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Nonequilibrium nuclear spin distribution function in quantum dots subject to periodic pulses
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Electron spin dephasing in a singly charged semiconductor quantum dot can partially be suppressed by periodic
laser pulsing. We propose a semiclassical approach describing the decoherence of the electron spin polarization
governed by the hyperfine interaction with the nuclear spins as well as the probabilistic nature of the photon
absorption. We use the steady-state Floquet condition to analytically derive two subclasses of resonance conditions
excellently predicting the peak locations in the part of the Overhauser field distribution which is projected in the
direction of the external magnetic field. As a consequence of the periodic pulsing, a nonequilibrium distribution
develops as a function of time. The numerical simulation of the coupled dynamics reveals the influence of the
hyperfine coupling constant distribution onto the evolution of the electron spin polarization before the next laser
pulse. Experimental indications are provided for both subclasses of resonance conditions.
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I. INTRODUCTION

Combining traditional electronics with novel spintronic
devices has led to an intensive investigation of semiconductor
quantum dots (QD) using electrical [1,2] or optical probes
[3,4]. High localization of the electron wave function in the QD
reduces the decoherence facilitated by free electron motion,
but simultaneously increases the hyperfine interaction strength
between the confined electron spin and the surrounding nuclear
spins [4–9]. Nevertheless, QD ensembles driven by periodic
circular polarized laser pump pulses provide a promising route
for optically controlled quantum functionality [3,10].

A steady state of the spin system emerges from the periodic
pulsing of such QD ensembles that is substantially different
from its equilibrium starting point. Floquet’s theorem provides
a periodicity condition for this nonequilibrium steady state,
which translates into a mode-locking resonance condition for
the electron spin dynamics. Early on, it was conjectured that
this mode-locking condition [3] leads to a nuclei-induced
frequency focusing of electron spin coherence. Although
the short time dephasing remains unaltered, the resonance
condition partially restores spin coherence via constructive
interference before the next laser pulse arrives. Hole-spin
initialization and relaxation times were studied in a similar
pump-probe configuration in Ref. [11].

In this paper, we derive a semiclassical approach for the
coupled dynamics of the electron spin and the nuclear spins in
a single negatively charged QD. The external magnetic field
is applied in the Voigt geometry, i.e., orthogonal to the optical
axis, and the electron spin is subject to periodic pulsing with
a circular polarized laser. The presented method takes into
account the hyperfine interactions between the electron and
nuclear spins [5,6,12] as well as the Zeeman terms for all spins.
The method is used to calculate the emerging nonequilibrium
steady state induced by the periodic pulsing.

Our approach is based on the observation that the Over-
hauser field generated by the large number of nuclei spin
behaves as a classical variable in leading order [5,12–14],
particularly in a large external magnetic field. Chen et al.
[15] showed that the quantum-dynamics of the central spin
model [5,16] can be accurately approximated by expanding the
path-integral representation around its saddle-point, defined by

a set of classical Euler-Lagrange equations of motion. Subse-
quently, the quantum mechanical trace is replaced by a con-
figuration average over all classical spin configurations [15].

The effect of laser pulses as well as the decay of the created
trion, however, require a fully quantum mechanical treatment
of the electron spin dynamics reflecting the probabilistic
nature of the photon absorption and emission processes. In
order to accommodate these quantum effects, the unique
correspondence between a quantum-mechanical expectation
value for a spin 1/2 and the components of the density
matrix of such a spin subject to a classical magnetic field
is exploited. The quantum nature of the spin-pumping and
the trion decay can therefore be included into an Ehrenfest
equation for the electron spin expectation value. It has almost
the same analytical structure as that of a classical spin, and the
quantum mechanics is encoded in the nonconstant length of
the classical spin vector to account for the effect of each laser
pulse and the subsequent trion decay.

Although our theoretical simulations focus on a single
QD, the considerations can be extended to a QD ensemble.
In a single QD, the distribution of the hyperfine coupling
constants, the electronic g factor as well as the oscillator
strength is fixed while they typically vary from QD to QD
in a real ensemble. Furthermore, the different geometries of
different QDs yield different electronic confinement potentials
and consequently, different laser energies are required to pump
the trion states of each QD [17,18]. A monotonous connection
between the trion excitation energy and the electron g-factor
ge has been experimentally used [19] to address subsets of
a QD ensemble with differently colored laser light. Since
the fluctuations of the Overhauser field define the short-time
dephasing time T ∗ [4,5,20], our calculations can be interpreted
as either simulations for an ensemble of identical QDs, or the
accumulated time average of many consecutive measurements
of the spin-polarisation on a single QD. Experimentally, the
accumulated average of a QD ensemble is recorded [3]. To
account for this, we have to average the results for a single QD
over a typical distribution of ge factors as well as a distribution
of times T ∗ as given in the experimental situation.

While the basic effect of the periodic pulsing was well
understood in terms of a resonance condition for the electron

2469-9950/2017/96(20)/205419(19) 205419-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.205419


NATALIE JÄSCHKE et al. PHYSICAL REVIEW B 96, 205419 (2017)

spin dynamics [10], a direct experimental access to the
properties of the nuclear spin bath is absent under these
conditions. One of the main objectives of this paper is to clarify
the dynamics of the emerging mode-locking conditions based
on an analytical argument as well as a detailed analysis of the
full numerical simulations. We show that some of the basic
features of forming a nonequilibrium distribution function of
the Overhauser field predicted by Petrov and Yakovlev [21]
prevails for the proper quantum mechanical treatment of the
trion decay based on a Lindblad approach.

Assuming a converged periodic Floquet state after infinitely
many laser pulses, we analytically derive two steady-state
resonance conditions: one is identical to the conjecture by
Greilich et al. [10], while the second condition additionally
depends on the ratio between the Larmor frequency and the
trion decay rate. It turns out that these analytic predictions
excellently agree with the full numerical simulations and
can provide an upper bound of the maximal achievable spin
polarization in such experimental setups.

Recently, a fully quantum-mechanical treatment of the
problem [22] has addressed the question how the nuclear
nonequilibrium distribution function emerges due to the
periodic pump pulses of a QD. While Petrov and Yakovlev
[21] used simplified assumptions that each pump pulse
initializes the electron spin in a fully polarized state, the
quantum mechanical treatment of trion excitation and the
subsequent decay under reemitting a photon has been taken
into account [22]. A very slow growth of a peak structure in
an originally Gaussian Overhauser field distribution [5,12] has
been reported where these emerging peaks can be understood
in terms of resonance conditions [22,23]. In order to address
the dynamics of a reasonably large spin bath consisting of
N = 15–17 nuclei, however, the hyperfine interaction was
perturbatively treated up to linear order in the spin-flip terms
during each pulse interval. It remains unclear whether the
slow growth of the nonequilibrium distribution function is
related to the underestimation of the spin-flip term in the
perturbation theory or is already representative for a QD
comprising typically 105 nuclear spins.

