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We investigate the surface stress of solid-liquid diffusive interfaces at equilibrium using the phase field crystal
model in two dimensions. To analytically study the surface energy dependence on elastic strains, we employ the
amplitude equation formalism and recast the free energy functional in terms of strains and amplitudes of density
waves to examine the intricate coupling between them. For planar interfaces, the surface stress and its anisotropy
are explored using the phase field crystal model and its amplitude equations. The anisotropy of surface stress
is shown to be closely related to the anisotropic density waves across the interface, and a stronger anisotropy
is observed in the surface stress than that in the surface energy. In addition, to investigate the curvature effect,
we examine resultant strain fields at equilibrium within nanoparticles of various sizes subjected to their surface
stresses. The measured strains are compared with the classical sharp interface model. The discrepancy in strain
fields arises as the size of nanoparticles becomes smaller which suggests a curvature dependent surface stress
for diffusive interfaces. We construct the effective surface stress using the measured strain fields and classical
linear elasticity theory. The overall magnitude of the effective surface stress decreases with the radius of the
nanoparticle, and the effective surface stress is shown to be more isotropic for small nanoparticles.
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I. INTRODUCTION

In recent studies, it has been shown that the surface stress
plays a crucial role in a wide range of material processing
applications including nanotube formation [1], surface stress-
driven instability in thin films [2], surface reconstruction
[3–5], self-assembled monolayers on solid surfaces [6–8] and
stability of vapor deposited thin films [9]. The surface stress, as
an intrinsic source of stresses applied to the solid nuclei, would
genuinely influence both thermal and mechanical equilibrium
of solid-liquid systems. Its effects become more pronounced
as the curvature of the surface gets larger. Therefore, at
the nanoscale, the surface stress is an important determinant
influencing the growth of crystals.

As first proposed by Gibbs [10,11], the surface stress is
the reversible work done per unit area to stretch the existing
surface elastically, in contrast to the interfacial energy which is
the reversible work done per unit area to create a new surface.
The Shuttleworth equation [12] simply relates the surface
stress ταβ and the interfacial energy γ ,

ταβ = γ δαβ + ∂γ

∂ε̃αβ

, (1)

where ε̃αβ ≡ εαζ Pζβ represents the projected strain on the
surface, and Pαβ ≡ δαβ − n̂αn̂β is the projection operator
which maps the strain tensor onto the surface coordinates in
which n̂ is the unit normal vector of the interface pointing
from solid to liquid. The surface stress is a second rank tensor
like the bulk stress but with only two independent components
along the interface. It is clear from the Shuttleworth equation
that the surface stress is identical to the surface tension and
the surface energy for fluid-fluid (liquid or vapor) interfaces
since atoms rearrange themselves from interior to the surface
as the new surface area is created. However, the surface
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stress and surface energy would be different for solid-solid or
solid-fluid interfaces. Moreover, it is worth noting that while
the interfacial energy must be positive for a stable interface,
the surface stress could be either positive or negative which
corresponds to a compressive or tensile stress at the surface,
respectively.

The surface stress of an atomistically smooth solid-vapor
interface at low temperature has been studied for various
systems including Lennard-Jones crystal [13] and metallic
fcc crystals [14–17]. For atomistically rough solid-liquid
interfaces, Frolov and Mishin have extensively analyzed the
surface stress of copper and its dependence on temperature
and bulk stresses using molecular dynamics (MD) simulations
[18–20]. Nevertheless, it remains unclear, for nanoparticles
with diffusive interfaces, how the surface stress and its
anisotropy are affected by the size of the nanoparticle. In
this paper, we employ the phase field crystal (PFC) model
to explore the properties of the surface stress and its effects on
the nanoparticles.

The PFC model is a continuum model that has been used
extensively to model materials at atomistic length scale at
equilibrium and outside equilibrium. It has its roots in the
density functional theory of freezing as discussed in detail
in Ref. [21]. The PFC model has been employed to study
various fundamental problems including elastic and plastic
deformation [22–25], stress-induced morphology of epitaxial
films [26–30], crystal nucleation [31–33], nonequilibrium
crystal growth [32,34–36], and grain-boundary grooving [37].
Variants of the PFC model are derived for various materials
applications such as binary alloys [38,39], liquid crystals
[40,41], and ferromagnetic materials [42].

In order to quantitatively analyze the excess properties
across the interface where the density waves decay slowly
across several lattice planes from solid to liquid, we also
employ the amplitude equations (AE) derived from the PFC
model. The AE method rests on the multiscale analysis that
separates slowly varying amplitude and the underlying density
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waves [43–47]. Therefore, the AE method is suitable to study
the diffusive interfaces [48] as well as the crystal morphology
at mesoscopic scales [38,39,49]. The deformation of crystal
can also be implemented into the AE approach to investigate
nonlinear elasticity of crystals [50,51] and the morphological
instability of strained films [52].

To quantitatively study the surface stress of a diffusive
interface, we calculate the surface stress of a planar interface
using the PFC model and AE in two dimensions. In addition,
we investigate crystal grains of various sizes immersed in
equilibrium with the melt to explore the dependence of surface
stress and its anisotropy on the size of nanoparticles. The
resultant bulk stress within the nanoparticles due to the surface
stress is analyzed and is compared to the classical theory in
the sharp interface limit. The discrepancy between the sharp
interface model and the PFC model for small nanoparticles
due to diffusive interface is discussed in detail.

This paper is organized as follows: In Sec. II, we briefly
review the thermodynamic and mechanical equilibrium for
a solid-liquid coexistence system. The corresponding strain
fields within a circular grain subjected to anisotropic surface
energy and surface stress are derived. In Sec. III, we derive
amplitude equations from the PFC model and explicitly recast
them in terms of the strain fields to investigate the intricate
coupling between strains and the excess surface energy of
a diffusive interface. In Sec. IV, numerical investigation of
the planar surface stress and its anisotropy is discussed. In
addition, the comparison of the resultant strain fields within
the nanoparticle to the sharp interface model is discussed.
Furthermore, the curvature-dependent effective surface stress
is analyzed in detail.

II. THERMAL AND MECHANICAL EQUILIBRIUM

A. Thermal and mechanical equilibrium of crystal
seeds in two dimensions

In order to quantitatively investigate the equilibrium state of
solid-liquid systems, we derive the local equilibrium condition
in the limit where the interface is much smaller than the sizes
of bulk phases. The free energy functional of a solid-liquid
coexistence system in two dimensions is composed of bulk
energies and the interfacial energy,

F =
∫

l

dafl(nl) +
∫

s

dafs(ns,ε) +
∫

sl

d
γ (θ,ε̃), (2)

where fl and fs are the bulk energy densities of the liquid and
solid phases, respectively. Both bulk energy densities depend
on the particle number density n, and the solid energy density
also depends on the strain tensor ε. The interfacial energy γ

varies as a function of the crystal orientation θ as well as the
surface strain tensor ε̃.

The thermal equilibrium conditions are obtained by mini-
mizing the free energy functional with respect to the density
and the area of each phase while keeping the total particle
number and area conserved. The above-mentioned conditions
simply require that the solid and liquid phases have the same
chemical potential, μ, and a different pressure for a curved

surface due to the surface stiffness, γ + γ ′′,

�μ = μs − μl = ∂fs

∂ns

− ∂fl

∂nl

= 0 (3)

�p = ps − pl = (μsns − fs) − (μlnl − fl) = κ(γ + γ ′′)

(4)

in which κ stands for the curvature of the surface and
γ ′′ denotes the second derivative of the interfacial energy
with respect to the crystal orientation, γ ′′ ≡ ∂2γ /∂θ2. Note
that we have assumed the dependence of surface energy
on the curvature is weak and negligible in the derivation.
As a consequence, the coexistence densities change with
the curvature of the surface of the crystal seed due to the
nonvanishing Laplace pressure �p which results from the
balance of the surface stiffness and pressures.

