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The twofold twist defects in the D(Zk) quantum double model (Abelian topological phase) carry non-Abelian
fractional Majorana-like characteristics. We align these twist defects in a line and construct a one-dimensional
Hamiltonian which only includes the pairwise interaction. For the defect chain with an even number of twist
defects, it is equivalent to the Zk clock model with a periodic boundary condition (up to some phase factor
for the boundary term), while for the odd number case, it maps to the Zk clock model with a duality twisted
boundary condition. At the critical point, for both cases, the twist defect chain enjoys an additional translation
symmetry, which corresponds to the Kramers-Wannier duality symmetry in the Zk clock model and can be
generated by a series of braiding operators for twist defects. We further numerically investigate the low energy
excitation spectrum for k = 3,4,5, and 6. For the even-defect chain, the critical points are the same as the Zk

clock conformal field theories (CFTs), while for the odd-defect chain, when k �= 4, the critical points correspond
to orbifolding a Z2 symmetry of CFTs of the even-defect chain. For k = 4 case, we numerically observe some
similarity to the Z4 twist fields in the SU (2)1/D4 orbifold CFT.
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I. INTRODUCTION

Non-Abelian anyons, such as Ising and Fibonacci anyons,
have non-Abelian braiding statistics and can store quantum
information nonlocally [1–5]. Such a state can be used
as quantum memory and has a promising application in
topological quantum computing. These non-Abelian anyons
are expected to exist in a non-Abelian fractional quantum Hall
liquid [6–8].

Recently, topological defects with non-Abelian braiding
statistics have been predicted in the Abelian topological
phases [9–21]. These topological defects are present at the
heterostructures and dislocations in some Abelian topological
states [18,22–29]. They can carry (fractional) Majorana-like
characteristics and are manifested as the twist defects in
topological phases with global symmetries, such as the Kitaev
toric code, the Bombin-Martin color code, and its Zk gener-
alization [9–20,30–33]. There have been theoretical proposals
for their realization in superconductor (SC)–(anti)ferromagnet
(FM)–(fractional) topological insulator (TI) heterostructures,
where Majorana zero modes or parafermions for the fractional
case are bounded at the point defect interfaces [18,21,24–
29,34–42].

For example, in the Kitaev’s toric code model [43], the
twofold twist defect [9,11] that associates with the electric-
magnetic duality symmetry changes the Z2 gauge charge e
into the gauge flux m, or vice versa, when the quasiparticle
orbits around the defect (Fig. 1). Due to the nonlocal twisting
structure, the topological defect carries a nontrivial quantum
dimension d = √

2, and the defect system can be physically
mapped [44] on to the SC-FM-TI heterostructure [24] that
supports the Majorana zero mode. In general, twist defects
are extrinsic classical point defects in topological phases
associating with a global anyonic symmetry g [16,19,21].
The twist defects permute the anyon labels of orbiting

quasiparticles and act as fluxes of anyonic symmetry. They are
non-Abelian objects and their fusion and braiding properties
can be systematically described by a defect fusion category or
a G-crossed tensor category [14,21,31–33].

In this paper, we will consider one-dimensional chains of
twist defects and study the critical point of these chain modes.
These twist defects are embedded in the background of a
D(Zk) quantum double model, which is a Zk generalization of
the KitaevZ2 toric code model, and can also be understood as a
discrete Zk gauge theory in its deconfined phase [3,43,45–50].
The twist defects here are non-Abelian defects and carry
zero modes of Zk parafermions [51–54]. These are twofold
defects in the sense that the corresponding anyonic symmetry
operation is of order two, and that a pair of defects associates
with a k-dimensional Hilbert space. We introduce pairwise
interaction between twist defects and construct the defect chain
Hamiltonian. Similar ideas have been used before to construct
the non-Abelian anyonic chain models and study the phase
diagram in them [55–59].

In our model, the pairwise interaction can be represented
by the Wilson loop operator around the neighboring twist
defects [14,60] that separates the k quantum states. Based
on the algebra of Wilson loop operators, we will show that
the twist defect chain model with periodic boundary condition
can be mapped to the Zk clock model with various boundary
conditions. For even number of twist defects, the correspond-
ing Zk clock model has periodic boundary condition (up to
a phase for the boundary term), while for odd number of
twist defects, after mapping to Zk clock model, this requires
the introduction of a new type of boundary condition. This
boundary term was studied in the k-state Potts model (k � 4)
using the language of Temperley-Lieb algebra and was called a
duality twisted boundary condition [61]. In both even and odd
cases, we will show that at critical point, the twist defect chain
model preserves translational symmetry, which is identical to

2469-9950/2017/96(20)/205435(16) 205435-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.205435


YU, CHEN, ROY, AND TEO PHYSICAL REVIEW B 96, 205435 (2017)

FIG. 1. (a) Twofold twist defect realized as a lattice dislocation
in Wen’s plaquette model. Anyon type flips between e and m when
orbiting around the twist defect. (b) An arbitrary artificial branch cut
signaling the anyon type flip of a crossing quasiparticle.

the Kramers-Wannier duality symmetry in the clock model
setting. We will show that the translational symmetry operator
has a simple physics interpretation and can be understood as
a product of braiding operators which exchanges the positions
of neighboring twist defects.

The critical point of the lattice models in 1 + 1 dimensions
can be described by the rational conformal field theory (CFT),
which has a finite number of primary fields [62,63]. For an even
chain, it corresponds to the Zk clock model at criticality and
the structure of the CFT is well known [64,65]. The simplest
example is k = 2 case, which is the critical transverse field
Ising model with central charge c = 1/2. For an odd chain,
the underlying CFT is not well studied in the literature in
general when k �= 2. For k = 2, the odd chain corresponds
to the transverse field Ising model with a duality twisted
boundary condition. This model can be mapped to a free
fermion chain under Jordan-Wigner transformation and can be
calculated analytically. Under this twisted boundary condition,
the partition function takes a nondiagonal form in terms
of characters, in which the holomorphic or antiholomorphic
character (depending on the phase of the boundary term) has
conformal dimension h = 1/16 [66,67].

For k > 2 cases with duality twisted boundary condition,
the model is not interaction-free anymore and therefore an
analytical result is absent. In the present article, we will numer-
ically study the energy spectra of these models for k = 3,4,5,6
at criticality and extract the conformal scaling dimensions
for the primary fields of the underlying CFT. Based on these
results, we will demonstrate that when k �= 4, as a CFT, the
odd-chain models can simply be related to the even-chain
models with some additional twofold twist field operators.
However, special care is needed for k = 4, where we find that
new excitations are consistent with some fourfold twist field
operators in the SU (2)1/D4 CFT. Such a kind of CFT is the
so-called orbifold CFT and has been extensively studied in the
literature [68–71]. We summarize the main results in Table I.

The rest of this paper is as follows. In Sec. II, we first
briefly review the twist defect in the topological phase and
then we construct the Wilson loop Hamiltonian with an even
number and odd number of twist defects. We also discuss
the translational symmetry in both cases. In Sec. III, we first

TABLE I. The underlying CFT for chains with an even number
of defects (the third column) and the underlying CFT for chains with
an odd number of defects (the fourth column). U (1)k refers to the K
matrix K = 2k in the boson Lagrangian density L = (K/2π )∂tφ∂xφ,
and the details can be found in Appendix B. For the odd chain with k =
4, the numerical results show certain similarities with the SU (2)1/D4

orbifold CFT.

k Coupling Even-chain Odd chain

3 F Three-state Potts M(5,6)

3 AF U (1)3 U (1)3/Z2

4 F/AF U (1)2/Z2 SU (2)1/D4 ?

k > 4 F/AF U (1)k U (1)k/Z2

explain our numerical method and then calculate the primary
fields for an even number case. We further study the odd
number case and extract the conformal dimension for the
twist field operator. We summarize and conclude in Sec. IV.
The appendixes are devoted to details of the calculations and
techniques used in this paper.

II. TWIST DEFECT CHAIN MODEL

A. Review of twist defect

The D(Zk) quantum double model in 2 + 1 dimensions is
the Zk lattice gauge theory in the deconfined limit and is an
Abelian topological phase. It has two fundamental excitations
the gauge charge e = (1,0) and the gauge flux m = (0,1) and
all the k2 quasiparticle excitations can be written as a = esmt

with 0 � s,t � k. The braiding phase between e and m is
e2πi/k . For the Z2 case, the toric code is related to the s-wave
superconductor with a deconfinedZ2 fermion parity symmetry
by identifying m with the hc/2e flux vortex, em with the BdG
fermion, and e with an excited vortex [32,44,72].