Since the characteristic frequency of the classical and the
quantum mechanical treatment of the spin precession are
identical and given by the effective Larmor frequency, we
do not alter the relevant time scale by resorting to a classical
treatment of the individual nuclear spins in order to treat (i)
large numbers of nuclear spins and (ii) allow for an isotropic
dynamics induced by the hyperfine interaction. We provide a
simple scaling argument how to extrapolate the time scales for
the evolution of the nonequilibrium distribution function to a
realistic QD.

The theoretical simulations are augmented by experimental
data recorded on an ensemble of n-doped quantum dots.
Measurements address the magnetic field dependency of the
mode locking amplitude as well as the Fourier transform
of the electron spin dynamics, both obtained by Faraday
rotation measurements [3,10]. From the Fourier transforms
with sufficient resolution we indeed find clear indications
for precession modes fulfilling the predicted second class
of resonance conditions that have not yet been observed
before. These modes become particularly prominent around
4 T, where the mode-locked spin amplitude that can be

assessed shortly before the impact of a pump pulse shows a
minimum.

A. Plan of the paper

We use a semiclassical approximation to study the electron
spin dynamics and the development of a nuclear spin dis-
tribution in a periodically pulsed QD system. A formalism
for the simulation that incorporates a classical description
for the hyperfine interaction and Larmor precession around
the external magnetic field as well as for the trion decay
is presented. Section II is divided in two parts: one covers
the theoretical basics, the other addresses the methods used
in the simulation. In the first part, the central spin model is
introduced. In Sec. II B, the Lindblad formalism for the trion
decay is discussed. In the following, coupled equations of
motion (EOM) are found for the electron spin and the nuclear
spin bath. A classical approach for the trion decay can be
derived from the Lindblad formalism. Under the assumption
of a frozen Overhauser field two sets of resonance conditions
can be found. Lastly, the influence of the Overhauser field
on the electron spin is introduced. Section III contains the
results of the theoretical simulations. We start with a brief
introduction of the default settings of the parameters. Those
will be used to gain a fundamental understanding of the time
evolution of the system. The rest of the section is devoted to
the variation of parameters like the external magnetic field or
the distribution of coupling constants. Section IV addresses the
results of experimental studies for the electron spin precession
frequency spectrum, which show clear indications for modes
at both resonance conditions. The last section will summarize
the results and give an outlook to further investigations.

II. MODELS AND METHODS

We aim to describe a single electron charged QD subjected
to periodic laser pulses and to an externally applied magnetic
field. The time scales of the system vary greatly: the time
duration of the pulses (∼1.5 ps), the trion decay (∼0.4 ns) and
the repetition time of the pulse (13.2 ns) [3,10]. Therefore the
laser pumping will be treated quantum-mechanically, whereas
we will use a semiclassical approach for the trion decay and
the electron spin dephasing between two consecutive pulses.

A. Central spin model

The Fermi contact hyperfine interaction between the central
electronic spin and the nuclear spins in the QD provides
the largest contribution to electron spin dephasing [4] in a
singly charged semiconductor QD. Other interactions such
as dipole-dipole interaction [4] or the electrical quadrupolar
nuclear interactions [24–27] are several orders of magnitude
smaller and, therefore, will be neglected in the following
[4,5,8].

The Hamiltonian of the central spin model (CSM) accounts
for the effect of the external magnetic field on the electron
and nuclear spins as well as the hyperfine interaction between
nuclear spin bath and electron spin:

HCSM = geμB �Bext
�̂S + μN �Bext

N∑
k=1

gk
�̂Ik +

N∑
k=1

Ak
�̂Ik

�̂S. (1)
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The operators �̂S and �̂Ik denote the electron spin and the kth

nuclear spin. N labels the number of nuclear spins.
All spins precess around the external magnetic field �Bext

with the Larmor frequency ωe = geμB| �Bext| for the electron
spin and ωN,k = gkμN| �Bext| for the kth nuclear spin, respec-
tively. The last term in (1) encodes the hyperfine interaction
between central spin and nuclear spins via the Overhauser

field, �̂BN = ∑
k Ak

�̂Ik . The feedback to the kth nuclear spin

is given by the Knight field �̂Bk = Ak
�̂S. The strength of the

coupling constants Ak are determined [4,5] by the probability
of an electron being present at the position of the kth nucleus
|ψ( �Rk)|2.

The fluctuations of the Overhauser field in absence of an
external magnetic field, 〈 �̂B2

N〉, define a characteristic time scale
of the system,

(T ∗)−2 =
∑

k

A2
k

〈 �̂I 2
k

〉
, (2)

governing the short-time electron spin decoherence. Through-
out the paper, we use T ∗ as the characteristic time or inverse
energy scale in all calculations. Note that we have absorbed h̄

in the definition of time in the numerical calculations; at the
end, the time is converted back to physical units using T ∗ ≈ 1
ns in order to connect with the experiments.

It is useful to introduce dimensionless coupling con-
stants ak = T ∗Ak and dimensionless magnetic fields |�bext| =
geμBT ∗| �Bext| = ωeT

∗. This leads to the dimensionless Hamil-
tonian

H̄ = HCSMT ∗ = �bext
�̂S + ζ �bext

∑
k

�̂Ik +
∑

k

ak
�̂Ik

�̂S, (3)

where ζ denotes the ratio between the nuclear Zeeman and
the electronic Zeeman energy. For simplicity, gk is taken as
equal for all nuclear spins. For InxGa1−xAs QDs, ζ = gkμN

geμB
≈

(800)−1 replaces the small difference in the Ga, In, and As
Zeeman energies by an averaged value ζ . Recently, the effect
of different nuclear spin species on the dynamics has been
investigated employing a quantum mechanical perturbation
theory [23]. This requires a nuclei dependent ratio ζk in Eq. (3),
which is beyond the scope of this paper. In the experiments,
the external magnetic field is applied in x direction, in the
Voigt geometry, while the laser beam direction, which is
perpendicular to this, defines the z direction.

