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Unified theory of resonances and bound states in the continuum in Hermitian tight-binding models
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We study the transport properties of an arbitrary two-terminal Hermitian system within a tight-binding
approximation and derive an expression for the transparency in a form that enables one to determine the
exact energies of the perfect (unity) transmittance, zero transmittance (Fano resonance), and bound state in the
continuum (BIC). These energies correspond to the real roots of two energy-dependent functions that are obtained
from two non-Hermitian Hamiltonians: the Feshbach effective Hamiltonian and the auxiliary Hamiltonian, which
can be easily deduced from the effective one. BICs and scattering states are deeply interconnected. We show
that the transformation of a scattering state into a BIC can be formally described as a “phase transition” with
a divergent generalized response function. Design rules for quantum conductors and waveguides are presented.
These rules describe the structures exhibiting coalescence of both resonances and antiresonances resulting in the
formation of almost rectangular transparency and reflection windows. The results can find applications in the
construction of molecular conductors, broad-band filters, quantum heat engines, and waveguides with controllable
BIC formation.
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I. INTRODUCTION

Resonance phenomena play a central role in the physics of
open quantum systems and waveguides [1–3]. Therefore the
ability to design structures with required resonance properties
is of primary importance for the whole field of nanoelectronic
and nanophotonic engineering. The past years demonstrated
a steady progress in understanding the properties of open
quantum systems (OQS) and subwavelength electronic and
optical structures [1–4]. In simply connected structures, the
main types of resonances are Fabry-Perot (FP) or Breit-Wigner
(BW) resonances [5]. In multiply connected quantum systems,
the interplay of different scattering paths can result in both
constructive interference (resonances) and destructive interfer-
ence (antiresonances).1 If one of the paths includes a (quasi-
) localized state, then an asymmetric Fano-Feshbach (FF)
resonance is formed, which is composed of an antiresonance
and a nearby resonance [3]. A traditional way to describe
resonances is the scattering matrix (S-matrix) formalism [5,6].
The resonances correspond to the poles of the S matrix in
the lower half of the complex energy plane [5]. S-matrix
poles located on the real axis are related to bound states
in the continuum (BIC), which therefore can be considered
to be resonances with zero width. The existence of BICs
was proposed on the eve of the quantum mechanics [7] but
only recently BIC has been recognized as a wave phenomena
[8] and a variety of approaches to realization of BIC have
been studied [4] and experimentally verified [4,9]. The BIC
amplitude can either monotonically decay away from its center

*aagor137@mail.ru
1Throughout this paper we understand resonances and antireso-

nances as peaks and dips of the transmission coefficient at real
energies. Specifically, we focus on the perfect resonances and
antiresonances, i.e., scattering states with unity and zero transmission
correspondingly (without taking into account imperfections and
dissipation).

[7], as for an ordinary bound state, or occupy a restricted
space region [10,11] being strictly zero outside it. In the
latter case, BIC can be formed, for instance, between two
FF scatterers, which form the FP resonator at the energy of
FF resonance with zero transparency. In this case, the wave
is trapped in the inner region and is completely destroyed
by the destructive interference outside [10,12–14]. The total
transparency of such structure is zero at the energy of FP BIC.
Another type of spatially restricted BIC emerges at the point
of collapse of resonance-antiresonance pair (Fano resonance)
[15,16]. Transparency takes a finite nonzero value in this case.

The standard formalism of the quantum mechanics is based
on Hermitian Hamiltonians. However, it is too complicated
when applied for the description of OQS, because of the
infinite environment, which should be also taken into ac-
count. The S-matrix approach is a way to overcome this
difficulty. However, during the past decades a working OQS
theory has been developed [1,6,17–19]. The theory operates
with non-Hermitian Hamiltonians that could be obtained via
Feshbach projection technique [6] from the parent Hermitian
Hamiltonian describing both the quantum system and its
environment. The amplitude of the S matrix can be explicitly
expressed in terms of the Feshbach non-Hermitian effective
Hamiltonian, the eigenvalues of which coincide exactly with
the S-matrix poles and determine energies of resonant states
[19,20]. Thus the physics of OQS becomes the physics of
non-Hermitian Hamiltonians. Resonant states correspond to
unstable states of OQS, they provide only outgoing waves
without incoming ones, i.e., satisfy the Siegert boundary
conditions. These states are very useful in, e.g., description of
the nuclear reactions [19] or phase lapses in the transmission
of quantum systems [21]. One of the advantages of this OQS
theory is that it makes possible to elucidate subtle physical
effects caused by the interference of the eigenfunctions of
non-Hermitian Hamiltonians [22].

The resonant states that correspond to the eigenvalues of the
non-Hermitian effective Hamiltonian should be distinguished
from the scattering resonances, which are the main concern of
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our paper. Scattering resonances are related to real energies,
which determine the position of the transparency maxima on
the real energy axis. However, the correspondence between the
scattering resonances and the S-matrix poles is not trivial. For
a narrow and isolated resonance, its location almost perfectly
coincides with the real part of the pole of the scattering matrix
(S matrix), while the imaginary part of the pole determines the
resonance width. For wide and/or interacting (closely spaced)
resonances, this is not true [23–25]. Interaction between
the resonances can result in their coalescence (collapse of
resonances [23,26]). For semiconductor heterostructures, it
was described with two resonances [23,27] and for tunnel-
ing quantum dots three resonances were involved [28,29].
Collapse of eigenmodes was also observed in semiconductor
cavities with the Rabi splitting [30], classical electrical circuits
[31,32], quantum tunneling structures [33,34], etc. However,
the coalescence of resonances can not be described by the
behavior of the poles of the scattering matrix [23,29].

Implementation of novel physical concepts such as PT -
symmetry and PT -symmetry breaking [35] (here P and T
stand for the space inversion and time reversal symmetries,
respectively) opened new directions in studying open elec-
tronic systems with non-Hermitian Hamiltonians [1,35] and
electromagnetic waveguide structures with combined gain and
loss [36,37]. It also shed a light on the mechanism of the
coalescence of resonances. In Refs. [29,38–42], the relation
between the resonances in quantum conductors and the PT
symmetry was studied. In fact, under the condition of the
perfect resonance, incoming and outgoing particle flows are
interrelated by thePT symmetry. Therefore thePT symmetry
is inherent to the perfect resonance condition.

An important feature of PT -symmetric systems is the
PT -symmetry breaking phenomenon, which takes place at
some point of the parameter space, where two real eigenvalues
coalesce and with further parameter variation turn into a pair
of complex conjugated eigenvalues with nonzero imaginary
parts [35]. Such point in the parameter space is known as
the exceptional point (EP) [18,19,43–45]. The Hamiltonian at
the EP takes the form of a Jordan matrix (which is obviously
non-Hermitian). At the EP, the eigenvectors coalesce into a
single nondegenerate state [18,19,43,46] as opposite to the
case of the crossing (diabolic) point, where they are degenerate
and can be made orthogonal. It should be noted that, in general,
the PT symmetry of the non-Hermitian Hamiltonian is not a
necessary and sufficient condition for energy spectrum to be
real [47,48]. Because of the close mathematical similarity of
the Schrödinger and wave equations, the PT symmetry can
be straightforwardly realized in optics, where PT -symmetric
terms correspond to the gain and loss regions. The PT -
symmetry breaking and EPs have been demonstrated in cou-
pled waveguides [36], photonic lattices [49], PT -symmetric
plasmonic metamaterials [50,51], lasers [52], coherent perfect
absorbers [53], and other optical systems.

In a fermionic system, time-odd terms in the Hamiltonian
destroy unitarity. Nevertheless, one can realize non-Hermitian
terms by inflow and outflow processes in a dissipationless open
quantum system as it has been done in Ref. [40]. The same
authors showed [41] that the scattering state of an arbitrary
Hermitian lattice can be described as the eigenstate of an
auxiliary non-Hermitian Hamiltonian with imaginary terms

that describe incoming and outgoing particle flows. Recently,
within the framework of the tight-binding approximation, we
have obtained the exact expression for the transparency of
a dissipationless quantum chain (simply connected quantum
conductor) [29,42], which directly relates the transparency
maxima to the eigenvalues of an auxiliary non-Hermitian
Hamiltonian that can be straightforwardly deduced from the
Feshbach effective Hamiltonian. In some cases (e.g., in 1D
spatially symmetric systems), an auxiliary Hamiltonian isPT -
symmetric and has real eigenvalues, which exactly determine
the location of perfect resonances. At the EP of an auxiliary
Hamiltonian, the resonances coalesce and a wide transparency
window is formed. Transparency at the EP has a non-BW
profile [23,42]. The poles of the scattering matrix (Greens
function) can also coalesce and, as a result, a double pole is
formed [24,54,55]. However, its location, in general, has no
direct relation to the coalescence of resonances and, hence, to
physical observables. Although, as shown in Refs. [56,57], the
physical properties of the system do change at the EP of the
scattering matrix of the system with balanced gain and loss,
where two unimodular eigenvalues of the S matrix turn into
two nonunimodular. In Ref. [54], the interaction between Fano
resonances was analyzed in connection with the formation
of the Green function double poles for interacting scattering
channels, but just as in the case of the BW resonances, the
location of a double pole has, in general, no relation to the
location of the coalescence of resonances.

The energy (frequency) of BIC is the real eigenvalue of
the effective Hamiltonian [4,58]. Due to unitarity of the S

matrix (in a nondissipative system), some relations should
exist between the zeros of the denominator (eigenvalues of
the effective Hamiltonian) and the zeros of the numerator
(antiresonances) in the expression for the S matrix, which
has been recently studied on phenomenological grounds in
Ref. [59]. On the other hand, the zeros of the effective
Hamiltonian in the complex plane determine resonances.
Hence the resonances and BIC energies (frequencies) are
interrelated as well.

In the present paper, we generalize the result of Ref. [29] for
an arbitrary two-terminal Hermitian system. We show that the
scattering properties (transmission coefficient) of such systems
can be described by two energy-dependent functions, which
are derived from the effective Hamiltonian and another non-
Hermitian Hamiltonian—the auxiliary Hamiltonian. Opposite
to the effective Hamiltonian, this approach allows one to find
exact perfect and zero transmission energies (frequencies) even
for closely located and overlapping resonances. Moreover, the
microscopic theory presented here provides a unified descrip-
tion of transparency maxima (resonances), transparency zeros
(antiresonances), and BIC energies (frequencies) as well.

The structure of the paper is as follows. The model under
consideration is described in Sec. II. In Sec. III, within a
tight-binding approximation, we derive a formula for the
transparency of an arbitrary two-terminal multiply connected
molecular (or QD) conductor or waveguide. In Sec. IV, we
show that the transition to a BIC state in the parameter space
is characterized by the singularity of the generalized response
function just as in the case of the second-order phase transition.
However, the formation of the BIC state is discontinuous. In
Sec. V, we present the models that demonstrate the coalescence
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of Fano resonances either at the EP or crossing points, which
is accompanied by the formation of wide reflection windows.
A summary is made in Sec. VI.