The D(Zk) quantum double model has the global duality
symmetry operation, which will interchange e and m ex-
citations. As shown in Fig. 1, in the lattice model (Wen’s
plaquette model [73]), the global duality symmetry operation
corresponds to the half lattice translation and will interchange
the e and m particles which live on blue and red plaquettes,
respectively. In this sense, the topological phase weakly breaks
the global duality/half lattice translation symmetry. The duality
symmetry can be partially restored by introducing the twofold
twist defect, which is the dislocation on the lattice model as
shown in Fig. 1 [9–18,31]. The twist defect can be pictorially
represented by a cross attached with a branch cut. After
crossing the branch cut, the e particle and the m particle
will be interchanged. The twist defects are semiclassical
non-Abelian defects and each pair of them can form a k-level
system. When k = 2, the twist defect corresponds to the more
familiar Majorana zero mode [22,23]. In our previous work, we
systematically studied the fusion rule and F symbols for basis
transformation in a multidefect system [14,15]. The fusion
between the twofold defects and Abelian anyon are given by

a × σλ = σλ+s+t , σλ2 × σλ1 =
∑

λ1+λ2=s+t

a, (2.1)
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FIG. 2. (a) Twist defect chain with six (even number) twofold
defects. The twist defect at site a is labeled as σa . Wa is the Wilson
loop operator around σa and σa+1. In terms of the Zk clock variable,
W2j−1 (solid blue curve) corresponds to the term τj , while W2j

(dashed red curve) represents the term σ
†
j σj+1. The Wilson loop

Hamiltonian has the periodic boundary condition here. (b) Twist
defect chain with five (odd number) twofold defects, with σ6 is
pulled away far from the defect chain. The branch cut connecting
σ5 is left behind. The boundary term W5 (with green solid curve) is
the boundary term and corresponds to the duality twisted boundary
condition in the Zk clock model. (c) The Hamiltonian of the Wilson
loop operator only at the even site. Here we choose an open boundary
condition and therefore σ1 and σ6 do not show up in the Hamiltonian.
In terms of the Zk clock variable, this Hamiltonian is the same as
Eq. (2.9) with J2 = 0 and no boundary term. (d) The Hamiltonian
with Wilson loop operator only at the odd site. It also corresponds to
Eq. (2.9) with J1 = 0.

where λ runs from 0 to k − 1 mod k and is the species label for
the twist defect and a = esmt is the Abelian anyon. The unitary
braiding operator for twist defects projectively represents the
sphere braid group.

B. Wilson loop Hamiltonian

In this paper, we will use the bare twofold defect in
the D(Zk) quantum double model to construct some one-
dimensional chain models and in particular, we will focus on
their critical behavior. The setup is like this: We first create M

bare twist defects in the background of D(Zk) quantum double
model and align them in a line. Each twist defect is attached
with a branch cut and two of them can pair up by gluing
the branch cuts together. This pairing procedure is arbitrary
and for simplicity, we connect σ2j+1 and σ2j+2 by the branch
cut as shown in Fig. 2. For the even case with M = 2N , all
twist defects can pair up and there are no branch cut left.
While for the odd case with M = 2N − 1, the last twist defect
σ2N−1 cannot find the twist defect to pair up with and has a
dangling branch cut left behind. The quantum dimension for
the total Hilbert space is kM/2. For convenience, we will denote
the baretwofold defect at site a as σa . We use the Wilson

loop operators to construct a one-dimensional Hamiltonian
[Fig. 2(a)],

H = −
M∑

a=1

Ja(Wa + W†
a), (2.2)

where each Wilson loop operator is generated by dragging an
e particle around two neighboring twist defects. The Wilson
operator is also dyon tunneling (fermion tunneling for the Z2

case) between neighboring twist defects. When 1 � a < M ,
Wa is the Wilson loop circling around σa and σa+1, and the
boundary term WM is the Wilson loop circling around σM and
σ1. For the Z2 case, this is just the Majorana chain [1]. We are
interested in constructing the translational invariant model for
the bare twist defects. This requires that in Eq. (2.2), all the
Ja are equal up to a phase. The detail for this phase will be
explained later in Secs. II C and II D.

According to the fusion rule in Eq. (2.1), the two neigh-
boring twist defects can fuse into an Abelian anyon, the
Wilson loop operator around these two twist defects can be
used to detect the fusion channel of the two twist defects.
The Wilson loop operator has eigenvalue equal to e2πni/k

with n = 0, . . . ,k − 1 and satisfiesWk
a = 1. The commutation

relationship between different Wilson loop operators are
determined by the intersection between them,

[Wa,Wb] = 0, when |a − b| > 1,

WaWa+1 = ωWa+1Wa, W†
a+1Wa = ωWaW†

a+1, (2.3)

where ω = e2πi/k .
This model in Eq. (2.2) is invariant under the translation

symmetry operator and under this symmetry, T WaT −1 =
Wa+1. The T operator can be realized by moving the last
defect σM all the way back to the first and can be represented
by a sequence of braiding operators,

T = B1B2 · · ·BM−1, (2.4)

where the braiding operator Bi denotes a counter-clockwise
permutation of a pair of adjacent defects at position i and i + 1
[14,15,39]. We will show the translational symmetry operator
T is the Kramers-Wannier duality symmetry and guarantees
that the model is at the critical point [74].

According to the definition of Wilson loop algebra in
Eq. (2.3), the Wilson loop operator can be denoted as a Zk

clock variable with W2j−1 = σj (σ here does not mean the
twist defect) and W2j = τj τ

†
j+1, where τ and σ are both

k-dimensional matrices,

σ =

⎛⎜⎜⎜⎝
1 0 · · · 0
0 ω · · · 0
...

...
. . .

...
0 0 · · · ωk−1

⎞⎟⎟⎟⎠, τ =

⎛⎜⎜⎝
0 · · · 0 1
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

⎞⎟⎟⎠,

(2.5)

with ω = e2πi/k . σ and τ satisfy σ k = 1, τ k = 1, and στ =
ωτσ . The σ operator here is a measurement of the quantum
state (or Zk parafermion parity) associates to the defect pair
joined by a branch cut. The τ operator is a parafermion parity
flip and the Wilson operator W2j flips the Zk parity of the
two pairs of defects next to it. The Hamiltonian in terms of
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the Zk clock variables takes this form (up to some boundary
term HB),

H = −J
∑

j

(σj + τ
†
j τj+1 + H.c.) + HB. (2.6)

This is the quantum Zk clock model at critical point and
there has been a long history of studying this model [51–
53,59]. Notice that there is a subtle difference between the
twist defect chain and the Zk clock model. The single-site
translation operation in the Zk model actually corresponds
to two-site translation operator T 2 in the twist defect chain
model. This indicates that in the Zk clock model, the unit
cell is doubled. The T symmetry operator corresponds to the
famous Kramers-Wannier duality symmetry operator in theZk

clock model [52],

Dσ †
a σa+1D

−1 = τa+1, DτaD
−1 = σ †

a σa+1. (2.7)

Since the unit cell is doubled, the ordinary quantum Zk

clock model always corresponds to the twist defect chain with
an even number of twist defects 2N . For the defect chain with
an odd number of twist defect 2N − 1, if it is written in terms
of the Zk clock model, the boundary term will be modified.
We will explain these two different cases in the following
subsections.

C. Wilson loop Hamiltonian with 2N twist defects

For the Wilson loop Hamiltonian with 2N number of
twist defects and with periodic boundary condition shown in
Eq. (2.2), the correspondingZk clock model also has a periodic
boundary condition. The Hamiltonian in terms of Zk variables
takes this form,

H = −J

N−1∑
j=1

(σj + τ
†
j τj+1 + H.c.) − J (σN + τ

†
1 τN + H.c.).

(2.8)

This is the Zk clock model at the critical point. If not at the
critical point, the translational invariant Zk clock model with
a periodic boundary condition is

H = −J2

N∑
j=1

(σj + σ
†
j ) − J1

N−1∑
j=1

(τ †
j τj+1 + τj τ

†
j+1)

− J1(τ †
Nτ1 + τ1τ

†
N )

= −J2

N∑
j=1

(W2j−1 + W†
2j−1) − J1

N∑
j=1

(W2j + W†
2j ).

