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Bilayer graphene phonovoltaic-FET: In situ phonon recycling
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A new heat harvester, the phonovoltaic (pV) cell, was recently proposed. The device converts optical phonons
into power before they become heat. Due to the low entropy of a typical hot optical phonon population, the
phonovoltaic can operate at high fractions of the Carnot limit and harvest heat more efficiently than conventional
heat harvesting technologies such as the thermoelectric generator. Previously, the optical phonon source was
presumed to produce optical phonons with a single polarization and momentum. Here, we examine a realistic
optical phonon source in a potential pV application and the effects this has on pV operation. Supplementing
this work is our investigation of bilayer graphene as a new pV material. Our ab initio calculations show
that bilayer graphene has a figure of merit exceeding 0.9, well above previously investigated materials. This
allows a room-temperature pV to recycle 65% of a highly nonequilibrium, minimum entropy population of
phonons. However, full-band Monte Carlo simulations of the electron and phonon dynamics in a bilayer graphene
field-effect transistor (FET) show that the optical phonons emitted by field-accelerated electrons can only
be recycled in situ with an efficiency of 50%, and this efficiency falls as the field strength grows. Still, an
appropriately designed FET-pV can recycle the phonons produced therein in situ with a much higher efficiency
than a thermoelectric generator can harvest heat produced by a FET ex situ.
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I. INTRODUCTION

When energy is released in a device, it typically excites the
electronic system. The resulting nonequilibrium (hot) elec-
trons relax by colliding with the crystal lattice and releasing
a narrow spectrum of optical phonons. Then, this nonequilib-
rium (hot) population of optical phonons thermalize by down-
converting into multiple low-frequency acoustic phonons. The
resulting, broad spectrum of acoustic phonons is the primary
component of heat, and it has substantially more entropy
than its precursor: the narrow spectrum of nonequilibrium
optical phonons. Therefore, intervening before the hot optical
phonon population thermalizes and harvesting it should enable
a substantially higher conversion efficiency than that achieved
in conventional heat harvesters such as the thermoelectric
(TE) generator. However, the thermalization process typically
occurs on the picosecond and nanometer scales, the maximum
optical phonon energy is less than 500 meV, and typical optical
phonon energies are below 75 meV [1–3]. In combination,
these factors make targeting and harvesting a hot optical
phonon population very challenging. Indeed, most attempts
have predicted limited success [4–7]. The recently proposed
phonovoltaic (pV) cell is an exception. Indeed, the device
can theoretically utilize the low entropy of nonequilibrium
optical phonon populations in order to approach the Carnot
limit [8–10].

The phonovoltaic cell harvests optical phonons much like
a photovoltaic harvests photons [8]. That is, a nonequilibrium
(hot) population of optical phonons more energetic than the
electronic band gap (Ep,O > �Ee,g) relaxes by generating
electron-hole pairs in a diode (e.g., a pn junction), which
splits them to produce power. There are a few major obstacles
which inhibit its successful operation. First, only a few
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semiconductors have an optical phonon mode more energetic
than their electronic band gap [10]. Second, only a few
semiconductors have an optical phonon mode substantially
more energetic than 26 meV (the thermal energy at room
temperature). Assuming the band gap of these materials could
be tuned to their optical phonon energy, a diode would not
work at room temperature and thermally excited carriers would
inhibit phonon-induced generation. Finally, optical phonon
populations relax not only by generating electrons, but also
by scattering with defects, isotopes, or by down-converting
into multiple, low-energy acoustic modes. These alternate
relaxation pathways produce heat rather than power and reduce
the quantum efficiency of a phonovoltaic cell [8].

Graphene is perhaps the only material which can succeed
in a phonovoltaic [10]. It has extremely energetic optical
phonon modes (198 and 164 meV) [11,12] which primarily
scatter with electrons, rather than other phonon modes [13,14].
Additionally, a band gap can be opened and tuned in the
semimetal, such that its band gap approaches the optical
phonon energy. This can be done through its chemical
functionalization [15,16] or doping [17], through its deposition
on an ordered substrate [18], or through the application of
magnetic [19] or electric fields [20–22] (as shown in Fig. 1).
No other material has been shown to be viable, although it is
possible that organic macromolecules could be tuned to suc-
ceed, as they also exhibit extremely energetic vibrations, and
those within the backbone chains could theoretically interact
quickly with electrons in the LUMO and HOMO. However, our
focus remains on the tuned graphene materials, as the highest
reported phonovoltaic figure of merit in a tuned graphene
material remains at a modest 0.6 (graphene:BN [10]), as much
of the important groundwork is done, and as graphene-based
devices are attractive targets for phonovoltaic incorporation.

Indeed, incorporating a phonovoltaic into a bilayer
graphene field-effect transistor (FET) to create a FET-pV (as
shown in Fig. 1) is a reasonable goal: the FET is a nanoscale
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FIG. 1. (a) Atomic (b) and energetic illustrations of a bilayer
graphene FET. A cross-plane field (ef,z) applied to bilayer graphene
opens a band gap (�Ee,g) comparable to the potential induced
between the two graphene layers (ecef,zc, where ec is the electron
charge and c is the distance between graphene layers). This band
gap impedes the transport of electrons from source to drain. Those
electrons which are emitted from the source flow across the channel
and emit optical phonons near the drain. (c) If the gate voltage is tuned
such that the optical phonon energy (Ep,O) is greater than the band
gap, these optical phonons can be recycled in an in situ phonovoltaic,
which harvests optical phonons much like a photovoltaic harvests
photons.

device which produces a large amount of heat, the mitigation
of which remains crucial in the continued campaign to shrink
transistor size and increase switching frequencies [21]. More-
over, experimental results show that bilayer-graphene FETs
can exhibit a narrow band gap in the range of interest [23–25].
Theoretical calculations support this result and predict that the
electronic density of states drastically increases near the band
edge under high fields [26–28]. This should greatly increase the
interband electron-phonon scattering rate. Indeed, our density
functional and tight-binding theory calculations show that the
interband electron-phonon scattering rate in bilayer graphene
increases substantially at high fields. This phenomenon allows
bilayer graphene to reach a record phonovoltaic figure of merit
(0.9) and enable a phonovoltaic efficiency above 65%.