In addition to the thermal equilibrium conditions, the
mechanical equilibrium conditions are obtained by minimizing
the free energy functional with respect to the bulk strain tensor
and the surface strain tensor for the bulk solid and solid-liquid
interface, respectively. It gives

σ ≡ (fs − nsμs)I + ∂fs

∂ε
= −ps I + ∂fs

∂ε
(5)

∇ · σ = 0 (6)

[σ + pl I] · n̂ = dτ

d

· t̂ , (7)

where I is the second rank identity tensor, and d/d
 is the
differential operator along the interface of which t̂ is the unit
tangent vector.

For a planar interface, of which κ = 0, μ and p of the
solid and liquid phases are equal, and the solid completely
relaxes mechanically that gives σnn = 0 and σtn = 0, where
the subscript n (t) denotes the normal (transverse) direction in
regard to the interface. As a consequence, for the interfaces in
mechanical equilibrium, there is only one component of the
surface stress, namely τtt , that we need to take into account
for a two-dimensional solid liquid system, since the shearing
of the surface is equivalent to the shearing of the solid in a
rotated frame; see Fig. 1.

B. Circular grain of isotropic material

For a circular seed with a constant curvature, κ = 1/R0, and
isotropic surface energy and surface stress, the equilibrium
state can be expressed in a simpler fashion in the polar
coordinates, (r,φ), in which r and φ are the radial and angular
coordinates that correspond to the normal and transverse
directions with respect to the interface. As a result, the
equilibrium conditions are readily

�μ = 0, �p = γ

R0
, σrr + pl = − τtt

R0
, (8)

where the differential of surface stress along the interface,
dτ/d
, is approximately −κn̂τtt .

For an elastically isotropic material in two dimensions, the
stress-strain constitutive relation is

σαβ = Kδαβεζζ + 2G

(
εαβ − 1

2
δαβεζζ

)
− psδαβ (9)
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FIG. 1. The surface shearing and the substrate shearing share the same deformation effect on the surface which is indicated in a blue line.
The solid line represents the deformed state and the dashed line represents the reference state.

in which K and G are the bulk and the shear moduli,
respectively. For a 2D isotropic material, the bulk modulus
and the shear modulus are related to the Poisson ratio,
ν = (K − G)/(K + G). We readily obtain the fact that due
to the isotropic surface stress the solid undergoes a uniform
bulk strain, ε0, which is inversely proportional to R0,

εrr = εφφ = ε0 ≡ − �τtt

2KR0
(10)

in which �τtt represents the difference between the surface
stress and the surface energy, �τtt ≡ τtt − γ = ∂γ

∂ε̃tt
.

C. Anisotropic strain profile

For realistic materials, the surface energy and the surface
stress exhibit anisotropy that reflects the underlying crystal
symmetry. In the following, we consider hexagonal crystal
structures which are commonly observed in 2D systems. The
hexagonal lattices are elastically isotropic 2D structures due
to the hexagonal symmetry and the elastic properties are
determined by only two moduli of elasticity. The anisotropic
profiles of the surface energy and the surface stress of
hexagonal crystals can be approximately expressed as the
series expansion of cos 6θ and its harmonics,

γ (θ ) ∼= γ (0) +
∞∑

m=1

γ (6m) cos(6mθ ) (11)

τtt (θ ) ∼= τ
(0)
t t +

∞∑
m=1

τ
(6m)
t t cos(6mθ ), (12)

where the superscript indicates the corresponding harmonics
and θ is defined such that the orientation θ = 0 corresponds to
the close packed orientation. Note that the surface orientation

is set to be equivalent to the angular coordinate, θ = φ, in the
circular seed case.

Together with the equilibrium conditions Eqs. (3), (4),
(6), and (7) and the stress-strain constitutive relation for an
isotropic material Eq. (9), we derive equilibrium profiles of
strain fields within a circular crystal seed of the radius R0,
that is, subjected to the anisotropic surface energy and surface
stress as shown in Eqs. (11) and (12),

εrr = − �τ (0)

2KR0
+

∞∑
m=1

[
(6m + 1)

(−1

2K
+ 6m

4G

)
�τ

(6m)
1

R0
ρ6m

+ (6m − 1)

(−6m

4G

)
�τ

(6m)
2

R0
ρ6m−2

]
cos(6mφ) (13)

εφφ = − �τ (0)

2KR0
+

∞∑
m=1

[
(6m + 1)

(−1

2K
− 6m

4G

)
�τ

(6m)
1

R0
ρ6m

+ (6m − 1)

(
6m

4G

)
�τ

(6m)
2

R0
ρ6m−2

]
cos(6mφ) (14)

εφr =
∞∑

m=1

[
(6m + 1)

(
−6m

4G

)
�τ

(6m)
1

R0
ρ6m

+ (6m − 1)

(
6m

4G

)
�τ

(6m)
2

R0
ρ6m−2

]
sin(6mφ), (15)

where ρ is the normalized radial coordinate, ρ ≡ r/R0,
�τ (0) ≡ τ

(0)
t t − γ (0), �τ

(6m)
1 ≡ τ

(6m)
t t + (6m − 1)γ (6m), and

�τ
(6m)
2 ≡ τ

(6m)
t t + (6m + 1)γ (6m). The detailed derivation is

shown in Appendix A. It is clear that the strain fields within
the solid are more pronounced as the radius of the circular seed
gets smaller, since the strain field are inversely proportional
to R0. Besides the 1/R0 scaling, the mathematical form of
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the strain field within the circular crystal only depends on
normalized radial coordinate ρ and the angular coordinate φ.

It is clear that the above derived strain fields are only valid
in the sharp interface limit. However, for materials with rough
interfaces, it remains unclear how the finite interface width
would influence the surface stress and the corresponding strain
fields. In the following, we employ the phase field crystal
approach and its amplitude equations to quantitatively explore
the strain fields subject to the anisotropic surface stress of
materials with rough interfaces.

III. PHASE FIELD CRYSTAL MODEL

A. Free energy functional

A variety of the PFC model has been proposed in order to
generalize the model to describe the various crystal symmetries
[53–55]. Here, we restrict our attention to the simplest
formulation of PFC since we focus on the relation of surface
stress and the underlying crystal symmetry, although the
following derivation could be easily generalized for other PFC
models.

The dimensionless form of the simplest PFC free energy
functional is

F =
∫

d�r ψ

2
[−ε + (1 + ∇2)2]ψ + ψ4

4
(16)

in which ψ serves as the dimensionless particle density
difference with respect to a reference state, and ε is a
control parameter that determines the interfacial properties and
elasticity of materials which can be set once the liquid structure
factor of the material at the melting point is known [23]. To
investigate strain fields of nanocrystal seeds at the solid-liquid
equilibrium, we employ the relaxational conserved dynamics,

∂ψ

∂t
= ∇2μ, (17)

where μ is the local chemical potential defined as

μ ≡ δF

δψ
= [−ε + (1 + ∇2)2]ψ + ψ3. (18)

Hence, the chemical potential μ must be a uniform constant
over the system when it reaches equilibrium.

