and Bc,FP = 3J ,
respectively. The presence of the FRI and FP plateaus and the region
dominated by Luttinger liquid (LL) regime is a common feature for
all values of s and S, with S > s. As T → 0, χ → ∞ at the critical
values of B; for T � 0, local maxima in the χ curves marks the
crossover from the LL regime to the quantum critical regime. The
local minimum in the χ curve (dashed line) between Bc,FRI and Bc,FP

separates the LL regime into two regions: one with excitations from
the FRI state, LL1 and the other with excitations from the FP state,
LL2.

magnetic fields B > Bc,FP. In the LL phase, the excitations
have a linear dispersion relation, ω ∼ q, and present critical
(power-law) transverse spin correlations. Exactly at the critical
fields, the excitations have a classical dispersion relation
ω ∼ q2 and in the high diluted limit can be represented by
a hard-core boson model or a spinless fermion model. Hence,
the magnetization has a square-root behavior m ∼ √|B − Bc|
and a diverging susceptibility χ = ∂m/∂B ∼ 1/

√|B − Bc| as
B → Bc.

For finite T , but T → 0, the magnetization m = 0 for
B = 0 since the system is one dimensional. Gapped magnetic
excitations are thermally activated and the plateau widths
reduce. The susceptibility shows local maxima with dis-
tinct amplitudes at B ≈ Bc,FRI and B ≈ Bc,FP, marking the
crossover between the LL regime where the excitations have
a linear behavior, ω ∼ q, to the quantum critical regime for
which ω ∼ q2. We can define the local minimum in the χ

curve, at B ≡ Bi , as a crossover between the region where the
excitations are predominantly from the FRI state, denoted by
LL1 in Fig. 1, and that where the excitations are predominantly
from the FP state, denoted by LL2 in Fig. 1. In particular, for
B ≈ Bi , the magnetization curve has its more robust value
and behavior as the temperature increases, showing that the
LL phase is more robust for B ≈ Bi .
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III. SPIN-WAVE THEORY

The ferrimagnetic arrangement of classical spins is a
natural choice of vacuum to study quantum ferrimagnets
through free spin-wave (FSW) theory [38] if we want to
study excitations from the quantum ground state. Two types
of magnon excitations are obtained: one ferromagnetic, which
decreases the ground-state spin by one unit, and the other
antiferromagnetic, increasing the ground-state spin by one
unit. In particular, the antiferromagnetic excitation has a finite
gap �, which implies the expected magnetization plateau at
m = S − s and T = 0. However, at this linear approximation,
quantum fluctuations are underestimated, giving poor results
for the value of antiferromagnetic gap and other quantities,
such as the average spin per site.

When one-dimensional ferromagnets are studied through
the linear spin-wave theory at finite temperatures, a diverging
zero-field magnetization is obtained for any value of T

[53–55]. Takahashi [56,57] modified the theory by imposing
a constraint on the zero-field magnetization and an effec-
tive chemical potential in the thermal boson distribution.
This so-called modified spin-wave theory describes very
well the low-temperature thermodynamics of one-dimensional
ferromagnets and was further successfully adapted to other
systems, including ferrimagnetic chains [40]. In the case of
ferrimagnets, the introduction of the magnetization constraint
in the bosonic distribution with the linear spin-wave dispersion
relations gives an excellent description of the low-T behavior.
The description of the intermediate-T regime can be improved
by changing the constraint [37].

In this section, we discuss interacting spin-wave theory
using a ferrimagnetic vacuum (ISW-FRIv) for B �= 0 and
T �= 0, with the modified spin-wave approach (Takahashi’s
constraint), and free spin-wave theory from a fully polarized
vacuum (FSW-FPv), also for B �= 0 and T �= 0.

A. Spin-wave theory: Ferrimagnetic vacuum

The Holstein-Primakoff spin-wave theory is developed
from the classical ground state illustrated in Fig. 2(a), which
has the energy E

(FRIv)
class = −2JNsS − B(S − s)N . The bosonic

operators aj (a†
j ) and bj (b†j ), associated to A and B sites,

respectively, have the following relation with the spin operators
(Holstein-Primakoff transformation):

S+
j =

√
2S

(
1 − a

†
j aj

2S

)1/2

aj and Sz
j = S − a

†
j aj , (3)

s+
j = b

†
j

√
2s

(
1 − b

†
j bj

2s

)1/2

and sz
j = b

†
j bj − s. (4)

