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The quantum anomalous Hall (QAH) effect has attracted extensive attention due to time-reversal symmetry
broken by a staggered magnetic flux emerging from ferromagnetic ordering and spin-orbit coupling. However,
the experimental observations of the QAH effect are still challenging due to its small nontrivial bulk gap. Here,
based on density functional theory and Berry curvature calculations, we propose the realization of intrinsic QAH
effect in two-dimensional hexagonal metal-oxide lattice, Nb2O3, which is characterized by the nonzero Chern
number (C = 1) and chiral edge states. Spin-polarized calculations indicate that it exhibits a Dirac half-metal
feature with temperature as large as TC = 392 K using spin-wave theory. When the spin-orbit coupling is switched
on, Nb2O3 becomes a QAH insulator. Notably, the nontrivial topology is robust against biaxial strain with its
band gap reaching up to Eg = 75 meV, which is far beyond room temperature. A tight-binding model is further
constructed to understand the origin of nontrivially electronic properties. Our findings on the Dirac half-metal
and room-temperature QAH effect in the Nb2O3 lattice can serve as an ideal platform for developing future
topotronics devices.
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I. INTRODUCTION

Topological phase and topological property have sparked
extensive research interests in condensed-matter physics and
materials science and won the Nobel Prize in physics in
2016. The quantum anomalous Hall (QAH) insulator [1–4]
is a nontrivial phase where the ferromagnetic (FM) ordering
and spin-orbit coupling (SOC) conspire to generate energy
gap Eg in the bulk, and gapless chiral edge states at its
edges. Its topologically nontrivial properties are characterized
by a nonzero Chern number (C) counting the number edge
states whose energy-momentum dispersion threads the gap
of finite width nanoribbons, while their wave functions have
finite spatial extent around the ribbon edges. Unlike the two-
dimensional (2D) quantum spin Hall (QSH) insulator [5–9],
where helical edge states appear in pairs with different chirality
and spin polarization, the edge states of the QAH insulator
allow only one spin species to flow unidirectionally. Thus, the
edge state transport in nanoribbons made of QAH insulator
is robust against defects, disorder, and surface contamination
over hundreds of micrometers, which makes them superior
to edge states of the QSH insulator where electrons can be
backscattered by disorder with time-reversal symmetry (TRS)
breaking [10]. These ground breaking discoveries introduce in-
teresting physics principles and establish a solid foundation for
understanding a different type of topological phase transition
in 2D materials. Experimentally, the QAH effect in thin-film
(Bi, Sb)2Te3 doped with Cr or V atoms has been reported at
very low temperature [10,11], thus igniting intense searches
for systems whose energy gap Eg and Curie temperature (TC)
are both far beyond room temperature [12]. Finding such
2D materials would open avenues for nanoelectronic devices
with ultralow dissipation where edge states act as “chiral
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interconnects” whose resistance is independent of the length
of the nanoribbons [13,14].

The seminal work on the Haldane model [15], where
the quantized Hall conductance without Landau levels is
introduced on a honeycomb lattice in the absence of an external
magnetic field, has inspired extensive attention for realistic
materials exhibiting QSH or QAH states where the honeycomb
lattice is suggested as a first ingredient [16,17]. Subsequently,
some 2D crystals are proposed, including graphene decorated
with heavy 5d transition metals [18] or heterostructures like
graphene/FM-insulator [19]. Honeycomb lattice composed of
silicene, germanene, and stanene, which already possess strong
intrinsic SOC, could also be converted into QAH phase by
introducing exchange interaction via magnetic adatoms [20]
or surface functionalization [21]. These 2D stoichiometric
magnetic honeycomb lattices, however, exist rarely in nature
and are difficult experimentally to manipulate due to their
structural complexity while keeping the topology of these
systems unaffected. The experimental realization of these
exciting QAH phases is still in its infancy.

In the present work, we propose that a 2D hexagonal metal-
oxygen lattice, Nb2O3, can host an intrinsic QAH insulating
state, which is characterized by nonzero Chern number
(C = 1) and chiral edge states. Spin-polarized calculations
indicate that it exhibits a Dirac half-metal feature with Curie
temperature of TC = 392 K which, with turning on SOC,
becomes a QAH insulator. Notably, the nontrivial topology
is robust against biaxial strain, with its band gap reaching
up to Eg = 75 meV, which is much larger than the recently
predicted Eg = 20 meV in the kagome lattice Cs2Mn3F12

[22] and Eg = 2.3 meV in Mn-dicyanoanthracene (Mn-DCA)
lattice [23]. In comparison to Cr- or V-doped (Bi, Sb)2Te3

films [10,11], such a lattice without any magnetic doping
is easier to synthesize and has a much higher homogeneity.
These findings on the Nb2O3 lattice open a direction for the
exploration of the topological states of matter.
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The rest of the paper is organized as follows. In Sec. II
we describe the theoretical methods used for our calculations
of Nb2O3 lattice. In Sec. III the stability, electronic, and
topological properties are discussed. Finally, we draw our
conclusions on Nb2O3 lattice in Sec. VI.