B. Methods

The major challenge for the description of the pulse
dynamics and the build-up of a nonequilibrium steady state
in a QD ensemble subject to periodic laser pulses is the large
separation of the time scales. While the laser pulse duration
typically is given by TP = 1 − 4 ps, and can be treated as
instantaneous to a good approximation, the dephasing time
due to the hyperfine interactions is three orders of magnitude
larger while the pulse repetition time is TR = 13.2 ns in the
experiments. Since the experiments are performed at magnetic
fields of the order of 1–6 T, the electronic Larmor frequency
|�bext| is large compared to the hyperfine interaction energy
fluctuation 1/T ∗.

Electronic spin polarization is generated by resonant cir-
cular σ+ laser pulses exciting the electron state |↑〉 to a trion
state |↑↓⇑〉. Spin conservation and the formation of an electron
singlet prevent the excitation of the electron |↓〉 state for σ+
circular polarization. The effective g factor of the trion is
dominated by the hole spin and turns out to be negligibly
small. Therefore precession of the trion state |↑↓⇑〉 to |↑↓⇓〉
in the external magnetic field is omitted. During the Larmor
precession of the |↓〉 state, the trion state decays back to |↑〉
under emission of light at a decay time 1/γ , which is typically
0.1 − 0.2T ∗. Clearly, this process must be treated quantum
mechanically by a Lindblad approach even though a simplified
approach has recently been proposed [21].

The experimentally relevant time scales allow us to separate
the time evolution between two pulses into two steps: (i)
the laser pulse, which is treated by an instantaneous unitary
transformation of the electronic part of the density operator,
and (ii) the decay of the trion is accounted for by a Lindblad
formalism and the simultaneous time evolution of the coupled
nuclear electronic system.

For the last step, one could remain within a fully quantum
mechanical description [13,20] but is limited to a relative small
number of nuclear spins [20,22], or to short-time dynamics
[13] using a TD-DMRG approach [28]. Alternatively, one
can map the dynamics onto a set of classical equations of
motion [5,15,29], which shows remarkably good agreement
with the full quantum mechanical treatment [13] but is
easily extendable to a large number of spins. Below, we
address the key challenge of how to combine quantum and
classical calculations in a systematic way to incorporate the
formation on a nonequilibrium density distribution of the
Overhauser field [21], which is the origin of the self-focusing
experimentally observed by Greilich et al. [10].

1. Lindblad approach

We start from an Ising basis for the nuclear spins defined
parallel to the external field denoted by �m = (m1, . . . ,mN )
where mk is the eigenvalue of Ix for the kth nuclear spin,
and σ for the two spin orientations of the electron spin. In
that basis, the matrix elements of the density operator of the
coupled nuclear-electronic system �ρ(t) are denoted by

ρ(σ, �m),(σ ′, �m′)(t) = 〈σ, �m|ρ(t)|σ ′, �m′〉. (4)

Since the nuclear Zeeman energy as well as a single coupling
constant ak are very small, the nuclear spin configurations
can be treated as frozen on the very short time scale of the
pulse duration [10]. For each frozen nuclear configuration α =
( �m, �m′), the basis of the electron spin can be freely chosen.
The states |↑〉,|↓〉 will denote the eigenvectors of σz with the
eigenvalues ±1, while the electron spin Ising basis parallel to
the external field is assigned to |↑〉x,|↓〉x . Hence we interpret
ρ(σ, �m),(σ ′, �m′)(t) as a matrix element of mixed Ising bases: an
Ising basis for the nuclear spins defined parallel to the external
field and an Ising basis for the electron spins in the z direction.

The eigenstates of the central spin are given by the two
ground states |↑〉 and |↓〉 as well as its two trion states
|↑↓⇑〉 and |↑↓⇓〉. Since only σ+ polarized light is taken into
account the |↑↓⇓〉 state will never be excited. This reduces
the dimension of the electronic subspace from four to three.
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Combined with an assumed effective spin 1/2 for the nuclear
spins this leads to a Hilbert space dimension of 3 · 2N = 3D,
where D is the dimension of the Hilbert space of the nuclear
spin bath.

In this paper, we restrict ourselves to ideal π pulses, which
instantaneously excite the trion state |↑↓⇑〉 from the electron
state |↑〉. Since the simulation is done for only one QD the
pulses have the same effect in each configuration. Such an
ideal pulse can be described by the unitary transformation

T̂ = i|↑↓⇑〉〈↑| + i|↑〉〈↑↓⇑| + |↓〉〈↓| (5)

converting the initial density operator ρbp to ρap = T̂ ρbpT̂ †.
Since the pulse only affects the electronic subsystem, this
transformation holds for each frozen nuclear configuration α

so that we obtain D2 independent transformations:

ρap
α = T̂ ρbp

α T̂ † . (6)

In Eq. (6), ρ
bp
α and ρ

ap
α denote 3 × 3 matrices in the enlarged

electronic Hilbert space including the trion state |↑↓⇑〉—for
details, see Appendix A.

The trion decays under emission of a photon, which is
accounted for by the Lindblad equation [30]

ρ̇ = Lρ(t) = −i[HS,ρ] − γ (s2s1ρ + ρs2s1 − 2s1ρs2). (7)

The second term describes the trion decay into the electron
state |↑〉 by a constant decay rate γ where the two transition
operators, s1 and s2, are given by the projectors s1 := |↑〉〈↑↓⇑|
and s2 := |↑↓⇑〉〈↑|. In an exact treatment of the CSM,
the system Hamiltonian HS would be HCSM. In the frozen
Overhauser field approximation (FOA), HS only accounts for
the electronic degrees of freedom.

Clearly, the Lindblad equation cannot be solved exactly for
a CSM comprising of large numbers of nuclear spins since the
Hilbert space grows exponentially. We are either restricted
to small nuclear system sizes [20,22] or we employ the
frozen nuclear approximation [5], and arrive at the independent
Lindblad equations

ρ̇α(t) = Lαρα(t), (8)

where the Liouvillian Lα in each Overhauser field configura-
tion includes the system Hamiltonian HS(α) = geμB �S �Bext +

H (α), which describes the electronic precession in the
external magnetic field and a static, configuration dependent
Overhauser field. Note that ρ

ap
α serves as starting density

operator, and Lα is time independent. The trion decay in the
Liouvillian is independent of the nuclear bath configuration.
Equation (8) can be formally solved via

ρα(t) = eLα (t−t0)ρα(t0). (9)

2. Semiclassical approximation (SCA)

The requirement to solve D2 = (2N )2 matrix equations
(9) in the frozen nuclear field approximation drastically
limits the number of bath spins which can be included in a
numerical simulation [22] to N < 20. For large numbers of
nuclear spins contributing to an Overhauser field of a finite
length, however, the central limit theorem has been used
to calculate very accurately the short-time dynamics of the
spin-spin correlation function using a Gaussian distributed
statical classical Overhauser field [5].

