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Vibrational effects in x-ray absorption and resonant inelastic x-ray scattering
using a semiclassical scheme
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A method is presented for describing vibrational effects in x-ray absorption spectroscopy and resonant inelastic
x-ray scattering (RIXS) using a combination of the classical Franck-Condon (FC) approximation and classical
trajectories run on the core-excited state. The formulation of RIXS is an extension of the semiclassical Kramers-
Heisenberg formalism of Ljungberg et al. [Phys. Rev. B 82, 245115 (2010)] to the resonant case, retaining
approximately the same computational cost. To overcome difficulties with connecting the absorption and emission
processes in RIXS, the classical FC approximation is used for the absorption, which is seen to work well provided
that a zero-point-energy correction is included. In the case of core-excited states with dissociative character, the
method is capable of closely reproducing the main features for one-dimensional test systems, compared to the
quantum-mechanical formulation. Due to the good accuracy combined with the relatively low computational
cost, the method has great potential of being used for complex systems with many degrees of freedom, such as
liquids and surface adsorbates.
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I. INTRODUCTION

X-ray absorption spectroscopy (XAS) and and x-ray emis-
sion spectroscopy (XES) are important tools for investigating
the electronic structure of molecules, liquids, solids, and sur-
face adsorbates [1–4]. Due to the involvement of a core level,
these spectroscopes are local and element specific and can give
valuable information about local molecular geometries and
chemical bonding. The two spectroscopies are complementary
since XAS probes the unoccupied states and XES the occupied
states, projected on the targeted species. Resonant inelastic
x-ray scattering (RIXS), also called resonant XES, combines
the absorption and emission in a single process and can give
additional information about the symmetry of states and a more
sensitive control of the emission by detuning the incoming
radiation with respect to the resonances. For systems where
the core-excited (or core-ionized) state is dissociative, or has
a very distorted potential energy minimum, large vibrational
effects occur upon the creation of the core hole. In XAS this
manifests by the Franck-Condon profile—the series of peaks
coming from excitation to higher vibrational states in the final
electronic state—merging to a broad distribution mapping the
ground-state vibrational wave function [3]. In XES the effects
are more profound as the emission can take place on severely
distorted geometries. The proper way to describe these effects
are as vibrational interference in the eigenstate picture, or
as wave-packet dynamics in the time domain, both of which
can be described by the Kramers-Heisenberg (KH) formula
in different representations [3]. A fully quantum-mechanical
description of the vibrational effects is only feasible for a few
degrees of freedom and the potential-energy surfaces (PESs)
must be precomputed, which makes realistic models of XES in,
for example, liquids very hard. For this reason, semiclassical
models that use ensembles of classical trajectories to approx-
imately capture the effects of dissociation have been devised
and used to compute the XES of, for example, liquid water
[5–8]. These methods are not rigorous in that there is no exact
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quantum limit and the approximations are not well defined
[9]. However, if the relevant effects of bond distortions or
dissociation on the spectra are reproduced, such methods can
be very valuable in the interpretation of experimental results
for complicated systems such as liquids, since an arbitrary
number of vibrational degrees of freedom can be treated.
A semiclassical approximation of the KH formula, denoted
the semiclassical Kramers-Heisenberg (SCKH) method [5],
was devised for nonresonant XES, that is, for the case where
the system is core ionized with the extra electron removed
from the system, and was shown to closely reproduce the
quantum-mechanical spectrum for a one-dimensional model of
a water dimer. Recently, the method was used to compute XES
of liquid methanol [10] and ethanol [11], using realistic clusters
containing 17 molecules that were extracted from molecular
dynamics simulations. The comparison to experiment was seen
to be good, including the isotope effect (for methanol) that
was seen to be of purely dynamical origin. In the present
publication, the SCKH method is extended to describe RIXS,
which also makes a further analysis of vibrational effects in
XAS necessary. Since the main objective is to describe liquids
that have large vibrational effects due to (locally) dissociative
core-excited states, the approximations used will be tailored
for this purpose. For XAS, the classical Franck-Condon
(FC) approach is seen to work quite well, provided that the
zero-point energy in the initial state is included. For RIXS,
a combination of the classical Franck-Condon approximation
with excited-state dynamics is seen to give very good results
compared to the quantum-mechanical description for one-
dimensional test cases. The method has a computational cost
comparable to the nonresonant SCKH method and is seen to
have similar accuracy, which has the potential to open the door
to accurate modeling of RIXS for complex systems, such as
liquids, that display large vibrational effects.

II. THEORY

The absorption and emission processes occurring in
RIXS will be treated in a one-step manner through the
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Kramers-Heisenberg formula in order to include the vibra-
tional effects that come from the interference of intermediate
vibrational states [3,12,13]. From the quantum-mechanical
description a semiclassical approximation will be developed,
which is similar to that in Ref. [5] but extended to the resonant
case.

As it is not trivial to approximate a quantum-mechanical
expression to one where classical dynamical trajectories can
be used, a series of approximations must be made, and it
cannot be expected that all details can be faithfully reproduced.
Nevertheless, a set of properties that are desirable for such an
approximation are as follows.

(1) The formalism must be able to describe the vibrational
effects for dissociative intermediate states in XES.

(2) The integrated cross section with respect to either the
emission energy (proportional to XAS) or the incoming energy
(leading to broadband excited XES) must be reproduced.

(3) Extra spurious features that can obscure interpretation
must be avoided.

(4) In absence of vibrational effects, the method should re-
duce to the normal Kramers-Heisenberg formula for electronic
states.

(5) In terms of sampling of initial conditions, fast con-
vergence is desired. For large systems the number of initial
conditions will have to be moderate in order to minimize the
computational cost.

Point number two above requires a good description of
the vibrational effects in the XAS along with the nonresonant
XES (i.e., ionized, or resonant with broadband excitation).
Furthermore, these two have to be connected in a consistent
manner. As the semiclassical nonresonant method has been
shown to work very well for test systems [5,10], and also for a
realistic model of liquid methanol [10] and ethanol [11], it will
be retained as far as possible in the resonant formulation. In the
following sections the quantum-mechanical cross section for
XAS and RIXS are first rewritten in the time domain, which
will be the starting point for the semiclassical approximations
that will later be developed.