II. COMPUTATIONAL DETAILS

Spin-polarized calculations are performed by using density-
functional theory (DFT), as implemented in Vienna ab initio
simulation package (VASP) [24]. The projector- augmented-
wave (PAW) potential [25,26], Perdew-Burke -Ernzerhof
(PBE) exchange-correlation functional [27], and the plane-
wave basis with a kinetic-energy cutoff of 500 eV are
employed. To describe the strongly correlated 4d electrons
of the Nb atom, the GGA + U method is employed. Here, the
difference between the on-site Coulomb (U ) and exchange
parameter (J ) is set to 3.0 eV (U -J ) in the calculations,
which is consistent with the one of Nb(TCNE)2. [28] The
Brillouin zone is sampled by using an 11 × 11 × 1 �-
centered Monkhorst - Pack grid, and the SOC is included
by a second variational procedure on a fully self-consistent
basis. During structural optimization, all atomic positions and
lattice parameters are fully relaxed, and the maximum force
allowed on each atom is less than 0.02 eV/Å. Furthermore,
the screened exchange hybrid density functional by Heyd-
Scuseria-Ernzerhof (HSE06) [29] is adopted to check the
electronic structure. The phonon calculations are carried out by
using DFT perturbation theory as implemented in the PHONOPY

code [30] combined with VASP.

III. RESULTS AND DISCUSSION

A. Structure and stability of Nb2O3 lattice

Figure 1(a) shows the geometric structure of the Nb2O3

lattice, where Nb atoms form a honeycomb lattice with a
threefold rotational symmetry by sharing one oxygen (O)
bridge with each neighbor, accompanied by its Brillouin zone
(BZ) in Fig. 1(c). In comparison to the organic kagome
lattice [31–33], here the oxygen atoms substitute for triangular

FIG. 1. (a) Top and side view of Nb2O3 with lattice vectors a1 and
a2 in the xy plane. Rhombus shows the unit cell. (b) The calculated
phonon spectrum. (c) The first Brillouin zone of the Nb2O3 lattice
with reciprocal-lattice vectors b1 and b2.

FIG. 2. Variation of the energy from 5000 to 10000 fs during
MD simulations at a temperature of 600 K for Nb2O3 lattice. The
inset illustrates a snapshot of the MD simulation of the structure at
temperatures of 6000 and 8000 fs, respectively.

organic molecules. Structural optimizations indicate that the
2D Nb2O3 lattice is flat with the Nb and O atoms moving
alternately in the same plane, which is depicted by the top and
side view in Fig. 1(a). The lattice constant is a1 = a2 = 6.60 Å
with the Nb-Nb distance of 3.86 Å. The structural stability
is examined by calculating the formation energy expressed
as �Ef = E(Nb2O3)–2E(Nb)–3/2μ (O2), where E (Nb2O3)
and E (Nb) are the total energies of the Nb2O3 and Nb crystals,
respectively, while μ(O2) is the chemical potential oxygen
gas. The obtained negative value, −5.34 eV, indicate that the
Nb2O3 lattice is a strongly bonded network and thus favors
its experimental synthesis. To examine whether the Nb2O3

becomes buckled, we construct the buckled Nb2O3 lattice,
similar to the case of MoS2 and CrI3 configurations. The
calculated energy differences between planar and different
buckled configurations are shown in Fig. S1 of the Supple-
mental Material [34]. One can see that, with the increase of
buckle height from 0 to 1.8 Å, the energies of Nb2O3 increase
monotonically. This indicates that the planar configuration has
the lowest energy, and thus is the most stable structure.

To test the kinetic stability of the Nb2O3 lattice, we
further perform the phonon spectrum calculations. As shown
in Fig. 1(b), no appreciable imaginary phonon modes are
observed, indicating that the Nb2O3 lattice is kinetically
stable. Additionally, the thermal stability of Nb2O3 lattice
is assessed by performing ab initio molecular dynamics
(MD) simulations. We use a 3 × 3 supercell to carry out the
individual MD simulations at temperatures of 300, 400, 500,
and 600 K, respectively. Snapshots of Nb2O3 lattice at 6000
and 8000 fs are plotted for these structures, as illustrated in
Fig. 2 and in Fig. S2 of the Supplemental Material [34]. Note
that the structure of Nb2O3 lattice does not collapse throughout
a 10-ps MD simulation up to 600 K, indicating that the melting
point of Nb2O3 lattice is probably 600 K. The above results
reveal that the Nb2O3 lattice has very good thermal stability
and can maintain its structural integrity in a high-temperature
environment. In previous works [35], the Y2O3 lattice has been
reported to form a complete monolayer on platinum-supported
graphene. The monolayer interacts weakly with graphene, but
is stable to high temperature. Scanning tunneling microscopy
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reveals that the Y2O3 exhibits a two-dimensional hexagonal
lattice rotated by 30◦ relative to the hexagonal graphene lattice.
More recently, by using the PSO search and VASP simulations,
Song et al. [36] predict that the planar Al2O3 monolayer with a
hexagonal lattice is stable and can be realized experimentally.
Obviously, all these results provide solid evidence to support
our predictions.

B. FM ordering and Curie temperature

After having established that the Nb2O3 lattice is struc-
turally stable, we then investigate its magnetic properties.
Note that the ground state of Nb2O3 lattice is strongly spin
polarized with a local magnetic moment of 2.0 μB per Nb atom,
corresponding to spin configuration d2↑0 ↓. This is because
each Nb atom is threefold coordinated to an oxygen atom, thus
the formal valence of Nb atom is Nb3+, which is confirmed
by Bader charge analysis. Hund’s rule would then give spin
S = 1 on each Nb atom. To determine the preferred ground
state, we calculate the FM and antiferromagnetic (AFM) spin
orientations, and find that the total energies of the FM state are
0.74 eV/f.u. lower than the AFM state, indicating the FM state
is more stable. If the 2D spin system is isotropic, Mermin and
Wagner [37] demonstrate that the strong thermal fluctuations
of gapless long-wavelength modes will destroy the 2D FM
ordering at finite temperature. So the model Hamiltonian for
the spins of Nb atoms in the honeycomb lattice should be
expressed as [38]