However, the phonovoltaic figures of merit reported above
and in previous papers [9,10] assume that the hot optical
phonon population is contained within a single point in kp

space. That is, they are evaluated for the �-point E2g optical
phonon mode. In a FET, the strong in-plane field will induce a
hot optical phonon population with substantially more entropy.
This entropy, i.e., the spread of momenta across which the
optical phonon modes are heated, could reduce the figure of
merit substantially. Thus, we perform full-band Monte Carlo
simulations of the electron and phonon dynamics in bilayer
graphene under strong in-plane and cross-plane electric fields

FIG. 2. The AB-stacked bilayer graphene lattice and its nearest-
neighbor hopping interactions within the tight-binding model: in-
plane hopping parameter ϕ‖ and cross-plane parameters ϕ⊥

ij [34].

to explore this topic. These simulations support our hypothesis,
indicating that phonovoltaic performance suffers under strong
fields. However, when the potential between the source and
drain is close to the optical phonon energy, the figure of merit
remains substantial. Indeed, our simulations suggest that the
optical phonons produced in a FET-pV could be recycled with
up to 50% efficiency. This is a drastic improvement over a
typical ex situ heat recovery device such as the TE generator.
Moreover, it is a drastic improvement over previously proposed
in situ phonon harvesters, e.g., graded heterobarriers in a
channel which recycle optical phonons with, at best, 20%
efficiency [6,7].

II. BILAYER GRAPHENE

Let us begin our investigation by discussing the material in
question, bilayer graphene. The hexagonal lattice of graphene
can be divided into three triangular sublattices (A, B, and C).
The first two contain one carbon atom per unit cell and the third
defines the vacant centers of the carbon rings. Bilayer graphene
is created by stacking two layers of graphene in the AA,
AB, or twisted configurations. In AA-stacked graphene, the
sublattices of both graphene layers are aligned. In AB-stacked
graphene, only the A sublattices are aligned, while the B
sublattices are aligned with the vacant sublattice C of the
neighboring graphene layer, as shown in Fig. 2. In twisted
bilayer graphene, one layer of graphene is twisted with respect
to the other by some angle between 0◦ (AA stacking) and
60◦ (AB stacking) [25,29]. This twisting creates a Moiré
pattern with local AA- and AB-like domains [28,30,31]. While
the AB-stacked configuration is the most stable, the other
stacking configurations are sufficiently close in energy that
creating a perfectly AB-stacked bilayer graphene remains
difficult and small twisting angles are often observed in
experiments [32,33].

A. Electronic properties

In bilayer graphene, as in graphene and graphite, the time-
reversal symmetry and sp2 hybridization of the crystal leads
to degenerate valence and conduction bands at the K and K′
points of the Brillouin zone (BZ) [29,31,34–36]. In graphene
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and AA bilayer graphene, these degenerate bands have no
dispersion, such that their electrons behave like massless Dirac
fermions and the K and K′ wave vectors are named the Dirac
points [34]. In AB-stacked bilayer graphene, the difference in
the interlayer interactions between A and B site carbons (e.g.,
the tight-binding hopping interactions ϕ⊥

AA, ϕ⊥
AB, and ϕ⊥

BB, as
shown in Fig. 2 and discussed in Appendix A) adds mass to the
valence and conduction bands near the K points [34]. Still,
these points are commonly referred to as the Dirac points. In
twisted bilayer graphene, some degeneracy remains at most
twist angles, although it has been predicted that a substantial
band gap forms for specific Moiré lattices (e.g., for twist angle
21.7◦) and a more complex Fermi surface forms in twisted
bilayer graphene with small twist angles under a field [28].

When an electric field is applied to bilayer graphene, it
drives electrons from one layer into the other. In AB-stacked
graphene, the electrons prefer to accumulate near the A
sublattice sites due to their stronger interlayer interactions.
This breaks the time-reversal symmetry of the crystal and thus
opens a band gap at the (former) Dirac points [34,37]. In
contrast, the interlayer interactions between both sublattices
are identical in AA-stacked graphene. Thus, the electric field
does not break the time-reversal symmetry, and it does not
open a band gap. Instead, it splits the doubly degenerate bands
around the Dirac points [36]. These effects and their causes
are well modeled by a simple tight-binding (TB) model, as
shown in Appendix A. In contrast, the electronic response of
twisted-bilayer graphene is less well established. Indeed, it
is not immediately clear how the local AA-like and AB-like
domains in twisted bilayer graphene will respond to an applied
electric field. However, experiments show that an applied
electric field can open a band gap [25], and a recent study shows
that this tunable band gap is due to excitonic effects which arise
in small twist angle configurations of bilayer graphene but not
in the large angle variants [31].

The ability to open and tune a band gap is central to the
success of a phonovoltaic material [10]. Indeed, the band
gap must be tuned to some energy near to but less than the
optical phonon energy [8]. Thus, AB-stacked and small angle
twisted bilayer graphene are attractive candidates. Here, we
focus primarily on AB-stacked graphene, as computational
limits preclude the simulation of small angle twisted bilayer
graphene within density functional theory (DFT) and density
functional perturbation theory (DFPT). Indeed, when we
refer to bilayer graphene in the following sections, we are
referring to AB-stacked bilayer graphene unless we explicitly
specify a different stacking configuration. However, we will
still present tight-binding results for twisted bilayer graphene
which suggest that it works well as a phonovoltaic material.
Let us overview our DFT and DFPT methodology before
discussing the quantitative features of bilayer graphene.

The DFT and DFPT simulations are carried out using QUAN-
TUM ESPRESSO [38] under the local density approximation
and with norm-conserving pseudopotentials [39] on a fine
120 × 120 ke mesh. (The fine mesh density is required to
capture the small details of the distorted bands near the K and
K′ points.) 15 Å of vacuum is left between periodic images of
the bilayer graphene, and a lattice constant (a) of 2.42 Å with
an interlayer spacing (c) of 3.35 Å is used. The interlayer
potential is prescribed by applying a saw-toothed electric
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FIG. 3. (a) The band gap as a function of the cross-plane potential
within DFT and the TB model, (b) low-energy equienergy lines for
the first-conduction band, (c) low-energy band structure in bilayer
graphene, and (d) the full band structure of graphene and bilayer
graphene under a field. In the low-potential regime, the band gap
equals the potential. As the potential increases, the low-energy surface
becomes “hat”-like, as shown in (b) and (c), and the band gap grows
more slowly than the applied cross-plane potential does.

potential in the cross-plane direction and placing the bilayer
graphene within the monotonic portion of this potential. Thus,
the interlayer potential equals the electric field strength times
the interlayer spacing. Now, let us move on to a discussion of
our results.

As shown in Fig. 3(a), the band gap in AB-stacked bilayer
graphene is proportional to the electric potential between the
two graphene layers, ϕe. Indeed, TB models show that the
band gap equals the electric potential when it is below 50 meV.
DFT tends to underestimate the band gap by 1

3 , so we scale
the electric field by 3 to recover this trend. The divergence
from this scaling is caused by the distortion of the π bands
near the K points at higher fields. Indeed, while the energy gap
between the π bands at the Dirac points continues to equal ϕe,
the conduction (valence) band dips (rises) along the three K-M
lines and the low-energy surface begins to resemble a trifold
hat, as shown in Figs. 3(b) and 3(c). Outside of this small
region, the graphene and bilayer graphene band structures
are very similar, even under moderate fields, as shown
in Fig. 3(d).