The liquid phase is a homogeneous state, ψ = ψ̄l , where
ψ̄l is a constant, and the free energy density is obtained
straightforwardly from Eq. (16),

fl = (−ε + 1)
ψ̄2

l

2
+ ψ̄4

l

4
. (19)

In comparison, the solid state could be expressed approxi-
mately by a mean density ψ̄s and a group of density waves that
reflects the symmetry of the solid,

ψs(�r) ≈ ψ̄s +
∑

j

Aje
i �Kj ·�r +

∑
j

A∗
j e

−i �Kj ·�r , (20)

where Aj is the amplitude of each density wave and �Kj is
the reciprocal lattice vector (RLV). For small values of ε, the
solid state at coexistence can be well represented by employing
only the set of principal RLVs. For triangular lattices in two

dimensions, the principal RLVs are

�Kj = cos

(
2πj

3

)
x̂ + sin

(
2πj

3

)
ŷ (21)

with its counterparts − �Kj , in which j is an integer ranging
from 1 to 3. Since the sixfold symmetry of the triangular lattice
ensures that all density waves have the same amplitude As , the
free energy density of the solid is readily derived from Eq. (16),

fs = (−ε + 1)
ψ̄2

s

2
+ ψ̄4

s

4
− 3εA2

s + 9ψ̄2
s A2

s

+ 12A3
s ψ̄s + 45

2
A4

s . (22)

By minimizing the free energy density with respect to As , we
obtain the amplitude of density waves of the solid phase,

As = − ψ̄s

5
+

√
15ε − 36ψ̄2

s

15
, (23)

which is coupled to ε and ψ̄s . It is shown by Elder and Grant
[23] that the elastic constants of crystals are proportional to
A2

s , and later on we will derive the formulas of elastic constants
in amplitude equations formalism.

The coexistence densities for solid-liquid systems with
planar interfaces are determined by requiring both phases
have the same chemical potential and pressure. Detailed
calculations are discussed in Refs. [45] and [37]. For small
values of ε, the coexistence densities can be expressed as a
series expansion of ε1/2,

ψ̄s ≈ ε1/2ψs0 + ε1ψs1 + ε3/2ψs2 + O(ε2) (24)

ψ̄l ≈ ε1/2ψl0 + ε1ψl1 + ε3/2ψl2 + O(ε2). (25)

For hexagonal lattices, the coefficients are computed using
the common tangent construction which leads to ψs0 =
ψl0 = ψc ≡ −√

15/37, ψs1 = ψl1 = 0, and ψs2 = −ψl2 =
16/(5

√
555). Notably, the miscibility gap ψ̄s − ψ̄l is propor-

tional to ε3/2.

B. Amplitude equations

The amplitude equations are obtained using the multiscale
expansion assuming that the amplitude profile varies much
more slowly than the underlying periodicity of the crystal. As
shown in Refs. [45] and [37], the amplitude of density waves
depends on a slow spatial variable �R = ε1/2�r , and thus, we can
express the density field as

ψ( �R,�r) ≈ ε1/2

⎡
⎣ψc + εn( �R) +

3∑
j=1

Aj ( �R)ei �Kj ·�r

+
3∑

j=1

A∗
j ( �R)e−i �Kj ·�r

⎤
⎦, (26)

where n is the average density over a unit cell. As a
consequence, the effective free energy functional with respect
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to amplitudes and average density becomes

F ∼= ε

∫
d �R

3∑
j=1

|L̂jAj |2 + f̄local + O(ε2) (27)

L̂j ≡ 2i �Kj · ∇R + ε1/2∇2
R (28)

f̄local ≡ (−1+ε−1)
ψ2

c

2
+ ψc(−ε + 1)n + ε

n2

2
+ ψ4

c

4
+ εψ3

c n

+ (
3ψ2

c + 6εψcn − 1
) 3∑

j=1

|Aj |2 + 6(ψc + εn)

×(A1A2A3 + A∗
1A

∗
2A

∗
3) + 3

2

3∑
j=1

|Aj |4

+ 6
3∑

j=1

3∑
k>j

|Aj |2|Ak|2 (29)

in which ∇R denotes the gradient with respect to �R. The
second term in Eq. (27) is a nonlinear function of free
energy density which simply depends on local density and
amplitudes. Furthermore, the amplitudes Aj and average
density n follow the nonconserved and conserved relaxational
dynamics, respectively,

∂Aj

∂t
= − δF

δA∗
j

= −L̂2
jAj − ∂f̄local

∂A∗
j

(30)

∂n

∂t
= ∇2 δF

δn
= ε∇2

R

∂f̄local

∂n
. (31)

Due to the dependence of L̂j on �K · ∇R , the profile of am-
plitudes would vary differently across the interface depending
on surface orientation which leads to anisotropic interfacial
properties, as shown by Wu and Karma [45].

In bulk phases, n and Aj are uniform and the free energy
densities, f̄s and f̄l , of solid and liquid, respectively, are
expressed by f̄local(n,Aj ) with different average density and
amplitudes,

f̄s = f̄local(ns,Ā), f̄l = f̄local(nl,0), (32)

where ns and nl are the average density of solid and liquid,
respectively, and Ā is the common amplitude among the
density waves, which corresponds to As in PFC, As

∼= ε1/2Ā.
The values of ns , nl , and Ā at solid-liquid coexistence are
solved using ∂f̄s

∂Ā
= 0 and the thermal equilibrium conditions,

Eqs. (3) and (4).

C. Solid-liquid interfacial energy

The interfacial energy is the excess free energy of forming
an interface [18], and in the PFC model the interfacial energy of
a planer interface can be evaluated by the following expression
shown in Ref. [45],

γ = L−1
∫

d�r
[
f −

(
ψ − ψ̄l

ψ̄s − ψ̄l

fs + ψ − ψ̄s

ψ̄l − ψ̄s

fl

)]
, (33)

where L is the length of the interface and f represents the
free energy density, which is the integrand in Eq. (16). For
amplitude equations, the 2D solid-liquid system with a planar
interface can be simplified further to a 1D problem due to

homogeneity in the direction parallel to the interface. Similar
expression of the interfacial energy is derived for AE,

γ = ε3/2
∫

dZ

⎡
⎣ 3∑

j=1

|L̂jAj |2 + f̄local

−
(

n − nl

ns − nl

f̄s + ns − n

ns − nl

f̄l

)⎤
⎦ (34)

in which L̂j is reduced to one-dimensional form, L̂j =
( �Kj · n̂)∂Z + ε1/2∂2

Z , and Z is along the direction of the
interface normal n̂.

D. Deformation and strains

1. Deformation

Before deriving surface stress for the PFC model, it is
necessary to identify the measure of the deformation such
as displacement vector �u in the PFC model, which has been
discussed in Refs. [24,25,38,50]. The deformation could be
regarded as a transformation of lattice basis defined as

ei �K·�r → ei �K·�r ′ = ei �K·(�r−�u) (35)

which corresponds to shifting a lattice point �r ′ to a new
position �r with a displacement �u. Then, the phase of A′

j s is
associated with the local displacement field �u. This description
works well within bulk solid, where the crystal symmetry
is preserved; however, it is not sufficient for the interface
region where atoms are subjected to asymmetric interatomic
potential. Therefore, an additional phase in the amplitudes
is required to completely capture lattice deformations due to
asymmetric forces experienced by atoms at the interface. The
general form of the amplitude can be expressed as

Aj = aj e
−i �Kj ·�ueiϕ, (36)

where aj ≡ |Aj | is the magnitude of amplitudes and ϕ is the
mean phase of the three amplitudes, A1A2A3 = |A1A2A3|e3iϕ ,
which is an additional degree of freedom apart from the
displacement vector. For a stress-free solid-liquid system at
equilibrium, �u is homogeneous, and ϕ vanishes in bulk solid,
but both of them vary across the interface and their variations
are in the order of ε, ∇�u ∼ ∇ϕ ∼ ε, which will be derived in
detail below.

