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Path integral Monte Carlo benchmarks for two-dimensional quantum dots
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We report numerically accurate path integral Monte Carlo results for harmonically confined two-dimensional
quantum dots containing up to N = 60 interacting electrons. The finite-temperature values are extrapolated to
0 K and zero time step in order to provide precise upper-bound energies. The ground-state energies are compared
against coupled-cluster and diffusion Monte Carlo results available in the literature for N � 20. We also provide
Padé fits for the energies as a function of N for different strengths of the confining potential. The fits deviate less
than 0.25% from the path integral Monte Carlo data. Overall, our upper-bound estimates for the ground-state
energies have lower values than previous diffusion Monte Carlo benchmarks due to the accurate nodal surface
in our simulations. Hence, our results set a new numerical benchmark for two-dimensional (spin-unpolarized)
quantum dots up to a large number of electrons.
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I. INTRODUCTION

Nowadays, quantum dot (QD) technology is an integral
part in developing novel solid state devices. These so-called
artificial atoms can be utilized individually, as clusters or
as periodic arrays, which results in a number of possible
applications [1–4]. Theoretical and computational approaches
are, however, needed for better understanding of the behavior
of electrons in quantum dots, and in making new predictions
[5–22].

There is a large variety of theoretical and computational
approaches available for QD simulations, but commonly their
applicability is limited to certain confinement strengths or to
only a few electrons. The limitations generally arise from the
description of electron-electron correlations, which are more
pronounced with weaker confinement strengths, and in the
scaling of the method as a function of the number of electrons.

Previous numerical benchmarks for QDs beyond the few-
electron regime, i.e., for N � 10, have been obtained by
using coupled-cluster [5,6] (CC) and diffusion Monte Carlo
[6] (DMC) methods. The CC method has employed singles
and doubles (CCSD), as well as singles, doubles, and triples
denoted by CCSD(T). In the CC method, the quality of the
basis has a substantial effect on the accuracy [5] and, in
general, the method is best applicable to closed-shell systems.
In the previous DMC simulations, the nodal structure was
adopted from density-functional theory calculations using the
local-density approximation (DFT-LDA) [6].

In this study we provide benchmark ground-state energies
for QDs using the path integral Monte Carlo (PIMC) method
[23–26]. PIMC is a finite-temperature approach with exact
particle-particle correlations. As a basis-free method it avoids
the challenges in, e.g., the basis-dependent CC methods.
However, similarly to most quantum Monte Carlo (QMC)
methods, the description of the exchange interaction is
challenging at low temperatures. In this work this challenge
is dealt with by the so-called free-particle nodes [27]. In
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order to ensure upper-bound estimates, our total energies are
extrapolated to zero time step. Moreover, we extrapolate our
finite-temperature PIMC results to 0 K, which enables proper
comparison to the most accurate QD energies in the literature.

II. MODEL AND METHOD

In atomic units with energies in hartrees (EH) our model
Hamiltonian for the harmonic QD reads

H =
N∑

i=1

[
− 1

2me

∇2
i + 1

2
meω

2r2
i

]
+

∑
i<j

1

ε|ri − rj | . (1)

Here we focus on GaAs QDs for which we adopt the same
parameters and confinement strengths as those in Refs. [5] and
[6], i.e., me = 0.067, ε = 12.4, and h̄ω = 3.3200, 5.9286, and
11.857 meV. The energies and lengths convert to effective
atomic units as Eeff

H = ε2

me
EH and reff = me

ε
r . In effective

atomic units the confinement strengths are h̄ω = 0.28, 0.5, and
1.0 Eeff

H , which we use from now on. We point out that we focus
solely on spin-unpolarized systems, i.e., N↑ = N↓ = N/2.

Path integrals are based on the Feynman formulation
of quantum statistical mechanics [28], which enables the
study of quantum many-body effects at finite temperature.
Combined with Metropolis Monte Carlo sampling of the
configuration space [29], the method is referred to as PIMC.
It can be efficiently used to accurately account for both
finite-temperature and correlation effects. Improved sampling
is obtained by using multilevel bisection moves [30].