By putting the Hamiltonian (1) in terms of these bosonic
operators, expanding to quadratic order, Fourier transforming,
and making the following Bogoliubov transformation [38]:

ak = αk cosh θk − β
†
k sinh θk,

bk = βk cosh θk − α
†
k sinh θk, (5)

tanh 2θk = 2

√
sS

s + S
cos

(k

2

)
, (6)

FIG. 2. Interacting spin-wave (ISW) magnon branches from the
classical ferrimagnetic vacuum (FRIv)—calculating the thermody-
namic properties. (a) The classical ferrimagnetic vacuum of the (s,S)
chain. (b) Magnon dispersion relations for the (s = 1/2, S = 1) chain
with B = 0. There are ferromagnetic and antiferromagnetic magnons,
carrying spin �Sz = −1 and �Sz = 1, respectively. The values of
the critical fields are B

(ISW-FRIv)
c,FRI = 1.68J and B

(ISW-FRIv)
c,FP = 2.74J .

To calculate the thermodynamic functions, the antiferromagnetic
(ferromagnetic) magnons occupy their respective bands following the
Fermi (Bose) distribution function. An effective chemical potential μ

is introduced in the Bose distribution to prevent particle condensation
at the k = 0 mode for B = 0 and T → 0. (c) For each value of T ,
we use a value of μ such that m = 0 for B = 0. The inset shows that
μ(T → 0) → 0 as T → 0. In this limit, both bands are empty and
m = (S − s) = 1/2, the FRI magnetization.

where k is the lattice wave vector, the noninteracting spin-wave
Hamiltonian is given by

H(FSW−FRIv) = E0 +
∑

k

[
ω

(FRIv)
k,− α

†
kαk + ω

(FRIv)
k,+ β

†
kβk

]
.

(7)

The obtained magnon branches are

ω
(FRIv)
k,σ = σJ (S − s) − σB + Jω

(FRIv)
k , (8)

with σ = ±, and

ω
(FRIv)
k =

√
(S − s)2 + 4sSsin2

(
k

2

)
, (9)

while the ground-state energy is

E0 = J
∑

k

[
ω

(FRIv)
k − (S + s)

]
. (10)

The ω
(FRIv)
k,− modes carry a spin �Sz = −1, having a

ferromagnetic spin-wave nature, and are gapless for B = 0,
while ω

(FRIv)
k,+ modes carry a spin �Sz = +1, having an

antiferromagnetic spin-wave nature and a gap � = 2J (S − s)
at B = 0. For the (s = 1/2, S = 1) chain [38], for example,
� = 1, although the exact value is 1.76J , while 〈Sz

a〉 = 0.695
and 〈Sz

b〉 = −0.195 at T = 0, with the exact values [38] of
〈Sz

a〉 = 0.792 and 〈Sz
b〉 = −0.292.

The dispersion relations can be improved if interactions
between magnons are considered. The corrected dispersion
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relations described in Ref. [43], shown in Fig. 2(b), are

ω̃
(FRIv)
k,σ = ω

(FRIv)
k,σ − Jδω

(FRIv)
k,σ , (11)

where

δω
(FRIv)
k,σ = 2�1

(S + s)

ω
(FRIv)
k

sin2(k/2) − �2√
sS

[
ω

(FRIv)
k + σ (S − s)

]
,

with

�1 = 1

N

∑
k

sinh2 θk (12)

and

�2 = 1

N

∑
k

cos(k/2) sinh θk cosh θk. (13)

Up to O(S0), the Hamiltonian is

H(ISW-FRIv) = Eg +
∑

k

(
ω̃

(FRIv)
k,− α

†
kαk + ω̃

(FRIv)
k,+ β

†
kβk

)
,

(14)

where

Eg = Eclass + E0 + E1, (15)

with

E1 = −2JN
[
�2

1 + �2
2 − (√

S/s +
√

s/S
)
�1�2

]
. (16)

At T = 0, the magnetization as a function of B, shown
in Fig. 1 for the (s = 1/2, S = 1) chain, can be understood
from these ferromagnetic (�Sz = −1) and antiferromagnetic
(�Sz = +1) magnon modes. For B = 0, the two bands
are empty and the magnetization is the ferrimagnetic one.
Increasing the magnetic field, the ferromagnetic band acquires
a gap which increases linearly with B, while the gap to the
antiferromagnetic band decreases linearly with B. Notice,
in particular, that the ferromagnetic band is empty for all
values of B. At B = B