A. Time-domain formulation of XAS

The XAS cross section at incoming frequency ω is given
by Fermi’s golden rule

σ (ω) ∝
∑
f

|〈i|D|f 〉|2δ(ω − Ef i), (1)

where |i〉 and |f 〉 are the initial and final states (including both
electronic and nuclear degrees of freedom) that are eigenstates
of the full Hamiltonian, H , and Ef i = Ef − Ei is the energy
difference between the states. The transition operator D can
be written as D = d (or D = [d,H ] depending which light-
matter coupling is used), with d = e · r that depends on the
electric field e and the position operator r. Atomic units are
used throughout. The first step in transforming Eq. (1) is to put
the delta function inside the square using the representation

δ(ω) = lim
�→0

�f

π

∣∣∣∣ 1

ω + i�f

∣∣∣∣2

, (2)

which for a small, but finite, value of the broadening parameter
�f leads to

σ (ω) ∝ �f

π

∑
f

∣∣∣∣ 〈i|D|f 〉
ω − Ef i + i�f

∣∣∣∣2

. (3)

It is then possible to switch from frequency to time domain by
using the identity

1

ω + i�f

= −i

∫ ∞

0
dt ei(ω+i�f )t , (4)

which transforms the expression inside the square in Eq. (3) to

〈i|D|f 〉
ω − Ef i + i�f

= −i

∫ ∞

0
dt〈i|eiEi tDe−iEf t |f 〉ei(ω+i�)t (5)

= −i〈i|
∫ ∞

0
dt eiHtDe−iH t ei(ω+i�f )t |f 〉 (6)

= 〈i|D(ω)|f 〉. (7)

In Eq. (6) the identities 〈i|eiEi t = 〈i|eiHt and e−iEf t |f 〉 =
e−iH t |f 〉 were used. The half-Fourier transformed dipole
operator in Eq. (7) can be written

D(ω) = −i

∫ ∞

0
dt D(t)ei(ω+i�f )t , (8)

using the Heisenberg representation of a time-dependent
operator D(t) = eiHtD(0)e−iH t . Since the state energies no
longer appear in this formula the square in the cross section in
Eq. (3) can be expanded and the sum over |f 〉 states removed
by using the resolution of the identity

∑
f |f 〉〈f | = 1, yielding

σ (ω) ∝ �f

π

∑
f

|〈i|D(ω)|f 〉|2 (9)

= �f

π
〈i|D(ω)

∑
f

|f 〉〈f |D†(ω)|i〉 (10)

= �f

π
〈i|D(ω)D†(ω)|i〉. (11)

The ground-state expectation value in Eq. (11) can be
generalized to a thermal average as

σ (ω) ∝ �f

π
〈D(ω)D†(ω)〉, (12)

which is the eigenstate-free representation of the XAS cross
section. Taking matrix elements over the electronic degrees
of freedom only (for simplicity the electronic states are
also denoted by lowercase letters, which should not lead to
any confusion since the context is different), and reinserting
a resolution of the identity in the electronic final states,
leads to the form that will be suitable for the semiclassical
approximation

σ (ω) ∝ �f

π

∑
f

〈Dif (ω)D†
f i(ω)〉. (13)

B. Time-domain formulation of RIXS

When the system initially is in state |i〉, the double-
differential cross section where an incoming photon with
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frequency ω scatters to an outgoing photon with frequency
ω′ is [3]

d2σ (ω′,ω)

dω d�
= ω′

ω

∑
f

|Ff (ω)|2δ(ω′ − ω + Ef i), (14)

Ff (ω) = α
∑

n

〈f |D†′ |n〉〈n|D|i〉
ω − Eni + i�

, (15)

where the half-width-half-maximum broadening parameter
� is due to the electronic lifetime. Also the fine-structure
constant α is present. The transition operator D depends on
the incoming field and the primed D′ on the outgoing field.
The KH formula in Eqs. (14) and (15) is essentially the one
stated in Ref. [3], but including only the resonant term.

To connect to experiment, the double-differential cross
section should be convoluted with the incoming frequency
distribution 	inc(ω) and with a function describing the instru-
mental resolution 	ins(ω′) as

σ (ω′,ω) =
∫ ∞

−∞
dω′

0

[∫ ∞

−∞
dω0

d2σ (ω′
0,ω0)

dω d�
	inc(ω − ω0)

]
×	ins(ω

′ − ω′
0). (16)

To transform the RIXS cross section to the time domain the
same steps are followed as for the XAS cross section. Using
the representation of the delta function in Eq. (2) the cross
section becomes

d2σ (ω′,ω)

dω d�
= ω′�f

ωπ

∑
f

∣∣∣∣ Ff (ω)

ω′ − ω + Ef i + i�f

∣∣∣∣2

, (17)

where �f is a small broadening parameter. Using Eq. (4) the
amplitude Ff (ω) can be transformed to the time domain

Ff (ω) = −iα

∫ ∞

0
dt

∑
n

〈f |D†′ |n〉〈n|D|i〉ei(ω−Eni+i�)t

= −iα

∫ ∞

0
dt

∑
n

〈f |D†′ |n〉〈n|e−iH tDeiHt |i〉ei(ω+i�)t

= −iα

∫ ∞

0
dt〈f |D†′

(0)D(−t)|i〉ei(ω+i�)t . (18)

The same procedure is performed for the denominator
coming from the delta function to get

Ff (ω)

ω′ − ω + Ef i + i�f

= 〈f |F (ω,ω′ − ω)|i〉 (19)

with

F (ω,ω′ − ω) = −α

∫ ∞

0
dt

∫ ∞

0
dt ′D†′

(t ′)D(t ′ − t)

× ei(ω+i�)t ei(ω′−ω+i�f )t ′ . (20)