Chen et al. systematically derived corrections to the frozen
Overhauser field approximation [15] starting from the quantum
mechanical path integral formulation of the problem. The path
integral for expectation values uses spin coherent states for
each spin which are parameterized by the solid angle. The
saddle point approximation leads to (N + 1) coupled Euler-
Lagrange equations [13,15,29],

d

dt
�S = (�bN + �bext) × �S , (10a)

d

dt
�Ik = (ak

�S + ζ �bext) × �Ik. (10b)

with a remaining integral over all possible initial spin config-
urations. These equations describe the dynamics of coupled
classical spin vectors representing the central spin �S and the
nuclear spin �Ik by classical vectors. Neglecting the dynamics
of the nuclear spins given by Eq. (10b) recovers the FOA
of Merkulov et al. [5,12,31], where the average over all
initial nuclear spin configurations has been replaced by a
configuration average over a Gaussian distributed Overhauser
field entering Eq. (10a).

A word is in order concerning the spin length. While the
quantum mechanical electron spin has S = 1/2 and also a spin
length of I = 1/2 is assumed for the nuclear spins we use a
classical spin vector of | �Ik| = 1 in the numerical simulations
below. Clearly, Eq. (10a) remains unaltered after replacing
�S → �S ′ = �S/S. In Eq. (10b), we replace �Ik → �Ik/I to justify
the classical spin vector of | �Ik| = 1. This requires ak

�S →
(Sak)�S/S and �bN = I

∑
k ak

�Ik/I . The modified equations of
motion of the SCA are then given by

d

dt
�S ′ = (�bN + �bext) × �S ′ , (11a)

d

dt
�I ′

k = (a′
k
�S ′ + ζ �bext) × �I ′

k , (11b)

�bN = I
∑

k

ak
�I ′

k , (11c)

where all primed spin vectors are classical vectors of length
unity. As long as the Overhauser field �bN remains unaltered, the
electron spin Larmor frequency is invariant of the spin length.
Equation (11c) reveals that the fluctuation of the Overhauser
field is proportional to the spin length [5], classically I 2 and
quantum mechanically I (I + 1), which becomes identical for

large I . Defining ωfluc =
√

� �B2
N � the spin lengths can be

absorbed into the definition of T ∗ or ωfluc [5,26]. For S = I ,
the change of the classical spin length leads to a modified
coupling constant a′

k = ak/2 in Eqs. (11b) and (11c).
The averaging over all Overhauser field configurations has

been interpreted as an averaging over an ensemble of identical
QDs [32] each characterized by a classical spin vector. In
experiments, however, variations of the QD size leads to
different characteristic time scales T ∗. Therefore we view the
averaging procedure as being equivalent to averaging over
repetitive measurements [10] and will perform the averaging
over different T ∗ values of the QDs in the ensemble in a second
step.
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3. Combining the Lindblad and the semiclassical approach

In order to connect the quantum mechanical treatment
of the pulsed excitation and the stochastic decay of the
trion with a semiclassical description between the pulses,
we recall that the trace over the full Hilbert space was
replaced by an integration over all initial spins in the SCA. We
discretize the integration over all initial spins by generating NC

configurations comprising N different nuclear spins and one
central spin, each equally distributed over the Bloch sphere,
each weighted by a factor 1/NC .

Since the thermal energy in the experiments typically
exceeds all other energy scales of HCSM, the initial quantum
mechanical density matrix ρ0 is isotropic and proportional to
the unity matrix: ρα(t = 0) = (1/2)1(1/D)δ �m, �m′ . By resorting
to an average over NC classical configurations, we essentially
replace the factor (1/D)δ �m, �m′ by the factor 1/NC and identify
the label α by the classical configuration index,

〈 �̂S〉 = 1

D

∑
α

Tr[ρ̄α
�̂S]

≈ 1

NC

∑
μ

Tr[ρμ
�̂S] =� �S � , (12)

where the trace is calculated with the 2 × 2 density matrix
ρμ = ρ̄α = D × ρα whose initial value is (1/2)1. In the second
line of the equation, μ labels the classical configuration and
� · · · � denotes the configuration average.

In a purely classical simulation, the classical spin �Sμ is aver-
aged directly. Interpreting a classical spin vector �S with | �S| =
1/2 as the expectation value of a quantum mechanical spin
1/2 uniquely defines the corresponding 2 × 2 density matrix

ρS =
( 1

2 + Sz Sx − iSy

Sx + iSy
1
2 − Sz

)
. (13)

While a purely classical spin has a fixed length, the quantum
mechanical expectation value �Sμ,

�Sμ = Tr[ρμ
�̂S] (14)

can have arbitrary length reflecting the requirement for a
quantum ensemble description: the effect of the laser pump
pulse is an inherent statistical process.

Since classical equations of motion (10) are norm conserv-
ing for any vector �S, the restriction of a fixed spin length of the
central spin is not required. The classical equations of motion
(10) only faithfully replace the unitary time evolution of a
quantum system under the influence of HCSM.

This unitary time evolution, however, is violated by the
Lindblad equation. It accounts for the build-up of spin
polarization due to the laser pulse and consecutive trion decay:
the length of the spin expectation value quantum mechanically
calculated with ρ̄α will result in different spin polarizations
from the initial spin length. This reflects the fact that even an
initially pure quantum mechanical state typically will end up
in a mixed state after the trion decay.

The quantum mechanical evolution of the electronic density
matrix including the trion decay in a static magnetic field is
determined by Eq. (7). This requires the solution of eight
differential equations for the 3 × 3 matrix since the trace
remains conserved at all times. We will show below, that these

equations are partially decoupled and are equivalent to those
of the spin and trion expectation values.