(ISW-FRIv)
c,FRI /2 = �/2, the k = 0 mode

of the antiferromagnetic band is the lower-energy state, and at
B = B

(ISW-FRIv)
c,FRI = �, the gap to this mode closes. The value

of B
(ISW-FRIv)
c,FRI is

B
(ISW-FRIv)
c,FRI = ω̃

(FRIv)
0,+ = 2(S − s)

(
1 + 1√

sS
�2

)
J. (17)

In particular, for the (s = 1/2, S = 1) chain, with �1 = 0.305
and �2 = 0.478, B

(ISW-FRIv)
c,FRI = 1.68J , which is very close to

the exact value (1.76J ).
The magnetization for B > � is obtained by considering

the antiferromagnetic magnons as hard-core bosons [8] or
spinless fermions. The magnetization increases with B as the
antiferromagnetic band is filled and saturates when the Fermi
level reaches the band limit, at k = π . The saturation field is

B
(ISW-FRIv)
c,FP = ω̃

(FRIv)
π,+ = 2

(
S − �1 +

√
S

s
�2

)
J, (18)

which for the (s = 1/2, S = 1) chain is B
(ISW-FRIv)
c,FP = 2.74,

departing from the exact value 3J , but much better than the
free spin-wave result of 2J .

Thermodynamics

For T > 0, ferromagnetic and antiferromagnetic modes
are occupied in accord with Bose-Einstein (n(FRIv)

k,− ) and

Fermi-Dirac (n(FRIv)
k,+ ) distributions, respectively, as indicated

in Fig. 2(a). The magnetization, for example, is given by

m(T ,B) = (S − s) + 1

N

∑
k

(
n

(FRIv)
k,+ − n

(FRIv)
k,−

)
. (19)

We notice, however, that with T > 0 and B = 0, the
ferromagnetic band will be thermally activated and m → −∞
as T increases. This problem also arises in one-dimensional
ferromagnetic chains and was overcome by Takahashi
[56,58], in the low-T regime, through the introduction of
an effective chemical potential μ in the bosonic distribution
and a constraint m(B = 0,T ) = 0. A similar strategy was
applied to one-dimensional ferrimagnetic systems [40] and
good results were also obtained in the low-T regime. The
intermediate-T regime, where the minimum in the T χ curve
of the ferrimagnets [17] is observed, can be more accurately
described if other constraints are used [37,43,45].

Here, for B = 0, we use the simplest constraint,

m(T ,B = 0) = 0, (20)

since we are interested in the low-T regime, with

n
(FRIv)
k,− = 1

eβ[ω̃(FRIv)
k,− −μ] − 1

, (21)

n
(FRIv)
k,+ = 1

eβω̃
(FRIv)
k,+ + 1

. (22)

In Fig. 2(b), we present m(T ,B = 0) for the indicated values
of T . As discussed, m → −∞ at μ = 0 and the value
of μ for which the constraint m(T ,B = 0) = 0 is satisfied
monotonically decreases with T , in this low-T regime. A
finite μ implies an effective gap for the ferromagnetic band,
with an exponential thermal activation of their magnons. In
particular, notice that μ(T → 0) = 0, as expected. To calculate
the thermodynamic functions for B �= 0, we consider the
distributions in Eqs. (21) and (22) and use the same value
of μ found in the case B = 0: μ(B,T ) = μ(B = 0,T ), for any
value of B.

The magnetization as a function of B for T �= 0, shown
in Fig. 1, can be qualitatively understood from this theory.
For B = 0, the magnetization m = 0 due to the constraint.
As B increases, in the region 0 < B < Bc,FRI/2, the gap to
the ferromagnetic band increases, but this band is thermally
activated and the magnetization decreases from the m = S − s

value. This effect can also be seen from Fig. 2(b). If we
move the Zeeman term +B from the ferromagnetic dispersion
relation to the chemical potential, ω̃

(FRIv)
k,− → ω̃

(FRIv)
k,− − B and

−μ → −(μ − B), in Eq. (21), the magnetization value is the
one shown in Fig. 2(b) for μ lower than that of B = 0 and
m = 0. From Fig. 2(b), we see that by increasing B (decreasing
μ) from B = 0 [from μ(B = 0,T )], the magnetization rises ex-
ponentially to the ferrimagnetic value. For B = B