Expanding the square in Eq. (17) and using the resolution of
the identity

∑ |f 〉〈f | = 1, the eigenstate-free representation
of the Kramers-Heisenberg cross section is obtained as

d2σ (ω′,ω)

dω d�
= ω′�f

ωπ
〈F †(ω,ω′ − ω)F (ω,ω′ − ω)〉. (21)

This formula is already generalized to a thermal average
as was done for the XAS cross section. Proceeding to take

electronic matrix elements yields

d2σ (ω′,ω)

dω d�
= ω′�f

ωπ

∑
f

〈F †
if (ω,ω′ − ω)Ff i(ω,ω′ − ω)〉,

(22)
with

Ff i(ω,ω′ − ω) = −α
∑

n

∫ ∞

0
dt

∫ ∞

0
dt ′D†′

f n(t ′)Dni(t
′ − t)

× ei(ω+i�)t ei(ω′−ω+i�f )t ′ . (23)

If Eq. (14) is integrated over the incoming frequency ω,
which corresponds to a broadband incoming excitation, the
same development as before can be followed to obtain

〈σ (ω′)〉ω ≈ �

π

∑
f

〈
F

†〈ω〉
if (ω′)F 〈ω〉

if (ω′)
〉
, (24)

F
〈ω〉
if (ω′) = −iα

∑
n

∫ ∞

0
dt ′D†′

f n(t ′)Dni(0)ei(ω′+i�)t ′ , (25)

which is proportional to the nonresonant XES cross section al-
ready used in Refs. [5,10,13]. If instead the outgoing frequency
ω′ is integrated over, the following expression is obtained:

〈σ (ω)〉ω′ ≈ �

π

∑
f

〈
F

†〈ω′〉
if (ω)F 〈ω′〉

if (ω)
〉
, (26)

F
〈ω′〉
if (ω) = −iα

∑
n

∫ ∞

0
dt ′D†′

f n(0)Dni(−t)ei(ω+i�)t , (27)

which except for the extra dipole operator is close to the XAS
cross section in Eq. (13). The RIXS cross section averaged
over either the incoming or the outgoing frequencies are
important special cases that should be well reproduced in the
semiclassical method.

C. Polarization dependence

For randomly oriented molecules in gases and and liquids
the cross section should be orientationally averaged with
respect to the polarization direction of incoming and outgoing
electric fields. The polarization dependence of the RIXS
cross section is discussed in detail in Refs. [14–16] where
also explicit formulas are provided in terms of the Cartesian
directions of the transition dipoles. The formulas for linearly
polarized light are easily adapted to the eigenstate-free
representation of RIXS as

〈σ (ω′,ω)〉orient = ω′�f

ωπ

∑
f

(−λF
f + 4λG

f − λH
f

)
+ (

3λF
f − 2λG

f − 3λH
f

)
cos2 θ (28)

with θ the angle between the polarization direction of the
incoming and outgoing polarization directions and

λF
f =

∑
β,γ

〈
F

ββ†
if (ω,ω′ − ω)Fγγ

f i (ω,ω′ − ω)
〉
, (29)

λG
f =

∑
β,γ

〈
F

βγ †
if (ω,ω′ − ω)Fβγ

f i (ω,ω′ − ω)
〉
, (30)

λH
f =

∑
β,γ

〈
F

βγ †
if (ω,ω′ − ω)Fγβ

f i (ω,ω′ − ω)
〉
. (31)
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The greek indices denote Cartesian components of the
electric field in the dipole operators appearing in the scattering
amplitude

F
βγ

f i (ω,ω′ − ω) = −α
∑

n

∫ ∞

0
dt

∫ ∞

0
dt ′Dγ †′

f n (t ′)Dβ

ni(t
′ − t)

× ei(ω+i�)t ei(ω′−ω+i�f )t ′ . (32)

In the same way, also expressions for circularly and
elliptically polarized light can be adapted to the present
scheme. When developing the semiclassical approximations
the polarization dependence will not be explicitly written
out in order not to complicate the description; the above
formulas will be unchanged for these cases. For completeness
the orientationally averaged XAS cross section is also written
out:

〈σ (ω)〉orient ∝ �f

3π

∑
fβ

〈
D

β

if (ω)Dβ†
f i (ω)

〉
. (33)

D. Semiclassical time evolution of operators

In this section an approximate description of the time
evolution of operators will be described. The formalism is
close to semiclassical schemes for other spectroscopies due to
Oxtoby et al. [17] and others [9,18,19] and is derived with the
aim to include the possibility of nonadiabatic effects (although
in the present publication this feature is not explored further).

The time evolution of an operator O in the Heisenberg
picture is

O(t) = U †(t,t0)O(t0)U (t,t0), (34)

where the time evolution operator U (t,t0) depends on the full
Hamiltonian H of the system as

U (t,t0) = e−iH (t−t0). (35)

In the Born-Oppenheimer approximation (that here is assumed
to be valid for the ground state, but not necessarily for excited
states), a wave function that describes both electronic and
nuclear degrees of freedom can be written as

�(r,R) = χ (R)ψ(r; R), (36)

where ψ(r; R) is a solution of the electronic Hamiltonian
with fixed nuclear coordinates R, and χ (R) is the vibrational
wave function. It is in principle possible to relax the Born-
Oppenheimer approximation even for the ground state by
replacing Eq. (36) by a sum over states, but this will not be
considered in the following. Now a classical time-evolution
operator Ũ l(t,t0) is introduced that has the effect

Ũ l(t,t0)χ (R(t0))ψ(r; R(t0)) = χ (R(t0))ψ(r; R(t)), (37)

that is, to map the positions of the nuclei R(t0) at time t0 to some
other positions R(t) in ψ(r; R), and let the electronic degrees
of freedom follow this change adiabatically. The coefficients
χ (R) are not touched by the operation.

The rationale of the definition of the classical time evolution
as acting on the R coordinate of the electronic wave function
while keeping the vibrational wave function fixed, is that the
χ (R) then can be interpreted as expansion coefficients of the
ψ(r; R) for different initial geometries. Since the expansion

coefficients do not change in time, expectation values will
take the form of a sum over classical trajectories weighted with
the initial quantum position distribution, and this corresponds
to the scheme used in Refs. [5,10,11]. As noted before, this
scheme is not rigorous but seems to give improved results
comparing to only sampling the classical distributions.