In order to connect the quantum mechanical treatment of
the laser pulse with the semiclassical equations of motion (10),
we start from the FOA, i.e., treat �bN as static. After the laser
pulse, the expectation value of any given local observable Ô in
the electronic subspace can be calculated from the dynamics
of the density matrix (7):

d

dt
〈Ô〉 = iTr[ρ(t)[HS,Ô]] − γ Tr[
ρLÔ] , (15)

where


ρL = |↑↓⇑〉〈↑↓⇑|ρ(t) + ρ(t)|↑↓⇑〉〈↑↓⇑| − 2|↑〉〈↑|PT(t)
(16)

and PT(t) = 〈↑↓⇑|ρ(t)|↑↓⇑〉 denotes the trion occupation
probability. It is straightforward to derive the equation of
motion for the electron spin expectation values

d

dt
〈 �̂S〉μ = �b × 〈 �̂S〉μ + γPTμ(t)�ez , (17)

which has a very intuitive interpretation. While the trion
decays back into the spin-up state contributing only to the
spin polarization in z direction, the electronic spin precesses
around the effective magnetic field �b = �bN + �bext.

The solution of this set of equations requires the dynamics
of the source term determined by the differential equation

d

dt
PT,μ(t) = −2γPT,μ(t) , (18)

which also is derived from (15). It has the simple analytic
solution

PT,μ(t) = PT,μ(0)e−2γ t , (19)

where PT,μ(0) is the trion occupation directly after the laser
pump pulse. These define the first four equations determining
the evolution of the nine matrix elements of the quantum
mechanical density operator.

Since the trace is conserved, there are four more differential
equations required for the full solution of the density matrix.
The remaining four other differential equations only involve
trion off-diagonal matrix elements and also have a trivial ex-
ponential decaying solution. Furthermore, these off-diagonal
matrix elements do not couple to the differential equations
determining the spin dynamics and can be neglected.

Consequently, we can include the Lindblad decay into the
SCA replacing (10a) by

d

dt
�S(t) = (�bN + �bext) × �S(t) + γPTμ(0)�eze

−2γ t , (20)

where the time t is measured relative to the last pulse.
Within the FOA, this differential equation can be even

solved analytically. Without the source term, the homogeneous
solution reads [5]

�Shom = ( �A�n)�n + [ �A − ( �A�n)�n] cos(ωLt)

+�n × [ �A − ( �A�n)�n] sin(ωLt) , (21)

where the Larmor frequency is given by ωL = |�b| = |�bN +
�bext|, and �n = �b/ωL denotes the unit vector in the direction of
the effective magnetic field. The solution is parametrized by
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the three component vector �A, which would be equal to �S(0)
in the absence of the source term.

The inhomogeneous solution has the form

�Sin = �Ce−2γ t . (22)

Defining the rotation matrix M such that M �v = �n × �v, we
obtain

�Cμ = −PTμ(0)

2

[
1 + ωL

2γ
M

μ

]−1

�ez. (23)

From the total solution �Sμ(t) = �Shom,μ(t) + �Sin,μ(t) and the
initial condition, we determine the

�Aμ = �Sμ(0) − �Cμ, (24)

where �Sμ(0) is the electronic spin expectation value of the
configuration μ after the pulse. Since �Cμ has a negative sign,
the spin polarization grows from | �Sμ(0)| directly after the pulse
to | �Aμ|, once the trion is completely decayed.

Within the SCA, we can even relax the constraint of a
constant Overhauser field by allowing �bN → �bN(t). Then, the
feedback of the central spin onto the nuclear spins and visa
versa is included at any time. But the analytic solution derived
above is no longer valid.

Let us summarize the individual steps of our hybrid
quantum-classical approach to a QD subject to periodic
laser pulses. Initially, (i) we generate NC classical spin
configurations labeled by μ and comprising a central spin
and N nuclear spins, each equally distributed over the Bloch
sphere. (ii) We freeze the nuclear spins and convert each central
spin �Sμ of the classical configuration into a 2 × 2 density
matrix ρμ using Eq. (13). This matrix is extended to a 3 × 3
matrix spanned by the enlarged Hilbert space including the
trion. (iii) Then, the laser pulse is applied, described by Eq. (6),
and quantum mechanical expectation values �Sμ and PT are
calculated directly after the pulse, which define the initial
conditions for solving the coupled equations (11b), (11c), and
(20) for the time interval up to t = TR. For the next pulse, we
go back to step (ii). In order to calculate expectation values,
we average the quantity of interest over all configurations μ

for the given time t .
Our quantum-classical hybrid approach clearly reveals, that

by the necessary quantum mechanical treatment of the laser
pulses the simplified quantum to classical mapping of the spin
degree of freedoms does not hold for the electron spin. �S loses
its classical interpretation even within a single configuration.
The requirement for a density matrix description has its deeper
root in the statistical nature of the photon absorption which is
linked to the quantum efficiency of the process. Although we
only consider resonant photon absorption, the theory can be
simply extended to nonresonant absorption by replacing T in
Eq. (6) by the appropriate unitary time evolution operator.

4. Resonance conditions

Before we present the full numerical solution in Sec.
III, we analytically extract a steady-state solution from the
differential equation (20) using simplified approximations.
As we demonstrate below, the resonance conditions obtained

in such a way agree remarkably well with our simulations
providing an a posteriori justification of these simplifications.

Since the central spin dynamics is much faster than the
nuclear spins, we treat the nuclear spin dynamics as nearly
frozen on the time scale TR, i.e., the nuclear Zeeman term
is neglected. Furthermore, only the x component of the
Overhauser field is taken into account since the y and z

components can be viewed as small perturbations transversal
to the large external magnetic field.

For the π pulses discussed in this paper, we relate the
electron spin expectation values prior to the NPth pulse,
�Sbp(NPTR), to the one after the laser pulse,

�Sap(NPTR) = (
0,0, 1

2

(
Sbp

z − 1
2

))T
, (25)

by applying the pulse operator (5). The corresponding trion
occupation probability PT,μ(0) = (Sbp

z + 1
2 ) is generated by

the spin-up component of the density matrix. Therefore the
trion and the electron spin state after each pulse depend only
on S

bp
z , the z component of the electron spin right before the

pulse.
These conditions are inserted into the analytical solution

for the spin-expectation values derived above:

�S(t) =

⎛
⎜⎝

0

−Az sin(ωLt) + Ay cos(ωLt) − Aye−γ t

Ay sin(ωLt) + Az cos(ωLt) − Ay
γ

ωL
e−γ t

⎞
⎟⎠ (26)

with γ = 2γ and the prefactors

Ay = ωLγ

γ 2 + ω2
L

2S
bp
z + 1

4
,

Az = γ 2

γ 2 + ω2
L

2S
bp
z + 1

4
+ 2S

bp
z − 1

4
.