(FSW,FPv)
c,FRI /2,

the lower-energy band is the antiferromagnetic (�Sz = +1
magnons) fermionic band. This band is thermally activated for
[B(FSW,FPv)

c,FRI /2] < B < Bc,FRI and the magnetization is higher
than S − s. The magnetization increases through the filling
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FIG. 3. Free spin-wave magnon branches from the classical
ferromagnetic vacuum—calculating the thermodynamic properties.
(a) The classical fully polarized vacuum of the (s,S) chain. (b) Free
spin-wave (FSW) results for the magnon energies relative to the fully
polarized vacuum (FPv) for T �= 0 and B = 0 for the (s = 1/2,
S = 1) chain. In this case, both branches are ferromagnetic with
magnons carrying a spin �Sz = −1. To calculate the thermodynamic
functions, the lower (higher) magnon band is filled following the
Fermi (Bose) distribution function. An effective chemical potential μ

is introduced in the Bose distribution to prevent particle condensation
at the k = π mode for B = 0 and T → 0. The critical fields
are B

(FSW,FPv)
c,FRI = 2.00J and B

(FSW,FPv)
c,FP = 3.00J . (c) The chemical

potential μ is chosen such that m = 0 for B = 0. The inset shows that
μ(T → 0) → −1 as T → 0. In this limit, only the lower-energy band
is occupied, implying that m → (S − s) = 1/2 for the ferrimagnetic
magnetization, as T → 0 and B → 0.

of this band, in accord with the Fermi distribution, up to the
saturation value m = s + S, which is exponentially reached.

B. Spin-wave theory: Fully polarized vacuum

In this section, we study the free spin-wave theory from
a fully polarized vacuum, illustrated in Fig. 3(a). We show
that this theory provides a good description of the low-T
physics and is quantitatively much better than the free spin-
wave description from the ferrimagnetic vacuum. The critical
saturation field has an exact value, while the critical field at
the end of the ferrimagnetic plateau is B

(FSW,FPv)
c,FRI = 2J .

The Holstein-Primakoff transformation in this case is

S+
j =

√
2S

(
1 − a

†
j aj

2S

)1/2
aj and Sz

j = S − a
†
j aj , (23)

s+
j =

√
2s

(
1 − b

†
j bj

2s

)1/2
bj and sz

j = s − b
†
j bj , (24)

with the two bosons lowering the site magnetization by
one unit. To quadratic order in these bosonic operators, the
Hamiltonian of the system given by Eq. (1) is

H(FSW-FPv) = E
(FPv)
class + J

∑
j

{
− s(a†

j aj + a
†
j+1aj+1)

− 2Sb
†
j bj +

√
sS[(aj + aj+1)b†j

+ (a†
j + a

†
j+1)bj ] + B

∑
j

(a†
j aj + b

†
j bj )

}
,

(25)

with E
(FPv)
class = 2JNsS − B(S + s)N . Fourier transforming the

bosonic operators and using the Bogoliubov transformation,

a
†
k = α

†
k cos θk − β

†
k sin θk, (26)

b
†
k = β

†
k cos θk + α

†
k sin θk, (27)

with

tan 2θk = 2

√
sS

S − s
cos

(
k

2

)
, (28)

the Hamiltonian in Eq. (25) is written as

H(FSW-FPv) = E
(FPv)
class +

∑
k

[
ω

(FPv)
k,1 α

†
kαk + ω

(FPv)
k,0 β

†
kβk

]
,

(29)

where the dispersion relations [42] ω
(FPv)
k,η are

ω
(FPv)
k,η = (−1)η+1

√
(S − s)2 + 4sScos2

(
k

2

)

−(
S + s

) + B, (30)

with η = 0 or 1.
To discuss the T = 0 magnetization curve implied by

these spin-wave modes, we present in Fig. 3(b) the dis-
persion relations ω

(FPv)
k,η for the (s = 1/2, S = 1) chain

and B = B
(FSW,FPv)
c,FP = 2J (s + S) = 3J . At B = B

(FSW,FPv)
c,FP =

Bc,FP, both bands are empty and the magnetization is the fully
polarized one. Decreasing B, the η = 0 band is filled in accord
with Fermi-Dirac statistics and the magnetization decreases.
The critical field at the end point of the ferrimagnetic plateau is
obtained making ω