(2.9)

The above model has a global Zk symmetry and therefore
we can define a global Zk charge operator,

Q =
N∏

j=1

σj . (2.10)

We briefly explain the phases for Eq. (2.9) here. For the Zk

clock model, there are two limits, one is the |J2| � |J1| limit,
which corresponds to the ferromagnetic or antiferromagnetic
phase depending on the sign of J1. This model can be

rewritten in terms of parafermions after performing a nonlocal
Fradkin-Kadanoff transformation [52,53]. The parafermion
with k > 2 can be considered as a generalization of Majorana
fermion for the transverse field Ising model (Z2 clock model)
[52,53]. For this model with an open boundary condition, after
performing a nonlocal Fradkin-Kadanoff transformation, there
will be a parafermion zero mode left on the edge. As shown
in Fig. 2(c), in terms of the twist defect chain model, this zero
mode actually corresponds to the unpaired twist defect left
on the boundary. Another limit is when |J1| � |J2|, this is
the disordered paramagnetic phase without any parafermion
zero mode left on the boundary [Fig. 2(d)]. For the Zk

clock model, the Kramers-Wannier duality transformation in
Eq. (2.7) exchanges the disordered paramagnetic phase and
ordered phase. Under this duality transformation D,

DH (J1,J2)D−1 = H (J2,J1). (2.11)

The Hamiltonian Eq. (2.9) has an ordered ferromag-
netic/antiferromagnetic phase and a disordered paramagnetic
phase and both of them are gapped phases. At the self-dual
point, it turns out to be a gapless critical point protected by the
additional duality symmetry. The low energy excitation of this
model is described by a conformal field theory (CFT) and is
closely related with the self-dual Sine-Gordon model [75],

S =
∫

d2r
1

2
(∂μ	)2 + g cos(

√
2πk	) + g cos(

√
2πk
),

(2.12)

where 	 is the bosonic field and 
 is the dual field. This
model is invariant under the dual transformation 	 ↔ 


transformation and is always critical. In the renormalization
group (RG) language, the two cosine terms are irrelevant
when k > 4 and therefore the self-dual Sine-Gordon model
is the same as the Luttinger liquid at the infrared (IR)
limit with the central charge c = 1. When k = 4, the cosine
terms are marginal, and the interaction will only change the
compactification radius for the compact boson field. When k <

4, the cosine terms are relevant, according to Zamolodchikov’s
c theorem, and the relevant perturbation will drive the model
from the ultaviolet (UV) c = 1 fixed point to the IR fixed point
with c < 1 [76]. When k = 2, the self-dual Sine-Gordon model
can be refermionized by introducing two Majorana fields. One
of them will be gapped and the other one remains gapless
with c = 1/2. This is the Ising CFT and is the effective theory
for the critical Z2 clock model (transverse field Ising model).
When k = 3, it corresponds to the three-state Potts CFT with
c = 4/5, and is identical to the critical Z3 clock model with
ferromagnetic coupling [70]. The three-state Potts CFT can be
considered as the deformation of Z4 parafermion CFT, which
has c = 1 and is the effective theory for the critical Z3 clock
model with antiferromagnetic coupling.

D. Wilson loop Hamiltonian with 2N − 1 twist defects

For the Wilson loop Hamiltonian with 2N − 1 number of
twist defects defined in Eq. (2.2), the Hamiltonian canstill
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TABLE II. Comparison between the Zk clock model and the
twofold twist defect chain.

Zk clock model Twofold defect chain

Periodic boundary term Even number of σa

Duality twisted boundary term Odd number of σa

Duality symmetry (D) T
Translation symmetry T 2

be written in terms of Zk clock models with some twisted
boundary term,

H = −J

N−1∑
j=1

(τ †
j τj+1 + σj + H.c.) − HB. (2.13)

The boundary term W2N−1 [Fig. 2(b)] can be derived by
computing the intersection with the neighboring Wilson loop
and is proportional to σNτ

†
Nτ1. The coefficient in front of the

boundary term depends on whether k is even or odd and is fixed
by the translational symmetry. The detail of the coefficient will
be discussed in Sec. II E.

The Wilson loop Hamiltonian is translational invariant and
thus the twisted Zk clock model is still invariant under the
Kramers-Wannier duality transformation. In this sense, this
symmetry protects the criticality of the model. Since there are
an odd number of twist defects, the dimension of the total
Hilbert space is equal to kN−1/2 and the effective length for the
twisted Zk clock model is L = N − 1/2. This will be useful in
the numerical calculation later. The correspondence between
the twist defect chain and the quantum Zk clock model is
summarized in Table II.

Actually, a similar boundary condition has already been
explored in the quantum k-state Potts model in Refs. [61,77].
The k-state Potts model with k � 4 can be constructed in terms
of the Temperley-Lieb Hamiltonian and can be exactly solved.
At the critical point (with k � 4), the model is invariant under
the Kramers-Wannier duality transformation. By constructing
the duality symmetry operator in terms of Temperley-Lieb
algebra generators, Schütz noticed that there are two different
kinds of duality symmetry operators which correspond to two
classes of toroidal boundary terms [61]. The first one is the
traditional periodic boundary term in Eq. (2.8) and the second
one is the duality twisted boundary term in Eq. (2.13).

In fact, in our twist defect chain, there is a simple way
to interpret this duality symmetry operator in terms of the
twist defect, which is equivalent to the translation symmetry
operator T for the Wilson loop. As we mentioned in Eq. (2.4),
it can be realized by a sequence of braiding operators. This is
also illustrated in Fig. 4; in the defect chain with 2N twist
defects, the translation operator involves 2N − 1 braiding
moves, while for the 2N − 1 twist defects (shown in Fig. 5),
T involves 2N − 2 braiding moves. In the next section, we
will use the braiding operators to explicitly construct the T
operator/D operator.

E. Translational symmetry T
As shown in Eq. (2.4), the T /D operator in the twist

defect chain/Zk clock model can be realized by a product

FIG. 3. A quantum state in a system with six defects labeled by
the internal fusion channels a1, a2, a3. The collection of quantum
states |aj 〉 forms an orthonormal basis of the Hilbert space.

of braiding operators. At the critical point, the Hamiltonian is
invariant under the T operator. In this section, we will use the
braiding operator to construct the T operator explicitly for the
twist defect chain and will also use the T operator to fix the
coefficient of the boundary term.

The duality transformation operator for the k-state Potts
model (with two different boundary conditions) has already
been constructed using Temperley-Lieb algebra [61]. Al-
though the k-state Potts model and Zk clock model are
equivalent for k = 2,3, these two types of models are different
for higher k values. Therefore it is interesting to construct the
T operator systematically for Zk clock models and compare
the result with that for the k-state Potts model.

1. Diagrammatical construction

According to our results in the previous paper [14], the
braiding operator for the twofold twist defect takes this form,

B
(aj ,aj−1)
2j−1 = e

2πi
k

(aj,2−aj−1,2)[ k
2 − 1

2 (aj,2−aj−1,2)],

[
B

(σj+1,σj )
2j

]aj

a′
j

= e
iπ
4 (k−1)

√
k

e
2πi
k

(a′
2−a2)[ k

2 + 1
2 (a′

2−a2)], (2.14)

where Bp is the braiding operator for two neighboring twist
defects at position p and p + 1. For B2j−1, it has the input and
output channel fixed as Abelian anyons aj and aj+1 (Fig. 3),
while B2j has the input and output channel as both twist
defects. The superscript aj and subscript a′

j in Eq. (2.14) are
the internal channels and a braid operation can flip the anyon
type of the internal channel. This braiding operator can be
rewritten in the basis of Zk rotors. When k = 2, the braiding
operator is equal to

B2j−1 = e
πi
4√
2

(
σ z

j + e
πi
2
)
, B2j = e− πi

4√
2

(
σx

j σ x
j+1 + e

πi
2
)
.

It is easy to check that

B2j σ
z
j B−1

2j = −iσ x
j σ z

j σ x
j+1,

B2j−1
( − iσ x

j σ z
j σ x

j+1

)
B−1

2j−1 = σx
j σ x

j+1. (2.15)

Combining these, we get the transformation T σ z
j T −1 =

σx
j σ x

j+1. This can also be pictorially understood in Figs. 4 and
5 which show T WjT −1 = Wj+1. Similarly, this also shows
that T σx

j σ x
j+1T −1 = σ z

j+1. This relation can be generalized to
k > 2 and we have

T T † = I, T σjT −1 = τj τ
†
j+1, (1 � i � N − 1),

T τj τ
†
j+1T −1 = σj+1, (1 � i � N − 1). (2.16)
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1 2 3 4

1 2 4 3

1 4 2 3

B3

B2

4 1 2 3

B1

W1 W3

FIG. 4. A schematic diagram for the translational operator T =
B1B2B3 in a defect chain model with four twofold defects. After
performing the T operator on this chain, every defect moves one site
to the right. The defect σ4 on the right boundary moves to the left
front. The Wilson loop operator is also shifted by one site.

The braiding operators for k > 2 are listed in Appendix A.
Therefore T transformation shifts the Wilson loop Hamilto-
nian by one lattice spacing and corresponds to the duality
transformation D in the Zk clock model.

However, the above relation only holds for Zk variables in
the bulk and may not work for the boundary term, i.e., the last
term of Eq. (2.8). This is because on the boundary,

T σNT † = QτNτ
†
1 , T QτNτ

†
1T † = σ1. (2.17)

There is an additional charge operator Q. Only when Q takes
a trivial value, i.e., Q = 1, the above relation works for the
boundary condition. For a general charge Q, when the T
operator moves the twist defect along the chain, the charge
Q is also shifted with the twist defect, therefore, this model is
not translational invariant under the T operator. One needs
to carefully include boundary correction to T , and define
T̃ = T X (to be discussed below), so that T̃ is an exact
symmetry of the Hamiltonian [61].

1 2 3 4

1 2 3 5

1 5 2 3

B4

B3

5 1 2 3

B1

W1 W3

5

4

1 2 5 3

B2

4

4

4

FIG. 5. A schematic diagram for the translational operator T =
B1B2B3B4 in a defect chain model with five twofold defects. After
performing the T operator on this chain, every defect moves one site
to the right. The defect σ5 on the right boundary moves to the left
front. The Wilson loop operator is also shifted by one site.