In general, the static approximation of the Overhauser field
is not justified, since the effect of the Knight field on the
nuclear spin is required for the energy conservation law in the
absence of the laser pulses as well as the rearrangement of
the Overhauser field distribution as a function of time. Since
we are targeting the steady state of the electron spin under
periodic laser pumping, we (i) refer to the Floquet periodicity
condition for the z-component of the electron spin

Sz(TR) = Sbp
z (27)

and (ii) demand that the feedback of the Knight field to the
nuclear spins vanishes in average over the course of one pulse
repetition, i.e.,

〈 �̇Ik〉TR = 〈ak
�S × �Ik〉TR = 0. (28)

For an almost static nuclear spin vector �Ik , this translates into
the vanishing of the average effect of the central spin onto each
nuclear spin over the pulse period TR,

〈�S〉TR = 1

TR

∫ TR

0

�S(t)dt = 0 (29)

independent of the coupling constant ak . Note that the electron
spin lacks a x component after the pulse, and this component
remains its zero value in a static effective magnetic field in x

direction at all times.
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Combining these two conditions with the analytic solution
(26) reveals the 1/ωL dependence of the averaged Knight field,
see Appendix B, and leads to the following equation:

γ

ωL
(1 − cos(ωLTR)) − sin(ωLTR) = 0, (30)

determining the set of Floquet values of the effective Larmor
frequency ωL under these assumptions. Since the external mag-
netic field is fixed, the different values of ωL translate to differ-
ent steady-state values of the Overhauser field in x direction.

One class of solutions for ωL fulfils the resonance condi-
tions

ωLTR = 2πn with n ∈ Z (31)

that was already discussed by Greilich et al. [10]. They are only
dependent on the external magnetic field and independent of
the trion decay rate. A second class of solutions is determined
by the transcendent equation

ωLTR = 2arctan

(
ωL

γ

)
+ 2πn, n ∈ Z, (32)

where the ratio of the Larmor frequency to the decay rate
γ generates an additional phase shift. Since |�bext| � |�bN| and
the principal determination arctan ∈ (−π

2 , π
2 ) is monotonically

increasing, 2 arctan ( |�bext|
γ

) serves as a good approximation.
For large external magnetic fields (ωL � γ ), the second
class of solutions leads to Larmor frequencies placed at odd
resonance conditions, ωLTR = π (2n + 1), while for small
magnetic fields these additional peaks are brought closer to
the even resonances.

In the central spin dynamics, both Overhauser peak classes
are combined. The first class of solutions, defined by the even
resonance condition (31), always is connected with an electron
spin that is aligned in negative z direction right before the pulse
independent of the external magnetic field, S

bp,1
z = −1. Then,

the π pulse has no effect on the electron spin dynamics and
�Sbp is identical to �Sap.

Though the Larmor frequency ωL is strongly dependent on
the magnetic field for the second class of solutions, the spin
vector is always aligned in the positive z direction, Sbp,2

z = 1/3.
The π pulse leads to a flip of the CS from S

bp,2
z = 1/3 to

S
ap,2
z = −1/3. Note that these are the only two polarizations

S
bp,2
z where the effect of the laser pulse conserves the spin

length and |Sbp,2
z | is in a fixed point.

5. Mode locked electron spin

In order to set the stage for the analysis of the full
numerical simulations, we discuss the potential impact of the
resonance condition onto the central spin dynamics as well
as the Overhauser field distribution. These Overhauser field
distribution functions,

p(bN,i) = � δ
(
B

μ

N,i − bN,i

) � , (33)

provide important statistical information about the nuclear spin
system, where the symbol � · · · � denotes the configuration
average, and i = x,y,z.

Prior to applying the periodic laser pulses, we assume the
system to be in equilibrium and the high temperature limit to

be valid, since the thermal energy at ∼6 K is much larger
than the hyperfine interaction. Therefore the nuclear spins
can be regarded as classical-spin vectors that are uniformly
distributed on the unit sphere. By using the law of large
numbers this leads to Gaussian distributed Overhauser fields
p(bN,i) in all spatial directions [5].

To investigate the influence of the periodic pulse sequence
on the electron spin dynamics in a simplified toy model, we first
combine the precondition of the Gaussian envelope with the
resonance condition presented in the previous section. When
the system reaches its steady state, we assume that each class of
resonance conditions leads to δ peaks in p(bN,x) inside a Gaus-
sian distribution. Using Eq. (26), the solutions for central spin
dynamics for different Larmor frequencies are superimposed
and weighted according to the Gaussian envelope. Within the
scope of this simple model we assume that both resonance
conditions contribute equally to the combined dynamics.

In order to relate the external field strength to the even
resonance condition, we define K ′ as

K ′ = |�bext|TR

2π
. (34)

For K ′ ∈ Z, a free electron spin subject to an external magnetic
field �bext fulfills the resonance condition. Off-resonance
external magnetic fields can be quantified via a deviation 
K

from the next integer value, i.e., K ′ = K + 
K with K ∈ Z.
In the example shown in Fig. 1, we set K = 200, which

corresponds to a field strength of about 2 T. For such a strong
external field, the second class of resonance condition yields
peak positions at about π (2n + 1)/TR. Note that the maximum
length of the classical spin vector is 1.

The class of even resonance conditions leads to a central
spin which is aligned fully in the negative z direction before
the pulse. Hence the electron spin polarization can fully be
transferred to the next pulse period since the π pulse does not
have any affect, and the amplitude of the electron spin signal
is maximal as shown in Fig. 1(a).

The electron spin configurations for the odd resonance
conditions, however, are aligned in positive z direction. A
full polarization of the electron spin, however, is not possible
according to Eq. (25). This subclass also shows perfect revival
as depicted in Fig. 1(b). The perfect revivals in each subclass
at the end of the pulse period being a consequence of the
resonance condition, is destroyed by the superposition of both
since the spins point in opposite directions at the end of the
period. When weighting both subclasses equally the revival is
significantly reduced as demonstrated in Fig. 1(c). The revival
can be completely suppressed when weighting the first and the
second subclass in the ratio 1:3—not shown here.

III. RESULTS

A. Distributions of hyperfine couplings

While the short-time dynamics of the QD is governed by
T ∗ and therefore independent of a particular ak distribution the
long-time dynamics is influenced by the probability density
function p(ak) of the coupling constants. Several different
distributions have been used for the CSM [6,7,13,20,33],
ranging from the simple box model [21], which assumes
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FIG. 1. Toy model for the central spin dynamics. (a) and (b) give
the central spin dynamics for one class of resonance conditions for
TR = 13.5 T ∗. (c) combines the two classes with equal weight. The
insets show the two oscillating electron spin components immediately
before the next pulse.

equal coupling constants ak = a = 1/
√

N, ∀k, to the more
elaborate distributions of coupling constants p(ak) [4,6,7,20].