H = −
(∑

i

D
(
Sz

i

)2 + J

2

∑
i,i ′

�Si · �Si ′ + λ

2

∑
i,i ′

SZ
i SZ

i ′

)
, (1)

where the sum i runs over the entire lattice of Nb atoms, and
the sum i ′ runs over the 3 Nb atoms (the first neighbors of atom
i). The first term in the Hamiltonian describes the easy axis
single-ion anisotropy defined z as the off-plane direction. The
second term is the isotropic exchange and the final term is the
anisotropic symmetric exchange. The sign convention is such
that J > 0 favors FM interactions. In this case, we consider
the energies of four possible ground states, i.e., FM off-plane
(FM, z), AFM off-plane (AFM, z), FM in-plane (FM, x), and
AFM in-plane (AFM, x). So, the spin model allows writing
the energetics of the different configurations normalized per
unit cell as

εFM,z = −3S2(J + λ) − 2S2D,

εAFM,z = +3S2(J + λ) − 2S2D,
(2)

εFM,x = −3S2J,

εAFM,x = +3S2J.

In order to determine J and λ, by comparing the total
energies of FM and AFM states with the spins orientating along
the in-plane and out-of-plane directions, we obtain that J =
123 meV, λ = 0.2 meV, and D = 0.002 meV, respectively.
Based on spin-wave theory, we can provide a rough estimate
of the Curie temperature, expressed as

M = S − 1

2(2π )2

∫
BZ

d2�k
eβME(k)/S − 1

, (3)

FIG. 3. Self-consistent solution of the magnetization derived
with Eq. (3), showing a depleted magnetization with increasing
temperature.

where the integral extends over the first BZ, and the units of
both M and S are h̄. As Eq. (3) has no solution for M = 0, we
can obtain a self-consistent solution of the Curie temperature
in Fig. 3, TC = 392 K, which is far beyond room temperature.

Generally, the AFM state is energetically more stable
than the FM state according to conventional superexchange
interaction at 180°. [37] However, it doe snot hold true for
all cases, including 2D materials. In the Nb2O3 lattice, the
strong ferromagnetism originates mainly from half-filled dxz

and dyz bands, as shown in Fig. 5. Due to the strong orbital
hybridization of spin-up dxz and dyz orbitals of Nb atoms
through the interbridged oxygen atom, the twofold degenerate
dxz and dyz states would split into the low-lying bonding
and high-lying antibonding states, as illustrated in Fig. 4.
Considering the Nb3+ spin configuration, the remaining two d

electrons with the same FM spin alignment would occupy the
low-lying bonding (|xz+〉and|yz+〉) states, thus resulting in an
energy lowering, since E (FM) is proportional to t , where t

is the hopping between neighboring Nb atoms. However, if
the spins of two Nb3+ atoms are antiparallel to each other, the
energy E(AFM) would decrease if E(AFM) is proportional
to t2/U due to the superexchange model. Since Hubbard U

is generally larger than t , the system favors FM ordering.
Obviously, the origin of ferromagnetism is due to direct

FIG. 4. The plot of exchange mechanism for the FM ordering.
The inset gives the hopping parameter t in Nb2O3 lattice.
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FIG. 5. (a), (b) Band structures of the Nb2O3 lattice without and
with SOC, respectively. Red and blue solid lines denote spin-up and
spin-down bands. (c), (d) 3D band profile around the Fermi level
corresponding to (a) and (b), respectively.

exchange between Nb orbitals, and the ferromagnetism can
be understood as a Stoner instability of an itinerant electron
gas. Additionally, the results are confirmed by GGA + U

calculations in Fig. S3 of the Supplemental Material [34],
where the energy difference between the FM and AFM states
increases monotonically as a function of U . The possible
reason can be attributed to that the energy in the AFM state
decreases significantly with U , while that in the FM case does
not depend on U . Therefore, we can infer that the excellent
magnetic and electronic properties of Nb2O3 show a favorable
robustness against the correction effect, as illustrated in Fig. S4
of the Supplemental Material [34].

C. Electronic properties of Nb2O3 lattice

We now proceed to study the electronic properties of
Nb2O3 lattice. Figure 5(a) shows the calculated band structures
without SOC, where the red and blue lines display the
spin-up and spin-down channels, respectively. Because of
internal magnetization, the spin-up and spin-down bands are
completely split away from each other, and only the spin-up
band is left around the Fermi level. From the 3D band profile
near the K point, we also observe a clear linear Dirac cone,
with the Fermi level located exactly at the Dirac point. Notably,
this is a typical kagome band around the Fermi level, consisting
of two completely flat bands above two Dirac bands remaining
at the K point, as illustrated in Fig. 5(c). Note that the
spin-down channel possesses a semiconducting behavior with
a gap of 0.78 eV, while the spin-up one has partially filled
metallic bands, showing a half-metallic character with 100%
spin-polarized currents. We also observe that the bands near
the Fermi level are mainly composed of Nb-d orbital where
the Dirac cone is mainly contributed by dxz,yz states, while
the contributions from s and p orbitals are negligible. On
this occasion, the Fermi velocity (vF ) of Dirac fermions at

FIG. 6. (a) The chiral edge states of the Nb2O3 lattice. (b) Berry
curvature with SOC in the momentum space. The red, white, and blue
colors give distribution of Berry curvature from positive to negative
value, and the black dashed lines show first BZ. (c) Band structures
of Nb2O3 calculated using the TB model with and without SOC. (d)
The global gap Eg and the total-energy difference as a function of the
biaxial strain.

the Fermi level is evaluated as 4.6 × 105 m/s, in consistent
with one of graphene (8 × 105 m/s) [39]. The existence of
spin-polarized Dirac fermions in one spin channel and large
band gap in another channel constitute a great potential for
applications in spintronics.

