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Atomic structure of a decagonal Al-Pd-Mn phase
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We present a detailed structure solution for the 16-Å decagonal quasicrystal in the Al-Pd-Mn system by
means of cluster decoration and ab initio energy minimization. It is based on structure models of the ε and
other approximant phases. The ε phases can be represented as subsets of a hexagon-boat-star (HBS) tiling.
The decagonal phase comprises further HBS tiles. We have constructed several fictitious HBS approximants and
optimized their structures individually. All tiles are decorated by two types of atomic clusters: the pseudo-Mackay
icosahedron (PMI) and the large bicapped pentagonal prism (LBPP). It turns out that, whereas the PMI clusters
can be kept essentially unchanged, the LBPP clusters must be adjusted in occupancy with Al atoms depending
on their positions in the various tiles. In this way we obtain cluster decorations for all tiles of the decagonal
quasicrystal. The calculations were confirmed by evaluation of an effective tile Hamiltonian.
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I. INTRODUCTION

Soon after the discovery of icosahedral quasicrystals by
Shechtman et al. [1] it was found that quasiperiodicity is
not limited to icosahedral phases. Many other alloys were
synthesized whose diffraction patterns exhibited an eightfold,
tenfold, or 12-fold rotational symmetry. These systems show
characteristics of both usual crystals and quasicrystals: They
possess quasiperiodic layers that in the perpendicular direction
are stacked periodically. This unique feature of two different
order principles shows up in anisotropies of transport proper-
ties, such as electrical or thermal conductivity or diffusivity.

Of these two-dimensional quasiperiodic phases the decago-
nal quasicrystals (d-QCs) have been studied the most in the
past years, mainly due to the successful growth of large single
crystals of high perfection (millimeter size, for example, for
d-AlCuCo [2]). Depending on the lattice parameter along the
periodic direction, d-QCs are divided into four classes: 4-, 8-,
12-, and 16-Å quasicrystals. A convenient way to describe the
structure of these materials is in terms of two-dimensional
tilings. The tilings are obtained by projecting centers of
characteristic cluster columns along the periodic direction.
The diameters of these clusters vary for each d-QC and
range between a few Å’s up to ≈20 Å. Thus, d-QCs are
characterized roughly by their structural building units and the
assembly thereof. Their detailed atomic structure, however,
is still unknown and not yet completely understood, mainly
due to their large degree of inherent structural and chemical
disorders.

Essentially, there are two different experimental methods
to investigate the structures of such highly complex materials:
high-resolution transmission electron microscopy (HRTEM)
and hyperspace crystallography. Although HRTEM—acting
in real space—obtains resolutions up to 0.5 Å and is able to
distinguish Pd and Mn, there are uncertainties in resolving
aluminum positions of which most d-QCs are composed
[3]. Nevertheless, it plays an indispensable role in obtaining
the skeleton structures of two-dimensional quasicrystals. In

*trebin@itap.uni-stuttgart.de

hyperspace crystallography the quasicrystal is treated as a
periodic structure embedded in a higher-dimensional space
into which the reciprocal wave vectors of the measured Bragg
peaks are lifted [4,5]. Similar to conventional crystallography,
the refinement captures only the average structure and does
not resolve correlations existing among atoms.

In this paper we present an ab initio-based structure
solution of the (metastable) 16-Å-periodic decagonal Al-Pd-
Mn quasicrystal, described experimentally in Ref. [6]. The
phase consists of eight atomic layers stacked with 16-Å
periodicity. Alternatively, it can be characterized by columns
of icosahedral clusters along the periodic direction whose
projections form a so-called hexagon-boat-star (HBS) tiling.
Other stable 16-Å-periodic decagonal quasicrystals have been
discovered in the systems Al-Ni-Ru [7] and Al-Ir-Os [8].