(FPv)
π,0 = 0, which implies B

(FSW,FPv)
c,FRI = 2SJ ,

equal to 2J for the (s = 1/2, S = 1) chain. At this value
of B, the η = 0 band is totally filled and m = (s + S) − 1,
giving 1/2 for the (s = 1/2, S = 1) chain. There is a gap
of 2(S − s)J between the η = 0 and η = 1 bands, at k = π ;
hence, the bosonic η = 1 band should start to be filled at B =
B

(FSW,FPv)
c,FRI − 2(S − s)J , and the theory does not qualitatively

reproduce the T → 0 magnetization curve. This problem is
overcome by considering the finite-temperature theory, with
Takahashi’s constraint and effective chemical potential. For
finite T , the magnetization is given by

m(T ,B) = (S + s) − 1

N

∑
k

[
n

(FPv)
k,0 + n

(FPv)
k,1

]
, (31)

where

n
(FPv)
k,0 = 1

eβω
(FPv)
k,0 + 1

, (32)

n
(FPv)
k,1 = 1

eβ[ω(FPv)
k,1 −μ] − 1

. (33)

The constraint, which is applied at B = 0, is

m(T ,B = 0) = 0. (34)

In Fig. 3(c), we present the magnetization as a function of the
effective chemical μ for the indicated values of temperature.
We note that m → −∞ as the temperature increases, similarly
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0 1 1.76 3
B(J)

0

0.5

1

1.5

QMC
FRIv, ISW
FPv, FSW

Jχ / 4

m

FIG. 4. Comparison between results from the quantum Monte
Carlo (QMC) method, N = 256 unit cells, and the two spin-wave
approaches for the magnetization per cell m and the susceptibility χ :
(s = 1/2, S = 1) chain at temperature T = 0.02(J/kB ). Results from
the interacting spin-wave theory from a ferrimagnetic vacuum (ISW-
FRIv) and free spin-wave theory from a ferromagnetic vacuum (FSW-
FPv) compare well with QMC for B � Bc,FRI and B � Bc,FP. The
maximum in χ related to Bc,FRI (Bc,FP) is better localized compared
to QMC through the ISW-FRIv (FSW-FPv) approach.

to the spin-wave theory with the ferrimagnetic vacuum.
However, in this case μ → −1 as T → 0, as shown in
Fig. 3(b). Hence, a finite chemical potential μ = −1 associated
to the bosonic η = 1 band must be considered in the T = 0
theory. With this chemical potential, the η = 1 band stays
empty at T = 0 for any value of B.

The thermodynamic functions are calculated using Eq. (33),
with μ(T ,B) = μ(T ,B = 0). For finite T , the fermionic η = 0
band is completely filled and the occupation of the η = 1
band is such that m = 0. Considering the low-T regime, as
B increases, the energy of the two bands raises, lowering
the total occupation of the η = 1 band since ω

(FPv)
k,1 − μ

linearly increases with B for any k, and m increases. The
magnetization exponentially reaches its value at the ferrimag-
netic plateau, m = S − s, as B increases since n

(FPv)
k,1 → 0

for any k and the η = 0 band is completely filled. For
[B(FSW,FPv)

c,FRI /2] < B < B
(FSW,FPv)
c,FRI , with [B(FSW,FPv)

c,FRI /2] related
to the point B = Bc,FRI/2 in Fig. 1, the occupation of the η = 0
band decreases from the T = 0 case: n

(FPv)
k,0 = 1 for any k and

the magnetization is higher than S − s. The magnetization
increases with B and exponentially reaches the fully polarized
value at B > B

(FSW,FPv)
c,FP , since magnons at the η = 0 band are

thermally excited.

C. Comparison between QMC data and the two
spin-wave approaches

In Fig. 4, we present magnetization and susceptibility
χ = ∂m/∂B as a function of B from ISW-FRIv and FSW-FPv
theories along with QMC data, at T = 0.1J . Since the ISW-
FRIv gives a better result for Bc,FRI, this theory is better in the
vicinity of this critical field. Otherwise, the FSW-FPv approach

is better in the vicinity of Bc,FP. Further, the amplitudes
of the two peaks in χ (B), which marks the crossover to
the LL regime, have values lower than the ones given by
QMC. The difference between the amplitudes of the spin-wave
approaches and QMC data is related to limitations in the spin-
wave theories. Despite it, the descriptions from both spin-wave
theories are qualitatively excellent and quantitatively very
acceptable in the low-T regime.