The dynamics of the nuclear coordinates is assumed to take
place classically on a potential energy surface denoted by the
superscript l. The classically evolved operator, denoted with a
∼, is then

Õ(t) = Ũ l†(t,t0)O(t0)Ũ l(t,t0). (38)

If the quantum operators are naively replaced with the classical
ones, an expectation value would look like

〈�i |Õ(t)|�i〉 =
∫

dR|χi(R)|2Õii(t), (39)

with

Õii(t) =
∫

dr ψ∗
i (r,R)Õ(t)ψi(r,R), (40)

that is, an average over the ground-state distribution |χi(R)|2
of the classically evolved matrix elements. This expression
arises as a consequence of the fact that χi(R) is not touched by
the classical time development. A generalization of Eq. (39)
to include an ensemble average over the vibrational states is
straightforward and will only affect the distribution |χi(R)|2.
A purely classical approach misses out on all quantum effects,
in particular, quantum transitions. However, it is possible to
include some of these effects in a less naive semiclassical
scheme that still retains the simple average in Eq. (39).

The classical as well as the quantum time-evolution opera-
tors are unitary, that is, U †(t,t0)U (t,t0) = U (t,t0)U †(t,t0) = 1.
This leads to the exact representation

O(t) = Ū l†(t,t0)Õ(t)Ū l(t,t0), (41)

where the barred “mixed” time-evolution operator is

Ū l(t,t0) = Ũ l†(t,t0)U (t,t0). (42)

This representation decomposes the dynamics of an operator
into a classical part, multiplied with quantum correction
factors (mixed time-evolution operators) that can later be
approximated. The operator Ū l(t,t0) is obtained using its
equation of motion

d

dt
Ū l(t,t0)

=
(

d

dt
Ũ l†(t,t0)

)
U (t,t0) + Ũ l†(t,t0)

(
d

dt
U (t,t0)

)

=
[(

d

dt
Ũ l†(t,t0)

)
Ũ l(t,t0) − iŨ l†(t,t0)HŨl(t,t0)

]
Ū l(t,t0).

(43)

The last identity was obtained by the time derivative of Eq. (42)
and the insertion of Ũ (t,t0)Ũ †(t,t0) = 1. Now matrix elements
are taken using the states at t0, which are time-independent
solutions of the electronic Hamiltonian H el|a(r; R(t0))〉 =
Ea(R(t0))|a(r; R(t0))〉. For general states the letters a, b, c,
etc., are used and for simplicity the explicit dependence on r
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and R will be omitted in the following. Equation (43) can then
be written as

d

dt
Ū l

ab(t,t0)

= −
∑

c

[
〈a(t)| d

dt
c(t)〉 + i〈a(t)|H |c(t)〉

]
Ū l

cb(t,t0). (44)

Here the relation Ũ l(t,t0)|a(t0)〉 = |a(t)〉 was used, as well
as a partial integration to move the time derivative to the
right. The initial condition for the differential equation is
Ū l

cb(t0,t0) = δcd . The first term in Eq. (44) is the nonadia-
batical coupling matrix elements. They appear because the
instantaneous electronic states, when the nuclei are evolved
classically, are not in general orthogonal. The full Hamiltonian
H = H el + T nuc contains both the electronic part H el and the
nuclear kinetic energy operator T nuc. The latter is difficult to
treat as it would affect the initial vibrational wave function
χ (R), so including it would not lead to a simple average as
in Eq. (39). For this reason it will be ignored and only the
electronic Hamiltonian will be used. Then Eq. (44) reduces to

d

dt
Ū l

ab(t,t0) = −
∑

c

[
〈a(t)| d

dt
c(t)〉 + iEa(t)δac

]
Ū l

cb(t,t0).

(45)

When Ū l
ab(t,t0) has been determined from Eq. (45) the

matrix elements of the operator O(t) can be written as

Oab(t) =
∑
cd

Ū l†
ac(t,t0)Õcd (t)Ū l

db(t,t0). (46)

A further simplification of the problem is to assume that the
nonadiabatic coupling matrix elements are zero, that is, to
do the adiabatic approximation. This approximation turns the
matrix equation of Eq. (45) into a scalar equation

d

dt
Ū l

aa(t,t0) = −iEa(t)Ū l
aa(t,t0), (47)

with all nondiagonal terms zero because of the initial condition
and the absence of couplings. Equation (47) can be solved to
yield

Ū l
aa(t,t0) = e

−i
∫ t

t0
dτEa (τ )

, (48)

which gives the adiabatic time evolution of an operator as

Oab(t) = Õab(t)e−i
∫ t

t0
dτEba (τ )

. (49)

It should be noted that the actual potential energy surface
where the dynamics is performed does not appear explicitly
in Eq. (49), thus there is freedom to choose where the time
development takes place. In the adiabatic quantum case the
matrix element is

Oab(t) = eiHa (t−t0)Oab(t0)e−iHb(t−t0) (50)

which, operated onto a wave function on the right has the
following interpretation: propagate the wave function on the
PES Hb, then apply the operator O(t0), and then propagate
back in time from time t to t0 on PES Ha . It is clear that such a
matrix element inherently depends on two distinct PESs, and
to approximate it to a single one makes a choice necessary.

The initial conditions for the positions are given by the
ground-state vibrational distribution but the momenta are still
free parameters. In Ref. [5] it was shown that sampling the
momenta from the ground-state momentum distribution gives
the right spread of the time-dependent position distribution
compared to full wave-packet dynamics, and this approach
will be used in the present publication.