II. GENERAL RELATIONS: MODEL AND TRANSMISSION
COEFFICIENT

We consider an arbitrary N -site Hermitian structure con-
nected to two semi-infinite leads. Every isolated site is assumed
to have a single localized state with a real energy εi . Within
the tight-binding approximation this system can be described
by the Hamiltonian

Ĥ = Ĥ0 + ĤL + ĤR + ĤL
int + ĤR

int. (1)

The first term in (1) describes an isolated Hermitian N -site
structure:

Ĥ0 =
N∑

i=1

εia
†
i ai +

N∑
i,j=1,i<j

(τij a
†
j ai + H.c.), (2)

where a
†
i (ai) is the creation (annihilation) operator of the

electron on the ith site and τij is the tunneling matrix element
between the ith and the j th sites. We consider here a single-
electron problem without taking into account many-body
effects such as electron-electron interaction, electron-phonon
scattering, etc. Neglecting electron-electron Coulomb and
exchange interactions limits us to the case of small on-site
amplitudes and fast tunneling rates in order to prevent charge
accumulation.

The Hamiltonian (1) is also applicable to the description
of optical waveguide systems within an evanescent wave
coupling approximation. In the case of an optical system,
we consider light propagation along waveguides (instead of
time evolution in a quantum system); the on-site energies and
tunneling matrix elements are replaced by the corresponding
propagation constants and evanescent field overlapping inte-
grals [60,61]. In contrast to electron systems, here there is no
restriction on the field amplitudes.

Leads with the energy spectrum εL(R) = εL(R)(p) are
described by the Hamiltonians ĤL and ĤR:

ĤL(R) =
∑

p

εL(R)(p)a†
L(R),paL(R),p. (3)

Operator aL(R),p in (3) corresponds to the state in the left (right)
lead with momentum p. Term Ĥ

L(R)
int in Eq. (1) describes the

interaction between the state with momentum p in the left
(right) lead and the ith site of the structure:

Ĥ
L(R)
int =

∑
p,i

(
γ

L(R)
p,i a

†
i aL(R),p + H.c.

)
. (4)

Here, γ L(R)
p,i is the matrix element, which, in general, is energy-

and momentum-dependent.
The transport properties of the quantum system are gov-

erned by its transmission coefficient, which can be written as
[62,63]

T = 4 Tr (�̂RĜr �̂LĜa). (5)

Here, Ĝr and Ĝa = (Ĝr )† are correspondingly the retarded and
advanced Green functions of the system. Taking the interaction

with the leads into account, we have

Ĝr = (ωÎ − Ĥeff)
−1, (6)

where Î is the N × N identical matrix and Ĥeff is the effective
Hamiltonian [6] of the structure:

Ĥeff = Ĥ0 + �̂L + �̂R. (7)

Here, �̂L(R) is the self-energy of the left (right) lead. The
Hermitian matrix �̂L(R) from Eq. (5) describes the anti-
Hermitian part of the corresponding lead self-energy:

�̂L(R) = δ̂L(R) − i�̂L(R). (8)

In the system, we consider elements of δ̂L(R) and �̂L(R)

matrices, which can be easily deduced by standard methods
[64] under the assumption that γ L(R)

p,i = γ
L(R)
i (ω) depends only

on energy, rather than on momentum.
Thus the transmission coefficient of the structure becomes

T = 4
∑N

i,j,m,k=1 (−1)i+j+m+kM∗
ijMmk�

R
jk�

L
mi

|det (ωÎ − Ĥeff)|2
. (9)

Minors Mij in Eq. (9) are the minors of the (ωÎ − Ĥeff) matrix.

III. GENERALIZED FORMULA FOR TRANSMISSION
COEFFICIENT

In Ref. [29], it was shown that in the model of a
simply connected quantum conductor (quantum chain) the
denominator and the numerator in Eq. (9) are connected by a
simple relation, which makes it possible to determine the exact
positions of the perfect transparency energies on the energy
axis. The derivation of this result was based on the properties
of tridiagonal matrices. Here we present a much more general
way of deriving that result and show that the analogous
decomposition of the squared module of the characteristic
determinant of the effective Hamiltonian can be performed for
an arbitrary multiply connected quantum conductor described
by model (1). This property provides separate control over the
transparency peaks and dips.

Matrix �̂L(R) can be written in the following form [65]:

�̂L(R) = uL(R)u
†
L(R), (10)

with vector (uL(R))i = √
πρL(R)γ

L(R)
i , where ρL(R) is the

density of states in the leads. Using Eq. (10), we can simplify
Eq. (5) in a way different from that in Eq. (9). Let us introduce
a matrix

Â = ωÎ − Ĥ0 − δ̂L − δ̂R. (11)

Matrix Â is Hermitian and this property is crucial for further
calculations. Using Â from Eq. (11) we can simplify the
transmission coefficient to the following:

T = 4 Tr{uRu†
R(Â + iuLu†

L + iuRu†
R)−1

× uLu†
L[(Â + iuLu†

L + iuRu†
R)−1]†}

= 4|u†
R(Â + iuLu†

L + iuRu†
R)−1uL|2. (12)

Then applying the Sherman-Morrison formula [66] and matrix
determinant lemma [67], we can simplify (12) and get

T = 4|detÂ|2|u†
RÂ−1uL|2

|det(Â + iuLu†
L + iuRu†

R)|2
. (13)
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According to the definitions (10) and (11), the denominator of
Eq. (13) is nothing more than the characteristic determinant
of the effective Hamiltonian, which is also present in the
denominator of Eq. (9) for the transmission coefficient. Hence
the numerators of Eqs. (13) and (9) should coincide as well.
From Eq. (13), it follows that the numerator of the transmission
coefficient is a square module of a certain energy-dependent
quantity P , which is defined up to an arbitrary phase factor:

P = 2u†
R(adj Â)uL. (14)

Here, adj Â is the adjugate matrix of Â from Eq. (11).
Now we isolate the term 4|detÂ|2|u†

RÂ−1uL|2 = |P |2 in
the denominator of Eq. (13) and then we just simplify the rest
of the denominator. Applying the matrix determinant lemma
once again one can figure out that

|det(ωÎ − Ĥeff)|2 = |det(Â + iuLu†
L + iuRu†

R)|2
= |P |2 + |Q|2, (15)

where Q is another function of ω defined up to an arbitrary
phase factor:

Q = det(Â − i�̂L + i�̂R). (16)

Quantity Q can be understood as a characteristic determinant
of some auxiliary Hamiltonian Ĥaux:

Ĥaux = Ĥ0 + δ̂L + δ̂R + i�̂L − i�̂R. (17)

This auxiliary Hamiltonian differs from the effective one (7)
only in the sign of �̂L or �̂R . The choice of the sign is arbitrary,
but for the sake of convenience, it can be preassigned with the
direction of the current flow taken into account. According to
this, the auxiliary Hamiltonian corresponds to the scattering
boundary conditions, i.e., outgoing waves produced by an
incoming one, rather than to the Siegert boundary conditions
as the Feshbach effective Hamiltonian does. Non-Hermitian
Hamiltonians with such boundary conditions (scattering)
naturally appear in the description of the scattering states with
perfect transmission [29,40–42].

Substituting Eq. (15) into Eq. (13), one can get the
expression for the transmission coefficient of an arbitrary
two-terminal Hermitian structure in the following form:

T = |P |2
|P |2 + |Q|2 . (18)

This formula for the linear chain structures (simply connected)
was derived in Ref. [29] and here it is shown to hold true in a
much more general case (multiply connected). Equations (17)
and (18) represent the main result of this section. In fact, we
have proven the theorem that the transmission coefficient can
be expressed in terms of two characteristic determinants of two
non-Hermitian Hamiltonians. One is the effective Hamiltonian
(7), the other is the auxiliary Hamiltonian (17), which can be
deduced from the effective one. Hence formula (18) can be
also written as

T = |ωÎ − Ĥeff|2 − |ωÎ − Ĥaux|2
|ωÎ − Ĥeff|2

. (19)

Thus, according to the close relation between the effective and
auxiliary Hamiltonians [see Eqs. (7) and (17)], one can see

from Eq. (19) that the transmission probability of the system
can be fully described by the effective Hamiltonian only. It is
worth mentioning that a standard normalized Fano resonance
profile [68]

T (ω) = 1

1 + q2

(ω + q)2

1 + ω2
(20)

can be easily rewritten in the form (18) with |P |2 = (ω + q)2

and |Q|2 = (ωq − 1)2.
The eigenvalue problem for the Hamiltonian Ĥaux is

nonlinear due to self-energies and, consequently, it should be
solved self-consistently. This fact can have a serious impact
on its properties [69]. Strictly speaking, this means that, in
general, Q and P are not polynomials. However, if one neglects
the dependence of the self-energy terms on the energy, then Q

and P can be considered as polynomials [29].
According to Eq. (18), unity values of the transmission

coefficient exactly coincide with the real roots of Q, i.e., with
the real eigenvalues of the auxiliary Hamiltonian. Moreover,
Eq. (18) enables one to determine exactly the positions of
zero transmittance. Indeed, zero values of the transmission
coefficient coincide with the real roots of P . However, as it will
be shown further, not all of the real roots of Q correspond to
the unity transmittance and not all real roots of P correspond
to zero transmittance as the roots of P and Q can coincide
(which is just the case for BIC).

It should be noted here that the approach of describing the
exact positions of resonances and antiresonances, presented in
this paper, has no restrictions both on the complex tunneling
matrix elements τij inside the structure and on the complex
couplings γ

L(R)
i with the leads. Consequently, all phase shifts

of hopping integrals �φ = e
h̄

∫
tunnel.path A · dl induced by an

external electromagnetic field with a vector potential A can
be taken into account properly allowing for the description
of the Aharonov-Bohm effect [70]. Thus, for instance, nu-
merical analysis of several quantum dot-based interferometers
[15,16,71] can be extended to an explicit analytical description.

The expressions for the transmission coefficient derived
above can be simplified dramatically if we consider that each
lead interacts only with one site of the structure. Indeed,
suppose that the left lead is attached to the site number 1
and the right lead to the site number N . In this case, each
of the matrices �̂L(R) and δ̂L(R) possess only one nonzero
element each. For the leads modeled by semi-infinite linear
chains, these quantities can be calculated explicitly [26,64,72].
Moreover, in this case, the point contact approximation can be
applied even if the interaction with the lead is nonlocal, the
only requirement is that only a finite number of sites in the
lead interact with the system.

In the point interaction approximation, the functions P and
Q are reduced to

P = 2
√

�L�RMN1,
(21)

Q = det(ωÎ − Ĥaux),

where MN1 is the minor of the (ωÎ − Ĥeff) matrix, Ĥeff is the
effective Hamiltonian:

(Ĥeff)mn = (Ĥ0)mn + (δL − i�L)δm1δn1

+ (δR − i�R)δmNδnN, (22)
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and Ĥaux is the auxiliary Hamiltonian:

(Ĥaux)mn = (Ĥ0)mn + (δL + i�L)δm1δn1

+ (δR − i�R)δmNδnN . (23)

Here, δL(R) and �L(R) are nonzero elements of the correspond-
ing contact self-energy matrices. The feature of Eq. (21) is that
the minor MN1 turns out to be independent of δL(R) and �L(R).
Thus we can treat MN1 here as the minor of the (ωÎ − Ĥ0)
matrix. This approximation of point interaction with the leads
will be used in Secs. IV and V.