In a previous work we established a structure model for
the ε6 phase by cluster decoration of hexagon tiles [9]. We
found that its structure is best described by two clusters: the
pseudo-Mackay icosahedron (PMI) and the large bicapped
pentagonal prism (LBPP). The decoration was extended to tiles
of the ε16 phase. Our objective is to extend it further to general
HBS tilings. For that purpose, we construct several fictitious
approximants containing such HBS tiles, decorate them with
PMI and LBPP clusters, and energy optimize the system by
varying the occupancy of the component clusters. In this way
we obtain a decoration rule for each cluster depending on its
position in the various tiles. Hence, we arrive at a structure
model for the decagonal Al-Pd-Mn quasicrystal.

This paper is organized as follows: In Sec. II we briefly
review the ε phases and their relationship to the d-QC of
Al-Pd-Mn. The binary HBS tiling is described in Sec. III along
with the computational methods we employed. The general
decoration for the HBS tilings and thus the structure of the
d-QC is presented in Sec. IV.

II. ε PHASES OF AL-PD-MN

A. Atomic structure

The family of orthorhombic ε phases consists of a variety
of crystalline structures exhibiting very similar diffraction
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FIG. 1. Idealized tiling representation of the 16-Å d-QC (left
panel). The tiling vertices (that we identify with the centers of the
columns of PMI clusters) correspond to bright spots in the HRTEM
image of the 16-Å d phase [6]. Right panel: Two high-temperature
equilibrium tilings observed in the Al-Mn-Pd system [10], ε6/ξ

′

(pure hexagons) and ε28/ξ
′
2/�, which is an intergrowth of ε6/ξ

′

with ε16/ξ
′
1. The linkages’ length—separation between neighboring

PMI columns—is 7.6 Å.

patterns [10]. The phases conveniently are designated εl where
l = 6,16,22,28, . . . refers to the index (00l) of the first strong
diffraction spot. All phases feature the same lattice parameters
of about 23.5 Å along the [100] direction and 16.5 Å along
the [010] direction. The lattice parameter along [001] depends
on the particular phase and varies between 12.6 Å for the ε6

phase and about 82 Å for ε40.
The structures of the ε phases are best described by PMI

clusters, stacked on top of each other forming cluster columns
along the [010] direction. The projections of these columns
along the stacking direction form two-dimensional tilings
consisting of hexagons, pentagons, and nonagons. The ε6

phase is the smallest member containing 304 atoms in the
unit cell and having a composition of Al73.7Pd22.4Mn3.9 [9]. Its
tiling is composed of hexagons only (see Fig. 1). The tilings
of the higher indexed εl phases (l > 6) also contain nonagon
and pentagon tiles. One denotes them ξ ′

n, too, where n − 1 is
the number of hexagon rows in between the nonagon-pentagon
rows. ε28 frequently is called the � phase. The gaps in between
the PMI columns are filled in all phases with glue atoms in the
form of LBPPs.

The PMI and LBPP clusters are illustrated in Figs. 2
and 3, respectively. The PMI cluster consists of three shells
surrounding a central Mn atom. The first shell comprises
nine Al atoms forming a tricapped trigonal prism with D3

symmetry. The outer two shells are composed of 12 Pd atoms

Al30 Pd12 Al9Mn

FIG. 2. PMI cluster consisting of three atomic shells: Al30

icosidodecahedron, Pd12 icosahedron, and an Al9Mn inner shell.

Al32

Pd10 Al11PdMn

FIG. 3. Top: LBPP cluster consisting of three atomic shells:
Al32 icosidodecahedron-type shell, Pd10 pentagonal prism, and an
Al11PdMn inner shell. Bottom: Alternative cluster description.

in the form of an icosahedron and 30 Al atoms in the form of
an icosidodecahedron.

The LBPP cluster similarly is composed of three shells,
including a central Mn atom. The inner shell comprises 11 Al
atoms and one Pd atom as illustrated in Fig. 3 (top right). This
shell is surrounded by a pentagonal prism of Pd atoms and
an icosidodecahedron-type shell composed of 32 Al atoms.
Alternatively, the atoms of the inner and outer Al shells can
be divided into two small icosahedra, stuck together by the
central Mn atom and embedded in an Al30 icosahedral-type
shell [cf. Fig. 3 (bottom)]. Most atoms of the LBPP clusters
are shared with adjacent PMIs. For instance, in the energy
optimized structure model of the ε6 phase only eight atoms of
each LBPP are independent and cannot be attributed to any
PMI [9].