D. QAH effect in Nb2O3 lattice

Dirac materials, such as in IV -based 2D honeycomb lattice
[40], are generally characterized by Dirac states composed of
a p orbital with weaker SOC. Thus, SOC opens just a tiny gap,
forming Z2 topological insulators (TIs) with TRS protected
edge states. The Dirac states of 2D Nb2O3 lattice, however,
are mainly derived from the Nb d orbital. The strong strength
of SOC induced by the d orbital, accompanied with broken
TRS, may lead to a QAH phase. Indeed, our DFT calculations
demonstrate that the switch on SOC results in a gap of Eg =
75 meV at the K point, as shown in Figs. 4(b) and 4(d), which
is much larger than the recently predicted Eg = 20 meV in
the kagome lattice Cs2Mn3F12 [22] and Eg = 2.3 meV in the
Mn-DCA lattice [23]. To show the nontrivial topology of this
lattice, we construct the Green’s functions [41] for the semi-
infinite boundary based on the maximally localized Wannier
function method [42,43]. Figure 6(a) displays the calculated
local density of state (LDOS) of the edge states. Obviously, the
nontrivial edge states connecting the valence and conduction
bands cross the insulating gap of the spin-up Dirac cone. The
existence of chiral edge states inside such a large band gap is
a manifestation of the band topology of bulk Bloch states of
valence bands.
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E. Tight-binding model of QAH effect

In order to get more insights into the origin of the QAH
effect, we now focus on the orbital-projected electronic band
structures of 2D Nb2O3 lattice. As seen from Fig. 5, the
Dirac bands are mainly composed of dxz and dyz orbitals,
and overlap with little contributions from O 2p orbital in
proximity of the Fermi level. Despite the inner magnetism,
the spin-up and spin-down bands are no longer separable
when considering SOC, but the z component of the spins
(σ z) is a conserved quantum number since the magnetic
order of Nb2O3 is perpendicular to the xy plane. Thus the
Hamiltonian conserves the z component of the spins, and we
can divide the one-particle Hilbert space H into H ↑ ⊕H ↓

by the eigenvalue of σ z. Hence, we present the space H ↑
by constructing TB Hamiltonian (H0) in combination with an
SOC term (HSOC) including dxz and dyz orbitals of Nb atoms,
since there are only spin-up bands across to the Fermi energy.
In the basis of (dA,xz,dA,yz,dB,xz,dB,yz,)T , the hopping term
without SOC can be written as

H0 = t
∑
i,j

(
d
†
j, �Ri

dj, �Ri+,�ej
+ H.c.

)
, (5)

where
−→
R i = mi �a + ni

�b denotes the lattice points of A and B

sites; �δj is the displacement from a unit cell to its neighboring
unit cells; � = xz,yz distinguishes different d orbitals, and
dj = (dxz�ex + dyz�ey) · �ej .

To include the SOC effect in TB calculations, we consider the on-site term HSOC expressed as

HSOC = iλ
∑

i

[(
d
†
xz, �Ri

dyz, �Ri
− d

†
yz, �Ri

dxz, �Ri

) + (
d
†
xz, �R(B)

i

d
yz, �R(B)

i
− d

†
yz, �R(B)

i

d
xz, �R(B)

i

)]
(6)

in which λ describes the strength of SOC. Finally the effective Hamiltonian can be expressed as

H (�k) =

⎛
⎜⎜⎜⎝

−λ + εAxz+εAyz

2
εAxz−εAyz

2
εAxz−εAyz

2 λ + εAxz+εAyz

2

t
2g(�k) t

2 l(�k)
t
2m(�k) t

2g(�k)
t
2g∗(�k) t

2m∗(�k)
t
2 l∗(�k) t

2g∗(�k)

−λ + εBxz+εByz

2
εBxz−εByz

2
εBxz−εByz

2 λ + εBxz+εByz

2

⎞
⎟⎟⎟⎠, (7)

where

g(�k) = ei�k·�e1 + ei�k·�e2 + ei�k·�e3 ,

l(�k) = 1 − i
√

3

2
ei�k·�e1 + 1 + i

√
3

2
ei�k·�e2 − ei�k·�e3 ,

m(�k) = 1 + i
√

3

2
ei�k·�e1 + 1 − i

√
3

2
ei�k·�e2 − ei�k·�e3 , (8)

�k · �e1 =
√

3

2
kx + 1

2
ky, �k · �e2 = −√

3

2
kx + 1

2
ky,

�k · �e3 = −ky.

Figure 6(c) displays the calculated band structures with
and without SOC, respectively. Note that the linear Dirac
bands along the high-symmetry directions cross at the K point
without SOC, and the flat bands and dispersive bands touch at
the center of the first BZ, while the degeneracy of the Dirac
cones between the middle two dispersive bands is also lifted.
When the SOC is switched on, a sizeable gap of 75 meV opens,
which is consistent with the DFT results. These demonstrate
that the intrinsic SOC in Nb2O3 lattice is responsible for band
gap opening at the Dirac bands, which is of importance to
realize the QAH effect.