With Eq. (36), one can readily quantify the excess free
energy contribution due to strains by applying L̂j to the
amplitudes,

L̂jAj = L̂j aj e
−i �Kj ·�u+iϕ = e−i �Kj ·�u+iϕL̂′

j aj

∼= e−i �Kj ·�u+iϕ(L̂j + Mj + iN̂j + Gj + iĤ )aj + O(ε2)

(37)

Mj ≡ 2ε−1/2KjαKjβεαβ (38)

N̂j ≡ −2Kjαuα,β ∂̄β − Kjα(∂̄βuα,β ) (39)

Gj ≡ −2ε−1/2Kjαϕ,α (40)

Ĥ ≡ 2ϕ,α∂̄α + (∂̄αϕ,α), (41)
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FIG. 2. The profiles of (a) the magnitude squared of effective RLVs, |Keff
j |2, as well as (b) the normal components un,n and ϕ,n across the

interface for the close packed orientation of which the normal vector of the interface is n̂ = (1,0). The interface is located at z = 0 and the
solid (liquid) is in the negative (positive) regime of z.

where Kjα represents the α component of the vector �Kj , ε

serves as the strain field, εαβ ≡ 1
2 (uα,β + uβ,α), uα,β ≡ ∂uα

∂rβ
,

ϕ,β ≡ ∂ϕ

∂rβ
, and ∂̄α ≡ ∂

∂Rα
. For a small value of ε, we neglect

higher order terms of ε as well as higher order terms of ε in
Eq. (37) in the limit of the diffuse interface and linear elasticity.

2. Effective RLVs

The physical interpretation of each term in Eq. (37) can
be easily understood by examining the changes in RLVs
which are directly associated with �u and ϕ. uα,β and ϕ,α

could be viewed approximately as the change in RLVs given
the slow variation of �u and ϕ over space. For example,
considering a density field including �u and ϕ, that is, ρ(�r) =∑3

j=1 cos (Kjαrα − Kjαuα + ϕ), it is straightforward through
Taylor expansion around a reference point at �r = 0 to obtain

ρ(�r) ∼=
3∑

j=1

cos[Kjαrα − Kjα(uα(0) + ∂βuα(0)rβ)

+ (ϕ(0) + ∂βϕ(0)rβ)]

=
3∑

j=1

cos[(Kjαδαβ − Kjαuα,β(0) + ϕ,β (0))rβ

−Kjαuα(0) + ϕ(0)], (42)

where uα(0) and ϕ(0) vanish in equilibrium bulk solid.
Therefore, the effective RLV is

Keff
jβ ≡ Kjα(δαβ − uα,β ) + ϕ,β (43)

of which the magnitude squared is

∣∣ �Keff
j

∣∣2 ∼= | �Kj |2 − 2KjαKjβεαβ + 2Kjαϕ,α (44)

in which the last two terms correspond to Mj and Gj ,
respectively, see Eqs. (38) and (40). Accordingly, Mj and Gj

are regarded as the magnitude change of �Kj due to �u and ϕ,
respectively, see Fig. 2(a). The equilibrium profiles of un,n and
ϕ,α for planar interfaces of stress-free solid-liquid systems are
shown in Fig. 2(b). For planar interfaces, there are intrinsic
strains uα,β and a nontrivial mean phase ϕ varying across the
interface and the profiles change with the surface orientation.
The positive value of un,n indicates that the lattice expansion
occurs in the interface region, which has been observed in MD
simulation of the hard-sphere system in three dimensions [56].

Furthermore, the gradient kernel L̂′
j in Eq. (37) could also

be recast in terms of �Keff
j ,

L̂′
j = ε−1/2[(1 − ∣∣Keff

j

∣∣2) + 2iε1/2Keff
jα ∂̄α + ε∂̄α∂̄α

+ iε1/2
(
∂̄αKeff

jα

)]
. (45)

It shows the intricate coupling between the strain fields and
density wave profiles which gives rise to the surface stress.

With Eq. (37), we rewrite the free energy functional Eq. (27)
in terms of n, aj , �u, and ϕ,

F = ε

∫
d �R

3∑
j=1

|(L̂j + Mj + iN̂j + Gj + iĤ )aj |2

+ f̄local(aj ,n,ϕ), (46)

and the corresponding governing equations for the scalar
amplitude a′

j s are

∂aj

∂t
= −2|L̂j + Mj + iN̂j + Gj + iĤ |2aj − ∂f̄local

∂aj

,

(47)
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FIG. 3. The profiles of the transverse stress σtt for two orienta-
tions across the interface.

while the governing equation for n remains unchanged.
Besides, the evolution equations for �u and ϕ are derived
accordingly,

∂uα

∂t
∼= ε1/2∂̄β

⎡
⎣ 3∑

j=1

(Ljaj + Mjaj )

(
∂Mj

∂uα,β

aj + i
∂N̂j

∂uα,β

aj

)

+ c.c.

⎤
⎦ − ε1/2∂̄β ∂̄β

⎡
⎣ 3∑

j=1

(Ljaj )

(
i

∂N̂j

∂(∂̄μuα,μ)
aj

)

+ c.c.

⎤
⎦ + O(ε3/2) (48)

FIG. 4. The snapshots of the solid-liquid interfaces at equilibrium
in PFC simulation for two orientations, namely, (a) the close-packed
orientation and (b) the zigzag orientation.

FIG. 5. The excess interfacial energy as function of strains for
ε = 0.1. The PFC simulation results for 0◦ (close-packed) and 30◦

(zigzag) orientations are shown in the blue circles and red squares,
respectively. The solid lines are the fitted quadratic curves.

∂ϕ

∂t
∼= ε1/2∂̄β

⎡
⎣ 3∑

j=1

(Ljaj )

(
∂Gj

∂ϕ,β

aj + i
∂Ĥ

∂ϕ,β

aj

)
+ c.c.

⎤
⎦

− ε1/2∂̄β ∂̄β

⎡
⎣ 3∑

j=1

(Ljaj )

(
i

∂Ĥ

∂(∂̄μϕ,μ)
aj

)
+ c.c.

⎤
⎦

− ∂f̄local

∂ϕ
+ O(ε3/2) (49)

in which c.c. denotes the complex conjugate. For bulk solid
at equilibrium where the derivatives of aj vanish and only the
term related to Mj

∂Mj

∂uα,β
remains, Eq. (48) is reduced to

∂β

⎡
⎣ 3∑

j=1

2
∂Mj

∂uα,β

Mja
2
j

⎤
⎦ = ∂β

⎡
⎣ 3∑

j=1

2
∂Mj

∂uα,β

∂Mj

∂uμ,ν

a2
j uμ,ν

⎤
⎦

= ∂β(Cαβμνuμ,ν). (50)

This formula rediscovers the mechanical equilibrium condition
in bulk solid for the PFC model under the description of the
linear elasticity theory. The similar derivation has been shown
by Heinonen et al. [25]. The elastic moduli for different crystal
symmetries can also be elegantly derived from the above AE
formalism, see Appendix B. For 2D triangular lattices, the bulk
and shear moduli are calculated, K = 6εĀ2 and G = 3εĀ2.