A fully occupied LBPP cluster contains 55 atoms. In Sec. IV
we will show that the occupancies of the LBPP clusters depend
strongly on their positions in the various tiles.

B. Relation to the decagonal quasicrystal

The ε phases share the same cluster columns with the 16-Å
d-QC of Al-Pd-Mn and are similar in composition [6]. A
projection of the decagonal phase along the columnar axis
yields a tiling with equal edge length but with a variety of
tiles not present in any ε phase. Its tiling is depicted in Fig. 1.
The decagonal phase is metastable and is characterized as
a defective tiling of a 7.6-Å edge length. Upon annealing
it decomposes into the ε phases. Therefore, and due to the
structural similarities, the ε phases have been considered
approximants of the decagonal phase. The tile vertices are
decorated with PMI clusters, and the space in-between is
almost equivalently filled by LBPP clusters, although, with
an extended occupation rule, depending on the particular tile
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FIG. 4. Hexagon (left), boat (middle), and star (right) tiles
with small and large nodes (outlined with green and red circles,
respectively).

as will be shown in Sec. IV. Taking into account both types of
cluster columns, the decagonal phase can in fact be mapped
to a particular tiling featuring two types of vertices: the binary
hexagon-boat-star tiling.

III. METHODS

A. Binary HBS tilings

The binary HBS tiling is a special case of the Penrose tiling
with reduced matching rules [11,12]. The Penrose rhombuses
are stuck together to form a hexagon, a boat, and a star tile as
illustrated in Fig. 4. Two types of vertices are defined: Vertices
whose tile angles are an odd multiple of π/5 are called large
nodes, and vertices with tile angles that are an even multiple
of π/5 are labeled as small nodes. The hexagons, boats, and
stars can be assembled only by putting large nodes on large
nodes and small nodes on small nodes.

Associating the columns of the PMI clusters with the large
nodes and the columns of the LBPP clusters with the small
nodes, each ε phase can be mapped to a particular HBS tiling
[9]. The tilings of the ε6 and ε16 phases are shown in Figs. 5(a)
and 5(b), respectively. The tiling of the ε6 phase consists of
boat tiles only, aligned in staggered orientations [colored white
and gray in Fig. 5(a)]. The characteristic tiling of ε6 formed
by hexagons is retrieved by connecting adjacent large nodes
in the HBS tiling [superimposed by red lines in Fig. 5(a)]. All
other vertices are small nodes and coincide with the positions
of the LBPP cluster columns (partially highlighted by green
dots). To closely reproduce the experimental lattice parameters
of the ε phases along the [001] and [100] directions, we set
the edge lengths of the Penrose rhombuses in all HBS tiles
to 6.6 Å [9]. In this paper we designate each approximant by
the number of hexagon (H ), boat (B), and star (S) tiles in its
primitive unit cell. Hence, ε6 will be referred to as B2.

The purpose of this paper is to establish a decoration
rule applicable to any HBS tiling, thus incorporating all
realizable next-neighbor interactions between PMI and LBPP
clusters, and yielding the energetically most favorable atomic
structure. We constructed several model approximants, each
containing distinct cluster interactions, and energy optimized
their atomic structures. The approximants studied in this paper
are illustrated in Fig. 5. An essential difference between them
is the arrangement and length of the chains of the small nodes.
Whereas the hexagons of ε6 contain only two neighboring
small nodes, resembling the characteristic alternating stacking
of the LBPP clusters, the other tiles, such as the nonagons
inside the H2S tiling of ε16 consist of sequences of five small
nodes [Fig. 5(b)]. In the atomic structure this results in new

(a) (b)

(d)

(e) (f)

(g) (h)

(c)