To further determine the nontrivial topology of Nb2O3

lattice, we calculate the Berry curvature � (k) from the Kubo
formula [44,45] expressed by

�(k) =
∑

n

fn�n(k), (9)

�n(k) = −2Im
∑
m�=n

〈�nk|υx |�mk〉〈�mk|υy |�nk〉h̄2

(Em − En)2 , (10)

where the summation is over all of the occupied states, En is
the eigenvalue of the Bloch function |�nk〉, fn is the Fermi-
Dirac distribution function, and vx and vy are the velocity
operators. By using the TB Hamiltonian parametrization of
Wannier functions with the WANNIER90 package [46,47],
we obtain the Berry curvature for the whole valence bands
along the high-symmetry directions and the corresponding 2D
distribution in momentum space. As shown in Fig. 6(b), the
nonzero curvatures are localized around K and K0 points with
the same sign. By integrating the Berry curvatures over the
first BZ, we find that the Chern number (C), expressed as

C = 1

2π

∑
n

∫
BZ

d2k�n, (11)

is equal to 1 with each Dirac cone (K and K ′) contributing 0.5.
In this case, the anomalous Hall conductivity σxy , σxy = e2

h
C

shows a quantized charge Hall plateau of at a value of e2

h

located in the insulating gap of the spin-up Dirac cone. Such a
nonvanishing Chern number and quantized Hall conductivity
characterizes the QAH phase in the Nb2O3 lattice.

After confirming the nontrivial topology of the Nb2O3

lattice, we further check the robustness of the topological
properties against external strain, in that the strain generally
changes the SOC-induced bulk gap and spin exchange constant
J0. Figure 6(d) shows the evolution of direct gap Eg and FM
exchange energy as a function of strain ε, which is defined as
(a − a0)/a0, where a(a0) is the strained (equilibrium) lattice
constants. Note that the nontrivial topological states remain
within the strain range of 10%. This suggests that the Nb2O3

lattice maintains a topologically nontrivial state, which is
stable against external strains. The gap Eg decreases with the
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FIG. 7. (a) Top and side view of the epitaxial growth of the
Nb2O3 lattice on MoS2 substrate. (b) The corresponding energy band
structure with SOC. The purple, green, and yellow dots denoted
the dxz,yz,dxy,x2−y2 and dz2 orbital of Nb atoms, respectively. (c)
Schematic device model for proposed Nb2O3/MoS2 heterostructure
for quantum state measurement. Vertical arrows show the spin
orientation of electrons in the edge states and horizontal arrows show
their transport directions.

strain, becoming 56.8 meV at the strain of 10%. However, the
biaxial strain enhances the spin-exchange strength, and thus
can effectively promote the Curie temperature to a high value.

On the other hand, we check the calculated results for the
Nb2O3 lattice with HSE06 functional here. We find that a
larger gap of 0.11 eV is obtained with zero strain, which is
far beyond room temperature. It is noticeable that, though the
bulk gap is enhanced for the HSE06 method, the dxz and dyz

band character is not altered near the Fermi level, indicating
that the nontrivial topology is robust to computational method.

F. Substrate effects on QAH effect

One critical point is whether the QAH effect of the 2D
Nb2O3 lattice can remain on a substrate, since the substrates
are inevitable in device applications [48–51]. The MoS2

monolayer is chemically inert and does not easily bond
strongly with other atoms, thus may be adopted as protective
film to growth Nb2O3 lattice. Here, we place the Nb2O3 lattice
on MoS2 substrate to form a Nb2O3/MoS2 heterostructure, as
shown in Fig. 7(a). After structural optimization, the distance
of Nb2O3 and MoS2 layers is 3.51 Å with a binding energy
of −47 meV per unit cell, suggesting a typical van der Waals
structure. In this case, the main features of QAH effect in free-
standing Nb2O3 lattice remain intact. Figure 7(b) presents the
calculated band structure with SOC. As expected, here there
is still a SOC-induced gap at the Dirac point around the Fermi
level, and the states around the Fermi level are dominantly
contributed by the kagome band. Considering the 2D wide gap
MoS2 substrate electrically insulate adjacent QSH layer of the
Nb2O3 lattice, protecting parallel helical edge channels from
being gapped by interlayer hybridization, the Nb2O3/MoS2

heterostructure can parametrically increase the number of edge
transport channels to support the dissipationless charge/spin
transport in the topological states. These results demonstrate
the feasibility of constructing the quantum device by the
Nb2O3/MoS2 heterostructure, as illustrated in Fig. 7(c).

IV. CONCLUSION

In summary, we employ DFT calculations to demonstrate
the possibility of realizing the intrinsic QAH effect in 2D
Nb2O3 lattice, and predict that such a lattice is a good can-
didate. The Curie temperature estimated from the spin-wave
model is about TC = 392 K. Also, the nontrivial properties
in Dirac bands are confirmed by a nonzero Chern number
(C = 1), quantized Hall conductivity, and gapless chiral edge
states. A TB model is constructed to explain the origin of
nontrivial topology. Such a structure is easier to synthesize
and much more homogeneous than other QAH insulators,
thus enabling the Nb2O3 lattice to be a promising platform
for realizing low-dissipation topotronics devices.
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APPENDIX: DETAILED TIGHT-BINDING MODEL