Fermi statistics is employed by restricted path integral
formalism [27], in which the density matrix is given as

ρF (Rβ,R�; β) =
∫

dR0ρF (R0,R�; 0)
∫ γ⊂ϒβ (R�)

γ :R0→Rβ

dRte
−S[Rt ],

where β = 1/kBT , F refers to the fermion density matrix,
S is the action, R� is the so-called reference point, and
ϒβ is a region in “space-time” that specifies the boundary
conditions for the Bloch equation. Here, we use the nodes
of the free-particle density matrix [27] to determine the
boundary conditions, and we demonstrate that these nodes
can be considered to be of high accuracy especially for the
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harmonic QDs under consideration. For the energetics we use
the Herman type virial estimator [31].

III. RESULTS AND DISCUSSION

For the confinement strengths h̄ω = 0.28, 0.5, and 1.0 Eeff
H

and electron numbers N = 6, 12, 20, 40, and 60, we provide
accurate PIMC data at T/TF = 0.025 in addition to the
extrapolated PIMC values at 0 K. The error estimates in
this work are given as the 1-σ statistical error of the mean.
For two electrons with ω = 1.0Eeff

H the harmonic dot can be
analytically solved [32] yielding a total energy of 3Eeff

H . With
our PIMC implementation we obtain a value of 2.99994(9)Eeff

H
at T/TF = 0.005 in good agreement with the exact result.
However, let us first elaborate what is needed in order to obtain
the benchmark PIMC results presented in this article.

The PIMC method is more efficient the higher the temper-
ature, which is naturally advantageous in dealing with tem-
perature effects. Here, however, we focus on low temperatures
in accordance with most experimental and theoretical works
on QDs. We consider T = 0 in particular, which requires
extrapolation based on several temperatures. For N � 20 we
use four temperatures (T/TF = 0.0125, 0.025, 0.05, and 0.1)
for the extrapolation. We use an additional fifth temperature
at T/TF = 0.008 for a few cases to validate the agreement
with our fit. For the N = 40 case we use five temperatures:
T/TF = 0.0125, 0.017, 0.025, 0.05, and 0.1. The temperature
effects are considered with our second smallest time step, i.e.,
τ = 0.019531E−1

F .
With increasing number of electrons it is desirable to use as

high a temperature as possible, and thus for the N = 60 case we
performed simulations only at a temperature relatively close to
the ground state, i.e., at T/TF = 0.025. In this case, we obtain
the 0 K value by estimating the temperature effects from our
N � 40 simulations: We optimized the coefficients α, a, and
b in N−α�E = aN + b, and used that expression to estimate
�E for N = 60. In Table I we show the values for �E that

TABLE I. Estimation of the temperature effects �E on the
total energy at T/TF = 0.025 with 1-σ statistical error estimate in
the parentheses. Notice that E(T = 0) ≈ E(T/TF = 0.025) + �E.
Energies are given in effective atomic units.

h̄ω �Etot

N = 6 0.28 −0.0053(3)
0.50 −0.0083(4)
1.00 −0.0158(7)

N = 12 0.28 −0.0358(12)
0.50 −0.054(2)
1.00 −0.096(5)

N = 20 0.28 −0.153(5)
0.50 −0.212(9)
1.00 −0.33(2)

N = 40 0.28 −0.168(6)
0.50 −0.30(6)
1.00 −0.8(1)

N = 60 0.28 −0.21(5)
0.50 −0.41(6)
1.00 −1.3(2)

FIG. 1. Scaling relation of the ground-state energy from Ref. [18]
(solid line) and path integral Monte Carlo data with three different
confinement strengths (symbols). Large-N values tend towards the
Padé form of the scaling function as expected.

can be used in the extrapolation to zero from T/TF = 0.025.
These values can be used in estimating the temperature effects
by interpolation or extrapolation in future PIMC studies also.
This will reduce the computational time, since simulations
only at T/TF = 0.025 are needed.