Below we calculate the T vs B phase diagram in the low-T
regime from the FSW-FPv theory. We study the crossover lines
between the LL regimes and the quantum critical regimes, as
well as the crossovers lines between the plateau regimes and
the quantum critical regimes. We use the FSW-FPv approach
since it has essentially the same precision of the ISW-FRIv
theory if we consider a range of B from 0 to the saturation field;
also, the critical point Bc,FP is exact in the FSW-FPv theory.

IV. LUTTINGER LIQUID REGIME

In the LL phase, the dispersion relation can be approximated
by ±vF |k − kF |, where vF is the Fermi velocity. Further, in
this regime the magnetization has the form [15]

m = m(T = 0) − π

6v2
F

∂vF

∂B
(kBT )2 + O(T 3). (35)

In our case, the Fermi velocity along the η = 0 band is vF =
[∂ω

(FPv)
k,0 /∂k]k=kF

, with kF calculated from ω
(FPv)
k,0 |k=kF

= 0.
In Fig. 5(a), we present vF as a function of B for the (1/2,1)

chain. Near the critical fields, |∂vF /∂B| is large and vF is
small. For a fixed B � B

(FSW,FPv)
c,FRI , as shown in Fig. 5(b), the

magnetization presents a fast decay from the T = 0 value as
T increases. Also, for B � B

(FSW,FPv)
c,FP , as shown in Figs. 5(c),

m increases from m(0). In both cases, the curvature of the
m(T → 0) curve increases as B gets closer to the critical
fields. The crossover temperature T (B) of the LL regime at a
fixed B is defined as the point at which m(T ) departs from the
quadratic behavior in Eq. (35). So, T (B) is taken to be at the
minima (B � B

(FSW,FPv)
c,FRI ) and maxima (B � B

(FSW,FPv)
c,FP ) of

the m(T ) curve [15]. In particular, as B → Bc, the crossover
line separates the LL regime and the quantum critical regime
for which the excitations have a quadratic dispersion relation.
In this case, a universal, model-independent straight line
kBT (B) = a|B − Bc|, with a = 0.76238, can be derived [15].

In the inset of Fig. 5(a), we show that the minimum in the
χ (B) = ∂m/∂B curve is found at B = Bi , a value of B at
which |∂vF /∂B| = 0. This value of B marks a crossover from
the regime where excitations are predominantly from the FRI
critical state to the regime where they come from the FP critical
state. At B = Bi , the Fermi wave vector is at the inflection
point of the dispersion curve (d2ω

(FPv)
k,0 /dk2 = 0) since

∂vF

∂B
=

[
d2ω

(FPv)
k,0

dk2

]
k=kF

(
∂kF

∂B

)
, (36)

and kF increases monotonically with B between the critical
fields. If the value of k at the inflection point is ki , we can
calculate Bi from the equation ω

(FPv)
ki ,0

= 0. For the (1/2,1)
chain, for example, Bi = 2.366J and is indicated in Fig. 5(a).
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FIG. 5. Results from the free spin-wave approach with the
fully polarized vacuum (FSW-FPv). (a) Fermi velocity vF as a
function of the magnetic field B and (b)–(d) magnetization curves
m(T ). (a) ∂vF /∂B → +∞ and vF → 0 as B → B

(FSW,FPv)
c,FRI = 2.00J ,

while ∂vF /∂B → −∞ and vF → 0 as B → B
(FSW,FPv)
c,FP = 3.00J .

As shown in the inset, for B = Bi ≈ 2.366J , ∂vF /∂B = 0 and the
susceptibility χ (B) has a minimum at this value of B. (b) m(T ) for
the indicated values of B in the vicinity of the critical field B

(FSW,FPv)
c,FRI .

(c) m(T ) for values of B in the vicinity of the critical field B
(FSW,FPv)
c,FP .

(d) m(T ) for B = Bi . The m(T ) curves to the order of O(T 2)
[Eq. (35)] are shown as dashed lines in (b) and (c) for the
corresponding values of B; arrows indicate local extreme points in
m(T ), which are used as a criterium to identify the LL regime. The
inset in (d) shows that the minimum in m(T ) is associated to the local
minimum in χ (B), which is found between the two critical fields.

At B = Bi , ∂vF /∂B = 0 and the quadratic term in Eq. (35)
is absent. So the LL region that is more stable against T is found
for B ≈ Bi . Since the crossover temperatures T (B) → 0 near
the critical fields, the T (B) line has an asymmetric domelike
profile, which is a consequence of the vF curve, shown in
Fig. 5(a) for the case of the (1/2,1) chain, and is also observed
in other quantum magnets [3].