214106-7



MING-WEI LIU AND KUO-AN WU PHYSICAL REVIEW B 96, 214106 (2017)

-50 0 50
z

-0.05

0

0.05

0.1

0.15

0.2

0.25

am
pl

itu
de

s 
an

d 
av

er
ag

e 
de

ns
ity

(a)
A

1

A
2

A
3

 n

-50 0 50
z

-0.05

0

0.05

0.1

0.15

0.2

0.25

am
pl

itu
de

s 
an

d 
av

er
ag

e 
de

ns
ity

(b)
A

1

A
2

A
3

 n

FIG. 6. The profiles of amplitudes for two orientations, (a) the close-packed and (b) the zigzag orientations of which the surface normal n̂

are (1,0) and (
√

3
2 , 1

2 ), respectively. The real and imaginary parts of the amplitudes are shown in the solid and dashed lines, respectively. Note
that A1 = A2 for the close packed orientation and the real parts of A1 and A3 are identical for the zigzag orientation.

E. Surface energy and surface stress

The dependence of the excess interfacial energy on the
strains can be shown by substituting Eq. (46) into Eq. (34),

γ = ε3/2
∫

dZ

⎡
⎣ 3∑

j=1

|(L̂j + Mj + iN̂j + Gj + iĤ )aj |2

+ f̄local −
(

n − nl

ns − nl

f̄s + ns − n

ns − nl

f̄l

)⎤
⎦. (51)

The expression of the surface stress is readily obtained using
the Shuttleworth equation,

τtt = γ + ∂γ

∂εtt

∼= γ +
∫

dZ

3∑
j=1

∂Mj

∂εtt

aj (L̂j + Mj + Gj )aj

+ c.c.

= γ + ε3/2
∫

dZ

⎡
⎣ 3∑

j=1

4K2
j t aj

(
∂2
Z + 2ε−1KjαKjβεαβ

− 2ε−1Kjαϕ,α

)
aj

⎤
⎦. (52)

It is clear that the surface stress is closely related to the change
in the RLVs across the interface as shown above.

In the recent research with MD simulations [19,20], it is
discovered that there are nontrivial intrinsic stress fields across
the solid-liquid interface in three dimensions. Based on the
expression of surface stress in terms of stress fields, τtt =∫

dzσtt , we calculate the corresponding transverse stress σtt

and present the result in Fig. 3. Similar to the result in the MD
studies, the stress profile depends on the surface orientation
and exhibits an asymmetric profile across the interface rather
than the Lorentzian-like distribution proposed by Levitas [57]
in phase field theory.

IV. RESULTS AND DISCUSSIONS

A. Surface stresses and its anisotropy

In addition to the above theoretical analysis, we quantita-
tively investigate the surface stress of solid-liquid interfaces
using the PFC model as well as the AE method. The surface
stress is calculated for triangular lattices in two dimensions,
and its dependence on crystal orientation and the parameter ε

is examined.

1. PFC simulation

In order to measure the surface stress in the PFC model,
we simulate solid-liquid coexistence systems with various
prescribed strains and calculate the excess interfacial free
energy and its variation with respect to the strains to obtain the
surface stress. The simulation of a solid-liquid system consists
of an extended solid domain in contact with liquid and periodic
boundary conditions are employed in the simulations. Two
orientations which are studied extensively in this paper are
the close-packed orientation and the zigzag orientation which
correspond to θ = 0◦ and θ = 30◦, respectively, see Fig. 4.
To accurately compute the surface stress, it is important to
determine a stress-free solid state (i.e., the reference state)
numerically. As shown by Wu and Voorhees [26], the length
of the RLV would slightly differ from unity and depends on ε

due to higher harmonics in the density waves. Therefore, based
on the two-mode calculation and numerical simulations, we set
the RLVs for the stress-free solid to be �Ko

j → (1 − �K) �Kj ,
where �K = 0.04702% for ε = 0.1. The prescribed lateral
strain is applied by deforming the RLVs with a strain tensor,

�Ka
j → �Ko

j · (I − ε̄t̂ ⊗ t̂). (53)

As the result, the crystal would be stretched by a uniform
strain (εtt = ε̄). The excess interfacial energy is computed
accordingly using Eq. (33).

These procedures are carried out for various crystal orien-
tations to further compute the anisotropy of the surface stress.
The details of setting up dimensions of the periodic simulation
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FIG. 7. (a) The surface energy and (b) the surface stress of different orientations for ε = 0.1 are obtained from the PFC model (black
squares) and the AE model (red circles).

domain for different crystal orientations are discussed in
Ref. [58]. Furthermore, in order to prevent the interaction
among interfaces, the dimensions of solid and liquid domains
parallel to the interfaces normal are 10 times larger than the
interface thickness. The interface thickness is about 45.9 in the
PFC dimensionless length corresponding to 6.3a0 where a0 is
the interatomic spacing (a0

∼= 7.3).
According to the Shuttleworth equation, Eq. (1), the surface

stress is calculated using the surface energy and its derivative
with respect to ε̄. Our simulation results show that the surface
energy changes quadratically with applied stains and this
relation also exhibits a strong orientation dependence, see
Fig. 5. These observations are consistent with recent MD
simulations for Cu [20]. The derivative of the interfacial free
energy with respect to ε̄ around ε̄ = 0 is positive for the close-
packed orientation and negative for the zigzag orientation.
Consequently, the surface stress is more anisotropic than the
surface energy.

2. AE simulation

The AE simulation of a 2D planar solid-liquid interface is
readily reduced to a 1D system, since the order parameters Aj

and n are constant along the direction parallel to the interface.
The equilibrium profiles of amplitudes and average density
vary smoothly across the interface, as depicted in Fig. 6,
while in bulk phases Aj and n are constant, nl = −0.1586 for
bulk liquid and ns = 0.2065 and Ā = 0.2008 for bulk solid.
According to Eqs. (34) and (52), the surface energy and the

TABLE I. Surface free energy γ and stress τtt for two orientations
at ε = 0.1. α denotes the anisotropy parameter, which is defined as
αf ≡ f (0◦)−f (30◦)

f (0◦)+f (30◦) .

γ (0◦) γ (30◦) τtt (0◦) τtt (30◦) αγ ατ

(10−4) (10−4) (10−4) (10−4) (%) (%)

PFC 9.601 9.557 10.147 8.811 0.23 7.05
AE 9.524 9.483 9.644 8.349 0.22 7.20

surface stress for strain-free crystals are calculated with the
equilibrium profiles of Aj and n.

3. Comparison and results

The orientation dependence of surface energy and surface
stress calculated from PFC and AE simulations is presented
in Fig. 7. The results from the PFC and AE simulations are
quantitatively consistent with each other. The discrepancy
between these methods is about 1% in the interfacial energy
and 5% in the surface stress which is the result of the truncation
of higher harmonics of the density waves in the AE method.
The values of the surface stress and the surface energy as well
as the anisotropy parameters, αf ≡ f (0◦)−f (30◦)

f (0◦)+f (30◦) , are listed for
the close-packed (0◦) and the zigzag (30◦) in Table I. Both
PFC and AE exhibit weak anisotropy in the surface energy
and larger anisotropy in the surface stress which suggests that
the principal RLVs is the main determinant of the anisotropies.
Moreover, for 2D hexagonal lattices, the maximum of surface
energy/stress occurs at the close-packed surface while the
minimum appears at the zigzag orientation.

We decompose the surface energy and the surface stress
into the average value γ (0)(τ (0)

t t ) and its harmonics cos 6θ and
cos 12θ according to Eqs. (11) and (12), and the coefficients
are listed in Table II. The average surface stress τ

(0)
t t is 0.40%

smaller than the average surface energy γ (0) in PFC simulation,
while in AE simulation the difference increases to 2.66%.
The discrepancy between the PFC model and the AE method
once again is attributed to the truncation from the higher order

TABLE II. The harmonics components of the surface stress and
surface energy at ε = 0.1.