2. Even number of twist defects

For the case with an even number of twist defects, one
normally considers the periodic Hamiltonian as defined in
Eq. (2.8), which amounts to choosing the boundary condition
as τN+1 = τ1. More generally, one can consider boundary
conditions with

τN+1 = ω−nτ1, n = 0,1, . . . ,k − 1, (2.18)

which leads to a large set of Hamiltonians with different
boundary conditions,

H (n) = −J

N−1∑
i=1

(σi + τiτ
†
i+1 + H.c.)

− J (σN + ωnτNτ
†
1 + H.c.). (2.19)

205435-6
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Define projection operator P (n) as

P (n) = 1

k

(
k−1∑
i=0

ω−niQi

)
. (2.20)

It is easy to check that P (n) is a projection into the Q = ωn

sector. For instance, one can write Q = ∑k−1
n=0 ωnP (n). Mixed

sector Hamiltonians are produced by mixing in one charge
sector of every H (n), and defined as

H̃ (n) =
k−1∑
m=0

P (m+n)H (m)P (m+n), (2.21)

so all charge sectors of the normal periodic Hamiltonian in
Eq. (2.8) are embedded into this set. Expanding the above
equation, one gets

H̃ (n) = −J

N−1∑
i=1

(σi + τiτ
†
i+1 + H.c.)

− J (σN + ω−nQτNτ
†
1 + H.c.). (2.22)

If not for the additional phase factors of ω−n, the operator T
would be an exact symmetry of H̃ (n). To take into account that
phase factor, following Ref. [61], one could choose a boundary
correction term X = τn

NV , where the global operator V is
defined through its action on the Zk variables,

V 2 = I, V σiV = σ
†
i , V τiV = τ

†
i . (2.23)

Actually, there is an explicit matrix representation for V . First,
we consider Vi which only acts on the σi , τi sector. Let Vi =
(vab) where a,b = 0,1, . . . ,k − 1. Take vab = 1 for a + b = 0
mod k and 0 otherwise. In other words, Vi is the matrix,⎛⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0
0 0 0 · · · 0 1
0 0 0 · · · 1 0
· · · · · · · ·
0 0 1 · · · 0 0
0 1 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎠. (2.24)

Finally we can take the tensor product V = V1 ⊗ . . . ⊗ VN

which satisfies Eq. (2.23).
For T̃ = T τn

NV , now it is easy to check that

T̃ σ
†
i T̃ −1 = τiτ

†
i+1 (1 � i � N − 1), (2.25)

T̃ τiτ
†
i+1T̃ −1 = σ

†
i+1 (1 � i � N − 1), (2.26)

T̃ σ
†
N T̃ −1 = ω−nQτNτ

†
1 , (2.27)

T̃ ω−nQτNτ
†
1 T̃ −1 = σ

†
1 . (2.28)

Therefore, we have T̃ H̃ (n)T̃ −1 = H̃ (n), which means T̃ is an
exact duality symmetry of mixed sector Hamiltonian H̃ (n), and
T̃ 2 is a translational operator in the Zk clock model.

3. Odd number of twist defects

The construction of T̃ is very similar to the previous
case. Define T = B1B2 · · · B2N−2, and T̃ = T X, where X

is a boundary correction to be clarified. Using the braiding
operators B discussed in Appendix A, one can show that

T σiT † = τiτ
†
i+1 (1 � i � N − 1), (2.29)

T τiτ
†
i+1T † = σi+1 (1 � i � N − 2), (2.30)

T τN−1τ
†
NT † = eiφkQ†τ †

Nτ1σN, (2.31)

T eiφkQ†τ †
Nτ1σNT † = σ

†
1 , (2.32)

where φk is a phase determined by Eq. (2.31) and is equal to
φ3 = 2π/3, φ4 = −π/4, φ5 = 4π/5, and φ6 = −π/6. Once
again, the additional terms in the last two lines need to be
matched with a properly chosen HB , so that T̃ is an exact
symmetry of the Hamiltonian.

In order to construct the mixed sector Hamiltonians that
commute with T̃ , we consider the following duality twisted
Hamiltonians with different boundary conditions,

H (m) = −J

N−1∑
i=1

(σi + τiτ
†
i+1 + H.c.)

− J (ωme−iφk σ
†
NτNτ

†
1 + H.c.), (2.33)

where m = 0,1, . . . ,k − 1. Unlike the even number case, here
the Hamiltonians H (m) are not actually independent, as they
are related by a local unitary transformation,

H (m+1) = τNH (m)τ
†
N, Q = ωτNQτ

†
N. (2.34)

To elaborate on its meaning, let’s assume that we have
an eigenstate |α,q〉 of H (m) and Q, which satisfies
H (m)|α,q〉 = Eα|α,q〉 and Q|α,q〉 = q|α,q〉. Then Eq. (2.34)
says that τN |α,q〉 is an eigenstate of H (m+1) and Q, since
H (m+1)τN |α,q〉 = EατN |α,q〉 and QτN |α,q〉 = ωqτN |α,q〉.
This essentially means Hamiltonians H (m) of different m are
all equivalent, up to some changes to the charge sector labels.

We define the mixed sector Hamiltonians as

H̃ (m) =
k−1∑
l=0

P (l+m)H (l)P (l+m), (2.35)

which expands to

H̃ (m) = −J

N−1∑
i=1

(σi + τiτ
†
i+1 + H.c.)

− J (ω−me−iφkQσ
†
NτNτ

†
1 + H.c.). (2.36)

Similarly, one can show that for T̃ = T (σ †
N )mV ,

T̃ σ
†
i T̃ −1 = τiτ

†
i+1 (1 � i � N − 1), (2.37)

T̃ τiτ
†
i+1T̃ −1 = σ

†
i+1 (1 � i � N − 2), (2.38)

T̃ τN−1τ
†
N T̃ −1 = ω−me−iφkQσ

†
NτNτ

†
1 , (2.39)

T̃ ω−me−iφkQσ
†
NτNτ

†
1 T̃ −1 = σ

†
1 . (2.40)

Therefore, we have T̃ H̃ (m)T̃ −1 = H̃ (m), which means T̃ is an
exact duality symmetry of H̃ (m). T̃ 2 can also be interpreted as
a special “translational operator,” in the sense that it correctly
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translates a local term which is far from the boundary, and
applying it (N − 1/2) number of times on a local term will
return it back to itself, where the 1/2 factor comes from the
twisted boundary condition. Notice that T̃ does not commute
with Q.

Numerically, we are interested in the CFT content of H (0),
but since H (0) does not commute with T̃ , it is more favorable to
work with H̃ (m), from which we can extract the “momentum”
eigenvalues of T̃ 2 as well. Due to Eq. (2.34), for H̃ (m) with a
fixed m, all these k different charge sectors (labeled by charge
operator Q) have the same energy spectrum. However, H̃ (m)

with different m can have a different energy spectrum and
corresponds to a different charge sector in H (0). Therefore,
to obtain the low lying energy levels of all the charge sectors
of H (0), we need to solve for the low lying energy levels of
k different H̃ (m). To distinguish the results from the even-
defect chains, when summarizing the conformal dimensions
into tables, we describe the charge sectors using label m, in
correspondence to the fact that we are using mixed sector
Hamiltonians H̃ (m).

III. NUMERICAL METHODS AND NUMERICAL RESULTS

To determine the properties of the CFTs underlying the
Wilson loop Hamiltonian in Eq. (2.2), we extract the conformal
dimensions h and h̄ using finite and infinite density matrix
renormalization groups (DMRG/iDMRG) [78], and exact
diagonalization (ED) methods. The DMRG calculations are
based on the open-source C++ library ITENSOR [79].

A. Wilson loop Hamiltonian with 2N twist defects

Twist defect chains with 2N twist defects in Eq. (2.8)
correspond to critical Zk clock models with length L = N ,
and have difference CFTs at criticality. In order to uncover
the contents of the CFTs, except for a few cases which
allow analytical solutions, one needs to perform numerical
calculations on the energy spectrum of the critical system as
explained below.