These electronic properties are well established [34,37].
As discussed above, they are the result of the discrepancy in
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interlayer interactions in AB-stacked bilayer graphene and the
loss of the time-reversal symmetry upon imposing a cross-
plane electric field. Less well established are the effects these
electronic changes have on the electron-phonon coupling.
In the following section, we will calculate the electron-
phonon coupling and the resulting electron-phonon scattering
rate.

B. Electron-phonon scattering rate

An electron in state |ke,i〉 (wave vector ke and band i)
can be scattered to state |k′

e,j 〉 by a phonon with momentum
kp = k′

e − ke and polarization α due to the electron-phonon
coupling given by matrix element M

(ij,α)
e-p (ke,kp), as discussed

in Appendix B. Here, the we evaluate the differential electron-
phonon scattering rate γ̇

(ij,α)
e-p (ke,kp), using using the Fermi

golden rule. That is,

γ̇ (ij,α)
e-p (ke,kp) = 2π

h̄

∣∣M (ij,α)
e-p (ke,kp)

∣∣2

×δ(Eke,i − Eke+kp,j ± h̄ωkp,α)
, (1)

where 
 accounts for the relevant population factors. Thus,
to calculate the rate at which a particular phonon mode
scatters with all electron states, γ̇

(ij,α)
e-p (kp), the differential

rate is summed across all electron wave vectors and bands,
and 
 � fe − f ′

e , where fe and f ′
e are the occupancies of

the initial and final electron states. In this case, 
 prevents
intraband events from contributing substantially to the phonon
lifetime unless the Fermi level lies within a few kBT of the
valence or conduction bands [10]. Indeed, in a nondegenerate
semiconductor, 
 � 1 for transitions from the valence to
conduction bands and 
 � 0 otherwise. Under this condition,

γ̇ (ij,α)
e-p (kp) � γ̇ (cv,α)

e-p (kp) =
∑

ke

2π

h̄

∣∣M (cv,α)
e-p (ke,kp)

∣∣2

× δ(Eke,v − Eke+kp,c ± h̄ωkp,α), (2)

where i = v is the valence band and j = c is the conduction
band.

Here, this integration is carried out for the E2g and A′
1 modes

using DFT/DFPT and using the TB model. A Lorentzian δ

function with 2 meV of smearing is used to achieve conver-
gence on a 500 × 500 ke mesh (using interpolation for the
DFT calculations). Figure 4 shows the results. The TB theory
and DFT/DFPT simulations show strong agreement at low
fields, as shown in Fig. 4(b), but not at high fields. In both, the
interband electron-phonon scattering rate remains stable as the
band gap increases, until the band gap approaches the optical
phonon energy, at which point scattering increases drastically.
This trend stands in stark contrast with that predicted for
other tuned graphene materials, e.g., graphene:BN, where the
scattering rate vanishes as the band gap approaches the optical
phonon energy [10]. This beneficial phenomenon is a result
of the transition from a quadratic dispersion to the hatlike
low-energy surface in bilayer graphene under high fields. In
a typical material with a parabolic low-energy surface, the
density of electronic states vanishes at the band edge. Thus,
the number of energy-conserving transitions vanishes as the
band gap approaches the optical phonon energy. However,
the hatlike band structure of bilayer graphene creates a large
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FIG. 4. (a) Energy-conserving δ function for the E2g mode in
bilayer graphene, (b) the interband electron-phonon scattering rates
for an x-polarized E2g mode. The scattering rate increases drastically
as ϕe ≈ Ep,O and peaks around �Ee,g ≈ Ep,O due to the increase
in the number of electronic states which participate in interband
electron-phonon scattering.

density of electronic states near the band edge, such that the
number of energy-conserving transitions is maximized when
�Ee,g � Ep,O, as shown in Fig. 4(a).

Despite the agreement between the DFT and TB results
for bilayer graphene under weak and moderate-strength fields,
the TB theory predicts much faster scattering than DFT does
for bilayer graphene under a strong field. This discrepancy is
explained here by the simplicity of the TB theory, which does
not take into account many features of the electron Hamil-
tonian, e.g., the electron-electron repulsion, which become
important as the field drives multiple electrons into each atomic
orbital of the charged graphene layer. Thus, we would prefer
to use DFT results. Indeed, we use them unless otherwise
specified. However, the large number of atoms in a twisted
bilayer graphene unit cell preclude its simulation within DFT
and DFPT, particularly for smaller twisting angles. Thus, we
must rely on our TB model to calculate the electron-phonon
coupling for the twisted stacking configuration. Even within
the TB model, evaluating the electron-phonon scattering rate
becomes unreasonable for very small twisting angles, and the
TB model does not predict the formation of a band gap in
twisted bilayer graphene when it is subjected to a cross-plane
field. Thus, our ability to predict the phonovoltaic performance
of twisted bilayer graphene is limited to the no-field and
moderate twist angle cases. We further limit our investigation
to the less computationally intensive E2g mode. Within this
limited scope, our results show that the electron-phonon
scattering rate remains unaffected by the twisting angle, as
shown in Fig. 4. Let us examine this result.

First, we note that the electron-phonon scattering rate is
dominated by the nearest-neighbor in-plane interactions, as
discussed in Appendix A. That is, it is dominated by the
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interaction between the valence electrons in the atomic orbitals
of one sublattice and conduction electrons in the atomic
orbitals of the second sublattice. Thus, as long as the stacking
order (or electric field) does not separate the conduction and
valence wave functions in space by more than the sublattice,
the perturbation will not affect the electron-phonon matrix
elements. Our TB model shows that the electric field drives
the conduction and valence electrons into a specific layer, and
the twisting angle tends to drive the conduction and valence
electrons into the AA-like domain (as previously shown [30]).
In either case, the valence and conduction wave functions are
at most separated by the sublattice, rather than, e.g., the layer
or the domain. Thus, the electron-phonon coupling matrix
elements remain negligibly affected by the electric field or
the twisting angle.