IV. BOUND STATES IN THE CONTINUUM

A. General properties of P and Q functions at BIC

The bound state in the continuum (BIC) is a localized
state with the energy lying within the energy interval of
continuum states [4]. BICs are nondecaying states, hence, they
do not interact with continuum and, therefore, have zero width.
Such states correspond to real eigenvalues of the effective
Hamiltonian lying within the energy band of the leads. In
Refs. [15,16,73,74], BICs in some particular QD systems were
identified by the presence of a δ-function peak in the density
of states (DOS). This result can be generalized for an arbitrary
two-terminal system (see Appendix A for details). Here we
discuss the connection between BICs and the properties of P

and Q functions.
Suppose effective Hamiltonian Ĥeff has a real eigenvalue

ω = ω0:

det(ωÎ − Ĥeff) ∝ (ω − ω0). (24)

According to Eq. (15) it follows from (24) that

|P (ω)|2 + |Q(ω)|2 = |det(ωÎ − Ĥeff)|2 ∝ (ω − ω0)2. (25)

At ω = ω0, the sum of two non-negative quantities takes a zero
value, hence, they are both zero. Therefore

P,Q ∝ (ω − ω0), (26)

and we can conclude that there is BIC in the system if and only
if the P and Q share the same real root.

These simple considerations, based on the introduction of
the auxiliary Hamiltonian, show that the presence of BIC at
the energy ω0 implies the presence of the root of P at the same
energy. Thus, according to Eqs. (9) and (18), the problem of
divergence of transmission at the BIC energy, discussed, for
example, in Ref. [59], is resolved easily. On the other hand, the
reverse is not true and the presence of a real root of P does not
imply that there is BIC. Shortly, one can formulate different
possibilities as follows: (1) there is a unity-valued resonance
at the energy ω0, if P (ω0) �= 0 and Q(ω0) = 0. (2) There is a
zero-valued antiresonance at the energy ω0, if P (ω0) = 0 and
Q(ω0) �= 0. (3) There is a BIC at the energy ω0, if P (ω0) = 0
and Q(ω0) = 0.

In a more general case, suppose that the energy ω0 is
a root of multiplicity mQ of Q and also it is a root of
multiplicity mP of P . Then there are min (mQ,mP ) degenerate
BICs at the energy ω0 and mQ − mP coalesced resonances, if
mQ > mP , or mP − mQ coalesced antiresonances, if mQ <

mP . If mQ = mP , then there are no extreme points of
transmission at all. In other words, using P and Q functions

L R
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FIG. 1. BIC at zero transmission energy. (a) Transmission co-
efficient of a three-site system within tight-binding approximation
with η = 0.4 (thin green line) and η = 0 (thick blue line). (Inset)
Schematic view of three-site structure considered. (b) DOS for this
structure [parameters are the same as in part (a)]. At η = 0, BIC
appears and manifests itself as δ-function peak in DOS. All values
are in units of J .

we just easily demonstrated that BIC is indeed a zero width
resonance. According to expression (18), one can see that
condition Q(ω0) = 0 indicates that BIC is a resonance and
P (ω0) = 0 implies that it has zero width. Therefore BICs
can appear because of resonance-antiresonance coalescence.
This phenomenon was studied in the literature for particular
quantum systems [10,73,75–77]. In the following section, we
illustrate this conclusion.

B. Resonances and BICs in toy three-site model

In this section, we consider resonances, antiresonances,
and BICs in a simple three-site structure [see the inset in
Fig. 1(a)]. The Hamiltonian of the structure has the form (1)
with the particular parameters defined below. We assume the
leads to be identical semi-infinite linear chains with equal
on-site energies set as the energy origin and the nearest-
neighbor hopping integrals J set as the energy unit. These
leads we treat to be attached locally to the site 0 of the
structure via equal tunneling matrix elements γ L

0 = γ R
0 = γ ∈

R. Tunneling matrix elements τa , τb, and η are real and of
the same sign, e.g., positive and the on-site energies of the
structure are taken to be ε0 = 0 and εa = εb = ε. Thus the
explicit expressions for the functions P and Q are

P = γ 2
√

4 − ω2(ω − ε − η)(ω − ε + η),

Q = (ω − ε + η)3(1 − γ 2) + (ω − ε + η)2(ε − 3η)(1 − γ 2)

+(ω − ε + η)
[
2η(η − ε)(1 − γ 2) − τ 2

a − τ 2
b

]
+ η(τa − τb)2. (27)

P has two real roots ω = ε ± η, which coincide with the
energies of the eigenstates of QD molecule formed by sites a

and b. Another two roots, ω2 = 4, correspond to the leads band
edges where the particle velocity and, hence, the transparency
turn into zero. BIC occurs if and only if Q shares roots with
P . According to Eq. (27), only the root ω = ε − η can be
common for P and Q and this takes place as soon as τa = τb

or η = 0. If τa and τb were of opposite signs, there would
be BIC at τa = −τb with the energy ω = ε + η. This BIC
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has properties similar to that at τa = τb and with the energy
ω = ε − η, thus, we will not consider it in this paper. The
multiplicities mP and mQ of the roots of P and Q can vary
and in the following sections we consider different cases of
BIC formation, depending on these multiplicities.

This structure possess conventional bound states with
exponential decaying asymptotics: aL(R)

n ∝ e−κ|n|. However,
the energies of these bound states are beyond the continuum;
they are refereed to as bound states outside the continuum
(BOC). On the other hand, there may exist the BICs with all
the site amplitudes equal zero except for a and b. The relation
between these nonzero amplitudes is established as

τaa + τbb = 0, for η = 0, (28)

a + b = 0, for τa = τb. (29)

To find the particular values for a and b in each case one can
normalize the corresponding state as a conventional bound
state. As we see from (28) and (29), the BIC amplitude
distribution is antisymmetric for τa = τb. According to the

standard BIC classification [4,77], one can easily check that
both Eqs. (28) and (29) describe the Friedrich-Wintgen BIC
[8], i.e., the BIC formed by the destructive interference
between two states coupled to the same continuum. Any other
system possessing BICs can be studied in the same manner,2

e.g., Fano mirror BIC described in Refs. [10,12–14].
The site amplitudes of the scattering state in this structure

can be easily calculated by solving the corresponding tight-
binding Schrödinger equation with the boundary conditions
given by aL

n = eikn + re−ikn for the left lead and aR
n = teikn for

the right lead, where r and t are the reflection and transmission
amplitudes respectively. Taking into account the dispersion
relation for the leads (ω = −2 cos k) one can derive the site
amplitudes of the scattering state:

a0 = C(ω − ε − η)(ω − ε + η),

a = C[τa(ω − ε + η) − η(τa − τb)], (30)

b = C[τb(ω − ε + η) − η(τb − τa)],

where

C = iγ
√

4 − ω2

(ω − ε + η)
{
(ω − ε − η)[ω − γ 2(ω − i

√
4 − ω2)] − τ 2

a − τ 2
b

} + η(τa − τb)2
.

From (30), it follows that either at the BIC or at antiresonance
energy (both corresponding to P = 0) the site amplitude a0

always equals zero.

1. m Q < mP

For our particular structure, described above, the condition
mQ < mP can be fulfilled only for mQ = 1 and mP = 2,
which, in turn, requires η = 0. In this case, BIC forms at
the energy of zero transmittance ω = ε. Figure 1 depicts the
plots of the transmission coefficient and DOS for η = 0 and for
η �= 0. For illustration, we take γ = 1, τa = 1, τb = 0.5, and
ε = 1. According to Appendix A, formation of BIC manifests
itself as a δ-function peak of DOS.

Now consider the site amplitudes of the scattering state
in the vicinity of this BIC. According to Eq. (30) at the
energy ω = ε there are no special features of the site
amplitude distribution for any values of η and even for η = 0,
corresponding to BIC formation. Nevertheless, from the direct
analysis of Eq. (30) one can figure out that at the energy ω = ε′,
where

ε′ = ε − 2η
τaτb

τ 2
a + τ 2

b

, (31)

the site amplitudes of the scattering state become [written as a
vector (a0,a,b)]

(a0,a,b) = iγ
(
τ 2
a + τ 2

b

)√
4 − ε′2(

τ 2
a − τ 2

b

)
[ε′(1 − γ 2) + iγ 2

√
4 − ε′2]

×
(

τ 2
a − τ 2

b

τ 2
a + τ 2

b

,
τb

η
, − τa

η

)
. (32)

As one can see from Eq. (32), the distribution of the scattering
state amplitudes a and b satisfies the relation (28), conse-
quently, it corresponds to the BIC state except for a0 is nonzero.
In the limit η → 0, amplitudes on the sites a and b formally
diverge, whereas the amplitude on the site a0 remains constant.
Thus the interrelation between site amplitudes (symmetry)
tends to that of the BIC state, i.e., defined by Eq. (28). On
the other hand, at the exact BIC condition (η = 0 and ω = ε)
the amplitudes are

(a0,a,b) = − iγ
√

4 − ε2

τ 2
a + τ 2

b

(0,τa,τb). (33)

From Eq. (33), one can see that the distribution of the scattering
state site amplitudes (a and b) at the exact BIC condition
abruptly changes and becomes orthogonal to BIC.

2. m Q = mP

When mQ = mP , BIC forms at the energy, corresponding
to a nonextreme point of the transmission. For the structure we
consider, the only possible case is mQ = mP = 1. According
to Eq. (27), this requires P and Q to be linear in (ω − ε + η);
this can be satisfied if τa = τb and η �= 0. For instance, let
us take η = 1 �= 0, γ = 1, τa = τb = 1, and ε = 1. In this
particular case, BIC forms at the energy ω = ε − η = 0.
Figure 2 shows the transmission coefficient and DOS for the
three-site structure with τa = τb and with τa �= τb.

At the exact energy of this BIC (ω = ε − η), as can be
deduced from Eq. (30), the scattering state amplitudes (a0,a,b)

2See Ref. [78] for the application of the theory to several models of
BIC formed in a Fabry-Perot resonator.
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FIG. 2. BIC at “annihilation point” of Fano resonance-
antiresonance pair with nonzero transmission. (a) Transmission
coefficient of three-site system within tight-binding approximation
with τa = 1.5 (thin green line) and τa = 1 (thick blue line). (b) DOS
for this structure [parameters are the same as in part (a)]. At τa = 1,
BIC appears and manifests itself as δ-function peak in DOS. All
values are in units of J .

are excited in an antisymmetric way:

a0 = 0, a = −b = iγ
√

4 − (ε − η)2

τb − τa

. (34)

This distribution fully coincides in symmetry with the cor-
responding BIC (29). In the limit τa → τb, the amplitudes a

and b formally diverge. However, in the exact BIC regime
(τa = τb) and at the energy ω = ε − η, as can be seen from
Eq. (30), the scattering state amplitudes (a0,a,b) are

(a0,a,b) = − iγ
√

4 − (ε − η)2

2η[ε−η−γ 2(ε−η−i
√

4 − (ε−η)2)] − 2τ 2
a

× (0,τa,τa). (35)

According to Eq. (35), a and b site amplitudes are distributed
symmetrically and are orthogonal to BIC.

3. m Q > mP

For mQ > mP , BIC forms at the energy of the perfect
transmission. For the particular structure, we consider this
can take place only for mQ = 2 and mP = 1. In this case, P

should be linear and Q should be quadratic on (ω − ε + η).
Thus, from Eq. (27), we deduce that η �= 0 and τa = τb =√

η(η − ε)(1 − γ 2). In order to have a nondisjoint structure (τa

and τb cannot vanish simultaneously), we also should restrict
ourselves with η > ε and γ < 1 (or η < ε and γ > 1). As an
example, let us take η = 1 �= 0, ε = 0.5 < η, and γ = 0.5 <

1, hence, we have τa = τb =
√

3
2
√

2
. At these conditions, BIC

forms at the energy ω = ε − η = −0.5. Figure 3 illustrates
this by plots of the transmission coefficient and DOS at τa = τb

and at τa �= τb. The distribution of the site amplitudes in this
case does not differ from the case with mP = mQ and is
governed by Eqs. (34) and (35). Although, the special choice
of parameters here leads to the perfect resonance formation in
the BIC regime.