1. Lattice and Hamiltonian

a. Lattice

Here, we present the proposed lattice model of Nb2O3 in
Fig. (1). We chose the x and y axes along the armchair and
zigzag directions, respectively. The z direction is in the normal
direction to the plane of the Nb2O3 plane (i.e., xy plane).
There are two atoms and two orbitals on each atom in the unit
cell. With this definition of coordinates, the lattice vectors are
expressed as

�e1 =
√

3

2
�ex + 1

2
�ey,

�e2 = −
√

3

2
�ex + 1

2
�ey,

�e3 = −�ey, (A1)

�δ2 = �e2 − �e1,

−→
δ 3 = �e3 − �e1,

where �Ri = mi �a + ni
�b denotes the lattice points of the A site;

�δj is the displacement from a unit cell to its neighboring unit
cells, as illustrated in Fig. 1.

b. Method of deriving the Hamiltonian in momentum space from
the TB Hamiltonian in real space

We propose a TB Hamiltonian including dxz and dyz

atomic orbital. The nearest-neighbor effective TB Hamiltonian
without SOC in real space is expressed as

H =
∑
ij,μυ

c
†
iμHiμ,jυcjυ . (A2)

So, the TB Hamiltonian in momentum space can be given
by

H =
∑

�k
ψ

†
�k

⎛
⎝H00 +

∑
�δj

H0�δj
ei�k·�δj

⎞
⎠ψ�k, (A3)
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where the wave functions of Nb atoms can be expressed as

ψ = (cAμ,cBυ, . . .)T, (A4)

ψ† = (c†Aμ,c†Bυ, . . .), (A5)

where the i and j denote the lattice point of Nb2O3 lattice in
real space, μ and υ represent the Nb atom in the A1th (first)
and Bth (second) sites, respectively.

c. Systematical descriptions on TB Hamiltonian

To accurate to describe the low-energy effective TB
Hamiltonian, in the basis of (dA,xz,dA,yz,dB,xz,dB,yz,)T , we
can define the Hamiltonian in real space as H = H0 + Hsoc.
H0 is the nearest-neighbor hopping term given as

H0 = t
∑
i,j

(
d
†
j, �Ri

dj, �Ri+,�ej
+ H.c.

)
, (A6)

where �Ri = mi �a + ni
�b denotes the lattice points of the A site;

�δj is the displacement from a unit cell to its neighboring

unit cells; � = xz,yz distinguishes different d orbitals on Nb
atoms. Also, we define dj as

dj = (dxz�ex + dyz�ey) · �ej (A7)

with the expression of

d1 =
√

3

2
dxz + 1

2
dyz, d

†
1 =

√
3

2
d†

xz + 1

2
d†

yz,

d2 = −
√

3

2
dxz + 1

2
dyz, d

†
2 = −

√
3

2
d†

xz + 1

2
d†

yz, (A8)

d3 = −dyz, d
†
3 = −d†

yz.

It is known that spin-orbit coupling (SOC) is a relativistic
correction of the Schrödinger equation. It can significantly
affect the electronic properties of systems that turn it into a
topological phase. In such systems, the representation of the
SOC Hamiltonian is given as

HSOC = iλ
∑

i

[(
d
†
xz, �Ri

dyz, �Ri
− d

†
yz, �Ri

dxz, �Ri

) + (
d
†
xz, �R(B)

i

d
yz, �R(B)

i
− d

†
yz, �R(B)

i

d
xz, �R(B)

i

)]
. (A9)

Here, the λ describes the strength of SOC whose value depends on the type of atomic species. Also, we can give the
d
†
1,�0d1.�e1 , d

†
2,�0d2.�e2 , and d

†
3,�0d3.�e3 as follows:

d
†
1,�0d1.�e1 =

(√
3

2
d†

xz, + 1

2
d†

yz

)(√
3

2
dxz,�e1 + 1

2
dyz,�e1

)

= 3

4
d†

xzdxz,�e1 +
√

3

4
d†

xzdyz,�e1 +
√

3

4
d†

yzdxz,�e1 + 1

4
d†

yzdyz,�e1 ,

d
†
2,�0d2.�e2 =

(
−√

3

2
d†

xz, + 1

2
d†

yz

)(
−√

3

2
dxz,�e2 + 1

2
dyz,�e2

)

= 3

4
d†

xzdxz,�e2 −
√

3

4
d†

xzdyz,�e2 +
√

3

4
d†

yzdxz,�e2 + 1

4
d†

yzdyz,�e2 ,

d
†
3,�0d3.�e3 = d†

yzdyz,�e3 . (A10)

As a consequence, the representation of matrix H00 and H0�δj
necessary in Eq. (A9) in the above-mentioned basis is

H00 =

⎛
⎜⎜⎜⎜⎝

0 iλ

−iλ 0

3
4 t

√
3

4 t
√

3
4 t 1

4 t
3
4 t

√
3

4 t
√

3
4 t 1

4 t

0 iλ

−iλ 0

⎞
⎟⎟⎟⎟⎠, (A11)

H0,�δ2
=

⎛
⎜⎜⎜⎜⎝

0 0 3
4 t −√

3
4 t

0 0 −√
3

4 t 1
4 t

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠, (A12)

H0,�δ3
=

⎛
⎜⎝

0 0
0 0

0 0
0 t

0 0
0 0

0 0
0 0

⎞
⎟⎠ (A13)
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with the expression of

H0,−�δ2
= H

†
0,�δ2

,H0,−�δ3
=H

†
0,�δ3

. (A14)

According to the definition of TB Hamiltonian, we can obtain the Hamiltonian in momentum space as