Second, we note that the electronic density of states avail-
able for scattering is negligibly affected by the twisting angle.
Indeed, while the energy-conserving contours become more
complex as the twisting angle falls below 5◦, as shown in Fig. 4
the complexity is not created by a fundamental deformation
of the band structure (as in bilayer graphene subjected to a
cross-plane field). Instead, it is primarily created by the folding
of the graphenelike dispersion into the BZ of the twisted bilayer
graphene. That is, as the twisting angle decreases, the twisted
bilayer graphene unit cell contains an increasing number of
graphene unit cells, and the twisted bilayer graphene BZ
folds in more wave numbers of the graphene BZ. Eventually,
the separate Dirac cones of graphene overlap within the
very small BZ of twisted bilayer graphene and create more
complex low-energy surfaces. At sufficiently small twisting
angles, quasibound states in the AA-like domains form [30].
However, there is no evidence that this affects γ̇

(E2g)
e-p . Indeed,

the insensitivity of γ̇
(E2g)
e-p to the twisting angle is supported

by experimental Raman studies [40,41]. Interestingly, these
studies also show that the linewidth of the A′

1 mode increases
as the twisting angle approaches either a critical angle of
10◦ or 0◦. Moreover, they showed that this is caused by the
formation of a Van Hove singularity [41]. While the A′

1 mode
can interact with this singularity, the E2g mode cannot. Indeed,
the E2g electron-phonon coupling element vanishes near the
M point (where this singularity forms) due to the crystal
symmetries.

Regardless, the electron-phonon scattering rate is either
maintained or enhanced in small angle twisted bilayer
graphene. As its band gap can be tuned by the application
of a cross-plane field [25,31], it should serve as a suitable
phonovoltaic material. However, quantifying its phonovoltaic
performance is outside the scope of this study. Here, the
main thrust is to examine the hot optical phonons produced
by a realistic optical phonon source and to determine the
effect the resulting nonequilibrium phonon population has
on phonovoltaic operation. Restricting our investigation to
AB-stacked graphene allows us to pursue this investigation
without requiring a massive computational effort. Moreover,
it simplifies the results so that we can extract more instructive
conclusions. Thus, a detailed analysis of twisted bilayer
graphene as a phonovoltaic material is left for future study.
However, we do need to determine the phonovoltaic perfor-
mance of bilayer graphene in order quantify how significantly
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FIG. 5. The phonovoltaic performance metrics: the figure of merit
ZpV, quantum efficiency γ̇ ∗

e-p , and efficiency ηpV. Due to the increase
in the interband electron-phonon scattering rate as the band gap
approaches the optical phonon energy, the figure of merit exceeds
0.9 for both phonon modes, enabling an efficiency exceeding 65% of
the Carnot efficiency, even at 300 K. Graphene:BN results are added
for comparison [10].

the entropy in the phonon population degrades phonovoltaic
performance. Let us proceed with this calculation.

C. Phonovoltaic performance

From Phonovoltaic I [8], the phonovoltaic performance is
primarily determined by the Carnot limit (ηC) and material
figure of merit (ZpV), which encapsulates the fraction of the
optical phonon energy preserved by the band gap and the
fraction of the optical phonons which generate electrons rather
than heat (γ̇ ∗

e-p), or

ZpV = �Ee,g

Ep,O
γ̇ ∗

e-p � �Ee,g

Ep,O

γ̇e-p

γ̇p-p + γ̇e-p
. (3)

Then, the efficiency is

ηpV � ηCZpVF ∗
F , (4)

where F ∗
F is the adjusted fill factor, calculated using a simple

diode and heat equation, as in Phonovoltaic I [8].
Figure 5 presents the phonovoltaic performance metrics for

bilayer graphene. Here, we assume that the phonon-phonon
lifetime in bilayer-graphene is identical to that in graphene
and independent of the cross-plane electric field. This is
reasonable, as the phonon lifetime in bilayer graphene is
the same as that in graphene [13,42,43], and the in-plane
force constants which determine the phonon properties are
dominated by the σ bonds, which themselves are nearly
unaffected by asymmetry [10]. As shown, the figure of
merit reaches a record 0.9, a substantial improvement on the
record ZpV of 0.6 in graphene:BN [10]. The hatlike energy
surfaces which lead to very fast electron-phonon scattering as
�Ee,g → Ep,O enable this large figure of merit. Moreover,
it enables a “heat” harvesting efficiency of over 65% of the
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Carnot limit, triple that of a typical thermoelectric efficiency
and comparable to or even in excess of the efficiency of a
conventional power plant. While the electron-phonon coupling
broadens the phonon energy and thus degrades the figure of
merit and efficiency, the linewidth (�ep = γ̇e-p/h̄) is less than
2 meV for the A′

1 mode and 3.5 meV for the E2g mode. Thus,
we expect that these phenomena will impact the efficiency
negligibly. However, it remains unclear how best to incorporate
the phonovoltaic into a device, and it remains unclear how
a real source of optical phonons would affect phonovoltaic
performance. In the following sections, we investigate both
of these topics through the Monte Carlo simulation of bilayer
graphene under strong in-plane and cross-plane fields.

III. ELECTRON AND PHONON DYNAMICS UNDER
STRONG FIELDS

Consider a bilayer graphene field-effect transistor (FET). A
voltage between the FET source and drain creates an in-plane
field in the FET channel which drives electrons from the source
to the drain (see Fig. 1). When a gate (cross-plane) voltage is
applied, a band gap forms, cutting off the flow of electrons
from the source to the drain. If the gate voltage grows larger, a
surface charge accumulates on the top graphene layer, such that
the Fermi level moves into the bilayer graphene conduction
bands and the semiconductor behaves like a metal, transporting
electrons easily from the source to the drain. As long as
electrons are flowing, a large number of optical phonons will
be produced in the drain as the hot electrons scatter against the
lattice. Monte Carlo simulations of nonequilibria in graphene
under a strong in-plane field, for example, show that the optical
phonon population can reach thousands of Kelvin [44]. In the
phonovoltaic, that indicates a Carnot limit approaching unity.
If a phonovoltaic can be embedded into the FET and recycle
these phonons in situ, the heat production and power demands
of the FET would be greatly reduced.

However, major obstacles present themselves. Of primary
concern is the ability of the optical phonons generated by an
electric field to drive the operation of a phonovoltaic. Note
that optical phonons with wave vectors far from the � or K
points are incapable of generating electrons, as shown in Fig. 6.
Moreover, we can see that the conduction and valence band
structures must be at least “in line” for any optical phonons
emitted by field-accelerated electrons to generate electrons.
That is, we can say that the surface tangent of the low-energy
conduction bands must intersect with the valence bands. This
statement is exactly true when the bands are dispersionless, as
in graphene. Furthermore, we can say that the more that the
surface tangents intersect, the larger the area of kp space which
can contribute to electron generation. Thus, bilayer graphene,
with its wide, hatlike trough, should enable a wide spectrum
of optical phonons to generate electrons. However, it remains
important to understand what fraction of the hot optical phonon
population created by an in-plane electric field can contribute
to electron generation. That way, we can quantify the effective
figure of merit of bilayer graphene. To do this, we perform
full-band Monte Carlo simulations of the coupled electron and
phonon dynamics in bilayer graphene under a field.

ke,x

Ee

ef,x

(c)(b)(a)

FIG. 6. The importance of band structure and phonon momentum
in enabling phonovoltaic operation. (a) The valence and conduction
bands are “in line”, such that optical phonons emitted as electrons
fall down the steepest energy gradient can generate electrons. (b)
However, optical phonons emitted during backscattering events can
not generate electrons, as high-momentum phonons can not conserve
energy and momentum in interband transitions. (c) If the valence
conduction bands are not in line, then no optical phonons emitted
in an intraband process can generate electrons, despite meeting the
basic phonovoltaic criterion: Ep,O > �Ee,g .