Yet another feature, which is specific to the particular choice
of the parameters, shown in Fig. 3 is a perfect transmission at
the upper band edge, where the group velocity turns into zero.
It results from the Van Hove singularity of DOS (ρ ∼ 1√

2−ω
)
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FIG. 3. BIC at perfect transmission energy. (a) Transmission co-
efficient of three-site system within the tight-binding approximation
with τa = 1 (thin green line) and τa =

√
3

2
√

2
(thick blue line). (b) DOS

for this structure [parameters are the same as in part (a)]. At τa =
√

3
2
√

2
,

BIC appears and manifests itself as a δ-function peak in the DOS. The
perfect transmission and Van Hove singularity of DOS at the upper
band edge are due to the real root of Q located exactly at this band
edge. All values are in units of J .

and can be understood easily using the properties of P and Q

functions. Indeed, with the parameters corresponding to BIC
(τa = τb), one can see from Eq. (27) that the polynomial Q

has a real root ω = 2η. For our choice η = 1, we get that Q

has a real root at the very upper band edge. Thus we have Q ∼
(2 − ω) and P ∼ √

2 − ω, and, consequently, at ω = 2, perfect
transmission takes place. The phenomenon of the perfect band
edge transmission is common for real roots of Q falling at the
very band edge with the Van Hove singularity.

C. BIC formation as “ghost phase transition” with abrupt
symmetry transformation

In the preceding section for the particular three-site toy
model, we obtained a singularity for the scattering state site
amplitudes approaching the BIC point in the parameter space.
Near BIC, the symmetry of the scattering state amplitudes
at the sites forming BIC coincides with the symmetry of
the BIC amplitudes. At the very BIC point, the symmetry
of the scattering state amplitudes abruptly changes. Here we
show that this singularity, which is the manifestation of an
abrupt symmetry transformation, is a general property of the
system in the parameter space region near BIC. We consider
a point contact approximation and also assume leads to be
semi-infinite linear chains with on-site energies set as the
energy origin and nearest-neighbor hopping integral J set
as the energy unit. The vector a = (a1, . . . ,aN )ᵀ of the site
amplitudes can be found from the following equation:

ωÎa = Ĥeffa + s, (36)

where Î is the N × N identity matrix and s is a “source vector.”
Such form of the equation can be easily deduced from the
results of Ref. [41]. In our case, the “source vector” is s =
(s,0, . . . ,0)ᵀ with

s = 2i

γ L
1

�L. (37)
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From Eq. (36), we can straightforwardly find the site
amplitudes:

a = (ωÎ − Ĥeff)
−1s = (Â + iuLu†

L + iuRu†
R)−1s. (38)

Under the assumption of a point interaction, each of the vectors
uL(R) in the site localized states has only one nonzero element
uL,i = δi1

√
�L and uR,i = δRN

√
�R correspondingly.

Next, we transform the basis to hybridized eigenstates of
the structure, which diagonalize the matrix Â. For the sake
of definiteness, we suppose that BIC originates from the state
|1̃〉. It takes place as soon as the couplings ũL(R),1̃ vanish. Here
tilde highlights the eigenstate basis. In the vicinity of this BIC,
one can approximate the amplitude ã1̃ of the |1̃〉 state as

ã1̃ ≈ α(
√

�̃L,
√

�̃R)

�ω + β(
√

�̃L,
√

�̃R)
, (39)

where �ω = ω − ε̃1̃, with ε̃1̃ being the energy of the |1̃〉 state.
In Eq. (39), α(x,y) is some linear form of x and y, β(x,y)
is some bilinear form of x and y, and �̃L(R) = |ũL(R),1̃|2. It
should be noted here that the state |1̃〉 and, consequently, its
energy ε̃1̃ = ε̃1̃(ũL(R),1̃) naturally depend on the parameters of
the system and, thus, this state turns into BIC just in the limit
ũL(R),1̃ → 0 (or �̃L(R) → 0).

From Eq. (39), one can conclude that if one approaches the
BIC energy by some trajectory in the energy-parameter space
ω = ω(ũL(R),1̃) such that

∂ω(ũL(R),1̃)

∂ũL(R),1̃

∣∣∣∣
ũL(R),1̃=0

= ∂ε̃1̃(ũL(R),1̃)

∂ũL(R),1̃

∣∣∣∣
ũL(R),1̃=0

, (40)

then �ω = ω − ε̃1̃ = O(|ũL(R),1̃|2) = O(�̃L(R)) and the am-
plitude of the scattering state ã1̃ formally diverges with the
parameters tending to the BIC condition (ũL(R),1̃,�̃L(R) → 0).
Figure 4(a) schematically illustrates this concept. This general
description sheds light on the features of the behavior of the
scattering state site amplitudes in the example considered
in details in the previous subsection. It turned out that for
BIC at η = 0 and ω = ε the trajectory, providing the formal
divergence of the scattering state amplitudes is given by
ω = ε′ with ε′ from Eq. (31), while for BIC at τa = τb

and ω = ε − η the diverging trajectory is simple (constant
independent on τa(b)): ω = ε − η. Both this trajectories fulfill
the condition (40), which is illustrated by Figs. 4(b) and 4(c),
respectively. This approach generalizes previous results [76]
about diverging the wave function in the vicinity of BIC in the
interior of the system.

On the other hand, if the parameters satisfy the BIC
condition (ũL(R),1̃ = 0) exactly, the amplitude ã1̃ identically
equals zero with a removable singularity at �ω = 0 (ω = ε̃1̃).
Therefore, from the analysis of Eq. (39), we get that the
distribution of the scattering state amplitudes in the vicinity
of BIC corresponds to the distribution of the |1̃〉 state and it
abruptly changes to the orthogonal one (such that ã1̃ = 0),
if the exact BIC condition is fulfilled. Thus BIC formation
can be understood in some sense as a “phase transition”
resulting in an abrupt symmetry transformation. In terms of
the Landau theory of phase transitions, an incident wave can
be considered as a field conjugated to the “order parameter”
with the “order parameter” described by the BIC amplitude.
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FIG. 4. Trajectories demonstrating scattering state amplitude
divergence in energy-parameters space. (a) General view of trajectory
of ε̃1̃(ũL(R),1̃) (blue line) and schematic region (shaded), where
trajectories ω(ũL(R),1̃), providing formal divergence of scattering state
amplitude, can pass. (b) Exact hybridized eigenenergies of three-site
structure from the previous section in the vicinity of BIC at η = 0
and ω = ε with following parameters τa = 1, τb = 0.5, ε = 1, and
γ = 0.1 (thin solid green line) or γ = 1 (thin dashed red line). Thick
blue line corresponds to trajectory ω = ε′. It is easily seen that this
trajectory fulfills condition (40). (c) Exact hybridized eigenenergies
of same structure in vicinity of BIC at τa = τb and ω = ε − η with
τb = 1, ε = 1, η = 1, and γ = 0.1 (thin solid green line) or γ = 1
(thin dashed red line). Thick blue line corresponds to trajectory
ω = ε − η. In this case, the trajectory providing formal divergence is
simple (constant) because the derivative of ε̃1̃ in exact BIC is zero.
All values are in units of J .

The diverging state amplitude ã1̃ here corresponds to the
Curie-Weiss response function near the phase transition point.

V. ENGINEERING FANO RESONANCES: COALESCENCE
OF RESONANCES AND ANTIRESONANCES

A. Quantum dot loop: generalized metacoupling with leads

In Refs. [29,42], the coalescence of perfect transmission
maxima was shown to occur at the EP of the non-Hermitian
auxiliary Hamiltonian. Here we focus on the coalescence
of transmission zeros (antiresonances) and show that it
can be related to an EP of some additional non-Hermitian
Hamiltonian as well. We consider the structure, consisting
of two equal N -site chains interconnected via the tunneling
matrix element τ at the edge sites [Fig. 5(a)]. We numerate
the sites in each chain from 1 to N , thus, the leads are
connected to the first and to the N th site of the first chain
via matrix elements γL and γR , correspondingly. Hence the
number of the sites in these chains forming two branches of
the loop differ by two and such coupling can be considered as a
generalization of the metacoupling widely studied in aromatic
molecules [79]. The Hamiltonian of the system we consider is
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FIG. 5. Coalescence of antiresonances in double-chain structure.
(a) Schematic view of double-chain structure. (b) and (c) Real parts
of roots of P (ω) (thick green line) and real parts of roots of Q(ω)
(thin blue line) calculated for N = 2-site double-chain (b), which is
shown in inset, and for N = 3-site double-chain (c), which is also
shown in inset. Solid lines show entirely real roots and dashed lines
stand for real parts of complex roots. (d) Transmission coefficient
profile in the very regime of antiresonance coalescence (thick blue
line), in the very regime of resonance coalescence (thin green line)
and in intermediate regime (thin dashed red line). All values are in
units of J .

of general form (1) with a special choice of on-site energies
εi and hopping integrals τij . It is more convenient to write the
bare Hamiltonian Ĥ0 of this structure in a block form:

Ĥ0 = Ĥ1 + Ĥ2 + (�̂12 + H.c.),

Ĥ1 =
N∑

i=1

εia
†
i ai +

N−1∑
i=1

(τia
†
i+1ai + H.c.),

(41)

Ĥ2 =
N∑

i=1

εib
†
i bi +

N−1∑
i=1

(τib
†
i+1bi + H.c.),

�̂12 = τb
†
1a1 + τb

†
NaN,

where a
†
i (ai) and b

†
i (bi) are creation (annihilation) operators

in the ith site of the first and the second chains, respectively.
Here, Ĥ1(2) corresponds to the Hamiltonian of the first (second)
chain and �̂12 describes the interaction between them.

Now we assume that the system is symmetric (τi = τN−i

and γL = γR = γ ) and has identical on-site energies (εi = ε0

for each i). Using Eq. (21), one can calculate the function P

for this case (see Appendix B for details):

P = 2
√

�L�Rτ1 · · · · · τN−1det(ωÎ − Ĥzero). (42)

Here, Ĥzero is a PT -symmetric Hamiltonian defined in (B5);
its real eigenvalues determine the transmission zeros just as
the real eigenvalues of the auxiliary Hamiltonian (17) deter-
mine the perfect transmission energies. Thus, for the chains
invariant under the mirror reflection and having identical
on-site energies the coalescence of N zeros of transmission
corresponding to the N th-order EP of the Hamiltonian Ĥzero

can take place. Hence, according to Ref. [29], the coalescence
of an even number of transmission zeros results in a nonzero
dip, whereas the coalescence of an odd number of zeros results
in a zero-valued dip. According to the general relation (18),
the transmission coefficient near the real N th-order root ω0 of
P takes the form

T (ω) = (ω − ω0)2N

(ω − ω0)2N + �̃2N
, (43)

where �̃ is, in general, an energy-dependent parameter and
�̃(ω0) �= 0.