E. Semiclassical description of XAS and RIXS

The semiclassical approximation to the XAS and RIXS
cross sections can be developed using the results in the previous
section. First XAS will be treated. Inserting the semiclassical
approximation Eq. (41) of the time-dependent quantity Dif (t)
in Eq. (8) leads to the following expression:

Dif (ω) = −i
∑
n,n′

∫ ∞

0
dt Ū

l†
in(t)D̃nn′(t)Ū l

n′,f (t)ei(ω+i�)t ,

(51)
or, using the adiabatic approximation

Dif (ω) = −i

∫ ∞

0
dt D̃if (t)e−i

∫ t

0 dτ Ef i (τ )ei(ω+i�)t , (52)

where D̃if (t) is the classically developed matrix element of
the dipole operator and Ef i(τ ) are the corresponding state
energies. Now the classical Franck-Condon approximation is
introduced. It amounts to assuming that for a given value of the
nuclear coordinate R the transition frequency is constant, that
is, one goes directly from one point of the ground-state PES
to the excited state PES. Then Ef i(t) = Ef i(R) and D̃if (t) =
D̃if (R), which leads to

Dif (ω,R) = −i

∫ ∞

0
dt D̃if (R)e−iEf i (R)t ei(ω+i�)t

= D̃if (R)

ω − Ef i(R) + i�
. (53)

The vibrational effects in this approximation come from
the sampling of the R coordinates according to the initial
state vibrational distribution. Quantum mechanically, this
approximation gives the right limit for a dissociative final
state that can be described as being linear in the region
of the initial state distribution [3]. The limiting case with
dissociative behavior is important to describe well since in
application this will be a common situation (and will be where
most vibrational effects occur). A possible improvement of the
classical FC approximation is to include a zero-point-energy
(ZPE) correction, that is, Ei(R) = EZPE, which is justified
since for an initial vibrational state in the ground state
the same energy is excited from, independent of where on
the PES R is located. In Ref. [20] the classical FC with
and without ZPE correction was used to compute the FC
profile of XAS of a water molecule, and the ZPE seemed
to improve the description there. Note that the classical FC
approximation does not require explicit nuclear dynamics, and
so will be quite a lot cheaper than the original semiclassical
approximation. Since it also has the correct quantum limit in
the dissociative case, it could even give better results in certain
circumstances.

Since XAS involves a single time argument it is much
simpler than RIXS, which involves two. According to Eq. (23)
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the time argument t ′ describes the emission, while t ′ − t

should describe the absorption as well as the connection
between absorption and emission. In contrast to the absorption,
the emission for a dissociative system can take place on
severely distorted geometries, which means that the classical
FC approximation in Eq. (53) cannot be expected to work at all
for the emission—the relevant distorted geometries are simply
not sampled since no dynamics is involved. On the other hand,
the nonresonant XES has been shown to work very well when
the dynamics is performed on the dissociative intermediate
state, and it seems reasonable to keep the time evolution for t ′

to be on an intermediate state. In RIXS there is an additional
issue in that there are possibly several intermediate electronic
states and it is not really clear from the outset which one
to use for the dynamics. For the other time argument t ′ − t

it is not obvious what to do; on one hand it should describe
absorption, so it should involve geometries not too far from the
equilibrium geometry; on the other hand, it must also connect
the absorption and emission processes which means that it
should also describe the dissociation.

Using the adiabatic approximation the semiclassical ex-
pression for the RIXS scattering amplitude reads

Ff i(ω,ω′ − ω) = −α
∑

n

∫ ∞

0
dt

∫ ∞

0
dt ′D̃†′

f n(t ′)D̃ni(t
′ − t)e−i

∫ t ′
0 dτ Enf (τ )ei

∫ t ′−t

0 dτ Eni (τ )ei(ω+i�)t ei(ω′−ω+i�f )t ′ . (54)

One way to simplify this expression is to use different approximations for the absorption end emission processes. Using the

classical FC approximation for D̃ni (the absorption) results in ei
∫ t ′−t

0 dτ Eni (τ ) ≈ eiEni (R)t ′e−iEni (R)t and D̃ni(t ′ − t) ≈ D̃ni(R), and
this leads to

Ff i(ω,ω′ − ω,R) = −α
∑

n

∫ ∞

0
dt D̃ni(R)ei[ω−Eni (R)+i�]t

( ∫ ∞

0
dt ′D̃†′

f n(t ′)e−i
∫ t ′

0 dτEnf (τ )e−i[ω−Eni (R)]t ′e−�f t ′eiω′t ′
)

. (55)

Integrating over t this becomes

Ff i(ω,ω′ − ω,R) = −iα
∑

n

D̃ni(R)

ω − Eni(R) + i�

( ∫ ∞

0
dt ′D̃†′

f n(t ′)e−i
∫ t ′

0 dτ Enf (τ )e−i[ω−Eni (R)]t ′e−�f t ′eiω′t ′
)

. (56)

In the following, Eq. (56) together with Eq. (22) will be
denoted the SCKH approximation to the RIXS cross section.
It is instructive to compare Eq. (56) to the expression for the
nonresonant (or ionized case) presented in Ref. [5]. In this case
there is always resonance in the absorption, as a continuum
electron is ejected that can take up any energy. Then Eq. (56) re-

duces to D̃ni(R)
∫ ∞

0 dt ′D̃†′
f n(t ′)e−i

∫ t ′
0 dτ Enf (τ )e−�f t ′eiω′t ′ , which

means that �f turns up where the lifetime broadening �

should be. This fact is due to the different approximations
for the absorption and the emission in the current scheme.
It turns out that setting �f = � “corrects” this shortcoming,
and this will be done in the following. In the quantum
case the correction corresponds to an additional Lorentzian
instrumental broadening with HWHM � that should be
relatively unproblematic since the instrumental broadening
usually is larger than the lifetime broadening.