It has been shown that the energy spectrum of a critical
chain with finite length L with periodic boundary conditions
obeys [80–82]

E = ε∞L − πvc

6L
+ 2πv

L
(h + h̄ + n + n̄) + O(L−2)

= E0 + 2πv

L
(h + h̄ + n + n̄) + O(L−2), (3.1)

where ε∞ is the energy density of the ground state in the
limit of L → ∞; v is the sound velocity; c is the central
charge. These three parameters can be pinned down by using
the DMRG method with high accuracy. The results are listed
in Table III and the detail for the numerical calculation is
explained in Appendix C. E0 = ε∞L − πvc/6L, up to small
correction in order of O(L−2), is the ground state energy; h

is the holomorphic conformal dimension of the primary field
and h̄ is the antiholomorphic counterpart; and n and n̄ are
non-negative integers marking the energy levels. Besides, the

TABLE III. Central charge, ground states’ energy per site, and
sound velocity of Z3, Z4, Z5, and Z6 clock models.

k Coupling c ε∞ v

3 F 0.8 −2.43599110 2.59802

3 AF 1 −1.81607175 1.29901

4 F/AF 1 −2.54647904 1.99992

5 F 1 −2.7184737 1.6811

5 AF 1 −2.68272 1.5206

6 F/AF 1 −2.880358 1.471

momentum quantum numbers are related to the conformal
dimensions of the primary (and descendant) fields as

P = 2π

L
(h + n − h̄ − n̄). (3.2)

As a side note, in ED calculations, P can be trivially obtained
through the eigenvalues of the translation operator. One usually
shifts the eigenstates by one site, and the resulting phase factors
would lead to the quantized momenta. The only complication
arises because of the even and odd pattern of the critical
antiferromagnetic Z3 and Z5 clock models [59]. For these
cases with different system sizes, the eigenstates’ momenta
are only consistent if one calculates the phase factors through
a translation by two sites, while translation by one site does
not produce meaningful results.

Once we have all the necessary parameters, we can calculate
the conformal dimensions based on the rescaled energy,

ER ≡ (h + h̄ + n + n̄) = L

2πv
(E − E0) + O(L−1), (3.3)

and the rescaled momenta L
2π

P , since

h + n = 1

2

(
ER + L

2π
P

)
+ O(L−1),

h̄ + n̄ = 1

2

(
ER − L

2π
P

)
+ O(L−1). (3.4)

Because of the finite size correction at the order of O(L−1),
polynomial extrapolation in terms of 1/L → 0 is often needed
for small system sizes. The detail for this calculation is shown
in Appendix D.

In Tables IV–VIII, we show the results for the k = 3,4,5,6
critical chain with an even number of twist defects with
both ferromagnetic/antiferromagnetic coupling. h and h̄ are
extracted from an energy spectrum match-up with the known
CFT results for critical Zk clock models and are summarized
in Table I. In the following section, we will study the energy
spectrum for the odd number of twist defects and compare the
results with the even case.

B. Wilson loop Hamiltonian with 2N − 1 twist defects

The Wilson loop Hamiltonian with 2N − 1 twist defects
corresponds to the twisted Zk clock model in Eq. (2.36).
Although the twisted Zk clock model still has N sites, the
effective length is L = N − 1/2 and the energy spectra of the
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TABLE IV. Conformal dimensions of primary and descendant
fields of the ferromagnetic Z3 clock model with an even number of
twist defects. q above is a label for the charge sector, with e2qπi/k as
the eigenvalue of Q. The results shown above are obtained using ED
for N = 5,6,7,8,9,10,11,12,13,14. Rescaled energies higher than
2.13351 are not well resolved for the system sizes available.

q ER
L

2π
P (h + n,h̄ + n̄)

0 0 0 (0,0)

0 0.80304 0
(

2
5 , 2

5

)
0 1.79620 ±1

(
2
5 , 7

5

)
,
(

7
5 , 2

5

)
0 1.80524 ±1

(
2
5 , 7

5

)
,
(

7
5 , 2

5

)
0 1.99987 ±2 (2,0), (0,2)

1,2 0.13341 0
(

1
15 , 1

15

)
1,2 1.13378 ±1

(
1
15 , 16

15

)
,
(

16
15 , 1

15

)
1,2 1.33391 0

(
2
3 , 2

3

)
1,2 2.13351 ±2

(
1
15 , 31

15

)
,
(

31
15 , 1

15

)

twistedZk clock model is described by Eq. (3.1), where the pa-
rameters ε∞, c, and v are the same as in the even number case.

As with the previous case, (h + h̄ + n + n̄) can be obtained
by calculating the rescaled energy ER , which is now defined
in this way,

ER ≡ (h + h̄ + n + n̄)

=
(
N − 1

2

)2( E

N− 1
2

− ε∞
) + πvc

6

2πv
+ O(N−1). (3.5)

However, a complication arises for the calculation of (h +
n − h̄ − n̄). First of all, under the duality twist boundary
conditions, it is not known a priori whether there exists
a relation between the momenta and (h + n − h̄ − n̄) as in
Eq. (3.2). Secondly, assuming the the same relation holds,
there no longer exists a simple translation operator, where
one can shift the eigenstates by one or two sites in ED, and
find the momenta through the phase factors. The system as
defined in Eq. (2.13) has a translational operation given by
T̃ , which is built by consecutive multiplication of B operators
and commutes with the Hamiltonian. We will calculate the

TABLE V. Conformal dimensions of primary and descendant
fields of the antiferromagnetic Z3 clock model with an even number
of twist defects. q above is a label for the charge sector, with e2qπi/k as
the eigenvalue of Q. Here we only show the lowest 10 excitations. The
results shown above are obtained using ED for N = 6,8,10,12,14.

q ER
L

2π
P (h + n,h̄ + n̄)

0 0 0 (0,0)

0 1.00027 ±1 (1,0), (0,1)

0 1.49975 0
(

3
4 , 3

4

)
0 1.50268 0

(
3
4 , 3

4

)
1,2 0.16667 0

(
1
12 , 1

12

)
1,2 0.66675 0

(
1
3 , 1

3

)
1,2 1.16728 ±1

(
1
12 , 13

12

)
,
(

13
12 , 1

12

)
1,2 1.67321 ±1

(
1
3 , 4

3

)
,
(

4
3 , 1

3

)

TABLE VI. Conformal dimensions of primary and descendant
fields of the ferromagnetic/antiferromagnetic Z4 clock model with
an even number of twist defects. q above is a label for the charge
sector, with e2qπi/k as the eigenvalue of Q. The results shown above
are obtained using ED for N = 5,6,7,8,9,10,11,12.

q ER
L

2π
P (h + n,h̄ + n̄)

0 0 0 (0,0)

0 0.99999 0
(

1
2 , 1

2

)
0 1.24986 ±1

(
1
8 , 9

8

)
,
(

9
8 , 1

8

)
0 1.99896 ±1, ±2

(
3
2 , 1

2

)
,
(

1
2 , 3

2

)
, (2,0), (0,2)

1,3 0.12500 0
(

1
16 , 1

16

)
1,3 1.12485 0,±1

(
9
16 , 9

16

)
,
(

1
16 , 17

16

)
,
(

17
16 , 1

16

)
2 0.25000 0

(
1
8 , 1

8

)
2 0.99999 0

(
1
2 , 1

2

)
2 1.24986 ±1

(
1
8 , 9

8

)
,
(

9
8 , 1

8

)
2 1.99896 ±1, ±2

(
3
2 , 1

2

)
,
(

1
2 , 3

2

)
, (2,0), (0,2)

eigenvalues of T̃ and extract the “momenta” of a system
of length N − 1/2. However, since there is an overall phase
ambiguity in the definition of T̃ , the “momentum” quantum
numbers are quantized up to an unknown additive constant
which changes in each charge sector and also depends on
each system size. Therefore we can only fix the difference of
the “momentum” quantum numbers of T̃ (denoted as 
P )
between any excited state and the lowest energy eigenstate in
an identical charge sector and of the same system size. Due to
this overall phase ambiguity, it is not possible to pin down a
unique combination of (h + n,h̄ + n̄).

However, in most of the cases, it turns out the decomposition
into (h + n,h̄ + n̄) is quite simple. We will show that when
k �= 4, in each charge sector, only the holomorphic part (h)
or the antiholomorphic part (h̄) has a twist with the rest of
the parts remaining the same. This result matches up with the
Z2 orbifold CFT. The k = 4 case is more complicated since
we don’t find any known orbifold CFT which precisely has
the same excitation spectrum. Nevertheless, we still manage
to show that these new excitations in the k = 4 case should be
related to Z4 twist fields.

TABLE VII. Conformal dimensions of the primary and descen-
dant fields of ferromagnetic (F) and antiferromagnetic (AF) Z5 clock
models. q above is a label for the charge sector, with e2qπi/k as the
eigenvalue of Q. The ferromagnetic results shown above are obtained
using ED for N = 5,6,7,8,9,10,11,12, while the antiferromagnetic
results are obtained using ED for N = 4,6,8,10,12. Notice that the
conformal dimensions for F and AF cases are identical.

q EF
R EF

R
L

2π
P F/AF (h + n,h̄ + n̄)F/AF

0 0 0 0 (0,0)

0 1.0014 1.0004 ±1 (1,0), (0,1)

1,4 0.0998 0.1001 0
(

1
20 , 1

20

)
1,4 1.0959 1.1050 ±1

(
1
20 , 21

20

)
,
(

21
20 , 1

20

)
2,3 0.3939 0.4010 0

(
1
5 , 1

5

)
2,3 0.8930 0.8979 0

(
9
20 , 9

20

)
205435-9
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TABLE VIII. Conformal dimensions of primary and descendant
fields of the ferromagnetic/antiferromagnetic Z6 clock model with
an even number of twist defects. q above is a label for the charge
sector, with e2qπi/k as the eigenvalue of Q. The results shown above
are obtained from ED results of N = 4,5,6,7,8,9,10.

q ER
L

2π
P (h + n,h̄ + n̄)

0 0 0 (0,0)

0 0.9997 ±1 (1,0), (0,1)

1,5 0.0834 0
(

1
24 , 1

24

)
2,4 0.3342 0

(
1
6 , 1

6

)
3 0.7561 0

(
3
8 , 3

8

)

C. k = 3, ferromagnetic

The Z3 clock model with ferromagnetic coupling at the
critical point can be described by the three-state Potts CFT.
It has a block-diagonal modular invariant partition function
[83,84],

Z = |χ0 + χ3|2 + ∣∣χ 2
5
+ χ 7

5

∣∣2 + 2
∣∣χ 1

15

∣∣2 + 2
∣∣χ 2

3

∣∣2
, (3.6)

where χh denotes the character for each primary field with
conformal dimension h. As shown in Table IV, h obtained
from the energy spectrum difference is consistent with the
CFT prediction.