As an illustration, we consider two N -site double-chain
structures with N = 2 and N = 3. Leads in both cases are
treated as semi-infinite linear chains with the hoping integral J
set as the energy unit. Figure 5(b) shows the real roots and real
parts of the complex roots of P and Q for the two-site double
chain as functions of |τ |. We set |τ1| = |γ | = 1 and ε0 = 0.
Figure 5(c) corresponds to the three-site double chain. Here we
again assume |τ1| = |γ | = 1 and ε0 = 0. Coalescence of the
real roots of P [shown by thick green lines in Figs. 5(b) and
5(c)] indeed corresponds to the coalescence of transmission
zeros, because it takes place at the nonzero point of Q. For
the particular examples considered, it is not difficult to derive
conditions for the coalescence of antiresonances: |τ | = 1 for
the two-site double-chain structure [Fig. 5(b)] and |τ | = √

2
for the three-site double-chain structure [Fig. 5(c)]. These plots
also demonstrate the difference between the coalescence of
even and odd number of antiresonances mentioned above.
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2
�. (c) Transmission coefficient

profile in the very regime of the resonance coalescence.

Figure 5(d) shows transmission versus energy profiles for the
three-site double-chain structure. These profiles are plotted
for three values of |τ | representing the coalescence of antires-
onances (|τ | = √

2), coalescence of two pairs of resonances
(|τ | = 1), and in some intermediate position (|τ | = 1.2). For
|τ | = √

2, there are perfect transmission points at the band
edges, which are due to the real roots of Q, located exactly at
the band edges [see Fig. 5(c)].

B. Quantum dot comblike structure:
Crossing of antiresonances

Consider a comblike structure representing an N -site linear
chain with side-defect sites connected to each site of the
chain [Fig. 6(a)]. It is also more convenient to write the bare
Hamiltonian of this structure in a block form:

Ĥ0 = Ĥ1 + Ĥ2 + (�̂12 + H.c.),

Ĥ1 =
N∑

i=1

εia
†
i ai +

N−1∑
i=1

(τia
†
i+1ai + H.c.),

(44)

Ĥ2 =
N∑

i=1

ε′
ib

†
i bi,

�̂12 =
N∑

i=1

τ i
0b

†
i ai .

Here, a
†
i (ai) is the creation (annihilation) operator in the ith

site of the chain with the energy εi and b
†
i (bi) is the creation

(annihilation) operator in the ith side-defect site with the
energy ε′

i connected to the ith site of the chain via the hopping
integral τ i

0.
We assume that all sites of the linear chain and all side-

defect sites are physically identical, i.e., have the same energy:
ε′
i = εi = ε0, also we suppose that τ 1

0 = · · · = τN
0 = τ0. The

leads are treated as identical and are connected to the 1-st and to
the N th site of the chain by the matrix elements γL = γR = γ

(resulting in �L = �R = � and δL = δR = δ). In this case, the
functions P and Q can be derived in the following form (see
Appendix C for details):

P = 2ω̃N�τ1 · · · · · τN−1, Q =

∣∣∣∣∣∣∣∣∣∣∣

(ω̃ − δ − i�)ω̃ − |τ0|2 −τ1ω̃ . . . 0 0
−τ ∗

1 ω̃ ω̃2 − |τ0|2 . . . 0 0
...

...
. . .

...
...

0 0 . . . ω̃2 − |τ0|2 −τN−1ω̃

0 0 . . . −τ ∗
N−1ω̃ (ω̃ − δ + i�)ω̃ − |τ0|2

∣∣∣∣∣∣∣∣∣∣∣
, (45)

where ω̃ = ω − ε0.
From Eq. (45), it is clear that ω = ε0 (ω̃ = 0) is the

N th-order root of P and Q(ω̃ = 0) �= 0, hence ω = ε0 is the
N th-order zero of transmission. This is a crossing point of Fano
resonance minima. In the wide-band limit (or Fermi golden
rule approximation) [26], there can also be a coalescence
of Fano resonance maxima in this structure. Under this

assumption, δ ≈ 0 and � ≈ γ 2/J ≈ const is independent of
energy. Here, J is a half of the bandwidth in the leads,
which we treat to be much greater than the difference
between the energies of our interest (ω, ε0) and the center
of the leads’ band. According to Eq. (45), coalescence of
transmission peaks can take place at the energy ω = ε0 ± |τ0|
for a certain ratio between the tunneling matrix elements τi
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[29,42]. Thus one can tune the parameters of the structure
in such a way that its transmission coefficient will have
the N th-order zero dip surrounded by two N th-order unity
peaks. Figure 6(b) shows the positions of the real parts of the
roots of the functions Q and P for the three-site comblike
structure calculated in the wide-band limit. Coalescence of
three real roots of Q forms an EP of the third order, which
corresponds to the coalescence of resonances. Figure 6(c) de-
picts the corresponding profile of the transmission coefficient
energy dependence in the very regime of the coalescence of
resonances.

VI. SUMMARY

In this paper, we have presented a general description of res-
onances, antiresonances, and BICs via the unique formalism.
Our observation is that a dissipationless but open quantum
system possesses features such as EP and PT -symmetry
breaking, which are common to systems with balanced gain
and loss terms in the corresponding non-Hermitian effective
Hamiltonian. In the theory of OQS, the eigenstates of the
non-Hermitian effective Hamiltonian are the resonant states,
which describe unstable quantum states [1,18,19]. Here we
showed that non-Hermitian Hamiltonians can be very useful
also in the description of the stationary scattering resonances
in OQS. We have found out that for an arbitrary two-
terminal multiply connected molecular (or QD) conductor or
waveguide, the square module of the characteristic determinant
of the effective Hamiltonian (denominator in the expression
for the transparency) can be written in a simple form of a
sum of two non-negative terms. The first term is a square
module of the characteristic determinant of the auxiliary
Hamiltonian; its zeros (i.e., eigenvalues of the auxiliary
Hamiltonian) determine the transparency peaks. The second
term is an energy- (frequency-) dependent function that is
exactly the numerator in the expression for the transparency
and its zeros determine antiresonances. The non-Hermitian
auxiliary Hamiltonian can be easily deduced from the Fesh-
bach effective non-Hermitian Hamiltonian and differs from it
by the implementation of the scattering boundary conditions
instead of the Siegert ones. We should emphasize that this
approach is useful only for scattering problems, whereas in
describing resonant states and decay problems the traditional
effective Hamiltonian based description is preferable. The
presented theory is formulated for one-dimensional systems,
or more accurately—for 1-manifolds, i.e., systems with only
one continuous variable (wave vector k in the leads) and a finite
number of discrete variables (number of branches). Neverthe-
less, this theory is applicable to three-dimensional systems,
which allows for variable separation and can be described
by a one-dimensional model. Examples of such systems are
planar semiconductor heterostructures [23,27,29], photonic
crystals [3,80], etc.

The resonances and BICs are related to the complex and
real eigenvalues of the effective Hamiltonian, correspondingly.
However, a complex eigenvalue of the effective Hamiltonian,
which is a pole of the scattering matrix, in general, does not
determine the position of the resonance on the energy axis
exactly. The real eigenvalues of the auxiliary Hamiltonian
that coincide with the real eigenvalues of the effective

Hamiltonian determine BICs. The real eigenvalues of the
auxiliary Hamiltonian that do do coincide with the real
eigenvalues of the effective Hamiltonian determine the exact
positions of perfect resonances on the energy axis. The EPs of
the auxiliary Hamiltonian are responsible for the coalescence
of resonances. It should be noted also that in this paper all
calculations were carried out within a localized orthogonal
basis (constructed, for example, by Löwdin orthogonalization
[81]). On the other hand, in numerical simulations of real
quantum molecular conductors (e.g., in DFT), the basis of
the Hamiltonian eigenstates, which diagonalizes the initial
Hamiltonian of the isolated structure, is more convenient. It
can be shown that in the diagonal basis antiresonances are
described by the nondiagonal non-Hermitian coupling in the
effective Hamiltonian [15,69,73,82,83].

Scattering states and BICs are deeply coupled to each other.
As we have shown, the symmetry (mutual interrelation) of the
scattering state amplitudes on the sites corresponding to BIC
exactly coincides with the symmetry of the BIC amplitudes
near the BIC point in the parameter space. A trajectory in
the generalized energy-parameter space can be chosen such
that on this trajectory the absolute value of the scattering
state amplitude diverges while approaching the BIC point.
At the very BIC point, the structure of the scattering state
amplitudes changes abruptly and the scattering state wave
function (waveguide mode) becomes orthogonal to BIC. This
picture closely resembles the behavior of the system near the
point of the second-order phase transition with BIC being
the order parameter, the scattering state wave function being
the conjugated field and the scattering state amplitudes at
the BIC sites—the generalized response function obeying the
Curie-Weiss-like law. Our model does not account for the
interelectron Coulomb interactions, which can be partially
justified under the assumption of strong coupling with the
leads resulting in small values of the site amplitudes inside the
molecule. However, for electromagnetic fields in waveguides,
the description is adequate for large site amplitudes as well.
Hence our model provides a straightforward approach for
creating a BIC and a storage of intense fields by an abrupt
switching from the scattering regime to BIC and vice versa.
It should be noted also that recently in Ref. [84], it has been
shown that BICs do survive with interelectron interactions
being taken into account at least in Coulomb blockade
regime.

The obtained results, which relate resonance and BIC
energies to the problem of finding real roots of well-defined
energy functions, make it possible to control the positions of
perfect and zero transmission as well as their coalescence.
Thus our results could be helpful for the deduction of the
design rules for quantum conductors and waveguides. For
example, one can convert the perfect transmission into the
zero transmission (or vice versa) at the same energy by
tuning some structures’ parameters. As an example of the
application of such design rules we have constructed two
families of quantum structures: an asymmetric loop with
symmetric branches (generalized metacoupling to the leads)
and a symmetric comb-like structure. Both families exhibit
coalescence of antiresonances resulting in formation of a
broad reflection window. In the former structure, an almost
rectangle window of transparency, described in Ref. [29],
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is converted into an almost rectangle window of reflectivity
(43) just by adding the same single-channel wire in parallel.
Such rectangle windows of transmission can be applied [85]
within the area of quantum heat engines [86,87]. Other fields
of possible applications are the design of broad-band filters
[88] and photonic crystals [89,90] formed by 2D periodic
arrays of dielectric rods with an in-plane light wave, which
is polarized along these rods [80]. In particular, one can
get the transmission dips or peaks by adding or removing
defects close to the main waveguide. Moreover, one can create

both a transmission window or a reflection window using
single-chain and double-chain structures, correspondingly.
Thus, with the same lithographic template, both structures
can be realized.
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APPENDIX A: DENSITY OF STATES NEAR BIC

Here we show that for an arbitrary QD system described by the Hamiltonian (1) formation of BIC results in appearance of a
δ-function peak of the density of states (DOS). DOS can be derived straightforwardly from the retarded Green function of the
system (6):

ρ(ω) = − 1

π
Im

∑
i

Gr
ii = − 1

π
ImTr Ĝr , (A1)

where summation runs through all sites of the structure. In terms of the matrix Â and vectors uL(R), introduced in Sec. III, DOS
can be written as

ρ(ω) = − 1

π
ImTr (Â + iuLu†

L + iuRu†
R)−1. (A2)

Using the Sherman-Morrison formula [66] and matrix determinant lemma [67], one can get the explicit expression for DOS in
the following form:

ρ(ω) = 1

π

R(ω)

|P (ω)|2 + |Q(ω)|2 (A3)

with P and Q defined by Eqs. (14) and (16) and

R = (detÂ)2{u†
LÂ−2uL[1 + (u†

RÂ−1uR)2] + u†
RÂ−2uR[1 + (u†

LÂ−1uL)2]