III. RESULTS AND DISCUSSION

A. Harmonic test system for XAS

First the semiclassical approximation to XAS will be
investigated for different one-dimensional potential energy
surfaces. In order to have a set of models that go from a
bound to a dissociative excited state, harmonic potentials
with shifting frequency, center, and depth are used. The
value of the excited-state potentials and their derivative is
constrained to be equal at R0, the center of the ground-state
potential. The ground-state potential V0(R0) is modeled as a
harmonic potential with a frequency corresponding roughly to
a hydrogen stretch mode (∼3500 cm−1)

V0(R) = 1
2μω2

0(R − R0)2 + V 0
0 , (57)

and the excited-state potentials (for n = 1,2,3, . . .) are taken as

Vn(R) = 1
2μω2

n(R − Rn)2 + V 0
n , (58)

where for given R0, R1, Rn, V 0
1 , and ω1 the needed parameters

are

ω2
n = ω2

1

(
R0 − R1

R0 − Rn

)
, (59)

V 0
n = 1

2
μω2

1(R0 − R1)(Rn − R1) + V 0
1 . (60)

The chosen parameters are R0 = 1 Å, R1 = R0 + 0.1 Å, and
in general Rn = R0 + n × 0.1 Å and ω1 = ω0. This choice
leads to a first excited state that has the same frequency as the
ground-state potential, only with the position slightly shifted.
Thus the excited-state frequencies will go from about 3500
to 1000 wave numbers, the latter for the most displaced and
dissociative state. PESs with high value of the parameter n

will more and more approach a dissociative potential. V 0
1 is

arbitrarily chosen to be 100 eV. The potential energy surfaces
are shown in the Supplemental Material [21]. The vibrational
states are solved using a Fourier grid method with a grid
spacing of 0.01 Å. For the semiclassical method trajectories
are run for 102.4 fs in steps of 0.05 fs using the velocity Verlet
algorithm. A lifetime broadening of 0.045 eV is used with an
instrumental broadening of 0.1 eV. The initial conditions are
sampled uniformly with 20 position and 20 momentum points.

In Fig. 1 different approximations of the XAS spectra are
shown for the six PESs, where the spectrum at the bottom
is the one with highest frequency PES and the top one is
the one with the lowest. For the quantum case a clear FC
progression is visible that is asymmetric for the more bound
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FIG. 1. XAS spectra for the high-frequency ground state. Left: the
classical FC method. Blue: quantum XAS; red: classical FC without
ZPE; yellow: classic FC with ZPE. Right: semiclassical XAS. Blue:
quantum XAS; red: dynamics on ground state; yellow: dynamics on
excited state; purple: dynamics on the average between ground and
excited states. The spectra are normalized.

PES and more and more symmetric with closely spaced
vibrational peaks for the more dissociative PESs. Indeed,
the limit for a fully dissociative state should be a Gaussian
distribution. The classical FC approximation does not resolve
the vibrational states at all. Without the ZPE correction the
line shape goes from approximately Gaussian for the most
bound state to an asymmetric spectrum toward high energies
for the more distorted states, clearly in contrast to the quantum
spectrum. When the ZPE correction is introduced, however,
the line shape follows the envelope of the quantum spectrum
well.

In the semiclassical XAS the dynamics can be run either on
the ground-state PES or on the excited state PES, or possibly on
an average of the two. In Fig. 1 these approximations are shown
together with the quantum case. The semiclassical scheme
does capture some vibrational structure of the spectrum, but
it is not really close to the quantum one. For dynamics on
the ground state the spectrum changes little depending on the
excited-state PES, and just broadens a bit with more distorted
final states. For dynamics on the final state the spectra become
very smeared out and go too much to low frequencies, and for
the averaged PES the same happens, but to a lesser degree.

To test the model for a case where the ground-state PES
has a lower vibrational frequency this PES is modified to have
ten times lower frequency (350 cm−1), with all the other PESs
kept the same. In Fig. 2 the results are shown for this case.
Here the FC overlap gives more vibrational structure since the
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FIG. 2. XAS spectra for the low-frequency ground state. Left:
the classical FC method. Blue: quantum XAS; red: classical FC
without ZPE; yellow: classic FC with ZPE. Right: semiclassical XAS.
Blue: quantum XAS; red: dynamics on ground state. The spectra are
normalized.

ground-state PES is more different from the excited-state PESs
than in the previous case. The classical FC, with or without the
ZPE captures the envelope well, which also is the case for the
semiclassical XAS where the dynamics is run on the ground
state (the dynamics on the final state and the averaged one are
not shown since they give bad results also in this case).

In summary, the classical FC with ZPE correction seems
to be a well-balanced approximation that works reasonably
well for all model cases; indeed, it is the only one of the
considered methods that gives a good agreement with the
quantum spectrum for the cases of a high-frequency ground
state. When the ground state has a low vibrational frequency
all the methods give satisfactory agreement. This suggests that
the absorption part in the RIXS process could be treated with
the classical FC approximation, and that the ZPE should be
considered for the high-frequency modes.

B. RIXS for the L-edge excitation of HCl

As a clear-cut test system for dissociative behavior on a
core-excited state the L-edge core-excited HCl molecule is
chosen. This system was studied in work by Salek et al.
[22,23] from which PESs for the initial, intermediate, and
final states were obtained. The PESs show a clear dissociation
for the intermediate (core-excited) state, and for distances
of more than 4 Å the potentials are flat as the atoms are
completely separated (see the Supplemental Material [21]).
In Fig. 3 RIXS maps using KH (upper) and SCKH (lower)
are shown. In the case of KH the spectrum is computed
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FIG. 3. RIXS maps for HCl. Upper: KH; lower: SCKH.

according to Eqs. (14) and (15) with the vibrational states
solved with a Fourier grid method on a real-space grid
ranging from 0.8 to 30.0 Å, with a grid spacing of 0.0146
Å. The transition dipoles are set to unity. A HWHM lifetime
broadening of 0.045 eV is used with an incoming broadening
of 0.3 eV and an instrumental broadening of 0.1 eV (both
Gaussian). Additionally a Lorentzian instrumental broadening
of 0.045 eV is applied to compensate for the corrected lifetime
in the SCKH approach. The sharp peak at around 181 eV is
a clear indication of the dissociation, and corresponds to the
energy separation of the intermediate- and final-state PESs
when dissociated. This atomic feature does not move with
the incoming frequency. The other clear feature is the peak
at around 185 eV that moves linearly with the incoming
energy, and corresponds to molecular features, i.e., emission
close to the ground-state equilibrium distance. For the SCKH
method, the spectrum is computed using Eqs. (22) and (56)
with the dynamics run in steps of 0.1 fs for 102.4 fs. To
avoid the classical trajectories falling off the edge of the
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FIG. 4. Averaged spectra for HCl. Upper frame: averaged spec-
trum over outgoing frequency. Blue: KH; red: SCKH. Lower frame:
spectrum averaged over incoming frequency. Blue: KH; red: SCKH.
The spectra are normalized.