A simplified constant distribution has advantages concern-
ing computation time whereas others provide a more realistic
description of the hyperfine coupling. The coupling constants
are proportional to the electronic probability of presence at the
kth nuclear spin given by the envelope of the electron wave
function ψ( �Rk),

ψ( �Rk) ∝ exp

(
−1

2

(
r

L0

)2
)∣∣∣∣∣

r=| �Rk |
, (35)

at the location of the nucleus �Rk . L0 is the characteristic length
scale of the QD and of the order of L0 ≈ 5 nm. For a spherical
QD, a probability density function

p(a) = − ξ

2r
ξ

0

1

a

(
ln

(amax

a

)) ξ−2
2

(36)

has been derived [20] where r0 is the ratio between an artificial
cut-off R and L0. amax is the largest occurring coupling con-
stant and contains information about the underlying material.
ξ gives the dimension of the QD. For a spherical QD, ξ = 3,
the coupling constants are defined by a = amax exp(−r2

0 x2/3)
with the uniform random number x ∼ U(0,1). With increasing
cut-off ratio r0 an increasing number of nuclei are located
inside the sphere with radius R = r0L0 around the quantum
dot. For r0 � 1, a large number of nuclei are included that
couple exponentially weak to the localized electron spin. In
order to generate a meaningful configuration of ak , the larger
r0, the large N must be to adequately represent this distribution.
For N = 100 nuclear spins a cut-off ratio of r0 = 1.5 was
chosen.

Furthermore, an exponential distribution function used in
the literature [6,27,34,35]

ak = Ce−(k−1)λ, (37)

with k = 1, . . . ,N and C =
√

1−exp(−2λ)
1−exp (−2λN)) , represents a 2d

QD, ξ = 2, with a harmonic potential [6]. λ determines the
spread of the coupling constants.

B. Definitions of the parameters

The dynamics of the electron spin 〈Sz〉 and the distribution
of the Overhauser field p(bN,i) with i = x,y,z in a system sub-
jected to periodic laser pulses is investigated. The parameters
are chosen to correspond to the experimental setup [10].

Unless stated otherwise, these parameters will stay the same
in the following sections where only one parameter is varied.
We use a bath size of N = 100 nuclear spins and average over
NC = 105 configurations. The length of the classical nuclear
spin vector is | �Ik| = 1. This is also the maximal length for the
electron spin vector | �Smax| = 1. Therefore Eqs. (13) and (20)
have been adjusted accordingly as discussed above.

For the theoretical simulations, we set the separation time
between two instantaneous pulses TR = 13.5 T ∗ for conve-
nience while the experimental constrains lead to TR = 13.2 ns
[10]. The trion decay rate is given by γ = 10 1

T ∗ . We have used
the conversion factor T ∗ ≈ 1 ns for simplicity to make contact
with the experiments. The scope of this paper is to provide a
basic understanding of the dynamics observed in periodically
driven QDs and not the fitting of a specific experiment.

We convert |�bext| in a dimensionless number K ′ defined
in Eq. (34) to clearly signal a resonance condition of the
external magnetic field. bext(K = 200) ≈ 93 (T ∗)−1 is equiv-
alent to Bext ≈ 2 T using the proper conversion constants.
The modification of K ′ from an integer value to an arbitrary
real number (K + 
K) can be used to understand deviations
from the resonance conditions which can also arise in a QD
ensemble due to different g factors of individual QDs.

The strength of the nuclear Zeeman coupling is defined by
the factor ζ = gkμN

geμB
between the nuclear and electron Zeeman

energy as introduced in Eq. (3). The coupling of the nuclear
spins to the external magnetic field can be explicitly neglected
in the theoretical simulations by setting ζ = 0.

We begin with the so-called box model [21,33], i.e., we
set all ak = a = 1/

√
N to reveal the basic properties of the

dynamics before presenting data obtained by numerically
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very expensive simulations. For nuclear spins coupling with
individual ak to the central spin, N + 1 coupled equations (10)
have to be solved. By using the box model the equations for
the nuclear spins collapse to a single EOM for the Overhauser
field and the set of equations is reduced to two. We use
the Runge-Kutta fourth-order method to solve the differential
equations. The step width has to be adapted according to the
strength of the external magnetic field to resolve the Larmor
precession of the central spin. For an external field of K = 200
a step width of ∼0.001T ∗ has proven to be sufficient.

We start with a completely unpolarized system. At t = 0,
the first pulse is applied. The distribution of the Overhauser
field is measured immediately before the next pulse.

C. Benchmarking the semiclassical equation of motion

In order to benchmark the quality of the SCA [12,13,31]
employed in this paper, we compare the spin correlation
function C2(t) = 〈Sz(t)Sz〉 in a finite magnetic field bx = 10
obtained with the two classical approaches, the SCA and
FOA, with the quantum mechanical results calculated using
a Chebyshev expansion technique (CET) [36] and via exact
diagonalization (ED) of the Hamiltonian. Our results are
summarized in Fig. 2.

Note that the dephasing time scale is governed by the fluc-
tuation of the Overhauser field 〈 �B2

N 〉 [5] where the average spin
length enters. Since the quantum mechanical simulations have
been performed with I = 1/2, we have absorbed the difference
in the Overhauser fluctuations between 〈 �I 2

k 〉 = | �Ik|2 = 1 of

the classical simulation and 〈 �̂I 2
k 〉 = I (I + 1) = 3/4 of the

quantum simulations into rescaled coupling constants ak →
ãk = ak

√
3/4 for the SCA and the FOA.

While the SCA and the FOA provide identical results they
also agree remarkably well with the two quantum mechanical
data sets for N=10 (ED) and N = 20 (CET). The difference

0 1 2 3 4 5 6 7 8
t/T*

-0.2

-0.1

0

0.1

0.2

C
2(t)

ED   N=10
CET N=20
SCA
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(1/4)exp(-(t/T*)2/8)

0 1 2 3 4 5 6 7 8
t/T*

-0.01

0.00
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ΔC
2(t)

CET-SCA
ED - SCA

(a)

(b)

FIG. 2. (a) Comparison between spin correlation function
C2(t) = 〈Sz(t)Sz〉 in a finite magnetic field bx = 10 calculated using
different quantum mechanical approaches, the CET with N = 20 and
ED with N = 10, and the two classical approaches, SCA and FOA,
with N = 100 spins and NC = 100 000. The CET data have been
taken from Fig. 7 in Ref. [20]. (b) Difference between the CET and
the SCA data (red solid line) and the ED and the SCA data (blue
dashed line).

between classical and the quantum simulations depicted in
Fig. 2(b) can be attributed to 1/N effects, which are suppressed
using a large number of bath spins in a time-dependent density
matrix renormalization group approach [13].