H (�k) = H00 +
∑
�δj

H0δe
i�k·�δj

=

⎛
⎜⎜⎜⎜⎝

0 iλ

−iλ 0

3
4 t

√
3

4 t
√

3
4 t 1

4 t
3
4 t

√
3

4 t
√

3
4 t 1

4 t

0 iλ

−iλ 0

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

0 0

0 0

3
4 tei�k·�δ2 −√

3
4 tei�k·�δ2

−√
3

4 tei�k·�δ2 1
4 tei�k·�δ2

3
4 te−i�k·�δ2 −√

3
4 te−i�k·�δ2

−√
3

4 te−i�k·�δ2 1
4 te−i�k·�δ2

0 0
0 0

⎞
⎟⎟⎟⎠

+

⎛
⎜⎝

0 0
0 0 tei�k·�δ3

te−i�k·�δ3
0 0
0 0

⎞
⎟⎠ =

⎛
⎜⎜⎝

0 iλ

−iλ 0
tg1 tg2

tg2 tg3

tg∗
1 tg∗

2
tg∗

2 tg∗
3

0 iλ

−iλ 0

⎞
⎟⎟⎠. (A15)

Here the corresponding terms of g1, g2, and g3 are expressed as

g1 = 3

4
+ 3

4
ei�k·�δ2 ,

g2 =
√

3

4
−

√
3

4
ei�k·�δ2 , (A16)

g3 = 1

4
+ 1

4
ei�k·�δ2 + ei�k·�δ3 .

Finally, in the basis (ei�k·�e1dA,xz,e
i�k·�e1dA,yz,dB,xz,dB,yz,)T , the TB Hamiltonian of the Nb2O3 lattice becomes

PHP † =

⎛
⎜⎜⎝

ei�k·�e1 0
0 ei�k·�e1

0 0
0 0

0 0
0 0

1 0
0 1

⎞
⎟⎟⎠

⎛
⎜⎝

0 iλ

−iλ 0
tg1 tg2

tg2 tg3

tg∗
1 tg∗

2
tg∗

2 tg∗
3

0 iλ

−iλ 0

⎞
⎟⎠

⎛
⎜⎜⎝

e−i�k·�e1 0
0 e−i�k·�e1

0 0
0 0

0 0
0 0

1 0
0 1

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎝

0 iλ

−iλ 0
tg1e

i�k·�e1 tg2e
i�k·�e1

tg1e
i�k·�e1 tg3e

i�k·�e1

tg∗
1e

−i�k·�e1 tg∗
2e

−i�k·�e1

tg∗
2e

−i�k·�e1 tg∗
3e

−i�k·�e1

0 iλ

−iλ 0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

0 iλ

−iλ 0
tg′

1 tg′
2

tg′
2 tg′

3
tg

′∗
1 tg

′∗
2

tg
′∗
2 tg

′∗
3

0 iλ

−iλ 0

⎞
⎟⎟⎠, (A17)

where the corresponding parameters of g′
1,g

′
2, and g′

3 are given by

g′
1 = g1e

i�k·�e1 = 3

4
ei�k·�e1 + 3

4
ei�k·�e2 ,

g′
2 = g2e

i�k·�e1 =
√

3

4
ei�k·�e1 −

√
3

4
ei�k·�e2 , (A18)

g′
3 = g3e

i�k·�e1 = 1

4
ei�k·�e1 + 1

4
ei�k·�e2 + ei�k·�e3 .

In the basis of (dA,+,dA,−,dB,+,dB,−)T , we further can obtain

⎛
⎜⎝

dA,+
dA,−
dB,+
dB,−

⎞
⎟⎠ = P

⎛
⎜⎜⎝

ei�k·�e1dA,xz

ei�k·�e1dA,yz

dB,xz

dB,yz

⎞
⎟⎟⎠, P = 1√

2

⎛
⎜⎝

1 −i 0 0
1 i 0 0
0 0 1 −i

0 0 1 i

⎞
⎟⎠,

PHP † = 1

2

⎛
⎜⎝

1 −i 0 0
1 i 0 0
0 0 1 −i

0 0 1 i

⎞
⎟⎠

⎛
⎜⎜⎝

0 iλ

−iλ 0
tg′

1 tg′
2

tg′
2 tg′

3
tg

′∗
1 tg

′∗
2

tg
′∗
2 tg

′∗
3

0 iλ

−iλ 0

⎞
⎟⎟⎠

⎛
⎜⎝

1 1 0 0
i −i 0 0
0 0 1 1
0 0 i −i

⎞
⎟⎠
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= 1

2

⎛
⎜⎜⎝

−λ iλ

λ iλ

t(g′
1 − ig′

2) t(g′
2 − ig′

3)
t(g′

1 + ig′
2) t(g′

2 + ig′
3)

t(g
′∗
1 − ig

′∗
2 ) t(g

′∗
2 − ig

′∗
3 )

t(g
′∗
1 + ig

′∗
2 ) t(g

′∗
2 + ig

′∗
3 )

−λ iλ

λ iλ

⎞
⎟⎟⎠

⎛
⎜⎝

1 1 0 0
i −i 0 0
0 0 1 1
0 0 i −i

⎞
⎟⎠

=

⎛
⎜⎜⎜⎝

−λ 0

0 λ

1
2 t(g′

1 + g′
3) 1

2 t(g′
2 − g′

3 − i2g′
2)

1
2 t(g′

1 − g′
3 + i2g′

2) 1
2 t(g′

1 + g′
3)

1
2 t(g

′∗
1 + g

′∗
3 ) 1

2 t(g
′∗
1 − i2g

′∗
2 − g

′∗
3 )