Once we consider the odd-defect chain at the critical point,
there will be some new excitations in the low energy spectrum.
In Table IX, we present the rescaled energy spectrum and
momentum difference. From these numerical data, we can
calculate the possible combination (h + n,h̄ + n̄) and we find
two new excitations with conformal dimensions equal to 1/40
and 1/8. They are not in the original three-state Potts CFT but
can be found in the M(5,6) minimal model.

Actually, the three-state Potts CFT can be considered as
a subset of the M(5,6) minimal model (tetracritical Ising
CFT), which includes all the 10 primary fields and has a
diagonal modular invariant partition function Z = ∑10

i=1 |χi |2.
These 10 primary fields have conformal dimension h =
0,1/8,2/3,13/8,2/5,1/40,1/15,21/40,7/5,3 [63,83,84]. The

TABLE IX. Conformal dimensions of primary fields of the
ferromagnetic Z3 clock model with an odd number of twist defects.
m above is a label for the mixed sector Hamiltonian H̃ (m), or the
Q = e2mπi/k charge sector for H (0). 
P is the difference of the
“momentum” quantum numbers between any excited eigenstate and
the lowest energy eigenstate in the same charge sector and of the
same system size. The results shown above are obtained using ED for
N = 7,8,9,10,11,12,13,14.

m ER
L−1/2

2π

P (h + n,h̄ + n̄)

0 0.12499 — —
(

1
8 ,0

)
0 0.42533 − 1

2

(
1
40 , 2

5

)
0 0.92317 0

(
21
40 , 2

5

)
1,2 0.09161 — —

(
1
40 , 1

15

)
1,2 0.59202 1

2

(
21
40 , 1

15

)
1,2 0.79175 − 1

2

(
1
8 , 2

3

)

two CFTs are connected through Z2 orbifolding and the
M(5,6) minimal model involves some new twist field opera-
tors. There is a simple way to understand this Z2 orbifold [70]:
the three-state Potts CFT (Z3 parafermion CFT) is defined by
the coset,

SU (2)3

U (1)3
= (G2)1 × SU (3)1 = 〈1,τ 〉 × 〈1,s,s2〉, (3.7)

where (G2)1 refers to the exceptional Lie group G2 at level 1
and it contains 1 and the Fibonacci anyon τ with conformal
dimension hτ = 2/5. Here SU (3)1 means the time reversal or
antiholomorphic part of SU (3) with the reverse propagating
direction. Notice that the SU (3)1 CFT contains three primary
fields 1, s, and s2 with hs,s2 = 1/3. Therefore, the three-state
Potts CFT can be understood as the tensor product between
(G2)1 and SU (3)1 with 2 × 3 = 6 primary fields and has a
central charge c = 14/5 − 2 = 4/5.

The Abelian SU (3)1 CFT has Z2 symmetry. After orb-
ifolding this Z2 symmetry, it becomes the SU (2)4 CFT
which has five primary fields with conformal dimension
h = 0,1/8,1/3,5/8,1 [31,32,71]. Among them, there are two
Z2 twist fields with h = 1/8,5/8. Combined with the (G2)1

sector, this new CFT has 10 primary fields and has a similar
structure as the M(5,6) minimal model.

Coming back to Table IX, we observe that h̄ is still the same
as the original three-state Potts CFT, while h is new and comes
from theZ2 twist fields in theM(5,6) minimal model. We will
show that similar behavior occurs for other cases except the
k = 4 model.

D. k = 3, antiferromagnetic and k � 5

For the even-defect chain with k = 3, i.e., the Z3 clock
model, if the coupling is antiferromagnetic, the critical point
is described by the U (1)3 CFT with Z2 charge-conjugation
symmetry. The conformal dimension for this CFT is equal to
r2/12 with 0 � r < 6 and r ∈ Z. In Table V, we present the
numerical results for h and h̄. For each excited state, h and
h̄ are always the same, suggesting that the partition function
takes a diagonal form.

TABLE X. Conformal dimensions of primary fields of the
antiferromagnetic Z3 clock model with an odd number of twist
defects. m above is a label for the mixed sector Hamiltonian H̃ (m),
or the Q = e2mπi/k charge sector of H (0). 
P is the difference of
the “momentum” quantum numbers between any excited eigenstate
and the lowest energy eigenstate in the same charge sector and of the
same system size. The results shown above are obtained using ED for
N = 6,8,10,12,14.

m ER
L−1/2

2π

P (h + n,h̄ + n̄)

0 0.06250 — —
(
0, 1

16

)
0 0.56249 − 1

2

(
0, 9

16

)
0 0.81244 3

4

(
3
4 , 1

16

)
1,2 0.14583 — —

(
1

12 , 1
16

)
1,2 0.39583 1

4

(
1
3 , 1

16

)
1,2 0.64581 − 1

2

(
1
12 , 9

16

)
205435-10



TWOFOLD TWIST DEFECT CHAINS AT CRITICALITY PHYSICAL REVIEW B 96, 205435 (2017)

TABLE XI. Conformal dimensions of primary fields of the
ferromagnetic/antiferromagneticZ6 clock model with an odd number
of twist defects. n above is a label for the mixed sector Hamiltonian
H̃ (m), or the Q = e2mπi/k charge sector of H (0). 
P is the difference
of the “momentum” quantum numbers between any eigenstate and
the lowest energy eigenstate in the same charge sector and of the same
system size. The results shown above are obtained from ED results
of N = 4,5,6,7,8,9,10.

m ER
L−1/2

2π

P (h + n + h̄ + n̄)

0 0.0625 — —
(
0, 1

16

)
1,5 0.1042 — —

(
1
24 , 1

16

)
1,5 0.6047 − 1

2

(
1
24 , 9

16

)
2,4 0.2295 — —

(
1
6 , 1

16

)
3 0.438 — —

(
3
8 , 1

16

)

For the odd-defect chain shown in Table X, we observe
that the ground state has energy shifted by 1/16, which is the
same as the conformal dimension for the Z2 twist field in the
U (1)3/Z2 CFT (the detail for the Z2 orbifold CFT is shown
in Appendix B) [63,70]). Moreover, h and h̄ do not come in
pairs. h is still the same as the original U (1)3 CFT, while h̄ is
coming from the Z2 twist field.

Similar rules apply when k � 5. For theZk clock model, the
critical point is described by the U (1)k CFT. In Tables VII and
VIII, we present the numerical results of conformal dimensions
for k = 5,6 with both ferromagnetic and antiferromagnetic
coupling in an even number twist defect chain. In all of these
cases, h and h̄ are consistent with the result for the U (1)k CFT.
Moreover, they always come in pairs, suggesting the partition
function takes a diagonal form.

When k = 6, if we consider the odd-defect chain (Table XI),
for both ferromagnetic and antiferromagnetic coupling, the
lowest several excitations have ER = 1/16 + r2/4k, where
1/16 is coming from the Z2 twist field operator and r2/24
corresponds to the excitation in the original U (1)6 CFT. When
k = 5, for the odd-defect chain, if the coupling is antiferromag-
netic, as shown in Table XII, the lowest several excitations are
still equal to 1/16 + r2/4k. For the ferromagnetic coupling,

TABLE XII. Conformal dimensions of primary fields of the
antiferromagnetic Z5 clock model with an odd number of twist
defects. n above is a label for the mixed sector Hamiltonian H̃ (m),
or the Q = e2mπi/k charge sector of H (0). 
P is the difference of
the “momentum” quantum numbers between any excited eigenstate
and the lowest energy eigenstate in the same charge sector and of the
same system size. The results shown above are obtained from ED
results of N = 4,6,8,10,12.

m ER
L−1/2

2π

P (h + n + h̄ + n̄)

0 0.0625 — —
(
0, 1

16

)
0 0.563 − 1

2

(
0, 9

16

)
1,4 0.1125 — —

(
1
20 , 1

16

)
1,4 0.614 − 1

2

(
1
20 , 9

16

)
2,3 0.2628 — —

(
1
5 , 1

16

)
2,3 0.513 1

4

(
9
20 , 1

16

)

the quality of the numerical result is not fine enough due to
the strong finite size effect and we cannot extract meaningful
h and h̄. Nevertheless, these results suggest that for k �= 4, the
underlying CFT for the odd-defect chain and the even-defect
chain are related through Z2 orbifolding and the extra twist
defect in the odd chain effectively introduces a Z2 twist field
in the original CFT.