In order to obtain upper-bound estimates we have extrapo-
lated our PIMC data to zero time step at T/TF = 0.025 for all
the cases. We have used six different time steps, τ ≈ 0.0098,
0.0195, 0.0391, 0.0781, 0.15625, and 0.31250 in units of E−1

F ,
and a third-order polynomial fit. The behavior of the total
energy as a function of time step (τ ) becomes linear as τ tends
to zero. These upper-bound values at T/TF = 0.025 are then
extrapolated to 0 K using the values in Table I.

Next, let us consider the behavior of the ground-state
energies with respect to the large-N scaling relation given
in Ref. [18] in the form of a Padé approximant. It is given as

Egs

h̄ωN3/2
≈ 2

3
+ 0.698z + 1.5z4 + 2.175z5/3

1 + 2.149z1/3 + 1.5z2/3 + 2.175z
, (2)

where z = N1/4ω−1/2 in effective atomic units.
In Fig. 1 we present the scaling relation as “Padé” (solid

line) and our extrapolated PIMC results (symbols). Clearly,
as z is increasing, the PIMC data tend towards the large-
N scaling relation. This tendency is pronounced for large
confinements, i.e., weaker electron-electron interactions. This
expected behavior demonstrates the rather good predictability
of the scaling relation for large N .

Despite the general validity of the trend in Fig. 1, there are
significant deviations from the Padé curve for, e.g., z ≈ 3.36
and ω = 0.28. However, we can modify the functional form in
Eq. (2) to obtain accurate fits for all the PIMC energies. This
is achieved through the following form:

Etot = h̄ωN3/2

[
2

3
+ az + 1.5z4 + 2.175z5/3

1 + bz1/3 + 1.5z2/3 + 2.175z

]
, (3)
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FIG. 2. Modified Padé fits to our PIMC data; see Eq. (3). The fits
yield better than 0.24% accuracy with respect to our PIMC data, and
on average the discrepancy is less than 0.1%. The PIMC data points
correspond to N = 6, 12, 20, 40, and 60, and the energy values are
shown in Table IV.

where a and b are two parameters that can be optimized
for each confinement strength, respectively, to fit with the
PIMC data. In our examples we obtain a = −5.09904703 and
b = −4.64163077 for h̄ω = 0.28, a = −4.17789992 and b =
−3.74168272 for h̄ω = 0.5, and a = −3.2961045 and b =
−2.88621374 for h̄ω = 1.0. These parameters yield better
than 0.24% accuracy to our PIMC data, and on average the
discrepancy is less than 0.1%. Our PIMC data give lower
upper-bound estimates than the DMC results of Ref. [6], which
actually deviate from our data on average by 0.20% having the
maximum discrepancy of 0.32%. Therefore, our fit should
provide even more accurate reference data than the DMC
based on DFT-LDA nodal structure. The fits are shown in
Fig. 2. We point out that the above procedure, i.e., the PIMC
calculation for a few N followed by the two-parameter Padé
fit according to Eq. (3), can be repeated for any confinement
strength to obtain an accurate trend as a function of N .
However, due to the spin-independent scheme used here, we
do not account for the fine structure in E(N ) resulting from
nontrivial spin polarization at certain N according to Hund’s
rules.

Despite the lack of spin effects we can assess the elec-
trochemical potentials of QDs defined as μ(N ) = E(N ) −
E(N − 1). This is demonstrated in Table II. In general, the
values are in reasonable agreement. Interestingly, the PIMC
fit seems to provide “extrapolation” of the CC and DMC
values. That is, CC has always either the largest or the smallest
value, and the DMC value is always in between the CC and
PIMC result. Nevertheless, we leave further calculations and
analyses of chemical potentials to future works, where spin
effects should be incorporated.