− 2(u†
LÂ−1uL + u†

RÂ−1uR) Re [u†
RÂ−1uLu†

LÂ−2uR] + |u†
RÂ−1uL|2(u†

LÂ−2uL + u†
RÂ−2uR)}. (A4)

BIC is a localized state, which is totally decoupled from the continuum of states in the leads. Thus, in the basis of the eigenstates
of the structure hybridized by the leads (i.e., in the basis, which diagonalizes the matrix Â), BIC can be understood as a state |ñ〉,
such that its coupling to the leads γ̃

L(R)
ñ vanishes as well as the corresponding (nth) element of the vector ũL(R) [15]. Here tilde

highlights the diagonalized basis.
Now consider DOS in the vicinity of BIC. Suppose that ε̃1̃, . . . ,ε̃Ñ are the eigenenergies of the hybridized structure, and

we assume for definiteness that BIC appears at the energy ω = ε̃1̃, when the parameters ũL(R),1̃ tend to zero. In this case, the
matrix Â is diagonal with Aĩĩ = (ω − ε̃ĩ). In the vicinity of BIC, we can assume �ω = ω − ε̃1̃ and �̃L(R) = |ũL(R),1̃|2 to be small
compared to minĩ,j̃ |ε̃ĩ − ε̃j̃ | and minĩ |ũL(R),ĩ |2, correspondingly. Treating �̃L(R) and �ω as small quantities of the same order,
one can approximate ρ(ω) in the vicinity of BIC as

ρ(ω) ≈ 1

π

β1(
√

�̃L,
√

�̃R)

[�ω + β2(
√

�̃L,
√

�̃R)]2 + [β3(
√

�̃L,
√

�̃R)]2
, (A5)

where βi(a,b) are some bilinear forms of a and b. From Eq. (A5), it is clear that in the limit �̃L(R) → 0 DOS in the vicinity of
BIC has a δ-function peak.

APPENDIX B: DERIVATION OF FUNCTION P FOR DOUBLE-CHAIN STRUCTURE

To calculate the function P for a double-chain structure, we use Eq. (21), where the minor M1N of (ωÎ − Ĥeff) is needed.
According to Eq. (41), the Hamiltonian of the isolated system Ĥ0 and, consequently, the effective Hamiltonian Ĥeff can be
presented as a 2 × 2 block matrix:

Ĥeff =
(

Ĥ eff
1 �̂12

�̂
†
12 Ĥ2

)
. (B1)

Here, Ĥ eff
1 is the Hamiltonian of the first chain with the leads self-energies taken into account. Applying the rules of block

matrix inversion [91] (or equivalently the Löwdin partitioning technique [81]) one can calculate the necessary minor and get the
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following expression for the function P :

P = 2
√

�L�Rdet(ωÎ − Ĥ2) ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−τ1 0 0 . . . 0 0 −|τ |2[(ωÎ − Ĥ2)−1]1N

ω −τ2 0 . . . 0 0 0
−τ ∗

2 ω −τ3 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . −τN−3 0 0
0 0 0 . . . ω −τN−2 0
0 0 0 . . . −τ ∗

N−2 ω −τN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (B2)

The matrix element [(ωÎ − Ĥ2)−1]1N is derived from Eq. (41):

[(ωÎ − Ĥ2)−1]1N = τ1 · · · · · τN−1

det(ωÎ − Ĥ2)
. (B3)

Substituting (B3) into (B2) and expanding the determinant by the first row one can simplify P in the following way:

P = 2
√

�L�Rdet(ωÎ − Ĥ2)

[
(−1)N−1τ1 · · · · · τN−1 − (−1)N |τ |2 τ1 · · · · · τN−1

det(ωÎ − Ĥ2)
D1

1

]

= 2
√

�L�R · (−1)N−1τ1 · · · · · τN−1
[
det(ωÎ − Ĥ2) + |τ |2D1

1

]
. (B4)

Here, Dp
q stands for the minor of the (ωÎ − Ĥ1) matrix with the first p rows and columns and the last q rows and columns crossed

out. As chains are equal, we can also think of D
p
q as the corresponding minor of the (ωÎ − Ĥ2) matrix.

Now we use the fact that the double-chain structure under study is symmetric. In this case, we can conclude that the expression
in the square brackets in Eq. (B4) is the determinant of the matrix (ωÎ − Ĥzero), where Ĥzero is the following PT -symmetric
Hamiltonian:

(Ĥzero)mn = (Ĥ2)mn + i|τ |(δm1δn1 − δmNδnN ). (B5)

Indeed, this can be checked directly by expanding the determinant of (ωÎ − Ĥzero):

det(ωÎ − Ĥzero) = det(ωÎ − Ĥ2) + i|τ |(D1
0 − D0

1

) + |τ |2D1
1 . (B6)

In a symmetric structure, minors D1
0 and D0

1 are equal and from Eq. (B6) we get exactly the expression in the square brackets
in the right-hand side of Eq. (B4).

As was mentioned in the Sec. III, P is defined up to an arbitrary phase factor. Thus we can neglect the sign in Eq. (B4) and
get the polynomial P for the symmetric double-chain model in the form (42).

APPENDIX C: DERIVATION OF FUNCTIONS P AND Q FOR COMB-LIKE STRUCTURE

As it was done for the double-chain structure, in the case of a comblike structure, we can again write the effective Hamiltonian
in the block form (B1), but with Ĥ1, Ĥ2, and �̂12 taken from Eq. (44). Such form of the effective Hamiltonian allows us to
calculate P easily:

P = 2
√

�L�Rτ1 · · · · · τN−1(ω − ε′
1) · · · · · (ω − ε′

N ). (C1)

Function Q can be derived in a similar way, because the auxiliary Hamiltonian also has a block matrix form. Thus, according to
Eq. (21) and, once again, using the block matrix inversion rules from Ref. [91], one can get that

Q =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω − ε1 − δL − i�L −
∣∣τ 1

0

∣∣2

ω−ε′
1

−τ1 . . . 0 0

−τ ∗
1 ω − ε2 −

∣∣τ 2
0

∣∣2

ω−ε′
2

. . . 0 0
...

...
. . .

...
...

0 0 . . . ω − εN−1 −
∣∣τN−1

0

∣∣2

ω−ε′
N−1

−τN−1

0 0 . . . −τ ∗
N−1 ω − εN − δR + i�R −

∣∣τN
0

∣∣2

ω−ε′
N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
× (ω − ε′

1) · · · · · (ω − ε′
N ). (C2)

Assuming that ε′
i = εi = ε0, τ 1

0 = · · · = τN
0 = τ0 and the leads are identical, we simplify Eqs. (C1) and (C2) to Eq. (45).
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A 375, 2149 (2011).

[40] L. Jin and Z. Song, Phys. Rev. A 81, 032109 (2010).
[41] L. Jin and Z. Song, J. Phys. A: Math. Theor. 44, 375304 (2011).
[42] A. A. Gorbatsevich and N. M. Shubin, JETP Lett. 103, 769

(2016).
[43] T. Kato, Perturbation Theory for Linear Operators, Classics in

Mathematics (Springer-Verlag, Berlin, Heidelberg, 1995).
[44] W. D. Heiss, J. Phys. A: Math. Gen. 37, 2455 (2004); J. Phys.

A: Math. Theor. 45, 444016 (2012).
[45] M. Berry, Czech. J. Phys. 54, 1039 (2004).
[46] J. Wiersig, Phys. Rev. A 93, 033809 (2016).
[47] A. Mostafazadeh, J. Math. Phys. 43, 205 (2002).
[48] S. V. Suchkov, F. Fotsa-Ngaffo, A. Kenfack-Jiotsa, A. D. Tikeng,

T. C. Kofane, Y. S. Kivshar, and A. A. Sukhorukov, New J. Phys.
18, 065005 (2016).

[49] A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov,
D. N. Christodoulides, and U. Peschel, Nature (London) 488,
167 (2012).

[50] H. Alaeian and J. A. Dionne, Phys. Rev. A 89, 033829 (2014).
[51] A. Mostafazadeh, Ann. Phys. 368, 56 (2016).
[52] M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and

S. Rotter, Phys. Rev. Lett. 108, 173901 (2012); M. Brandstetter,
M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G.
Strasser, K. Unterrainer, and S. Rotter, Nat. Commun. 5, 4034
(2014).

[53] S. Longhi, Phys. Rev. A 82, 031801 (2010).
[54] W. D. Heiss and G. Wunner, Eur. Phys. J. D 68, 284 (2014).
[55] W. Vanroose, P. V. Leuven, F. Arickx, and J. Broeckhove,

J. Phys. A: Math. Gen. 30, 5543 (1997).
[56] P. Ambichl, K. G. Makris, L. Ge, Y. Chong, A. D. Stone, and S.

Rotter, Phys. Rev. X 3, 041030 (2013).
[57] Y. D. Chong, L. Ge, and A. D. Stone, Phys. Rev. Lett. 106,

093902 (2011).
[58] E. N. Bulgakov, K. N. Pichugin, A. F. Sadreev, and I. Rotter,

JETP Lett. 84, 430 (2006).
[59] C. Blanchard, J.-P. Hugonin, and C. Sauvan, Phys. Rev. B 94,

155303 (2016).
[60] K. Okamoto, Fundamentals of Optical Waveguides (Academic

Press, Burlington, San Diego, 2010).
[61] S. Longhi, Laser Photon. Rev. 3, 243 (2009).
[62] C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James,

J. Phys. C 4, 916 (1971).
[63] S. Datta, Electronic Transport in Mesoscopic Systems, Cam-

bridge Studies in Semiconductor Physics (Cambridge University
Press, Cambridge, 1997).

[64] D. Ryndyk, R. Gutiérrez, B. Song, and G. Cuniberti, in Energy
Transfer Dynamics in Biomaterial Systems (Springer-Verlag,
Berlin, Heidelberg, 2009), pp. 213–335.

[65] V. V. Sokolov and V. G. Zelevinsky, Ann. Phys. 216, 323
(1992).

[66] J. Sherman and W. J. Morrison, Ann. Math. Stat. 21, 124
(1950).