A. Monte Carlo simulations

The ensemble Monte Carlo (EMC) simulations track the
evolution of the electron and phonon populations in bilayer
graphene upon excitation of the electron population by an
in-plane electric field. They do so by modeling of the electron
and phonon Boltzmann transport equations (BTE) statistically.
Here, we consider electron and phonon populations that do not
vary in space, but do vary in momentum space (2D), such that
the electron BTE is

∂fe(ke)

∂t
+ ef · ∇ke

f (ke) = ∂fe(ke)

∂t

∣∣∣∣
s

, (5)

where ef is the electric field and ∂fe(ke)/∂t |s represents the
net scattering of electrons into wave vector ke. Here, scattering
with the LO and TO phonon modes at the � and K points,
respectively, is considered and a rejection technique is used
to capture the effects of degeneracy. The low-energy electron
bands and electron-phonon coupling elements are calculated
using the tight-binding model presented in Appendix A, but fit
to the DFT results, and the phononic dispersion is calculated
within DFPT. In-between these scattering events, the electrons
are accelerated by a constant electric field (ef = ef,x). The
electron ensemble (5 × 106 superparticles) is simulated in
time steps of 0.1 ps, during which time the number of optical
phonons emitted in each kp bin is counted, and after which the
phonon occupation is updated according to the phonon BTE:

∂fp(kp)

∂t
= Ṡ(kp) − fp(kp) − f ◦

p (kp)

τpp

, (6)

where Ṡ is the net source of optical phonons due to in-
traband electron-phonon scattering events, fp is the phonon
occupancy, f ◦

p is the equilibrium phonon occupancy, and τp

is the phonon lifetime. Then, the integrated and differential
scattering rates are updated for the next time step of the EMC
electron simulation. In this manner, the electron and phonon
nonequilibria in bilayer graphene are tracked after a strong
in-plane electric field is applied.

Before moving on to the evaluation of the phonovoltaic
performance, two simulations are performed in order to
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θe

ke,r

ef

1
ne(κe)(b)

θp

kp,r

k p,r 
= E p,O

 / ν e

Limited
emission
of high kp,r 
phonons

 0060030 K
(c) Tp,O(kp)

E e 
(m
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)

ne(Ee)
0

0 1

300

300 K

300 K+ field

(a)

FIG. 7. (a) The normalized electronic energy and (b) momentum
distribution, and (c) the phonon (TO) momentum distribution in a
“toy” nondegenerate graphene with dispersionless bands under a
strong in-plane electric field. The electron particles are accelerated
by the field, creating an electron stream in the opposite direction.
Once they reach kinetic energy εke

= Ep,O, they can emit an optical
phonon and return to one of the conduction band valleys at K or K′

and fall to the bottom of the stream. These phonon emission events
all happen in a narrow area of ke space, such that only there is only
a small area in kp space which conserve energy and momentum, and
only this small area is heated.

qualitatively describe what happens to the electron and
phonon populations and to validate the simulations. The first
simulation uses the full detail of the electric bands from
tight-binding theory. The second uses a “toy” tuned-graphene
material, i.e., one with a radially symmetric and dispersionless
band structure at the K and K′ points with Ee = h̄νe|ke|, where
νe is the constant electron speed. (In the TB model of graphene,
νe = 2aoϕ‖/3h̄, where ao is the interatomic distance and ϕ‖ is
the intralayer hopping strength.) The latter is used to illustrate
the fundamental behavior of an electron population under a
strong field, and the former is used to investigate how the
unique low-energy structure of bilayer graphene affects the
resulting nonequilibria. The initial and steady-state results are
presented in Figs. 7 and 8.

Let us discuss the “toy” graphene results first. Initially, the
electron population has a typical energy distribution ne(Ee) �
Def

◦
e , where De is the electronic density of states and f ◦

e is

θeef

ne(κe)
1

(b)
0

θp

kp,rk

300 600 K
(c) Tp,O(kp)

E e 
(m

eV
)

0
0 1

300

300 K

300 K

+ field

(a)

ne(Ee)

FIG. 8. (a) The normalized electronic energy and (b) momentum
distribution, and (c) the phonon (TO) momentum distribution in
full-band bilayer graphene under a 165-meV cross-plane electron
potential and a strong in-plane electric field. Qualitatively, the
electron and phonon behavior resemble those in the dispersionless
graphenelike material (Fig. 7). However, the broad valley in the
hatlike low-energy surface broadens the momentum distribution of
both the electron stream and the phonons produced by its relaxation.

the Fermi-Dirac distribution. Then, a strong in-plane field is
applied. This accelerates the electron population, increasing
the −ef momentum component of each electron and exciting
the population. The electrons tend to stream along this −ef

vector until they have sufficient energy to emit a phonon. That
is, they accelerate until their kinetic energy reaches the optical
phonon energy (plus the Fermi energy), at which point they
quickly emit a phonon and relax back to start of this stream, i.e.,
the band edge (Fermi level), where the parentheticals denote a
degenerate or nondegenerate semiconductor.

This behavior is well reported in the literature [44,45],
providing some validation of our simulations. We note that
scattering with the acoustic branches and other electron
would distribute the electrons outside of this stream. The
electron-electron interactions are important in a nondegenerate
semiconductor while the the acoustic phonon interactions
contribute in the low-field, nondegenerate case. While the
stream width will increase the entropy of the coupled phonon
system, it will primarily increase entropy in the phonon
direction (κp,θ ), rather than the phonon magnitude (κp,r =
|kp|). Thus, it will have little effect on the phonovoltaic figure
of merit, and we can safely neglect these interactions which
greatly increase the computational burden.