In Table III we present our PIMC energies at T/TF = 0.025.
The results include the total energy (Etot), kinetic energy
(Ekin), total potential energy (Epot), and the electron-electron

TABLE II. Electrochemical potential μ(N ) = E(N ) − E(N −
1) for h̄ω = 0.28 from our fits [Fig. 2 and Eq. (3)] compared with
available values in the literature. The energies are given in effective
atomic units.

CC [6] DMC [6] PIMC fit

E(3) − E(2) 1.2284 1.2123(1) 1.1612
E(6) − E(5) 2.0438 2.0663(1) 2.1166
E(7) − E(6) 2.4528 2.4341(1) 2.3921
E(12) − E(11) 3.5420 3.5618(1) 3.6025
E(13) − E(12) 3.8738 3.8582(1) 3.8213

interaction energy (Eee). The contribution of the harmonic
confinement is thus Eharm = Epot − Eee. The energies in
Table III have been extrapolated to zero time step, and therefore
they provide an upper-bound estimate for the total energy at
this temperature.

By adding the values from Table I to the total energies in
Table III we obtain the extrapolated T = 0 values. They are
shown in Table IV in comparison with other high-accuracy
values in the literature. In general, the PIMC energies are
slightly lower than those obtained with the CC or DMC
methods. For N = 12 and h̄ω = 0.28, the CCSD result of
Ref. [5] is lower than the PIMC, but the difference is very
small, and it should also be noted that the CC is not an
upper-bound estimate. Moreover, it is good to point out that
the differences between the PIMC and DMC energies cannot
be explained by uncertainties in the extrapolations to zero
temperature and to zero time step. Even in the case in which
we would expect the smallest effects related to the nodal
surface, i.e., N = 6 and ω = 0.28, the error from above in
the temperature extrapolation can be estimated to be εT =0 �
0.000224Eeff

H , while an upward exaggerated error estimate
in the time-step extrapolation would give ετ=0 � 0.003Eeff

H .
Using the maximum values would still give us ∼ 0.0040(2)Eeff

H
lower total energy than DMC in the case that is expected to
have the smallest discrepancy.

In some cases, there are relatively large discrepancies
between the two CC implementations using different basis
functions. For CCSD, the results in Ref. [5] are generally
more accurate compared against our PIMC values. For the
CC in Ref. [6], the addition of triples makes a considerable
improvement in the results. Therefore, it would be interesting
to obtain CCSD(T) values also for the implementation of
Ref. [5]. Maybe even an extension to quadrupoles would
be advisable, but expectedly this is computationally very
demanding, especially for higher N . PIMC does not suffer
from basis set dependence, but—on the other hand—very
accurate nodal surfaces are called for in calculations of atoms,
molecules, and solids at low temperatures. In the present case
of semiconductor QDs, the free-particle nodes are sufficient to
yield accurate results.

The main advantage of PIMC is the straightforward ac-
count of finite temperature and correlations between particles
irrespective of the external potential. At its current state of the
art it is most feasible in treating model systems and low-Z
materials at intermediate to high temperatures, but progress
towards high-accuracy materials modeling will be possible
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TABLE III. Energetics from PIMC simulations at T/TF = 0.025 with 1-σ statistical error estimate in the parentheses. The PIMC energies
have been extrapolated to the zero time-step limit in order to provide an upper-bound estimate. Energies are given in effective atomic units.

h̄ω Etot Ekin Epot Eee

N = 6 0.28 7.59804(10) 0.94071(9) 6.65734(3) 3.81109(5)
0.50 11.7742(2) 1.71402(14) 10.06019(6) 5.56412(8)
1.00 20.1222(4) 3.5628(3) 16.55937(11) 8.66439(13)

N = 12 0.28 25.6456(6) 2.2402(6) 23.40544(13) 14.1102(4)
0.50 39.1413(10) 4.1325(9) 35.0088(3) 20.5842(5)
1.00 65.585(3) 8.761(2) 56.8236(6) 32.0418(11)