205441-14

https://doi.org/10.1088/1361-6633/aa518f
https://doi.org/10.1088/1361-6633/aa518f
https://doi.org/10.1088/1361-6633/aa518f
https://doi.org/10.1088/1361-6633/aa518f
https://doi.org/10.1103/RevModPhys.82.2257
https://doi.org/10.1103/RevModPhys.82.2257
https://doi.org/10.1103/RevModPhys.82.2257
https://doi.org/10.1103/RevModPhys.82.2257
https://doi.org/10.1038/natrevmats.2016.48
https://doi.org/10.1038/natrevmats.2016.48
https://doi.org/10.1038/natrevmats.2016.48
https://doi.org/10.1038/natrevmats.2016.48
https://doi.org/10.1016/0003-4916(58)90007-1
https://doi.org/10.1016/0003-4916(58)90007-1
https://doi.org/10.1016/0003-4916(58)90007-1
https://doi.org/10.1016/0003-4916(58)90007-1
https://doi.org/10.1016/0003-4916(62)90221-X
https://doi.org/10.1016/0003-4916(62)90221-X
https://doi.org/10.1016/0003-4916(62)90221-X
https://doi.org/10.1016/0003-4916(67)90163-7
https://doi.org/10.1016/0003-4916(67)90163-7
https://doi.org/10.1016/0003-4916(67)90163-7
http://adsabs.harvard.edu/abs/1929PhyZ...30..467V
https://doi.org/10.1103/PhysRevA.32.3231
https://doi.org/10.1103/PhysRevA.32.3231
https://doi.org/10.1103/PhysRevA.32.3231
https://doi.org/10.1103/PhysRevA.32.3231
https://doi.org/10.1038/nature20799
https://doi.org/10.1038/nature20799
https://doi.org/10.1038/nature20799
https://doi.org/10.1038/nature20799
https://doi.org/10.1103/PhysRevE.71.046204
https://doi.org/10.1103/PhysRevE.71.046204
https://doi.org/10.1103/PhysRevE.71.046204
https://doi.org/10.1103/PhysRevE.71.046204
https://doi.org/10.1103/PhysRevLett.107.183901
https://doi.org/10.1103/PhysRevLett.107.183901
https://doi.org/10.1103/PhysRevLett.107.183901
https://doi.org/10.1103/PhysRevLett.107.183901
https://doi.org/10.1088/0305-4470/38/49/012
https://doi.org/10.1088/0305-4470/38/49/012
https://doi.org/10.1088/0305-4470/38/49/012
https://doi.org/10.1088/0305-4470/38/49/012
https://doi.org/10.1103/PhysRevA.73.022113
https://doi.org/10.1103/PhysRevA.73.022113
https://doi.org/10.1103/PhysRevA.73.022113
https://doi.org/10.1103/PhysRevA.73.022113
https://doi.org/10.1103/PhysRevB.81.115128
https://doi.org/10.1103/PhysRevB.81.115128
https://doi.org/10.1103/PhysRevB.81.115128
https://doi.org/10.1103/PhysRevB.81.115128
https://doi.org/10.1103/PhysRevB.73.205303
https://doi.org/10.1103/PhysRevB.73.205303
https://doi.org/10.1103/PhysRevB.73.205303
https://doi.org/10.1103/PhysRevB.73.205303
https://doi.org/10.1016/j.physb.2012.11.009
https://doi.org/10.1016/j.physb.2012.11.009
https://doi.org/10.1016/j.physb.2012.11.009
https://doi.org/10.1016/j.physb.2012.11.009
https://doi.org/10.1016/S0370-1573(02)00366-6
https://doi.org/10.1016/S0370-1573(02)00366-6
https://doi.org/10.1016/S0370-1573(02)00366-6
https://doi.org/10.1016/S0370-1573(02)00366-6
https://doi.org/10.1088/1751-8113/42/15/153001
https://doi.org/10.1088/1751-8113/42/15/153001
https://doi.org/10.1088/1751-8113/42/15/153001
https://doi.org/10.1088/1751-8113/42/15/153001
https://doi.org/10.1088/0034-4885/78/11/114001
https://doi.org/10.1088/0034-4885/78/11/114001
https://doi.org/10.1088/0034-4885/78/11/114001
https://doi.org/10.1088/0034-4885/78/11/114001
https://doi.org/10.1143/PTP.119.187
https://doi.org/10.1143/PTP.119.187
https://doi.org/10.1143/PTP.119.187
https://doi.org/10.1143/PTP.119.187
https://doi.org/10.1103/PhysRevA.80.042705
https://doi.org/10.1103/PhysRevA.80.042705
https://doi.org/10.1103/PhysRevA.80.042705
https://doi.org/10.1103/PhysRevA.80.042705
https://doi.org/10.1103/PhysRevA.95.022117
https://doi.org/10.1103/PhysRevA.95.022117
https://doi.org/10.1103/PhysRevA.95.022117
https://doi.org/10.1103/PhysRevA.95.022117
https://doi.org/10.1134/S106377610808013X
https://doi.org/10.1134/S106377610808013X
https://doi.org/10.1134/S106377610808013X
https://doi.org/10.1134/S106377610808013X
https://doi.org/10.1103/PhysRevA.64.062708
https://doi.org/10.1103/PhysRevA.64.062708
https://doi.org/10.1103/PhysRevA.64.062708
https://doi.org/10.1103/PhysRevA.64.062708
https://doi.org/10.1134/1.953060
https://doi.org/10.1134/1.953060
https://doi.org/10.1134/1.953060
https://doi.org/10.1134/1.953060
https://doi.org/10.1103/PhysRevA.78.062116
https://doi.org/10.1103/PhysRevA.78.062116
https://doi.org/10.1103/PhysRevA.78.062116
https://doi.org/10.1103/PhysRevA.78.062116
https://doi.org/10.1103/PhysRevB.49.14016
https://doi.org/10.1103/PhysRevB.49.14016
https://doi.org/10.1103/PhysRevB.49.14016
https://doi.org/10.1103/PhysRevB.49.14016
https://doi.org/10.1103/PhysRevE.52.5961
https://doi.org/10.1103/PhysRevE.52.5961
https://doi.org/10.1103/PhysRevE.52.5961
https://doi.org/10.1103/PhysRevE.52.5961
https://doi.org/10.1016/j.aop.2016.12.019
https://doi.org/10.1016/j.aop.2016.12.019
https://doi.org/10.1016/j.aop.2016.12.019
https://doi.org/10.1016/j.aop.2016.12.019
https://doi.org/10.1038/nphys227
https://doi.org/10.1038/nphys227
https://doi.org/10.1038/nphys227
https://doi.org/10.1038/nphys227
https://doi.org/10.1088/0305-4470/37/31/012
https://doi.org/10.1088/0305-4470/37/31/012
https://doi.org/10.1088/0305-4470/37/31/012
https://doi.org/10.1088/0305-4470/37/31/012
https://doi.org/10.1103/PhysRevA.84.040101
https://doi.org/10.1103/PhysRevA.84.040101
https://doi.org/10.1103/PhysRevA.84.040101
https://doi.org/10.1103/PhysRevA.84.040101
https://doi.org/10.1002/1521-3951(200204)230:2<419::AID-PSSB419>3.0.CO;2-I
https://doi.org/10.1002/1521-3951(200204)230:2<419::AID-PSSB419>3.0.CO;2-I
https://doi.org/10.1002/1521-3951(200204)230:2<419::AID-PSSB419>3.0.CO;2-I
https://doi.org/10.1002/1521-3951(200204)230:2<419::AID-PSSB419>3.0.CO;2-I
https://doi.org/10.1016/j.ssc.2006.11.001
https://doi.org/10.1016/j.ssc.2006.11.001
https://doi.org/10.1016/j.ssc.2006.11.001
https://doi.org/10.1016/j.ssc.2006.11.001
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1063/1.532860
https://doi.org/10.1063/1.532860
https://doi.org/10.1063/1.532860
https://doi.org/10.1063/1.532860
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1038/nphys1515
https://doi.org/10.1038/nphys1515
https://doi.org/10.1038/nphys1515
https://doi.org/10.1038/nphys1515
https://doi.org/10.1016/j.aop.2006.05.011
https://doi.org/10.1016/j.aop.2006.05.011
https://doi.org/10.1016/j.aop.2006.05.011
https://doi.org/10.1016/j.aop.2006.05.011
https://doi.org/10.1016/j.physleta.2011.04.021
https://doi.org/10.1016/j.physleta.2011.04.021
https://doi.org/10.1016/j.physleta.2011.04.021
https://doi.org/10.1016/j.physleta.2011.04.021
https://doi.org/10.1103/PhysRevA.81.032109
https://doi.org/10.1103/PhysRevA.81.032109
https://doi.org/10.1103/PhysRevA.81.032109
https://doi.org/10.1103/PhysRevA.81.032109
https://doi.org/10.1088/1751-8113/44/37/375304
https://doi.org/10.1088/1751-8113/44/37/375304
https://doi.org/10.1088/1751-8113/44/37/375304
https://doi.org/10.1088/1751-8113/44/37/375304
https://doi.org/10.1134/S0021364016120031
https://doi.org/10.1134/S0021364016120031
https://doi.org/10.1134/S0021364016120031
https://doi.org/10.1134/S0021364016120031
https://doi.org/10.1088/0305-4470/37/6/034
https://doi.org/10.1088/0305-4470/37/6/034
https://doi.org/10.1088/0305-4470/37/6/034
https://doi.org/10.1088/0305-4470/37/6/034
https://doi.org/10.1088/1751-8113/45/44/444016
https://doi.org/10.1088/1751-8113/45/44/444016
https://doi.org/10.1088/1751-8113/45/44/444016
https://doi.org/10.1088/1751-8113/45/44/444016
https://doi.org/10.1023/B:CJOP.0000044002.05657.04
https://doi.org/10.1023/B:CJOP.0000044002.05657.04
https://doi.org/10.1023/B:CJOP.0000044002.05657.04
https://doi.org/10.1023/B:CJOP.0000044002.05657.04
https://doi.org/10.1103/PhysRevA.93.033809
https://doi.org/10.1103/PhysRevA.93.033809
https://doi.org/10.1103/PhysRevA.93.033809
https://doi.org/10.1103/PhysRevA.93.033809
https://doi.org/10.1063/1.1418246
https://doi.org/10.1063/1.1418246
https://doi.org/10.1063/1.1418246
https://doi.org/10.1063/1.1418246
https://doi.org/10.1088/1367-2630/18/6/065005
https://doi.org/10.1088/1367-2630/18/6/065005
https://doi.org/10.1088/1367-2630/18/6/065005
https://doi.org/10.1088/1367-2630/18/6/065005
https://doi.org/10.1038/nature11298
https://doi.org/10.1038/nature11298
https://doi.org/10.1038/nature11298
https://doi.org/10.1038/nature11298
https://doi.org/10.1103/PhysRevA.89.033829
https://doi.org/10.1103/PhysRevA.89.033829
https://doi.org/10.1103/PhysRevA.89.033829
https://doi.org/10.1103/PhysRevA.89.033829
https://doi.org/10.1016/j.aop.2016.01.025
https://doi.org/10.1016/j.aop.2016.01.025
https://doi.org/10.1016/j.aop.2016.01.025
https://doi.org/10.1016/j.aop.2016.01.025
https://doi.org/10.1103/PhysRevLett.108.173901
https://doi.org/10.1103/PhysRevLett.108.173901
https://doi.org/10.1103/PhysRevLett.108.173901
https://doi.org/10.1103/PhysRevLett.108.173901
https://doi.org/10.1038/ncomms5034
https://doi.org/10.1038/ncomms5034
https://doi.org/10.1038/ncomms5034
https://doi.org/10.1038/ncomms5034
https://doi.org/10.1103/PhysRevA.82.031801
https://doi.org/10.1103/PhysRevA.82.031801
https://doi.org/10.1103/PhysRevA.82.031801
https://doi.org/10.1103/PhysRevA.82.031801
https://doi.org/10.1140/epjd/e2014-50379-8
https://doi.org/10.1140/epjd/e2014-50379-8
https://doi.org/10.1140/epjd/e2014-50379-8
https://doi.org/10.1140/epjd/e2014-50379-8
https://doi.org/10.1088/0305-4470/30/15/034
https://doi.org/10.1088/0305-4470/30/15/034
https://doi.org/10.1088/0305-4470/30/15/034
https://doi.org/10.1088/0305-4470/30/15/034
https://doi.org/10.1103/PhysRevX.3.041030
https://doi.org/10.1103/PhysRevX.3.041030
https://doi.org/10.1103/PhysRevX.3.041030
https://doi.org/10.1103/PhysRevX.3.041030
https://doi.org/10.1103/PhysRevLett.106.093902
https://doi.org/10.1103/PhysRevLett.106.093902
https://doi.org/10.1103/PhysRevLett.106.093902
https://doi.org/10.1103/PhysRevLett.106.093902
https://doi.org/10.1134/S0021364006200057
https://doi.org/10.1134/S0021364006200057
https://doi.org/10.1134/S0021364006200057
https://doi.org/10.1134/S0021364006200057
https://doi.org/10.1103/PhysRevB.94.155303
https://doi.org/10.1103/PhysRevB.94.155303
https://doi.org/10.1103/PhysRevB.94.155303
https://doi.org/10.1103/PhysRevB.94.155303
https://doi.org/10.1002/lpor.200810055
https://doi.org/10.1002/lpor.200810055
https://doi.org/10.1002/lpor.200810055
https://doi.org/10.1002/lpor.200810055
https://doi.org/10.1088/0022-3719/4/8/018
https://doi.org/10.1088/0022-3719/4/8/018
https://doi.org/10.1088/0022-3719/4/8/018
https://doi.org/10.1088/0022-3719/4/8/018
https://doi.org/10.1016/0003-4916(92)90180-T
https://doi.org/10.1016/0003-4916(92)90180-T
https://doi.org/10.1016/0003-4916(92)90180-T
https://doi.org/10.1016/0003-4916(92)90180-T
https://doi.org/10.1214/aoms/1177729893
https://doi.org/10.1214/aoms/1177729893
https://doi.org/10.1214/aoms/1177729893
https://doi.org/10.1214/aoms/1177729893