FIG. 5. Binary HBS tilings of the approximants studied in this
paper. Vertices of the superimposed red tilings constitute the large
nodes of the underlying HBS tilings. They indicate the positions of
the PMI columns. All other vertices are small nodes and specify the
positions of the LBPP cluster columns of which some are outlined by
green circles. The dotted rectangles highlight the unit cells. (a) B2, (b)
H2S, (c) HB3, (d) HB, (e) H4B3S, (f) H5BS2, (g) H2, and (h) H3S.
In (c) the blue line segment and the blue-hashed circle characterize
tiling objects for an effective tile Hamiltonian as discussed in Sec. IV.

horizontal interactions between the LBPP clusters, leading to
a partial cluster interpenetration not present in the ε6 phase.
Figures 5(c)–5(f) show further approximants with other tiles
that have been observed in the decagonal phase of Al-Pd-Mn.
We also considered tilings containing infinite chains of small
nodes across periodic boundaries [Figs. 5(g)–5(h)] that, in the
end, once a decoration rule is set up, will let us construct
numerous variations of the above-mentioned tiles.

Our decoration rule creates a one-to-one correspondence
(up to orientations of inner PMI shells) between abstract tilings
and atomic configurations: Indeed, given any binary tiling,
there will be a unique structure with plausible energy. Thus,
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FIG. 6. Binary HBS tiling of the decagonal phase shown in Fig. 1.
Vertices of the superimposed red tiling are the large nodes of the
underlying HBS tiling; all other vertices are the small nodes. The boat
and star tiles of the HBS tiling are shown in gray, and the hexagonal
tiles are white.

a quasicrystal with either statistical or perfect decagonal sym-
metry as in Fig. 6 or periodic tile arrangements representing
crystalline ε-type approximants as in Fig. 1 are members of
the same decoration-rule family. Favorability of a particular
tiling then results from effective tile interactions.

B. Energy calculations

The energies of our trial structures are determined in three
steps. First, we anneal it with classical molecular dynamics
using the embedded atom method (EAM) potentials. The
molecular dynamics (MD) simulations are performed with
our in-house code IMD [13–15]. Usually we start at about
1000 K (below melting temperature) and slowly cool down
to room temperature within 50–100 ps in the NVT ensemble
(fixed particle number, volume, and temperature). The EAM
potentials we are using have already been developed for our
previous study on the ε6 phase and further improved for this
paper. The details of the procedure can be found in Ref. [16].
If necessary, we fix certain atoms during the annealing. We
found that in particular Al atoms in the vicinity of the small
nodes are quite mobile and start moving between neighboring
LBPP clusters which, however, turned out not to be always
energetically favored at low temperatures. The annealings are
mainly needed in order to relax the Al atoms of the innermost
PMI shells as these inner clusters possess certain rotational
degrees of freedom [9]. Intercluster interactions have been
studied in the literature on simpler systems consisting of
inner tetrahedral cages only [17,18]. It was found that the
cluster orientations contribute a significant amount to the total
energy and depend on the assembly of neighboring clusters.
In our case the orientations relay on the formation of the
PMI clusters columns and hence vary for each approximant.
To circumvent this problem of not knowing a priori the
optimal orientations, we simply relax each structure into the
global energy minimum using the above-described simulated
annealing method. Typically, we align randomly the inner
shells inside the PMI clusters but always with their threefold

55 54 53 52 51 50

FIG. 7. Tiles with adjusted occupancy of LBPP clusters. The
colored circles emphasize the occupancy rules for the LBPP clusters
located at the small nodes in the various tiles. A fully occupied LBPP
cluster contains 55 atoms.

axis pointing along the [010] direction. Provided that the
annealings are started at sufficiently high temperatures and
run in sufficiently long times, the atoms move into the
lowest-energy state, hence resulting in the optimal orientations
of the inner shells [19].

The atoms as well as the volume and the shape of the unit
cell afterward are relaxed further using ab initio methods. We
apply the density functional theory code The Vienna ab initio
simulation package (VASP) with the projector-augmented-wave
method in the Perdew-Wang generalized gradient approxima-
tion [20–22]. All calculations are performed until an accuracy
of 10−3 eV or better is achieved for the total energy. For more
details on these calculations we refer to Ref. [9].