γ (0) γ (6) γ (12) τ
(0)
t t τ

(6)
t t τ

(12)
t t

(10−4) (10−4) (10−4) (10−4) (10−4) (10−4)

PFC 9.579 0.022 0.000 9.547 0.668 −0.065
AE 9.503 0.021 0.000 9.053 0.643 −0.057
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FIG. 8. The ε dependence of the surface stress for 0◦ orientations.
The result of PFC simulation is shown in squares and the AE result
is shown in the solid line.

modes in the density waves. Besides, τtt calculated in PFC
and AE are plotted against ε in Fig. 8. The surface stress is
shown to be proportional to ε3/2, as predicted by AE, and the
discrepancy of τ measured from PFC and AE converges as ε

decreases.
Similarly, the anisotropy calculated from the PFC and AE

methods is in quantitatively good agreement for a wide range
of ε as shown in Fig. 9, which suggests that the principal
RLVs is the main determinant for the anisotropy. Both PFC
and AE methods show that the surface stress is 30 times more
anisotropic than the surface energy in the board range of ε

from 0 to 0.1.
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FIG. 9. The ε dependence of anisotropy parameters α of τ (black)
and γ (red) is plotted for PFC (squares) and AE (lines) simulations.
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FIG. 10. The density shifts are measured in both phases and
compared with the prediction of sharp interface model. The density
variation for solid (liquid) is shown in black (blue). The simulation
results from the PFC and the AE are depicted in squares and circles,
respectively. The theoretical prediction in Eq. (54) is shown for PFC
and AE in solid lines and dashed lines, respectively.

B. Circular crystal seeds

In this section, we employ both PFC and AE simulations
to study the effect of the curved solid-liquid interface on
the equilibrium state of nanoparticles. The simulation system
consists of a circular solid embedded in the liquid phase and
the radius of the circular solid is ranging from 20 to 280

0 500 1000 1500 2000
R0

1.4

1.6

1.8

2.0

2.2

2.4

δR
/R

0

×10-3
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AE

FIG. 11. The anisotropy of the equilibrium shape of various crys-
tal size is plotted for PFC (squares) and AE (circles) simulations. The
theoretical estimation of the shape anisotropy for large nanoparticles,
αR

∼= αγ , is shown in dashed lines.
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FIG. 12. The strains plot of (a) the radial and (b) the angular components for R0 = 991 measured in PFC, and (c) the radial and (d) the
angular components for R0 = 935 calculated in AE. The dashed circle represents the position of interface. The strains are only plotted for the
solid regime where the elastic moduli remain constant.

interatomic spacings in order to discern the effects of the
surface stress between nanoparticles and large grains. We
analyze in detail the shift of coexistence densities due to
the curvature of nanoparticles and the noncircular equilibrium
shape due to the anisotropic interfacial energy. Furthermore,
we quantitatively compare numerical results of strain fields as
a result of the intrinsic surface stress with the classical theory
derived in Sec. II with assumptions of the sharp interface and
linear elasticity. Inhomogeneous lattice distortion is observed
within the crystal and its magnitude increases as the crystal
size decreases.

1. Equilibrium density shift

In order to investigate elastic properties of nanoparticles
quantitatively, one has to determine the equilibrium coexis-
tence densities accurately since the elastic constants depend
on the solid density and the Laplace pressure is calculated
from the coexistence densities. The numerical results show
that the coexistence mean densities increase as the radius of
the crystal decreases as shown in Fig. 10. It is a direct result
of the Gibbs-Thomson effect and the shift of the coexistence
densities gives rise to the pressure difference between solid
and liquid which balances the force due to the surface tension
γ of the curved surface. The density shift δψ is defined as the
difference in the density between solid-liquid systems with a
curved and a planar interface, δψa ≡ ψ̄a(R0) − ψ̄a(∞), where

a denotes either the solid (a = s) or the liquid (a = 
) phase.
The analytical expression for the density shift is obtained by
solving Eqs. (3) and (4) together with the bulk free energy
densities of PFC shown in Eqs. (19) and (22). The density
shift is approximately

δψa
∼= γ

f ′′
a �ψR0

+ O
(
R−2

0

)
, (54)

where �ψ is the solid-liquid density difference for a planar
solid-liquid interface system, �ψ ≡ ψ̄s − ψ̄l , and f ′′

a is the
second derivative of free energy density with respect to
the mean density, f ′′

a ≡ ∂2f/∂ψ̄2
a , which could be exactly

calculated for liquid, f ′′
l = −ε + 1 + 3ψ̄2

l . Similar analytical
derivation is carried out for AE by replacing ψ̄ with ε3/2n and
using Eq. (32) for the bulk free energy density. As shown in
Fig. 10, the simulation result is in good agreement with the
theoretical calculation. The coexistence density shift is crucial
for the following calculation of the surface stress, since it
gives rise to the pressure difference acting on the interface
which balances the surface stress.

2. Equilibrium shape

The equilibrium shape is crucial in computing the strains
within a nanoparticle since one can no longer assume a circular
boundary condition due to the anisotropic interfacial energy.
The location of the interface is defined as that at which the
mean density is equal to the average density of bulk solid and
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FIG. 13. The strain profiles of (a) the radial and (b) the angular components measured in PFC (R0 = 991), and (c) the radial and (d) the
angular components calculated in AE (R0 = 935). The results are shown in black dots for the closed packed orientation (0◦) and blue dots for
the zigzag orientation (30◦). The sharp interface prediction in Eqs. (13) and (14) is plotted in red lines for 0◦ and green lines for 30◦.

liquid phases. Note that we employ the 2D Gaussian filter in
PFC to smooth the density waves in solid to get the mean
density profile. We measure the radius R(φ) and fit it with
R(φ) ∼= R0 + δR cos(6φ). The equilibrium shape of the crystal
seed is roughly circular and the radius variation, αR ≡ δR/R0,
is around 0.2% as shown in Fig. 11. For large nanoparticles, the
radius variation can be estimated theoretically using Eq. (4),

�p = κ(γ+γ ′′) ∼= γ0

R0
[(1−35αγ cos 6φ)(1+35αR cos 6φ)].

(55)

Since the pressure difference must remain constant at equilib-
rium, it requires the above expression must be independent
of φ. Therefore, the degree of the variation of radius is
approximately equal to the anisotropy parameter of surface
energy, αR

∼= αγ . The simulation results are quantitatively

consistent with the theoretical value for crystal seeds with
a large radius, see Fig. 11. However, the equilibrium shape is
shown to be more isotropic as the radius of the crystal becomes
smaller, which indicates a curvature dependent surface energy
and its anisotropy.

3. Strain profiles

In order to examine the effect of the surface stress, we
investigate strain fields within the solid. In PFC simulations,
we calculate the displacement �u by measuring the location of
each density peak and subtracting it by that of a stress-free
solid. On the other hand, in AE simulations, we measure the
phase of the amplitudes and determine the displacement field
based on Eq. (36). For both PFC and AE, the displacement field
is only measured within the nanoparticles where the elastic
moduli are constants.
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The strain fields are defined as the symmetrized displace-
ment gradient, εαβ = 1

2 (uα,β + uβ,α). The resulting diagonal
components of strains is shown in Fig. 12, and the strain
fields exhibit strong orientation dependence. For the radial
component εrr , the material is compressed along the close-
packed orientation and stretched along the zigzag orientation.
In contrast to radial component, the angular component
exhibits a more complex behavior in that the region close to
the interface of the crystal is compressed in the close-packed
orientation and stretched in the zigzag orientation, while the
relation is reversed for regions that are away from the interface.
As shown in Fig. 13, the strain profile within the solid is in
good agreement with the sharp-interface prediction derived in
Eqs. (13) and (14). The small deviation in εrr near the peak
is a result of the simple theoretical assumption of a circular
equilibrium shape. As shown previously, a weak noncircular
shape is presented in the PFC and AE due to the anisotropic
surface energy.