1
2 t(g

′∗
1 + ig

′∗
2 − g

′∗
3 ) 1

2 t(g
′∗
2 + g

′∗
3 )

−λ 0

0 λ

⎞
⎟⎟⎟⎠. (A19)

Here, the corresponding parameters should correspond to

g′
1 = g1e

i�k·�e1 = 3

4
ei�k·�e1 + 3

4
ei�k·�e2 ,

g′
2 = g2e

i�k·�e1 =
√

3

4
ei�k·�e1 −

√
3

4
ei�k·�e2 , (A20)

g′
3 = g3e

i�k·�e1 = 1

4
ei�k·�e1 + 1

4
ei�k·�e2 + ei�k·�e3 ,

g′
1 + g′

3 = ei�k·�e1 + ei�k·�e2 + ei�k·�e3 , (A21)

g′
1 − g′

3 − i2g′
2 = 1

2
ei�k·�e1 − i

√
3

2
ei�k·�e1 + 1

2
ei�k·�e2 + i

√
3

2
ei�k·�e2 − ei�k·�e3

= 1 − i
√

3

2
ei�k·�e1 + 1 + i

√
3

2
ei�k·�e2 − ei�k·�e3

= e−i(π/3)ei�k·�e1 + e−i(5π/3)ei�k·�e2 + e−i3πei�k·�e3 , (A22)

g′
1 − g′

3 + i2g′
2 = 1

2
ei�k·�e1 + i

√
3

2
ei�k·�e1 + 1

2
ei�k·�e2 − i

√
3

2
ei�k·�e2 − ei�k·�e3

= 1 + i
√

3

2
ei�k·�e1 + 1 − i

√
3

2
ei�k·�e2 − ei�k·�e3

= ei(π/3)ei�k·�e1 + ei(5π/3)ei�k·�e2 + ei3πei�k·�e3 . (A23)

By defining ei�k·�ej = bj , θj = 1,2,3 = (π
6 , 5π

6 , 3π
2 ), then we have the Hamiltonian

H (�k) =

⎛
⎜⎜⎜⎝

−λ 0 1
2 t

∑
j bj

1
2 t

∑
j e−2iθj bj

0 λ 1
2 t

∑
j e2iθj bj

1
2 t

∑
j bj

1
2 t

∑
j b∗

j
1
2 t

∑
j e−2iθj b∗

j −λ 0
1
2 t

∑
j e2iθj b∗

j
1
2 t

∑
j b∗

j 0 λ

⎞
⎟⎟⎟⎠. (A24)

Obviously, the derived Hamiltonian is identical to the one given in Eq. (3) in our original paper.

2. Model to estimate the TB parameters

From Eq. (A24), we can infer the TB Hamiltonian as

H (�k) =

⎛
⎜⎜⎜⎝

−λ 0

0 λ

t
2g(�k) t

2 l(�k)
t
2m(�k) t

2g(�k)
t
2g∗(�k) t

2m∗(�k)
t
2 l∗(�k) t

2g∗(�k)

−λ 0

0 λ

⎞
⎟⎟⎟⎠, (A25)
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where

g(�k) = ei�k·�e1 + ei�k·�e2 + ei�k·�e3 ,

l(�k) = 1 − i
√

3

2
ei�k·�e1 + 1 + i

√
3

2
ei�k·�e2 − ei�k·�e3 , (A26)

m(�k) = 1 + i
√

3

2
ei�k·�e1 + 1 − i

√
3

2
ei�k·�e2 − ei�k·�e3 ,

and

�k · �e1 =
√

3

2
kx + 1

2
ky,

−→
k · �e2 = −√

3

2
kx + 1

2
ky, (A27)

�k · �e3 = −ky.

3. On-site energy term in TB Hamiltonian

In the basis of (dA,xz,dA,yz,dB,xz,dB,yz,)T , the on-site term should be expressed as Hii = diag(εAxz,εAyz,εBxz,εByz). However,
in the basis of (dA,+,dA,−,dB,+,dB,−,)T , this expression becomes

PHiiP
† = 1

2

⎛
⎜⎝

1 −i 0 0
1 −i 0 0
0 0 1 −i

0 0 1 −i

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

εAxz
0 0
0 0

0 0
0 0 εAyz

0 0
0 0

0 0
0 0

εB,xz 0
0 εB,yz

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

1 1 0 0
i −i 0 0
0 0 1 1
0 0 i −i

⎞
⎟⎠

= 1

2

⎛
⎜⎝

εAxz + εAyz εAxz − εAyz

εAxz − εAyz εAxz + εAyz

0 0
0 0

0 0
0 0

εBxz + εByz εBxz − εByz

εBxz − εByz εBxz + εByz

⎞
⎟⎠. (A28)

In this case, when the on-site component is added, the TB Hamiltonian becomes

H (�k) =

⎛
⎜⎜⎝

−λ + εAxz+εAyz

2
εAxz−εAyz

2
εAxz−εAyz

2 λ + εAxz+εAyz

2

t
2g(�k) t

2 l(�k)
t
2m(�k) t

2g(�k)
t
2g∗(�k) t

2m∗(�k)
t
2 l∗(�k) t

2g∗(�k)
−λ + εBxz+εByz

2
εBxz−εByz

2
εBxz−εByz

2 λ + εBxz+εByz

2

⎞
⎟⎟⎠. (A29)

Obviously, this expression may be simplified if all four orbits share the same energy, which means εAxz = εAyz = εBxz = εByz.
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