The plausibility of a structure is estimated by convex hull
calculations. First, we determined the enthalpies of formation
of all experimentally known phases of the Al-Pd-Mn phase
diagram. The enthalpy of formation is obtained by subtracting
the total energies of the pure elemental subsystems from the
total energy of a structure. The structures with the lowest
enthalpy of formation constitute the vertices of the convex hull
in a composition-enthalpy diagram. The enthalpy difference to
the convex hull �E provides a measure for the stability and
hence the quality of the structure. The low-temperature phase
diagram for Al-Pd-Mn used in this paper is shown in Fig.
13 of Ref. [9]. The relevant competing phases constituting
the convex hull are Al21Pd8, Al3Pd2, T -AlMnPd, and the
ternary version of the Al72Mn5Pd18Si5 phase (recently refined
in Refs. [23,24]). Depending on the composition of our trial
structures, we calculate the energy differences �E relative to
the triangle spanned by Al21Pd8, Al3Pd2, and Al72Mn5Pd18Si5
or Al3Pd2, T -AlMnPd, and Al72Mn5Pd18Si5.

IV. RESULTS AND DISCUSSION

Each of our approximants (Fig. 5) was optimized individ-
ually using the methods described in Sec. III B. Our starting
decoration models were the optimized structures of ε6 and
ε16 presented in our previous paper (see Ref. [9]). The PMI
clusters (Fig. 2) turn out to be identical. Also the LBPP
clusters essentially are unchanged. Within the pentagon they
are isolated and contain 55 atoms as in Fig. 3. In the other tiles
they form chains. Due to their interaction and their overlaps
the number of Al atoms in these neighboring LBPP clusters
is changing so that the total number of atoms varies between
50 and 54 as demonstrated in Fig. 7. Figure 8 illustrates the
distribution of the LBPP cluster subtypes on the ideal HBS
tiles for d-AlPdMn from Figs. 1 and 6. As discussed later,
the key constraint in this step of the optimization comes from
the positioning of the Fermi energy EF near the center of
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FIG. 8. Tiling of the d-QC with adjusted occupancies of LBPP
clusters.

a deep pseudogap in the electronic density of states (DOS).
Indeed, the total energy steeply increases for models that either
introduce electronic states near EF or move EF up or down
the pseudogap center.

Table I lists the compositions, formation enthalpies, and
deviations from the convex hull of the two T = 0-K stable
ternaries, the nearly stable ε6 (alias ξ ′) phase, and the
hypothetical approximants depicted in Fig. 5, resulting from
the final geometry optimization by VASP.

An exemplary final atomic structure is imaged in the left
panel of Fig. 9, showing a 6-Å-thick slice through the H5BS2

structure [entry labeled (f) in Table I] with 1048 atoms in the
unit cell, viewed parallel to the pseudofivefold direction. The
left half of the picture displays the fully optimized structure
at T = 0 K. Al atoms are depicted in yellow, Pd atoms are
depicted in red, and Mn atoms are depicted in blue. The right
half shows the spatial occupancies of the same slice from a

TABLE I. Energetics of approximants of 16-Å-decagonal Al-Pd-
Mn. �H ’s are ab initio formation enthalpies, �E energy differences
to the convex hull of stable crystalline phases, and �Ef it are the
energy differences fitted by a “tile Hamiltonian” discussed in the
text. The last column shows the correspondence of table lines with
tilings in Fig. 5. The two T = 0-K stable ternary phases are labeled
by their Pearson symbols: oP156 for T -AlMnPd phase and oP168
for Al72Mn5Pd18Si5.

% eV/at. meV/at.