PES, “absorbing boundary conditions” are used, meaning
that when a trajectory reaches 20 Å, it is considered to
stay at that point at all later times. Four hundred trajectories
are used with starting conditions evenly sampled from the
position and momentum ground-state quantum distributions
(40 × 10 points, respectively) that are obtained from the first
vibrational eigenstate. The main reason for the fine sampling
of the position distribution is to build up the XAS profile in the
classical FC scheme. A lower sampling can be compensated
by introducing a Gaussian broadening function with a larger
width. The same lifetime and broadening parameters were
used as in the KH case, except for the additional Lorentzian
instrumental broadening that is included as an artificial lifetime
in the SCKH method.

The general shape of the spectrum reproduces the KH
one well, although the molecular feature is too weak. It is
slightly dispersing linearly by the proper amount, but sharpness
is missing. Comparing the colormaps, the absorption and
emission seem to occur at more or less the same frequencies
for both methods. For actual modeling of, e.g., liquids, such
dissociation is quite extreme (instead, a more particle-in-a-
box type situation is more commonly found) and it is thus
comforting that the SCKH method is able to capture the right
features qualitatively, and almost quantitatively.

In Fig. 4 the averaged cross sections 〈σ (ω)〉ω′ , proportional
to XAS, and 〈σ (ω′)〉ω corresponding to broadband XES are
shown for the KH and SCKH methods. The agreement is
excellent, and in the case of 〈σ (ω)〉ω′ the absorption profile
due to the classical FC approximation is mostly dependent
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FIG. 5. Normalized emission spectra for HCl. Blue: KH; red:
SCKH. The incoming energy goes from 194 to 212 eV, bottom to top.

on the sampling on the x coordinate, and can be even more
converged if need be.

In RIXS, the spectrum can be approximately decomposed
into a static (atomic) part that is independent of the incoming
energy and a part whose emission frequency disperses linearly
with the incoming energy (molecular part). The atomic part
is apparently well described by the SCKH formalism but it
would also be of interest to investigate the dispersing molecular
part. In Fig. 5 a comparison is made between the normalized
emission spectra at a given incoming energy for the KH and
SCKH cases. The KH spectra show a rather narrow molecular
peak, and when the incoming frequency hits the absorption
resonance the atomic feature appears along with the molecular
feature and the spectrum resembles the averaged one. After
the resonance region the molecular peak disperses to higher
energies. For the SCKH case, the molecular feature instead
looks like a broadened copy of the emission spectrum at
resonance, with its dissociative feature coming out strongly.
In the resonance region the agreement to the quantum results
is again good. So there is a significant error of the method
with respect to the dispersive molecular part that one should
be cautious about.

C. RIXS of a model methanol dimer

Since the main motivation for this work is to model
RIXS of liquids, the next model system considered is a
simplification of a common situation that will occur in
liquid methanol. Density functional theory (DFT) is used to
compute the various quantities needed, as detailed below.
The same model of a one-dimensional methanol dimer at

the ground-state equilibrium distance as in Ref. [10] is used,
but with the difference that several intermediate states are
computed with final states corresponding to each one. This
is done approximatively by explicitly computing the first
core-excited state (with a core hole and an excited election),
and defining the higher ones by a one-electron excitation
from this reference state using DFT orbital energies from
a half-core hole calculation. The assumption is made that
the excited electron does not participate in the decay of the
core hole, and so the final-state energies are approximated
by the ground-state total energy with a single one-electron
excitation using the ground-state DFT orbital energies. The
unoccupied orbitals of the core-excited states and the ground
state are assumed to correspond by their energetic ordering.
The transition dipoles for the absorption process are taken
from the half-core hole calculation and the ones for the
emission process from the ground-state calculation. All PESs
are computed using the deMon2k DFT code [24] making use of
the newly implemented (by the author) interface of the code to
the atomic simulation environment [25]. The PBE functional
[26] is used with a TZVP basis set [27] on the carbon atoms,
IGLO-II [28] on the hydrogens, and IGLO-III [28] on the
oxygen that is core excited; the other oxygen is described with
an effective core potential [29] along with a a triple-ζ valence
[3s,3p,1d] basis set. Although it can certainly be improved,
the model will nevertheless enable a comparison between the
quantum and semiclassical cases for this system.

The parameters for the calculations are as follows. Transi-
tion dipole moments for all states are taken at the equilibrium
geometry. Ten intermediate states and ten final states are
included in the calculation. The HWHM lifetime broadening
is set to 0.18 eV, the broadening of the incoming radiation is set
to 0.9 eV, and the instrumental broadening to 0.3 eV; all these
values correspond to realistic experimental conditions [30].
For the quantum case an additional Lorentzian broadening of
0.18 eV is employed in order to compare to the SCKH results.
The polarization angle in Eq. (28) is set to θ = 0.

Due to the relatively large width of the incoming radiation
there is not as much need to sample the classical FC profile as
for the HCl case. For this reason only four points were sampled
each for the position and momentum which in total gives 16
trajectories.