E. k = 4

The k = 4 odd chain is much more complicated than k > 5
cases. This is because when the chain consists of an even
number of defects, the Z4 clock model is already described by
the U (1)2/Z2 orbifold CFT, which is equivalent to the Ising2

CFT [32,69]. As shown in Table VI, there are already some
excitations with the conformal dimension h = h̄ = 1/16.

For the odd number twist defect chain, we find that
this model cannot be described by further orbifolding Z2

symmetry. We list the rescaled excitation energy ER shown
in the second column of Table XIV. Notice that the ground
state has ER = 1/16 + 1/64, where the new 1/64 excitation
is smaller than h = 1/32 of the twist field in the Ising2/Z2

CFT [85]. This suggests that the odd-defect chain cannot be
described by the Z2 orbifold CFT like other k �= 4 cases. We
further observe that for the excitations in m = 0,2 sectors,
apart from the 1/16 part, the rest of the parts of ER fit
well with t2/64 + n or t2/64 + n + 1/2, where t = 1,3,5,7.
Surprisingly, this 1/64 excitation also shows up in the
SU (2)1/D4 CFT (D4 = Z4 � Z2 is the dihedral group at order
8) and is the conformal dimension for the fourfold symmetry
sector [32]. This coincidence motivates us to propose that the
odd-defect chain might be related to some Z4 orbifold CFTs.

Here we briefly explain the physics in the SU (2)1/D4 CFT
and its connection with the four-state Potts CFT. The self-dual
Ashkin-Teller quantum chain model, in terms of the Z4 clock
variable, has the following Hamiltonian [86]:

H = −
∑

i

[σi + σ
†
i + λ(σi)

2

+ τiτ
†
i+1 + τ

†
i τi+1 + λ(τi)

2(τi+1)2]. (3.8)

For this model, as we vary λ from 0 to 1; the model changes
from the Z4 clock model to the four-state Potts model and
remains critical for the whole regime for λ between 0 and
1. This critical line is the famous Ashkin-Teller line and
can be described by the U (1)/Z2 orbifold CFT, where the
compactification radius of the U (1) CFT changes as we vary
λ [87].

For the four-state Potts CFT, it corresponds to the
U (1)4/Z2 CFT, which is also equivalent to the SU (2)1/D2

CFT, where D2 is the dihedral group at order 4 and is the

TABLE XIII. The quantum dimensions dχ , conformal dimension
hχ of characters for chiral U (1)4/Z2 CFT, where a = 1,2,3.

χ χI χa
J χφ χa

σ χa
τ

dχ 1 1 2 2 2

hχ 0 1 1
4

1
16

9
16
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double cover of the 180◦ rotations about the x, y, and z axes
[68,69]. Actually, starting from the SU (2)1 CFT, we can get
a family of orbifold CFTs by modding out the subgroup of
SU (2) (or called ADE classification) [32,68,69,88]. For the
SU (2)1/D2 CFT, it lies in the middle of this interesting series
of orbifold CFTs and has 11 characters which are reorganized
in Table XIII in a more symmetric way. There exists a
S3 = Z3 � Z2 symmetry for the SU (2)1/D2 CFT, which
shuffles the twist fields Ja , σa , and τa (a = 1,2,3) separately.
In principle, we can orbifold the full S3 symmetry and obtain
the SU (2)1/O CFT, where O represents the octahedral group
[32,68,69,88]. However, for our purpose in this paper, we
only need to orbifold the twofold symmetry and we obtain the
SU (2)1/D4 CFT which is equivalent to the U (1)4/Z4 CFT.
This CFT has eight primary fields from the fourfold symmetry
sector with conformal dimension h = 1/64 + s(2s − 1)/8
or h = 33/64 + s(2s − 1)/8 with s = 0,1,2,3 [32]. These
values actually are the same as t2/64 or t2/64 + 1/2 for
m = 0,2 sectors in the second column of Table XIV.

We also compute the momentum by diagonalizing the T̃
operator and show 
P in the third column of Table XIV.
Based on ER and 
P , we list one possible decomposition
(h + n,h̄ + n̄) in the fourth column of Table XIV. We compare

TABLE XIV. Hypothetical conformal dimensions (h + n,h̄ + n̄)
of primary fields of the ferromagnetic/antiferromagnetic Z4 clock
model with an odd number of twist defects. n above is a label for
the mixed sector Hamiltonian H̃ (m), or the Q = e2mπi/k charge sector
of H (0). 
P is the difference of the “momentum” quantum numbers
between any excited eigenstate and the lowest energy eigenstate in
the same charge sector and of the same system size. The results shown
above are obtained from ED results of N = 6,7,8,9,10,11,12,13.

m ER
L−1/2

2π

P (h + n,h̄ + n̄)

0 0.07812 = 1
16 + 1

64 — —
(

1
64 , 1

16

)
0 0.70312 = 9

16 + 9
64 − 1

2

(
5
64 , 5

8

)
0 0.82812 = 1

16 + 49
64

1
2

(
41
64 , 3

16

)
0 0.95312 = 9

16 + 25
64 1

(
61
64 ,0

)
0 1.07812 = 17

16 + 1
64 −1

(
1
64 , 17

16

)
0 1.07812 = 17

16 + 1
64 1

(
65
64 , 1

16

)
0 1.32812 = 9

16 + 49
64 − 1

2

(
25
64 , 15

16

)
1,3 0.12500 — —

(
1
16 , 1

16

)
1,3 0.62500 − 1

2

(
1
16 , 9

16

)
1,3 0.62500 1

2

(
9
16 , 1

16

)
1,3 1.12500 −1

(
1
16 , 17

16

)
1,3 1.12500 1

(
17
16 , 1

16

)
1,3 1.12500 0

(
9
16 , 9

16

)
1,3 1.62495 3

2

(
25
16 , 1

16

)
1,3 1.62495 − 3

2

(
1
16 , 25

16

)
2 0.20312 = 1

16 + 9
64 — —

(
3
16 , 1

64

)
2 0.45312 = 1

16 + 25
64 − 1

2

(
1
16 , 25

64

)
2 0.57812 = 9

16 + 1
64 0

(
3
8 , 13

64

)
2 1.20312 = 17

16 + 9
64 1

(
19
16 , 1

64

)
2 1.20312 = 17

16 + 9
64 −1

(
3
16 , 65

64

)
2 1.32812 = 9

16 + 49
64 − 3

2

(
0, 85

64

)
2 1.45309 = 17

16 + 25
64 − 3

2

(
1
16 , 89

64

)

this #/64 in h or h̄ in m = 0,2 sectors with conformal
dimension for primary fields in the fourfold symmetry sector
in the SU (2)1/D4 CFT and we find that they can partially
match up. Moreover, the SU (2)1/D4 CFT also has a twofold
symmetry sector corresponding to the twofold rotation about
a diagonal axis like (110) which actually has h = 1/16,9/16
and is consistent with m = 1,3 sectors. At this moment, it
is unclear why there is connection between an odd number
twist defect chain and the SU (2)1/D4 (U (1)4/Z4) CFT. What
is puzzling is that the even chain and the odd chain are not
seemingly related by orbifold. The even chain has an Ising2

CFT with the compactification radius R = 1, but the odd chain
is suggestively SU (2)1/D4 which has a larger radius R = √

2.
We leave this disagreement for future studies.

IV. CONCLUSION

In this first part of the paper, we study the twofold twist
defect chain at the critical point. We demonstrate that for
an even number of twist defects, it maps to the Zk clock
model with a periodic boundary condition (up to some phase
factor), while for the odd number case, it is equivalent to theZk

clock model with a duality twisted boundary condition. The
translation symmetry in the twist defect chain model becomes
the Kramers-Wannier duality symmetry in theZk clock model.
This symmetry operator can be generated by a series of braid-
ing operators for twist defects, and is discussed in Sec. II E.

In the second part of the paper, we numerically investigate
the defect chain model at its self-dual critical point. We first
extract the conformal dimensions for the primary fields in the
even-defect chain model and find that they match up with that
of the Zk clock CFT. We then turn to study the underlying CFT
for odd-defect chains and we observe the energy spectrum is
shifted, where the energy difference is caused by the twist field
in the orbifold CFT. We find that when k �= 4, the odd-defect
chain is described by orbifolding the Z2 symmetry in the even-
defect chain CFT. On the other hand, when k = 4, there is a
mysterious 1/64 excitation in the spectrum of the odd-defect
chain which turns out to be related to the Z4 twist field in the
SU (2)1/D4 orbifold CFT. Our model can be generalized to
twist defect with other symmetries and can be used to realize
more complicated orbifold CFTs.
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APPENDIX A: BRAIDING OPERATORS

One can write out the B operators using the braiding rules
of Eq. (2.14). These B operators, as shown pictorially in Figs. 4

205435-12
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and 5 would generate the duality transformation and translation
in the Zk clock model variables.