UNIFIED THEORY OF RESONANCES AND BOUND STATES . . . PHYSICAL REVIEW B 96, 205441 (2017)

[67] D. A. Harville, Matrix Algebra from a Statistician’s Perspective
(Springer, New York, NY, 1997), Vol. 1.

[68] U. Fano, Phys. Rev. 124, 1866 (1961).
[69] S. Tanaka, S. Garmon, K. Kanki, and T. Petrosky, Phys. Rev. A

94, 022105 (2016).
[70] H. Lu, R. Lü, and B.-f. Zhu, Phys. Rev. B 71, 235320 (2005).
[71] W. Gong, Y. Han, and G. Wei, J. Phys.: Condens. Matter 21,

175801 (2009).
[72] K. Sasada, N. Hatano, and G. Ordonez, J. Phys. Soc. Jpn. 80,

104707 (2011).
[73] M. L. Ladrón de Guevara, F. Claro, and P. A. Orellana, Phys.

Rev. B 67, 195335 (2003).
[74] P. A. Orellana, M. L. Ladrón de Guevara, and F. Claro, Phys.

Rev. B 70, 233315 (2004).
[75] C. S. Kim, A. M. Satanin, Y. S. Joe, and R. M. Cosby, Phys.

Rev. B 60, 10962 (1999).
[76] A. F. Sadreev, E. N. Bulgakov, and I. Rotter, Phys. Rev. B 73,

235342 (2006).
[77] E. Bulgakov and A. Sadreev, Phys. Rev. B 83, 235321 (2011).
[78] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.96.205441 for the application of the theory
to several models of BIC formed in a Fabry-Perot resonator.

[79] M. Smith, Organic Chemistry: An Acid-Base Approach (Taylor
and Francis, Boca Raton, 2011).

[80] S. F. Mingaleev and Y. S. Kivshar, Opt. Lett. 27, 231 (2002);
S. F. Mingaleev, Y. S. Kivshar, and R. A. Sammut, Phys. Rev.

E 62, 5777 (2000); S. Flach, A. E. Miroshnichenko, V. Fleurov,
and M. V. Fistul, Phys. Rev. Lett. 90, 084101 (2003); A. E.
Miroshnichenko and Y. S. Kivshar, Phys. Rev. E 72, 056611
(2005).

[81] P.-O. Löwdin, J. Chem. Phys. 18, 365 (1950); J. Math. Phys. 3,
969 (1962); J. Mol. Spectrosc. 10, 12 (1963).

[82] H. Vaupel, P. Thomas, O. Kühn, V. May, K. Maschke, A. P.
Heberle, W. W. Rühle, and K. Köhler, Phys. Rev. B 53, 16531
(1996).

[83] S. Longhi, J. Mod. Opt. 56, 729 (2009).
[84] M. A. Sierra, M. Saiz-Bretín, F. Domínguez-Adame, and D.

Sánchez, Phys. Rev. B 93, 235452 (2016).
[85] C. H. Schiegg, M. Dzierzawa, and U. Eckern, J. Phys.: Condens.

Matter 29, 085303 (2017).
[86] R. Kosloff and A. Levy, Annu. Rev. Phys. Chem. 65, 365

(2014).
[87] R. S. Whitney, Phys. Rev. B 91, 115425 (2015).
[88] W. Menzel, L. Zhu, K. Wu, and F. Bogelsack, IEEE Trans.

Microwave Theory Tech. 51, 364 (2003); X. Zhou, X. Yin, T.
Zhang, L. Chen, and X. Li, Opt. Express 23, 11657 (2015).

[89] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature
(London) 386, 143 (1997).

[90] Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, and J. Mork, Laser
Photon. Rev. 9, 241 (2015).

[91] B. Noble and J. Daniel, Applied Linear Algebra (Prentice Hall
Inc., Englewood Cliffs, NJ, 1977).

205441-15

https://doi.org/10.1103/PhysRev.124.1866
https://doi.org/10.1103/PhysRev.124.1866
https://doi.org/10.1103/PhysRev.124.1866
https://doi.org/10.1103/PhysRev.124.1866
https://doi.org/10.1103/PhysRevA.94.022105
https://doi.org/10.1103/PhysRevA.94.022105
https://doi.org/10.1103/PhysRevA.94.022105
https://doi.org/10.1103/PhysRevA.94.022105
https://doi.org/10.1103/PhysRevB.71.235320
https://doi.org/10.1103/PhysRevB.71.235320
https://doi.org/10.1103/PhysRevB.71.235320
https://doi.org/10.1103/PhysRevB.71.235320
https://doi.org/10.1088/0953-8984/21/17/175801
https://doi.org/10.1088/0953-8984/21/17/175801
https://doi.org/10.1088/0953-8984/21/17/175801
https://doi.org/10.1088/0953-8984/21/17/175801
https://doi.org/10.1143/JPSJ.80.104707
https://doi.org/10.1143/JPSJ.80.104707
https://doi.org/10.1143/JPSJ.80.104707
https://doi.org/10.1143/JPSJ.80.104707
https://doi.org/10.1103/PhysRevB.67.195335
https://doi.org/10.1103/PhysRevB.67.195335
https://doi.org/10.1103/PhysRevB.67.195335
https://doi.org/10.1103/PhysRevB.67.195335
https://doi.org/10.1103/PhysRevB.70.233315
https://doi.org/10.1103/PhysRevB.70.233315
https://doi.org/10.1103/PhysRevB.70.233315
https://doi.org/10.1103/PhysRevB.70.233315
https://doi.org/10.1103/PhysRevB.60.10962
https://doi.org/10.1103/PhysRevB.60.10962
https://doi.org/10.1103/PhysRevB.60.10962
https://doi.org/10.1103/PhysRevB.60.10962
https://doi.org/10.1103/PhysRevB.73.235342
https://doi.org/10.1103/PhysRevB.73.235342
https://doi.org/10.1103/PhysRevB.73.235342
https://doi.org/10.1103/PhysRevB.73.235342
https://doi.org/10.1103/PhysRevB.83.235321
https://doi.org/10.1103/PhysRevB.83.235321
https://doi.org/10.1103/PhysRevB.83.235321
https://doi.org/10.1103/PhysRevB.83.235321
http://link.aps.org/supplemental/10.1103/PhysRevB.96.205441
https://doi.org/10.1364/OL.27.000231
https://doi.org/10.1364/OL.27.000231
https://doi.org/10.1364/OL.27.000231
https://doi.org/10.1364/OL.27.000231
https://doi.org/10.1103/PhysRevE.62.5777
https://doi.org/10.1103/PhysRevE.62.5777
https://doi.org/10.1103/PhysRevE.62.5777
https://doi.org/10.1103/PhysRevE.62.5777
https://doi.org/10.1103/PhysRevLett.90.084101
https://doi.org/10.1103/PhysRevLett.90.084101
https://doi.org/10.1103/PhysRevLett.90.084101
https://doi.org/10.1103/PhysRevLett.90.084101
https://doi.org/10.1103/PhysRevE.72.056611
https://doi.org/10.1103/PhysRevE.72.056611
https://doi.org/10.1103/PhysRevE.72.056611
https://doi.org/10.1103/PhysRevE.72.056611
https://doi.org/10.1063/1.1747632
https://doi.org/10.1063/1.1747632
https://doi.org/10.1063/1.1747632
https://doi.org/10.1063/1.1747632
https://doi.org/10.1063/1.1724312
https://doi.org/10.1063/1.1724312
https://doi.org/10.1063/1.1724312
https://doi.org/10.1063/1.1724312
https://doi.org/10.1016/0022-2852(63)90151-6
https://doi.org/10.1016/0022-2852(63)90151-6
https://doi.org/10.1016/0022-2852(63)90151-6
https://doi.org/10.1016/0022-2852(63)90151-6
https://doi.org/10.1103/PhysRevB.53.16531
https://doi.org/10.1103/PhysRevB.53.16531
https://doi.org/10.1103/PhysRevB.53.16531
https://doi.org/10.1103/PhysRevB.53.16531
https://doi.org/10.1080/09500340802187373
https://doi.org/10.1080/09500340802187373
https://doi.org/10.1080/09500340802187373
https://doi.org/10.1080/09500340802187373
https://doi.org/10.1103/PhysRevB.93.235452
https://doi.org/10.1103/PhysRevB.93.235452
https://doi.org/10.1103/PhysRevB.93.235452
https://doi.org/10.1103/PhysRevB.93.235452
https://doi.org/10.1088/1361-648X/aa5140
https://doi.org/10.1088/1361-648X/aa5140
https://doi.org/10.1088/1361-648X/aa5140
https://doi.org/10.1088/1361-648X/aa5140
https://doi.org/10.1146/annurev-physchem-040513-103724
https://doi.org/10.1146/annurev-physchem-040513-103724
https://doi.org/10.1146/annurev-physchem-040513-103724
https://doi.org/10.1146/annurev-physchem-040513-103724
https://doi.org/10.1103/PhysRevB.91.115425
https://doi.org/10.1103/PhysRevB.91.115425
https://doi.org/10.1103/PhysRevB.91.115425
https://doi.org/10.1103/PhysRevB.91.115425
https://doi.org/10.1109/TMTT.2002.807843
https://doi.org/10.1109/TMTT.2002.807843
https://doi.org/10.1109/TMTT.2002.807843
https://doi.org/10.1109/TMTT.2002.807843
https://doi.org/10.1364/OE.23.011657
https://doi.org/10.1364/OE.23.011657
https://doi.org/10.1364/OE.23.011657
https://doi.org/10.1364/OE.23.011657
https://doi.org/10.1038/386143a0
https://doi.org/10.1038/386143a0
https://doi.org/10.1038/386143a0
https://doi.org/10.1038/386143a0
https://doi.org/10.1002/lpor.201400207
https://doi.org/10.1002/lpor.201400207
https://doi.org/10.1002/lpor.201400207
https://doi.org/10.1002/lpor.201400207