N = 20 0.28 61.992(3) 4.304(2) 57.6879(4) 35.5890(12)
0.50 93.915(4) 8.020(4) 85.8944(7) 51.916(2)
1.00 155.737(9) 17.194(8) 138.543(2) 80.899(4)

N = 40 0.28 202.55(3) 10.42(3) 192.128(4) 121.137(13)
0.50 304.48(4) 19.57(4) 284.910(5) 176.89(3)
1.00 499.6(3) 42.6(3) 456.924(12) 276.19(14)

N = 60 0.28 401.28(8) 14.92(17) 386.33(14) 247.6(2)
0.50 601.78(13) 31.3(3) 570.57(15) 359.5(3)
1.00 988.2(4) 75.1(6) 913.2(3) 558.7(6)

hopefully already in the near future. As shown here, PIMC
is already capable of treating accurately quite large numbers
of interacting electrons in finite systems. It should be pointed
out that for only a few particles the simulations are rather
effortless, although this is dependent on the external potential
of the particles. In general, the attractive Coulomb potential
is challenging especially for higher-Z elements, which stems
from the fact that the potential is not bound from below. For
model potentials, such as individual quantum dots or arrays of
quantum dots of various shapes, these challenges are absent,
which makes them ideal objects for more path integral studies.

IV. CONCLUSIONS

In this study we produce benchmark energies for two-
dimensional harmonic quantum dots up to N = 60 electrons
with the path integral Monte Carlo method. The finite-

temperature values are extrapolated to 0 K and zero time
step in order to provide accurate upper-bound energetics. The
ground-state energies are compared against coupled-cluster
and diffusion Monte Carlo results available in the literature
for smaller N . We find that our upper-bound estimates for
the ground-state energies yield lower values than the diffusion
Monte Carlo benchmarks. This tendency is pronounced as
the confinement strength is increased. However, the deviation
between the two Monte Carlo methods remains below 0.32%.
The difference arises from the approximate description of the
nodal surface in the diffusion Monte Carlo approach. Using
comparable nodal surfaces both methods should lead to the
same 0 K total energy, which is evident also from, e.g., the
simulations of nodeless systems such as the unpolarized N = 2
harmonic quantum dot.

We have also introduced a fit in the form of a Padé
approximant for the ground-state energies as a function of N .

TABLE IV. Total energies from PIMC simulations extrapolated to T = 0 in comparison with other methods. The PIMC energies provide
an upper-bound estimate. Energies are given in effective atomic units with 1-σ statistical error estimate in the parentheses.

h̄ω PIMC CCSD [5] CCSD [6] CCSD(T) [6] DMC [6]

N = 6 0.28 7.5927(2) 7.605555 7.6252 7.6006 7.6001(1)
0.50 11.7659(4) 11.80093 11.8055 11.7837 11.7888(2)
1.00 20.1063(8) 20.18818 20.1737 20.1570 20.1597(2)

N = 12 0.28 25.6098(13) 25.59384 25.7089 25.6324 25.6356(1)
0.50 39.088(3) 39.14125 39.2194 39.1516 39.159(1)
1.00 65.488(5) 65.74107 65.7409 65.6886 65.700(1)

N = 20 0.28 61.839(6) 62.0664 61.9156 61.922(2)
0.50 93.703(9) 93.9891 93.8558 93.867(3)
1.00 155.41(2) 155.9601 155.8571 155.868(6)

N = 40 0.28 202.38(3)
0.50 304.18(8)
1.00 498.8(4)

N = 60 0.28 401.07(9)
0.50 601.37(14)
1.00 987.9(5)
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The fit yields smaller than 0.25% deviation from the computed
total energies, and the validity of the fit is shown for N =
6 . . . 60. It can also be expected that the fit yields reasonable
approximations also at larger N . In conclusion, we believe that
the present work represents a useful benchmark for further
calculations for semiconductor quantum dots with different
computational methods.
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