Since there is more than one intermediate state the question
arises as to the importance of doing the dynamics separately
on each state, or if it can be done on a single more or less
representative state. For applications, dynamics on a single
state would mean an enormous simplification computationally
and would make the cost of SCKH RIXS comparable to
the cost of nonresonant SCKH XES. For this reason the
KH spectrum is compared with two SCKH spectra, one
with individual dynamics for each intermediate state and one
with dynamics only on the first state. The intermediate state
PESs are shown in the Supplemental Material [21]. As in
the nonresonant case, the lowest PES is dissociative at the
equilibrium OH position, around 1 Å, but is bound by its
hydrogen-bonded oxygen giving a minimum at around 2 Å.
The higher states are in general less dissociative but quite flat,
and the general shape of the states is more of a particle in a box
than a purely dissociative system like the previously treated
HCl. It should be noted that there are some curve crossings for
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FIG. 6. RIXS map for the methanol dimer. Upper frame: KH;
middle frame: SCKH with individual dynamics; lower frame: SCKH
with dynamics on the first core-excited state.
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FIG. 7. Averaged spectra for the methanol dimer. Upper frame:
averaged spectrum over outgoing frequency. Blue: KH; red: SCKH.
Lower frame: spectrum averaged over incoming frequency. Blue: KH;
red: SCKH with individual dynamics; yellow: SCKH with dynamics
on first excited state. The spectra are normalized.

systems of this size which means that one in general should
take some kind of nonadiabaticity into account, however, this
is not within the scope of the present work.

RIXS maps for the three cases are shown in Fig. 6 with,
from the top down, KH, SCKH with individual dynamics on
each intermediate state, and SCKH with dynamics on the first
excited state only. The agreement of all methods is good,
with the absorption and emission at more or less the right
energy. The SCKH with individual dynamics reproduces the
peak positions and intensities from the KH method well, when
using dynamics on the first excited state the intensities of the
peaks become lower and slightly smeared out. This should be
expected when the PES where the dynamics is run on is more
dissociative than the PES where the spectrum is computed and
thus exaggerates the dynamical effects.

In order to see the differences of the approaches more
easily 〈σ (ω)〉ω′ and 〈σ (ω′)〉ω are shown in Fig. 7. Looking
first at the absorption in the upper frame, an almost perfect
agreement between KH and SCKH is observed, which is not so
surprising considering the success of the classical FC method
for XAS of the harmonic test systems and the SCKH method
for HCl. The incoming broadening of HWHM of 0.9 eV clearly
smears out the FC profile that would otherwise be seen in
the quantum-mechanical spectrum. For the XES (integrated
over incoming frequency) the differences that are observed
in the RIXS maps can be seen more clearly: with individual
dynamics the features compared to KH have slightly wrong
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FIG. 8. Normalized emission spectra for the methanol dimer.
Blue: KH; red: SCKH with individual dynamics; yellow: SCKH with
dynamics on first excited state. The incoming frequency goes from
526 to 544 eV, bottom to top.

intensities. For dynamics on the first excited state the lower
peaks have too low and smeared-out intensities Apparently the
first state is too dissociative to describe the whole spectrum,
and perhaps it would be wise to instead use some average state
for applications. It depends of course on which region of the
emission spectrum that is of most interest. The agreement is,
however, still very good.

For the methanol dimer RIXS map there are no apparent
features that are linearly moving with the frequency; probably
this is a combination of the larger lifetime broadening,
the larger number of transitions, and the broader incoming
radiation. Still, it would be interesting to see how the
dispersion of the methanol dimer compares to that of HCl. In
Fig. 8 the normalized emission spectra for different incoming
energies are shown, comparing the KH and SCKH (individual
dynamics) results. Here the agreement is much better than for
HCl; indeed, it is almost as good as for the RIXS map and the
averaged spectra. Apparently the many electronic transitions
in combination with the larger broadening smears things out
and gives less effects of unphysical features in the molecular
dispersive part.

It can thus be expected that for applications to liquids and
other large systems that the molecular dispersing features will
be well described, and that the SCKH scheme will capture
the important effects of vibrational interference, or nuclear
dynamics on the spectra, and will be a relatively cheap
alternative for such large systems. As the SCKH scheme can
be used with any electronic structure method it is likely that a

good, and cheap, description of the electric degrees of freedom
will be key to accurately describe realistic systems.

IV. CONCLUSIONS

A method is presented for computing RIXS that includes vi-
brational effects through classical dynamics on the core excited
state. The method is an extension of the nonresonant SCKH
formalism earlier developed in Ref. [5]. For the absorption
process alone, that is, XAS, the classical FC principle is seen
to reproduce the envelope of the quantum-mechanical cross
section well for a set of harmonic test systems, provided that a
zero-point-energy correction is used. The individual quantum
transitions are not resolved, however. Using classical trajecto-
ries works well only when the ground-state frequency is low.

For RIXS, to overcome difficulties with connecting the
x-ray absorption and emission processes, the classical Franck-
Condon approximation is used for the absorption while
classical trajectories on some representative intermediate state
are used for the emission.

The method gives qualitatively the right RIXS map for the
case of L-edge RIXS of HCl, which is a difficult case since it
dissociates completely when core excited and has an extreme
atomic spectral feature corresponding to the dissociated
geometry. Similarly to XAS, the SCKH method is not capable
of resolving individual vibrational transitions but reproduces
envelopes quite well. For a more realistic case—a one-
dimensional methanol dimer with several intermediate and
final states, computed with density functional theory—good
agreement to the quantum results is obtained, provided that the
dynamics is run on each intermediate state separately. If the dy-
namics is instead run on the first core-excited state the descrip-
tion deteriorates somewhat, nevertheless the agreement is still
good. Using a single state for the dynamics makes the computa-
tional cost of the method similar to the nonresonant case, which
has already been successfully applied on liquid methanol
[10] and ethanol [11]. The dispersive (molecular) part of
the RIXS spectrum does not fully reproduce the quantum-
mechanical one. However, with many electronic states and
large broadening the details are smeared out and a good overall
agreement is found. In the case where vibrational effects are
absent, the SCKH method reduces to the KH formula.

The method shows great potential in exploring the resonant
regime of the XES spectra for many-atom systems such as
liquids, e.g., alcohols and water solutions, that so far has
lacked good methods for modeling when vibrational effects are
important. Further uses of the method could be for molecules
adsorbed on surfaces, and in general complicated and disor-
dered systems where a straightforward quantum-mechanical
approach of the vibrational degrees of freedom is not feasible.
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