While the electron population is confined to a narrow stream
in ke space, the hot optical phonon population created by
this stream is even more confined, both in the direction of
ef and perpendicular to it. This confinement is a result of
the narrow electron stream and the small region of ke space
wherein electrons emit optical phonons. Note that an intraband
emission event can create optical phonons with, at minimum,
a momentum of h̄|kp|min = Ep,O/νe, where we assume the
Fermi level lies outside the conduction band of a nonde-
generate semiconductor. This is the only region of kp space
heated by electrons with kinetic energy Ee = h̄νe|ke| = Ep,O.
While more energetic electrons can produce these minimum
momentum optical phonons, they can also backscatter and
produce optical phonons with more momentum. Precisely, they
can produce phonons with a momentum between Ep,O/νe and
(2Ee − Ep,O)/νe. If we assume that the majority of electrons
will emit an optical phonon within their lifetime (1/γ̇e-p), elec-
trons can exceed the optical phonon energy by ec|ef |νe/γ̇e-p

before emitting an optical phonon, and the region of kp

space which is substantially heated will lie within h̄|kp| ∈
[Ep,O/νe,Ep,O/νe + ec|ef |/γ̇e-p], with the hottest region near
h̄|kp|min. In a degenerate semiconductor, a wider range of
kp space is heated. Consider a degenerate semiconductor at
0 K: in this case, the minimum energy required for phonon
emission is not Ep,O, but Ep,O + EF, where EF is the Fermi
energy relative to the band edge. Thus, the range of heated
kp space is approximately h̄|kp| ∈ [(Ep,O + EF)/νe,(Ep,O +
EF))/νe + ec|ef |/γ̇e-p], and degenerate effects will generally
reduce the phonovoltaic performance. In the following sec-
tions, we will focus on a nondegenerate semiconductor.

The full-band simulations of gated bilayer graphene under
a strong in-plane and cross-plane electric field show similar
trends. However, the electrons form a much wider stream, as
the low-energy electron states are not contained in a narrow
valley. Instead, they are contained in a broad, hatlike trough,
and this enables optical phonon emission to a large ring
of states, even when Ee = Ep,O. Thus, hot optical phonons
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are created in a correspondingly broadened region of kp

space. While this increase in entropy should inhibit phono-
voltaic operation, the broad electronic trough allows many
high-momentum optical phonons to participate in electron
generation, and the optical phonon population still gains a high
degree of nonequilibrium over time. In the following section,
we quantify the effects this entropy has on phononovoltaic
performance.

B. Phonovoltaic performance

Here, we calculate the total rate of generation and down-
conversion which would occur for the given state of the
phonon and electron populations after a steady state is reached
in the MC simulations. (Note that no generation occurs
within these simulations, as it is computationally impossible
to simulate the electron, hole, and phonon populations with
sufficient accuracy in both real and momentum spaces while
accounting for drastic spatial variation in the electron and hole
concentrations. In effect, we assume here that there is perfect
and immediate extraction of generated carriers.) To calculate
these quantities, we integrate the scattering rates over electron
and phonon momentum spaces, i.e.,

γ̇ (cv,α)
e-p =

∑
ke,kp

γ̇ (cv,α)
e-p (ke,kp)[fp − fe(ke)fh(ke − kp)], (7)

γ̇ (cv,α)
p-p =

∑
kp

γ̇ (cv,α)
p-p (kp)(fp − f ◦

p ), (8)

where fp and f ◦
p are the actual and equilibrium populations

of the phonon mode with polarization α and wavevector kp

and fe and fh are the populations of the electron and hole
states involved in recombination. Then, the fraction of optical
phonons which generate electrons rather than heat (γ̇ ∗

e-p) is
calculated, where we assume that down-conversion is the
dominant mechanism driving heat generation. Dropping the
(cv,α) superscripts, we have

γ̇ ∗
e-p = γ̇e-p

γ̇e-p + γ̇p-p
. (9)

In the previous calculations of ZpV, here and in the previous
papers [9,10], we assumed a single point in phonon momentum
space was heated. For example, we assumed that only the
� point (E2g mode) or the K point (A′

1 mode) were driving
phonovoltaic operation. We will call this the ideal γ̇ ∗

e-p.
Here, we account for the more realistic distribution of hot
phonon modes near these two points in order to calculate the
“real” γ̇ ∗

e-p.
As shown in Fig. 9, the real γ̇ ∗

e-p can be substantially reduced
from the ideal case. This trend is more pronounced under
strong electric fields, where a larger region of kp space is
heated, and when the band gap approaches the optical phonon
energy, as a smaller region of kp space can participate in
generation. Interestingly, the discrepancy between the ideal
γ̇ ∗

e-p and real γ̇ ∗
e-p is not monotonic as the band gap increases.

This, we hypothesize, is due to the transition from a parabolic
to a hatlike band structure, which occurs around the same
band gap as the γ̇ ∗

e-p recovery under moderate- or low-strength
fields. That is, the region of ke space involved in generation
increases as the hatlike surface forms, and this compensates
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FIG. 9. γ̇ ∗
e-p of the A′

1 phonon mode for variations in the band
gap. These results are compared with the previously calculated (ideal)
γ̇ ∗

e-p for variations in the applied electric field. At relatively low fields
and small band gaps, there is good agreement, as the majority of
hot optical phonons are contained within a narrow region of kp space
(�|kp| ≈ ecef,x/h̄γ̇e-p) and a substantial region of kp space is capable
of contributing to electron generation. As the electric field strength
grows and the band gap approaches the optical phonon energy, the
optical phonons are produced in a larger region of kp space and
the region of kp space that is capable of contributing to electron
generation shrinks.

for the decrease in kp space, until very few intraband optical
phonon emissions can actually contribute to generation. This
compensation enables an in situ phonovoltaic to achieve an
effective figure of merit above 0.75 under a weak field, which
corresponds to an efficiency above 50% when there is a large
degree of nonequilibrium (a Carnot limit approaching unity).
In a realistic FET device, this weak-field condition could be
effectively achieved by tuning the potential between source
and drain: if this potential were close to but greater than the
optical phonon energy, we can expect that the phonons emitted
in the drain will be clustered in momentum space much like
they are in the weak-field limit. Thus, we can expect the figure
of merit to remain substantial, and we can expect the FET-pV
to recycle 50% of the heat the FET produces.

IV. CONCLUSIONS

Here, we have evaluated the impact of a realistic phonon
source on phonovoltaic operation. Previous phonovoltaic in-
vestigations assumed that the optical phonon source produced
a nonequilibrium optical phonon population with the minimum
entropy. That is, the nonequilibrium population is contained in
a single mode E2g and momentum kp = �. Here, we relax this
assumption and investigate the entropy produced by a realistic
optical phonon source and the effect this has on phonovoltaic
performance. In doing so, we have explored a potential
phonovoltaic application, the FET-pV. This investigation is
primarily carried out using full-band MC simulations of the
phonon and electron dynamics in a bilayer graphene FET.
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To supplement this work, we use tight-binding simulations
and DFT/DFPT calculations to characterize the electronic,
phononic, and electron-phonon coupling properties of bilayer
graphene under strong cross-plane fields.