Structure Nat Al Mn �H �E �Ef it

oP168 168 76.2 19.0 −0.4635 Stable
oP156 156 79.5 5.1 −0.2996 Stable

B2/ε6 304 73.7 3.9 −0.5165 0.3 0.8 (a)
H2S/ε16 399 73.9 4.0 −0.5089 2.7 4.3 (b)
HB 246 74.0 4.0 −0.5060 4.2 4.6 (d)
HB3 550 73.8 4.0 −0.5071 6.7 6.6 (c)
H3S 494 74.1 4.0 −0.5010 7.3 6.4 (h)
H4B3S 1044 73.95 4.02 −0.5027 8.5 5.2 (e)
H5BS2 1048 74.04 4.01 −0.5010 8.6 8.8 (f)
H2 188 74.5 4.2 −0.4902 9.6 10.8 (g)
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FIG. 9. Left panel: A slice parallel to the pseudofivefold axis
through the H5S2B approximant structure. The left part of the image
shows the relaxed static structure. Al atoms are depicted in yellow,
Pd atoms are depicted in red, and Mn atoms are depicted in blue. The
black lines connect PMI cluster centers (7.6-Å linkages), and the blue
lines outline the primitive cell. The right side shows the occupancy
probability gathered over ∼4-ns MD simulation time at 1200 K. Up
to 0.4 occupancy probability, Al atoms are shown as gray-level white
to black, above this value they are shown as yellow. The red points
indicate the positions of the Pd atoms, and the blue points indicate the
positions of the Mn atoms, both above 0.5 occupancy. Right panel.
(e-DOS) comparing the approximants B2 and H5BS2 with a 128-atom
cubic approximant of an icosahedral phase [28].

4.3-ns time-averaged MD annealing simulation at 1200 K.
Up to 0.4 occupancy probability, the Al atoms are shown as
gray-level white to black, above this value they are shown as
yellow. The red points indicate the positions of the Pd atoms,
and the blue points indicate the positions of the Mn atoms,
both above 0.5 occupancy.

Features striking the eye are dark smeared areas within the
inner shells of the PMI clusters, centered by Mn atoms (vertices
of the pentagonal tiling in the figure). The inner PMI shells are
Al9Mn “nine clusters” in the form of tricapped trigonal prisms,
caged by the outer Al30Pd12 PMI shell with approximate
icosahedral symmetry (see Fig. 2). The threefold axis of the
prisms points either along fivefold or twofold icosahedral
directions and causes symmetry breaking, providing extra
configurational degrees of freedom. In Ref. [25] the complex,
quasi-crystal-related Al11Ir4 compound was analyzed whose
cubic lattice was decorated with PMI clusters. For their entirely
analogic configurational degrees of freedom an entropy of
kB ln 9 per PMI cluster was found. We expect that around
1000 K this entropy decreases the free energy of PMI-based
compounds by ∼6 meV/atom. In light of 2–10 meV/atom
instability of our hypothetical approximants vs stable non-
PMI crystalline competitors, the PMI entropic configurational
entropy should stabilize a wide range of PMI compounds
(and we still neglect related vibrational entropy, harmonic and
anharmonic).

So far we discussed the relative stability of the decagonal
quasicrystal approximant family against competing crystalline
phases. Under the assumption of the full integrity of the tiles up
to high temperatures (a sufficient energy gap existing between
tiling and nontiling configurations), we fit the approximant
energies by an effective tile Hamiltonian [26] in the spirit of
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Ref. [27]. Our calculated approximant energies �Ef it relative
to the convex hull (column 7 of Table I) are a sum of selected
tiling objects discussed below: �Eα = ∑

i ciniα where the
index α runs over the approximants (rows of Table I) and
ci , respectively, are energy coefficients associated with the
tiling object labeled i. This way, we can effectively express
the energy of any tiling in terms of local tiling objects.