A minimum in the m(T ) curve is also observed for B = Bi

due to the O(T 3) in Eq. (35), as shown in Fig. 5(d). In this case,
however, this extreme point is associated with the minimum in
the χ (B) curve, at B = Bi , as shown in the inset of Fig. 5(d).

In Fig. 6, we show m(T ) curves for the (1/2,1) chain
calculated with the QMC method to discuss the qualita-
tive agreement between these almost exact results and the
conclusions from the spin-wave theory. In Figs. 6(a) and
6(b), we show the minimum (maximum) in the m(T ) curve
for B � Bc,FRI = 1.76J (B � Bc,FP = 3J ). In Fig. 6(c), we
calculate m(T ) for a value of B in the vicinity of the minimum
in the χ (B) curve, B = Bi . Using the data in Fig. 1, it is
located at Bi = (2.27 ± 0.07)J and is indicated as a dashed

FIG. 6. Magnetization per cell m(T ) with fixed B: calculating
the crossover lines bounding the Luttinger liquid regime. Quantum
Monte Carlo (QMC) results for the magnetization curves m(T ) and
the crossover lines for a system with N = 128. (a) m(T ) for values
of B in the vicinity of the critical field, Bc,FRI = 1.76J . (b) m(T )
for values of B in the vicinity of the critical field, Bc,FP = 3.00J .
(c) m(T ) for a value of B such that ∂χ/∂B ≈ 0 at T = 0 and inside the
Luttinger liquid phase; dashed line in Fig. 1. (d) Local extreme points
of m(T ) curves from QMC and free spin wave from the fully polarized
vacuum (FSW-FPv). In the case of the FSW-FPv local minima, we
shift B by Bc,FRI − B

(FSW,FPv)
c,FRI ≈ 0.24J . The exact crossover straight

lines as T → 0, extended in the figure for better visualization: a|B −
Bc,FRI| and a|B − Bc,FP|, with a = 0.76238, are also shown. The error
bars are defined as half the temperature step (�T = 0.008) used to
calculate m(T ).

line in that figure. As shown in Fig. 6(c), the m(T → 0) curve
is also flat, as in Fig. 5(d), for B = 2.25J . The minimum in the
m(T ) curve appears at T ≈ 0.1J . As can be observed in the
T = 0.1J susceptibility curve in Fig. 1, it is also associated
with the minimum in the χ (B) curve, at B ≈ Bi .

In Fig. 6(d), we compare the position of the local extreme
points in the m(T ) curves from the QMC and FSW-FPv
methods. The values of B at the minima of m(T ) were
translated by Bc,FRI − B

(FSW,FPv)
c,FRI ≈ 0.24J . The lines for the

maxima in m(T ) from both methods are in very good
agreement since the FSW-FPv is almost exact for T → 0 due
to the low density of excited magnons in this temperature
regime. Otherwise, the minima from both methods do not
compare well, except for T → 0, which is dominated by the
critical point.

We determine the crossover lines between the LL and
plateau regimes through specific heat data, C(B). In Fig. 7, we
present FSW-FPv results for C(B) in the low-T regime. In the
LL phase, at T = 0, the specific heat C ∼ T as T → 0, and
C/T is approximately constant in the LL regime, as shown
in Fig. 7. The range of B near B = Bi is the more robust
for this regime, and we present in the inset of Fig. 7 the
linear behavior of C as a function of T . For B � B

(FSW,FPv)
c,FRI

or B � B
(FSW,FPv)
c,FP , the excitations are exponentially activated

and the crossover to the quantum critical regime is marked by
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FIG. 7. Specific heat from the free spin-wave theory from a fully
polarized vacuum (FSW-FPv) for T → 0. In the Luttinger liquid
(LL) regime, C ∼ T as T → 0, and C/T is approximately constant
for B ≈ Bi = 2.366J . The inset shows this linear behavior of C at
B = Bi . The crossover from the T = 0 insulating plateau regime to
the gapless quantum critical regime, at local maxima, is indicated by
arrows.

a local maximum in C(B). The points of these crossover lines,
Tplateau(B) ∼ |B − Bc|, are indicated by arrows in Fig. 7. The
quantum critical regime is bounded by this crossover line and
that of the LL regime, which points appear as a second local
maximum near B

(FSW,FPv)
c,FRI and B

(FSW,FPv)
c,FP in Fig. 7.