For k = 3,

B2j−1 = 1√
3

[(σj + σ
†
j ) + ω], (A1)

B2j = 1√
3

[(τj τ
†
j+1 + τ

†
j τj+1) + ω]. (A2)

For k = 4,

B2j−1 = 1√
4

[
(σj + σ

†
j ) + ω

3
2 σ 2

j + ω− 1
2
]
, (A3)

B2j = 1√
4

[
(τj τ

†
j+1 + τ

†
j τj+1) + ω

3
2 τ 2

j τ 2
j+1 + ω− 1

2
]
. (A4)

For k = 5,

B2j−1
1√
5

[
(σj + σ

†
j ) + ω4

(
σ 2

j + σ
†2
j

) + ω2
]
, (A5)

B2j = 1√
5

[
(τj τ

†
j+1 + τ

†
j τj+1) + ω4

(
τ 2
j τ

†2
j+1+τ

†2
j τ 2

j+1

)+ω2
]
.

(A6)

For k = 6,

B2j−1 = 1√
6

[
(σj + H.c.) + ω

3
2
(
σ 2

j + H.c.
) + ω4σ 3

j + ω− 1
2
]

(A7)

B2j = 1√
6

[
(τj τ

†
j+1 + H.c.) + ω

3
2
(
τ 2
j τ

†2
j+1 + H.c.

)
+ω4τ 3

j τ 3
j+1 + ω− 1

2
]
. (A8)

Notice all B operators defined above satisfy BB† = I, and
commute with the charge operator Q.

APPENDIX B: U(1)k/Z2 ORBIFOLD CFT

The chiral U (1)k (k ∈ Z+) CFT describes a compact free
bosonic field φ identified modulo 2πR with R = √

2k. There
are 2k primary fields Vr = eirφ/

√
2k , which are vertex operators

and satisfy the Z2k Abelian fusion rules V[r] × V[r ′] = V[r+r ′]
with [r] defined as r mod 2k. The corresponding characters
are

χr (τ ) = 1

η(τ )

∑
n

qk(n+ r
2k

)2 = 1

η(τ )

r,2k(q), (B1)

where r ∈ Z and satisfies 0 � r < 2k, q = ei2πτ , and η(τ ) is
the Dedekind eta function,

η(τ ) = q
1
24

∞∏
n=1

(1 − qn). (B2)

Under T transformation,


r,2k(τ + 1) = e2πi r2

4k 
r,2k(τ ). (B3)
Under S transformation,


r,2k

(
− 1

τ

)
=

√
−iτ

2k

∑
n


r ′,2k(τ )e−2πi r′r
2k . (B4)

This CFT is invariant under Z2 symmetry φ ↔ −φ, which
corresponds to the charge conjugation symmetry for the vertex

TABLE XV. The quantum dimensions dχ and conformal dimen-
sion hχ of characters for the chiral U (1)k/Z2 CFT.

χ dχ hχ

χI 1 0

χJ 1 1

χl
k, l = (0,1) 1 k

4

χr, r = (1,...,k − 1) 2 r2

4k

χ l
σ , l = (0,1)

√
k 1

16

χl
τ , l = (0,1)

√
k 9

16

operators and exchanges Vr and V2k−r . After orbifolding Z2

symmetry, the model is projected to the Z2 invariant states
with the twisted sectors also needing to be included [68]. The
U (1)k/Z2 orbifold CFT has k + 7 characters which can be
constructed from the partition function of the φ field with a
twisted boundary condition in time and spatial directions. The
conformal dimension of the characters is listed in Table XV.
Notice that four of them are coming from the twist field
operators and have conformal dimensions equal to 1

16 or 9
16 .

These characters can be used to construct a modular invariant
nonchiral partition function with a diagonal form partition
function Z = ∑k+7

i=1 |χi |2.
Here we list several well-known results for the lattice

model. For the U (1)k/Z2 CFT, when k = 2, the orbifold CFT
has nine primary fields and corresponds to the Ising2 CFT
with nine primary fields. When k = 3, it corresponds to the Z4

parafermion CFT. When k = 4, it is the four-state Potts CFT.

APPENDIX C: NUMERICAL METHOD TO COMPUTE
THE GROUND-STATE ENERGY E0

For these three parameters in E0 = ε∞L − πvc/6L defined
in Eq. (3.1), ε∞ can be found using iDMRG to high accuracy.
The central charge c can be obtained by fitting to the scaling
form of the entanglement entropy. Given the ground state
of a 1 + 1d critical chain of length L with open boundary
conditions, if we consider a consecutive block of size LA

starting from the left (or right) edge, the von Neumann
entanglement entropy of that block has been shown to exhibit
the following scaling behavior [89]:

S(LA) = c

6
log

(
L

π
sin

πLA

L

)
+ S0, (C1)

where S0 is a constant piece. Numerically, we use DMRG to
obtain the ground state wave function of a finite chain with
length L and open boundary conditions, and determine the
central charge c by fitting the numerical results of S(LA) onto
Eq. (C1). Finally, we can extract the sound velocity v based
on the ground-state energy E0 = ε∞L − πvc/6L + O(L−2)
(obtained by ED). Polynomial extrapolation in terms of 1/L

is used to mitigate the finite size correction [O(L−2)].
As an example, in the following we demonstrate how we

obtain ε∞, c, and v for the critical Z4 clock model. k = 4 is
a special case where the antiferromagnetic and ferromagnetic
critical clock models are related by using στ = ωτσ . First
of all, through iDMRG we find ε∞ = 2.54647904, which
agrees with the exact value of 8/π up to very high precision
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FIG. 6. Entanglement entropy S vs subsystem size LA, for an
open boundary Z4 critical chain with L = 250. The central charge
c = 1 can be read off from the linear fit in the inset, which is based
on Eq. (C1).

[90]. Secondly, DMRG calculations, as can be see in Fig. 6,
show that c = 1. Then, using the ED calculations for lengths
L = 6,7,8,9,10,11,12,13, we calculate the sound velocity,
and extrapolate it to v = 2.0000 in the 1/L → 0 limit as in
Fig. 7, compared to the exact value of v = 2 [90]. All the
parameters above are obtained to high accuracy.

The parameters of ε∞, c, and v for Z3, Z4, Z5, and
Z6 clock models are listed in Table III. In addition to
the comparison between the numerical and exact results
for the k = 4 case, our results for the ferromagnetic and
antiferromagnetic k = 3 cases also match up extremely well
with previous numerical results [59], and the Bethe ansatz
solutions [91] of ε∞ = −2

√
3/π − 4/3, v = 3

√
3/2 (ferro-

magnetic), and ε∞ = −√
3/π − 3

√
3/2 + 4/3, v = 3

√
3/4

(antiferromagnetic).
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(cubic) v(0) = 1.999972±7e-06

(quartic) v(0) = 2.0000004±3e-07

FIG. 7. Polynomial extrapolations of the sound velocity v for the
finite periodic critical Z4 clock model at second, third, and fourth
orders, based on E0 = ε∞L − πvc/6L + O(L−2). The extrapolated
values are all very close to the exact value of 2.

0.1250

0.1252

0.1254

0.1256

0.1258

R
e
sc

a
le

d
e
n
e
rg

y
E

R

ED

2nd

3rd

4th

0.2495

0.2500

0.2505

0.2510

0.2515

0.2520

0.00 0.05 0.10 0.15 0.20

1/L

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000

1.002

R
e
sc

a
le

d
e
n
e
rg

y
E

R

0.00 0.05 0.10 0.15 0.20

1/L

1.07

1.08

1.09

1.10

1.11

1.12

1.13

FIG. 8. Polynomial extrapolation of the first four excited states’
rescaled energy for the critical Z4 clock model (even-defect chain).
The black dots are ED data points. There are three polynomial fit
curves, at second, third, and fourth orders, respectively. One can see
that for all cases, all three polynomial fit curves have nearly the same
y intercept.

APPENDIX D: MITIGATING FINITE SIZE EFFECTS
WITH POLYNOMIAL EXTRAPOLATION

As in Eqs. (3.4) and (3.5), the conformal dimensions
calculated using exact diagonalization are accompanied by
finite size corrections that are of O(1/L). To mitigate these
finite size effects, we extrapolate the conformal dimensions at
different system sizes using polynomials of various orders of
1/L, and check whether consistent results can be obtained in
the limit of 1/L → 0. Reliable results are then listed in the
tables.

In particular, we show several figures (Figs. 8 and 9) for Z4

clock models below to illustrate this idea.
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FIG. 9. Polynomial extrapolation of the first four excited states’
rescaled energy for the critical Z4 clock model (even-defect chain).
The black dots are ED data points. There are three polynomial fit
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