We show that bilayer graphene can reach a pV figure of
merit exceeding 0.9, largely due to the transition of its low-
energy band structure from a classic parabolic shape to a highly
nonparabolic, trifold-hat shape as a strong cross-plane electric
field is applied. This band structure has a large, rather than
vanishing, density of states near the band edge. Therefore, as
the band gap approaches the optical phonon energy, the number
of energy-conserving transitions increases drastically, the
electron-phonon scattering rate increases substantially, and the
phonovoltaic figure of merit approaches unity. With a highly
nonequilibrium population of optical phonons contained at
kp = K or � (A′

1 or E2g), a bilayer graphene phonovoltaic
can convert optical phonons into energy with an efficiency
exceeding 65% at room temperature.

However, the full-band Monte Carlo simulations of the
electron and phonon dynamics in a bilayer graphene FET show
that a real phonon source substantially lowers this conversion
efficiency, as high-momentum optical phonons are incapable
of generating electrons. Indeed, the efficiency vanishes under
a sufficiently strong in-plane electric field which accelerates
electrons to very energetic states from where they can emit
high-momentum phonons. Under a low-strength or well-tuned
electric field, however, the momentum of optical phonons
emitted by the excited electrons is relatively confined, and
the phonovoltaic can harvest the resulting nonequilibrium
population efficiently. Indeed, under weak fields, bilayer
graphene exhibits an effective figure of merit around 0.75 and
a bilayer graphene pV can harvest the nonequilibrium optical
phonon population with an efficiency over 50%. Not only is
this a drastic improvement over ex situ heat harvesters like the
thermoelectric generator, but it is also a major improvement
over previously proposed in situ phonon recycling devices [7].

While these results are promising, a major experimental ef-
fort is required to validate them. Primarily, it remains crucial to
demonstrate the basic phonovoltaic principle: a phonovoltaic
cell must be manufactured and then the phonovoltaic effect
must be recorded. This effort is not trivial, as tuned graphene
diodes remain difficult to manufacture, and as researchers must
ensure any current or voltage measured is not, e.g., from a
photocurrent rather than a phonocurrent. It is likely that the
first experimental efforts will need to proceed at cryogenic
temperatures and using a laser to excite the optical phonon
modes, rather than a field. However, this study showcases that
these efforts could one day lead to an impressive reduction
in heat generation while simultaneously increasing the power
budget in modern electronic packages.
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APPENDIX A: TIGHT-BINDING MODEL
OF BILAYER GRAPHENE

The tight-binding model is built on the assumption that
the electron wave functions can be built from a Bloch basis
of atomic orbitals centered on each atom in the crystal. In
graphene and its derivatives, only the pz(r − Ri) orbitals
are required for an accurate prediction of the low-energy
π bands, where r − Ri is the position relative to the ith
carbon atom [37]. Typically, the tight-binding Hamiltonian
only considers the interaction between the atomic orbitals and
the ionic potential of the atoms, Vi . This interaction is given
by the integral ϕij = 〈pz(r − Ri)|Vi |pz(r − Rj )〉. Here, we
also consider the effects of the electric field, which creates
a potential between the two graphene layers, ϕe. Thus, the
Hamiltonian is

H = −
∑
ij

ϕij (d†
i dj + H.c.) ± ϕed

†
i dj δij , (A1)

where d
†
i and di are the creation and annihilation operators

for an electron in the orbital centered on atom i, and the plus
and minus signs correspond to the lower and upper layers,
respectively. This Hamiltonian is invariant for translations
along the lattice vectors Al , which allows us to Fourier
transform the wave functions, their creation and annihilation
operators, and the hopping interaction into ke space. The
Fourier-transformed Hamiltonian becomes

H =
∑

ke,nm

[ϕnm,ke
d
†
ke,n

dke,m + H.c.], (A2)

where n and m are now restricted to atoms in the unit cell. Thus,
the wave functions are built using a basis of N pz orbitals,
where N is the number of atoms in the unit cell. Upon Fourier
transforming this basis into the vector |ke〉, we can rewrite our
Hamiltonian as the N × N matrix with elements

Hnm(ke) = 〈ke,n|H |ke,m〉. (A3)

Assuming the basis is orthogonal, i.e., 〈ke,n|ke,m〉 = δn,m,
the eigenvalues of this matrix give the eigenenergies of the
electronic system at wave vector ke, and the eigenvectors
describe the corresponding electron wave function. In order
to diagonalize Hke

, we require a description of the geometry
and hopping interactions ϕij . Let us start with the geometry of
bilayer graphene before moving onto its hopping interactions.

Bilayer graphene consists of two layers, each with two
sublattices, as shown in Fig. 2. Let us subdivide the atomic
index i into the layer index l = 1,2, sublattice index α = A,B,
and the unit-cell index n,m. That is, Ri = Rl,α

n,m, with

R1,A
n,m = na1 + ma2,

R1,B
n,m = r1,A

n,m + C1, (A4)

where n,m ∈ N , C1 = (a1 + a2)/3, a1 = a(31/2, − 1,0)/2,
a2 = a(31/2,1,0)/2. In the second layer, these vectors are
rotated in plane by some angle θ and displaced by the vertical
vector d = (0,0,d) [46]. We use d = 3.35 Å. For θ = 0, the
two layers are in the AA configuration, and for θ = π/3, the
two layers are in the AB configuration.
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Only certain angles create commensurate lattices which we
can reasonably model. These angles are given by [46,47]

cos θ = 3m2
0 + 3m0r + r2/2

3m2
0 + 3m0r + r2

, (A5)

where m0 and r are coprime positive integers. The superlattice
created by twisting by this angle is defined by the superlattice
vectors [47]

A1 =
{
m0a1 + (m0 + r)a2, r = 3n

(m0 + r/3)a1 + (r/3)a2, r = 3n

A2 =
{−(m0 + r)a1 + (2m0 + r)a2, r = 3n

−(r/3)a1 + (m0 + 2r/3)a2, r = 3n
(A6)

where n ∈ N . The number of unit cells contained within this
supercell is

Nuc =
{

3m2
0 + 3m0r + r2, r = 3n

m2
0 + m0r + r2/3, r = 3n

(A7)

and the number of atoms contained within the supercell of
size |Ai | = aN

1/2
uc /2 is N = 4Nuc. The related Moiré period

is a/2 sin(θ/2). The Moiré period and superstructure coincide
when r = 1, such that r > 1 structures correspond nearly to
some r = 1 structure [28]. In the following discussion, we will
focus on the r = 1 structures. For the remaining geometry of
the r > 1 structures, see Refs. [46,47].

The twisted supercell has reciprocal lattice vectors

G1 = [(2m0 + r)b1 + (m0 + r)b2]/Nuc,

G2 = [−(m0 + r)b1 + m0b2]/Nuc, (A8)

where b1 = 2π (1/31/2, − 1,0)/a and b2 = 2π (1/31/2,1,0)/a
are the reciprocal lattice vectors of the graphene unit cell. As
the supercell shares the hexagonal pattern of graphene, so too
does the reciprocal lattice share the hexagonal first Brillouin
zone. This BZ has two Dirac points: K 1 = (G1 + 2G2)/3 and
K 2 = (2G1 + G2)/3 [29,47]. With the geometry established,
let us describe the hopping interaction.