V. SUMMARY AND DISCUSSIONS

We have calculated the critical properties of alternating
ferrimagnetic chains in the presence of a magnetic field from
two spin-wave theories. We determine the better low-energy
description of the excitations, considering the level of approx-
imation, comparing the results with quantum Monte Carlo
data. These ferrimagnetic chains present two magnetization
(m) plateaus: the ferrimagnetic (FRI) plateau, for which m =
S − s, and the fully polarized (FP) one, at m = s + S. The
first spin-wave theory is an interacting spin-wave (ISW) ap-
proach with the FRI classical vacuum, ISW-FRIv. The second
methodology is a free spin-wave (FSW) calculation from the
FP state, FSW-FPv. In both cases, two bands are obtained. To
calculate the finite-temperature (T ) properties of the system,
one of the bands is considered as a bosonic band, with an
effective chemical potential to prevent boson condensation at
B = 0, while the other is considered as a hard-core boson
band, with a fermionic one-particle thermal distribution. Near
the end point of the FRI plateau, the ISW-FRIv theory is a
better option, while the FSW-FPv is exact for T → 0 near
the end point of the FP plateau. Since we are interested in
describing the whole T vs B phase diagram of the system,
we deepen the study on the FSW-FPv, calculating the finite-T
crossover lines bounding the plateau and the Luttinger liquid
(LL) regimes.

In Fig. 8, we summarize our results in a T vs B phase
diagram and show specific heat data C/T as a function of
B and T . In the FRI and FP plateau regions, the excitations
are gapped and (C/T ) → 0 as T → 0. The gaps close at the

FIG. 8. Spin-wave T − B phase diagram of the (s = 1/2, S = 1)
chain from the FPv. The quantum critical points B

(FSW,FPv)
c,FRI = 2.00J

and B
(FSW,FPv)
c,FP = 3.00J bound the FRI and FP plateau regions,

respectively. By increasing temperature, the plateau width decreases
and the lines kBT = |B − B

(FSW,FPv)
c,FRI | and kBT = |B − B

(FSW,FPv)
c,FP |

limit the plateau regions for B � Bc [ferrimagnetic (FRI) plateau]
and B � Bc [fully polarized (FP) plateau]. The LL regime has
crossover lines given by a|B − B

(FSW,FPv)
c,FRI | and a|B − B

(FSW,FPv)
c,FP |,

with a = 0.76238, for B → Bc, as indicated by local maxima of
the susceptibility χ (B) = ∂m

∂B
, χ (B)max. Between these local maxima,

there is a local minimum [χ (B)min] separating the regions under the
influence of the B

(FSW,FPv)
c,FRI critical point and that of the B

(FSW,FPv)
c,FP one.

quantum critical (QC) fields B
(FSW,FPv)
c,FRI = 2J and B

(FSW,FPv)
c,FP =

3J , and local maxima appear in the values of C/T for a fixed
T . These local maxima indicate the crossover between the
plateau and the QC regimes, and between the QC and LL
regimes. As T → 0, the crossover line between the plateau
and the QC regimes (P-QC line) is a straight line kBT (B) =
|B − Bc|, for Bc = B

(FSW,FPv)
c,FRI and Bc = B

(FSW,FPv)
c,FP , while a

straight line a|B − Bc|, with a model-independent constant
a = 0.76238, marks the crossover between the LL and QC
regimes (LL-QC lines). The LL-QC line which contains the
critical point B = B

(FSW,FPv)
c,FRI [B = B

(FSW,FPv)
c,FP ] was also cal-

culated from local minima (local maxima) in the m(T ) curves:
m(T )min [m(T )max]. The LL-QC lines were also calculated
from local maxima in the susceptibility curve χ (B) at fixed T :
χmax(B).

The Luttinger liquid regime can be divided into two regions,
separated by the minimum in the χ (B) curve with a fixed
temperature, χmin(B). The value of the magnetic field at which
this minimum occurs at T = 0, Bi is at the inflection point of
the magnon band and changes little with T . The line m(T )min

as a function of B meets the line χmin(B) for B ≈ Bi . Finally,
the LL regime has an asymmetric domelike profile which is
associated with the Fermi velocity profile as a function of B

at the relevant magnon band, as observed in other quantum
magnets [3].
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