To further compare strain fields quantitatively with
Eqs. (13)–(15), we decompose the measured strain fields into
a sum of isotropic terms and the first harmonics,

εrr (r,φ) ∼= ε(0)
rr (r) + ε(6)

rr (r) cos(6φ) (56)

εφφ(r,φ) ∼= ε
(0)
φφ(r) + ε

(6)
φφ(r) cos(6φ) (57)

εφr (r,φ) ∼= ε
(6)
φr (r) sin(6φ), (58)

where ε
(0)
ij and ε

(6)
ij only depend on the radial coordinate. It is

clear that, from Eqs. (13)–(15), ε
(6m)
ij is related to γ (6m) and

τ (6m) and is inversely proportional to R0.
From Eqs. (13) and (14), we expect the isotropic strains to

be the same value within the solid, ε(0)
rr = ε

(0)
φφ = �τ

(0)
t t

2KR0
. The

isotropic strains measured from simulations are compared
with classical theory in Fig. 14. The simulation result is
consistent with theory for large nanoparticles that the isotropic
strains change inversely with R0; the minor deviation for large
nanoparticles can be attributed to the noncircular equilibrium
shape. However, for smaller nanoparticles, the isotropic strains
dramatically deviate from sharp interface prediction which
suggests that �τ

(0)
t t = τ

(0)
t t − γ (0) = τ

(0)
t t − R0�p is no longer

a constant. With the result in density shift corresponding to
the pressure difference, the simulation results of PFC and AE
indeed show a pronounced reduction in the average surface
stress as the size of the nanoparticle decreases and insignificant
changes in R0�p. For the nanoparticle size R0

∼= 282 in AE,
for example, the changes in R0�p is about 0.4% and τ changes
by 1.5%. Therefore, the decrease in the surface stress results
in a decrease in the isotropic strains.

Besides, the coefficients of the first harmonics of strains are
plotted against the radial position in Fig. 15. The dependence
of the first harmonics coefficient on r is in quantitatively
good agreement with theory for large nanoparticles; however,
the deviation appears for small nanoparticles. To understand
the physical origin of the deviation, we fit the measured
strain fields with the general solution of an isotropic elastic
material. Despite the complexity of the diffusive interface and
the noncircular equilibrium shape, at mechanical equilibrium,
the general solution of the displacement field expressed in the
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FIG. 14. The bulk strain ε
(0)
αβ of the PFC (black) and the AE (blue)

simulations is compared with the prediction by the sharp interface
theory in Eq. (10) which are plotted in dashed lines.

polar coordinates can be derived as shown in Appendix A.
With the displacement field, one can readily derive the general
form of the strain fields and ε

(6)
αβ accordingly,

R0ε
(6)
rr = a(6)

rr ρ6 + b(6)
rr ρ4 (59)

R0ε
(6)
φφ = a

(6)
φφρ6 + b

(6)
φφρ4 (60)

R0ε
(6)
φr =

(
−a(6)

rr + a
(6)
φφ

2

)
ρ6 +

(
−2b(6)

rr + b
(6)
φφ

3

)
ρ4, (61)

where a
(6)
αβ and b

(6)
αβ are constant coefficients independent of r

and φ. For sharp interface theory, a(6)
αβ and b

(6)
αβ are independent

of R0, which leads to a unique profile of R0ε
(6)
αβ regardless

of the nanoparticles size. By contrast, in PFC and AE, these
coefficients are shown to depend on the curvature. However,
these curvature dependent coefficients do not affect the shape
of the profile of R0ε

(6)
αβ , but only reduce the magnitude of the

profiles as R0 decreases. It indicates that the surface stress of
a diffusive interface depends on the size of the nanoparticle.
It is of interest to estimate the effective surface stress which
gives rise to the corresponding strain fields observed in PFC
and AE simulations.

4. Effective surface stress

The effective surface stress is defined as the surface stress
required to act on the noncircular shape surface that leads to
the measured strain fields. Therefore, based on the validity
of the isotropic linear elasticity, we use the strain fields within
the solid to extrapolate the strain fields at the interface using
Eqs. (59)–(61). The effective surface stress is readily evaluated
using the extrapolated strains at the interface and Eq. (7) with
the pressure difference calculated from the density shift. The
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FIG. 15. The profiles of the first harmonics of (a) the radial and (b) the angular strain components measured from PFC simulations, and
(c) the radial and (d) the angular components calculated in AE method. The green line is the prediction by sharp interface theory in Eqs. (13)
and (14).

sharp interface theory does correctly predict the τ
(0)
t t and τ

(6)
t t for

large nanoparticles, see Fig. 16; however, the effective surface
stress deviates from the sharp interface theory as the curvature
of the interface increases. Both the average and the anisotropy
of the effective surface stress are reduced as the radius of
the nanoparticle decreases. In particular, the anisotropy of the
effective surface stress exhibits strong dependence on the size
of the nanoparticle. The weaker anisotropy in the surface stress
for smaller nanoparticles is related to the fact that amplitudes
of density waves decay into liquid across a finite width of a
diffusive interface. And as the curvature of the nanoparticle
increases, the interfacial area has the shape of a sector of
a circular ring. Therefore, in the calculation of the surface
stress for a given orientation, the surface stress would contain
information of density waves from nearby orientation. Hence,
the anisotropy of the surface is reduced.

V. CONCLUSION

We employ the PFC and AE approaches to investigate
the properties of the surface stress of diffusive solid-liquid
interfaces. Using the AE formalism, the free energy functional
is recast in terms of the strain field and the magnitude of
amplitudes of density waves, which sheds light on the intricate
coupling between the density waves and strains across the
solid-liquid diffusive interface. The derived expression is
helpful in constructing phenomenological models such as the
phase field that describes realistic surface stress of a diffusive
interface [57,59,60]. In addition, we show a strain-dependent
excess interfacial energy which leads to surface stress that
is consistent with the Shuttleworth relation. To quantitatively
investigate the surface stress and its anisotropy, we calculate
the surface stress of a planar interface for different crystal
orientation using both PFC and AE. The result shows that
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FIG. 16. (a) The average value and (b) the first harmonics of effective surface stress in seed simulation is compared with the sharp interface
theory. The simulation result is shown in black squares for PFC and red circles for AE, and the prediction is shown in a dashed line. The mean
curvature κ0 is defined as κ0 ≡ 1/R0.