After trying several possibilities, we find that the optimal
effective Hamiltonian is expressed best in terms of four
tiling objects: (i = 1) small binary Penrose tiling vertices
hosting LBPP columns. These are shown as green circles
in Figs. 5(a)–5(h); (i = 2) second-neighbor linkages in the
chains of the LBPP columns. One such linkage is shown as a
blue line segment in Fig. 5(c); an (i = 3) triplet of PMI clusters
forming a straight line. The central PMI in such a configuration
is marked by the blue-hashed circle in Fig. 5(c); an (i = 4)
decagon supertile as in the center of Fig. 5(f). The Hamiltonian
does not explicitly include columns of PMI clusters, their
count is fixed by the tiling, and their energy can be thought
of as zero reference. The fitted coefficients were as follows:
c1 = 0.06, c2 = 0.45, c3 = 2.3, and c4 = 4.4 eV with a rms
deviation of 1.4 meV/atom over the set of structures in the
database. The single outlier is the energy of the H4B3S tiling
[case (e)], which is predicted lower by more than 3 meV/atom.

The robust fit parameters are c1 and c2, related to the
number density (c1) and connectivity (c2) of the LBPP clusters,
and they are both positive. They just reconfirm the apparent
observation that longer chains of LBPP columns are disfavored
in 16-Å d-AlMnPd—and this is the immediate reason why
neither random nor ideal 16-Å decagonal ordering is stable.
The other two coefficients adapt the Hamiltonian to special
cluster column arrangements: Straight-line linkage between
pairs of PMI clusters (HB3 tiling) correct energies of H4B3S

or of the special high-symmetry PMI cluster column at the
center of the decagon supertile. A small or even negative
coefficient c4 should be indicative of the system with a stable
and well-ordered decagonal phase.

We conclude that our modeling captures the observed
stability trends: It confirms metastability of the 16-Å d phase;
selects the B2 tiling as the most favorable and nearly stable
at T = 0 K; and it selects the ε16 H2S structure as the second
best. Indeed the experimentally observed ε28 phase from the
rightmost panel of Fig. 1 is an intergrowth of ε6 and ε16.

The electronic density of states (e-DOS) of the 16-Å
decagonal approximant models exhibits a deep depression
near the Fermi energy EF , indicating the prominent role of
the optimal electron-per-atom ratio e/at. in the stabilization
of PMI alloys. The structural architecture provides two
adjustment controls for shifting EF : One of them is the number

of Al atoms in the innermost PMI shells: The structure is
mechanically stable for a broad range of 8–11 atoms per
cluster. Another option is a similar atom-vacancy competition
in the chains of the LBPP clusters’ columns. We find that the
energy is minimized for exactly nine-atom PMI shells and the
LBPP cluster occupancy rules expressed in Fig. 7. The e-DOS
of the lowest-energy ε6/ξ

′ structure, along with the large
H5BS2 model shown in the right panel of Fig. 9, share a similar
deep e-DOS depression, except the former has more structure.
For comparison, we also plotted the e-DOS of a model of a
cubic 128-atom approximant of an icosahedral quasicrystal
[28]. In this case the pseudogap is even deeper and extends
down to practically zero e-DOS.

V. SUMMARY

In a previous article [9] we had proposed a structure model
for the ε6- and ε16-approximant phases of the 16-Å decagonal
quasicrystal in the Al-Pd-Mn system. It was based on a decora-
tion of a planar periodic tiling consisting of staggered hexagons
for ε6 and of pentagons and nonagons for ε16 with columns of
PMI and LBPPs. These tiles can also be represented as com-
binations of HBS tiles. They contain large nodes, occupied by
the PMI, and small nodes, occupied by the LBPP clusters. Here
we have established eight periodic structures containing these
tiles, decorated them with the cluster columns, and energy op-
timized them with molecular dynamics and ab initio relaxation
methods. The deviations of the energies from the convex hull
of stable compounds in the vicinity of the phase diagram are
in the meV/at. range and indicate stability. The values were
confirmed by evaluation of an effective tile Hamiltonian. It
turned out that the decoration of the large nodes with PMI
columns remained unchanged whereas in the columns above
the small nodes the number of Al atoms in the LBPP clusters
had to vary depending on the tile. Applying these decorations
to a basic random HBS tiling we arrived at a detailed atomistic
structure model for the decagonal Al-Pd-Mn quasicrystal.
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