We divide the hopping interactions into three parts: the
self-energy (ϕii), the intralayer hopping (ϕ‖

ij ), and interlayer
hopping (ϕ⊥

ij ). The self-energy is neglected in this model, as
only one orbital is considered and the self-energy will only
serve to shift the entire band structure by ϕii . We restrict the
intralayer hopping to the nearest-neighbor interactions which
dominate the low-energy interactions in graphene [37]. The
interlayer hopping is calculated following Refs. [28,48]. This
approach screens the interaction between atoms if there is
another atom lying between them. With these descriptions, we
can now model the electronic behavior of bilayer graphene. As
an example, consider AB-stacked graphene (θ = π/3), where
we write the following Hamiltonian matrix:

HTB =

⎡
⎢⎢⎣

−ϕe −ϕ‖g ϕ⊥
ABg ϕ⊥

BBg∗

−ϕ‖g∗ −ϕe ϕ⊥
AA ϕ⊥

ABg

ϕ⊥
ABg∗ ϕ‖ ϕe −ϕ‖g

ϕ⊥
BBg ϕ⊥

ABg∗ −ϕ‖g∗ ϕe

⎤
⎥⎥⎦, (A9)

where g = ∑
l exp(−iC i · ke) is the phase factor that arises

from the interaction between the Fourier transform and the
vectors connecting the three nearest neighbors, C i , with

TABLE I. Tight-binding parametrization for electron and
electron-phonon coupling (EPC) simulations.

Hopping (eV) EPC (eV)

ϕ‖ 2.90 β 0.03
ϕ⊥

AA 0.40 β∗
AA 0.00

ϕ⊥
AB 2.30 β∗

AB 0.00
ϕ⊥

BB 0.15 β∗
BB 0.00

C2 = C1 − a1 and C3 = C1 − a2. The parametrization used
here follows Ref. [28], which reproduces (interlayer) or
follows (intralayer) the established parametrization of AB-
stacked bilayer graphene, as given in Table I.

APPENDIX B: ELECTRON-PHONON COUPLING

Within perturbation theory, the electron-phonon coupling
between an electron in an initial state |ke,i〉 (wave number ke

and band i), a final state |ke + kp,j 〉, and a phonon with wave
number kp and polarization α is

M (ij,α)
e-p (ke,kp) =

(
h̄

2mωkp,α

)1/2

〈ke + kp,j | ∂He

∂ekp,α

|ke,i〉,
(B1)

where He is the electronic Hamiltonian of choice, e.g., the
tight-binding Hamiltonian discussed in Appendix A or the
Kohn-Sham potential within DFT, and ekp,α is the phonon
eigenvector. This element can be evaluated numerically within
density functional perturbation theory (DFPT) or analytically
within tight-binding theory. The former is well covered by
Ref. [49]. Let us examine the latter, dropping the subscript
kp,α for brevity. Furthermore, let us focus on the in-plane
phonons which drive phonovoltaic operation.

In Appendix A we discuss the wave functions. Here, we are
primarily concerned with the central term ∂H/∂e. In the tight-
binding model of bilayer graphene presented in Appendix A,
the Hamiltonian is

H = −
∑
ij

ϕij (d†
i dj + H.c.) ± ϕed

†
i dj δij , (B2)

where H.c. denotes the missing Hermitian conjugate term.
While in-plane atomic motion affects the hopping interaction,
it does not affect the interlayer potential. Thus, taking the
derivative of this Hamiltonian with respect to e gives [50]

∂H/∂e = �H =
∑
ij

∂ϕij

∂aij

C ij · ei − C ij · ej

aij

(d†
i dj + H.c.),

(B3)

where ei is the displacement of atom i due to the phonon mode,
C ij is the vector connecting atoms i and j , and aij = |C ij | is
the magnitude of this vector.

As in Appendix A, we must Fourier transform this element
into ke space in order to reduce our Hamiltonian into an N × N

matrix.
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The resulting electron-phonon matrix elements are [50]

〈ke
′,n|�H |ke,m〉 = �Hn,m(ke,kp)

∂ϕnm

∂anm

Cnm · en exp(ike · Cnm) − Cnm · em exp(ike
′ · Cnm)

anm

, (B4)

where ke
′ = ke + kp. As an example, consider the electron-

phonon coupling matrix in AB bilayer graphene. Let

h =
∑

l

C l · ei exp(ike · C l),

ζ = h(ke) · eA + h(ke + kp) · eB,

ζ ∗ = h∗(ke + kp) · eA + h∗(ke) · eB. (B5)

Then, the electron-phonon coupling matrix is

�Hke,kp
= β‖

⎡
⎢⎣

0 ζ β∗
ABζ β∗

BBζ ∗
ζ ∗ 0 0 β∗

ABζ

β∗
ABζ ∗ 0 0 ζ

β∗
BBζ β∗

ABζ ∗ ζ ∗ 0

⎤
⎥⎦, (B6)

where βij = ∂ϕi/aij ∂aij and β∗
ij = βi/β‖.

In general, we expect that the intralayer contributions dom-
inate their interlayer counterparts, particularly for the in-plane
phonon modes considered here. Our argument is as follows:
First, the interlayer hopping interactions are approximately
an order of magnitude weaker than the intralayer hopping
interactions. Second, the term C ij · ei significantly reduces
(or prohibits) the interlayer coupling between the nearest
and second-nearest neighbors, i.e., those which interact non-
negligibly. For example, this term is the reason the interlayer

AA coupling element vanishes in the above electron-phonon
coupling matrix.

Thus, we only require a single fitting parameter (β‖) and the
phonon and electron eigenvalues and eigenvectors in order to
calculate the electron-phonon coupling element. In graphene,
electrons primarily interact with two phonon modes: the �-
point LO mode (E2g, 198 meV) and the K-point TO mode (A′

1,
164 meV). Canonically, the associated graphene eigenvectors
are [50,51]

e(i)
kp→0,LO = ± 1√

2

kp

|kp| , (B7)

e(A)
kp=K,TO = 1√

2
(−i, − 1,0), (B8)

e(B)
kp=K,TO = 1√

2
(−i,1,0), (B9)

where i is the atomic index and the ± refers to the A (+)
and B (−) site carbon atom. In twisted bilayer graphene,
the eigenvectors are rotated along with the lattice vectors
in the twisted graphene layer. That is, we assume that the
in-plane interactions determine the behavior of the phonon
modes. Our DFPT calculations support this assumption, as
these eigenvectors are identical in single-layer, AA-, and
AB-stacked graphene. Finally, we take β‖ = 30 meV in order
to fit our zero-field results to our DFPT results.
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