the surface stress is always compressive regardless of the
orientation for 2D hexagonal-liquid interface in the PFC model
and it is substantially more anisotropic than the surface energy
for a wide range of the control parameter ε. It is expected
that the pronounced anisotropy in the surface stress would
influence the equilibrium state of the crystal, in particular, at
the nanoparticles. Therefore, we analyze the effect due to the
surface stress on a nanoparticle immersed in its liquid phase.
We study the resultant strain fields within the solid in the
numerical simulations and compare them with the theoretical
predictions based on the classical sharp interface model. In
order to make quantitative comparison, we have to take into ac-
count the coexistence density shift due to the Gibbs-Thomson
effect and noncircular equilibrium shape due to anisotropic
surface energy. With the information of coexistence density
and the equilibrium shape, we readily compare the strain fields
measured in simulations with the sharp interface model. The
profiles of strains in simulations are in quantitatively good
agreement with the prediction for large nanoparticles. As
the size decreases, however, the strain profiles deviate from
the classical prediction which suggests the surface stress of
nanoparticle is different than that of a planer interface. We
identify that, for small nanoparticles, the bulk strain rises and
the strain fields become more isotropic. Using the measured
strain fields, we reconstruct an effective surface stress. Both
the average and the anisotropy of the effective surface stress
decrease as the curvature of the interface increases. The
weaker anisotropy in the effective surface stress for small
nanoparticles is due to the fact that the profiles of density
waves across a curved interface are related to multiple interface
normals in contrast to a unique interface normal for the planar
case.
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APPENDIX A: EQUILIBRIUM STRAIN PROFILES IN
POLAR COORDINATES

In polar coordinates (r,φ), the deformation gradient uα,β is
expressed in terms of displacement field (ur,uφ),

ur,r = ∂rur uφ,r = ∂ruφ

ur,φ = 1

r
(∂φur − uφ) uφ,φ = 1

r
(∂φuφ + ur ), (A1)

where ∂α ≡ ∂
∂α

. The corresponding strain field εαβ is calculated
accordingly using εαβ = 1

2 (uα,β + uβ,α).
For the isotropic linear elastic material, the mechanical

equilibrium condition, ∇ · σ = 0, is readily rewritten into a
second order partial differential equation of �u,

1
2 (K + G)∇(∇ · �u) + G(∇2 �u) = 0, (A2)

where ∇ = r̂∂r + φ̂ 1
r
∂φ in polar coordinates. The general

solution for Eq. (A2) is obtained straightforwardly,

ur (r,φ) = a(0)
r r+

∞∑
m=1

[
a(m)

r rm+1+b(m)
r rm−1

]
cos(mφ) (A3)

uφ(r,φ) =
∞∑

m=1

[
a

(m)
φ rm+1 + b

(m)
φ rm−1

]
sin(mφ), (A4)
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where a(0)
r , a(m)

α , and b(m)
α are independent of r and φ.

Consequently, the strain fields become

R0εrr = a(0)
rr +

∞∑
m=1

[
a(m)

rr ρm + b(m)
rr ρm−2

]
cos(mφ) (A5)

R0εφφ = a(0)
rr +

∞∑
m=1

[
a

(m)
φφ ρm + b

(m)
φφ ρm−2

]
cos(mφ) (A6)

R0εφr =
∞∑

m=1

[(
−a(m)

rr + a
(m)
φφ

2

)
ρm

+
(

−(m + 2)b(m)
rr + (m − 2)b(m)

φφ

2m

)
ρm−2

]
sin(mφ),

(A7)

where ρ ≡ r
R0

and R0 is the radius of the nanoparticle. The
relations between the coefficients of εαβ and that of uα are

a(0)
rr = R0a

(0)
r (A8)

a(m)
rr = Rm

0 (m + 1)a(m)
r (A9)

a
(m)
φφ = Rm

0

(
a(m)

r + ma
(m)
φ

)
(A10)

b(m)
rr = Rm−2

0 (m − 1)b(m)
r (A11)

b
(m)
φφ = Rm−2

0

(
b(m)

r + mb
(m)
φ

)
. (A12)

For a circular seed with a sharp interface, using the mechanical
equilibrium equation at the interface, Eq. (7), as well as the
constitutive relation in Eq. (9), we obtain the coefficients in
terms of the surface energy, surface stress, and the elastic
moduli,

a(0)
rr = − 1

2K

(
τ

(0)
t t − γ (0)) (A13)

a(m)
rr = −(m + 1)

(
1

2K
− m

4G

)(
τ

(m)
t t + (m − 1)γ (m)

)
(A14)

a
(m)
φφ = −(m + 1)

(
1

2K
+ m

4G

)(
τ

(m)
t t + (m − 1)γ (m)

)
(A15)

b(m)
rr = −(m − 1)

(
m

4G

)(
τ

(m)
t t + (m + 1)γ (m)

)
(A16)

b
(m)
φφ = (m − 1)

(
m

4G

)(
τ

(m)
t t + (m + 1)γ (m)), (A17)

where τ
(0)
t t and τ

(m)
t t are the isotropic term and the Fourier

component, respectively, of the surface stress.

APPENDIX B: ELASTIC MODULI

As derived above, Mj , a scalar proportional to εαβ , plays a
crucial role in the mechanical equilibrium conditions in bulk
solid of which the free energy density is associated with strains,
f̄s = ∑3

j=1 M2
j a2

j + f̄local. The stress-strain relation could be

TABLE III. The list of the stiffness tensor Cαβμν and elastic
moduli including Young’s modulus Y , the bulk modulus K , the shear
modulus G, the Poisson’s ratio ν, and the Zener anisotropy ratio ar

for the 2D triangular lattice and the 3D body centered cubic crystal.
Note that εĀ2 corresponds to A2

s in the PFC description.

Crystal structure C1111 C1122 C1212 Y K G ν ar

2D triangular 9εĀ2 3εĀ2 3εĀ2 8εĀ2 6εĀ2 3εĀ2 1
3 1

3D BCC 8εĀ2 4εĀ2 4εĀ2 16
3 εĀ2 16

3 εĀ2 4εĀ2 1
3 2

derived by calculating the first derivative of the solid free
energy density with respect to εαβ ,

σαβ ≡ ε2

(
−p̄sδαβ+ ∂f̄s

∂εαβ

)

∼= −ε2p̄sδαβ + ε2
3∑

j=1

2Mj

∂Mj

∂εαβ

a2
j +O(ε2)

= −ε2p̄sδαβ + ε

3∑
j=1

8a2
j KjαKjβKjμKjνεμν, (B1)

where p̄s ≡ ns(
∂f̄s

∂ns
) − f̄s . The corresponding stiffness tensor

Cαβμν is calculated according to σαβ = Cαβμνεμν ,

Cαβμν = 8εĀ2
3∑

j=1

KjαKjβKjμKjν, (B2)

where Ā is the equilibrium solid amplitude. Note that this
relation could be generalized to any lattice structure and
the resultant elastic moduli only depend on the group of
RLVs. For d-dimensional materials, the Poisson’s ratio, ν ≡

C1122
C1111+(d−2)C1122

, and the Zener anisotropy ratio, ar ≡ 2C1212
C1111−C1122

,
exclusively depend on the principal RLVs which reflect the
underlying symmetry, see Table III. Our results are consistent
with that shown by Elder et al. [38]. For crystal structures
formed by multiple sets of RLVs, one can generalize Eq. (B2)
to evaluate the stiffness tensor.

For triangular lattices, the principal RLVs are defined in
Eq. (21), the summation

∑3
j=1 KjαKjβKjμKjν equals to

3
8 (δαβδμν + δαμδβν + δανδβμ), which leads to the isotropic
elastic moduli,

Cαβμν = 3εĀ2(δαβδμν + δαμδβν + δανδβμ)

= (6εĀ2)δαβδμν + 2(3εĀ2)

(
δαμδβν − 1

2
δαβδμν

)
.

(B3)

Based on Eqs. (9) and (B3), the bulk and shear moduli as well
as the isotropic pressure are calculated directly, K = 6εĀ2 ∼=
6A2

s , G = 3εĀ2 ∼= 3A2
s and ps = ε2p̄s .
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