Since the spin length is conserved in the SCA and the
feedback involves always a coupling constant, the differences
can be absorbed into the definitions of the coupling constants
or the reference time and energy scales, respectively. After
establishing this quality of the SCA, we use the energy and
time scales as defined in Sec. II A throughout the paper. For a
classical spin length of 1, the coupling constants used are

a′
k = ak

2
= Ak/2√∑N

k=1
1
4A2

k

= Ak√∑N
k=1 A2

k

. (38)

D. Nonequilibrium Overhauser field distribution function:
Nuclear self-focusing

1. Influence of the number of pulses

The electron spin dynamics is dominated by the precession
around the strong external magnetic field. The electron spin
component parallel to the external magnetic field remains at
approximately zero since the laser pumping only generates
a spin polarization in the z direction. The components
perpendicular to the external magnetic field show the electron
spin precession as demonstrated in Fig. 3. The first pulse
at t = 0 depletes the |↑〉 state of the previously unpolarized
electron spin. Therefore the electron spin starts precessing
from �S(t = 0) = �Sap = −0.5 �ez. The trion decay leads to a
steady increase in the electron spin polarization on a time
scale of 0.1 − 0.2T ∗.

While coherent oscillations are observed on a very short
time scale, defined by the inverse Larmor frequency, the
hyperfine interaction leads to dephasing, which is governed by
T ∗, see Fig. 4. While the electron spin dephases completely
after the first pulse, we observe a revival of electron spin
polarization after the second pulse to an amplitude of | �S| ≈
0.14 just before the next laser pulse arrives. After that, the
central spin revival amplitude slowly grows with an increasing
number of pulses.

FIG. 3. Precession of the electron spin after the first pulse. After
the pulse the x and y component are zero and the z component is
given by (Sbp

z − 1)/2. The analytical solution of the exponential trion
decay has been added as dashed line.
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FIG. 4. Dynamics of the z component of the electron spin during
the time interval between two pulses for four different numbers
of pulses calculated for the box model. The parameters for this
simulation are: ζ = 1/800 for the nuclear Zeeman strength and equal
coupling constants ak = a∀k, a pulse repetition time of TR = 13.5T ∗,
an external magnetic field of about 2 T (K = 200) which is applied
in resonance 
K = 0. The pulses are instantaneous π pulses, and
the trion decay rate is set to γ = 10 1

T ∗ . N = 100 nuclear spins and
NC = 100 000 classical configurations are taken into account.

The central spin dynamics is directly connected to
the three distributions of the Overhauser field p(bN,x),
p(bN,y), and p(bN,z). The evolution of p(bN,x) with the num-
ber of pulses is shown for the box model in Fig. 5. At
t = 0, the Overhauser field is unpolarized, implying that all
Overhauser field components follow a normal distribution
N (0,(〈 �I 2

k 〉/3 = 1/3)).
If the system is subjected to periodic pump pulses the dis-

tributions of the Overhauser field components perpendicular
to the external magnetic field do not change from the initial
Gaussian distribution. However, a new distribution emerges for
bN,x . Though the envelope of the distribution stays Gaussian,
peaks begin to emerge at pronounced positions that become
more distinct with time. We have identified two subsets of
peaks. The distance between every other peak is given by the
resonance condition, 
bN,x = 2π/TR.

Despite the strong approximations made in Sec. II B 4 on
the resonance condition, the peak structure calculated in the
fully numerical simulation of the EOM of the SCA, shown in
Fig. 5, agrees remarkably well with the theoretical predictions
for the resonance condition, which have been added as vertical
dotted and dashed-dotted lines in the figure. We only observe
deviations of 1%–2% and up to 9 % at most.

FIG. 5. Panel (a) shows the influence of the number of pump
pulses on the x component of the density distribution of the Over-
hauser field bN,x for K = 200. At the beginning of the pulse sequence
bN,x is normally distributed. bN,x ∼ N (0,1/3). This scaled normal
distribution is the envelope of the emerging density distribution. The
vertical lines indicate the two subclasses of theoretical peak positions
defined by the equations (31) and (32). (b) The corresponding y and
z component of p(�bN) after 20 000 pump pulses.

2. Influence of the external magnetic field strength

The external magnetic field has two functions: (i) it induces
a coherent oscillation of the spin polarization and (ii) it can also
suppress dephasing stemming from the long-time fluctuations
of the Overhauser field. It has been shown, that the accuracy of
the FOA approximation [5] increases with increasing magnetic
field [12,14,20]. Only in the theory of higher-order correlation
functions, additional processes have to be included in order to
make connection to the experiment [27].

The strength of the external magnetic field plays an
important role in the development of the peak structure of
the Overhauser field distribution. In this section, we examine
the dependence on the external magnetic field as well as the
resonance conditions (32) and (31). A low magnetic field
allows for a fast build-up of the Overhauser field distribution
due to the 1/ωL dependency of the Knight field after integrating
Eq. (10b).

The Overhauser field distribution p(bN,x) is plotted for four
different resonant magnetic field values K = 50, 100, 150,
and 200 after 20 000 pulses in Fig. 6. The inset focusses
on one peak at bN,x = 0 belonging to the even resonance
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FIG. 6. Overhauser field distribution along the external magnetic
field direction for different strengths K of �bext = 2π

TR
K�ex . The inset

shows the peak for the even resonance condition at bN,x = 0 and the
shifted peak given by the ratio ωL/γ , see Eq. (32), after 20 000 pulses.

condition and one peak corresponding to Eq. (32). While the
even resonance peaks located at positions independent on the
external magnetic field values, the peaks following (32) are
shifted away with increasing field strength K , as predicted by
Eq. (32).

The peak positions of the two classes of peaks are well
described by the analytical predictions. The additional features
that become apparent in the simulations cannot be derived from
the analytical results: the weight of each class of peaks in the
combined Overhauser field distribution. For strong external
magnetic fields, the peaks at even resonance are still sharp,
while the second subclass of peaks have a less distinct shape.

3. Electron spin revival

As an experimentally accessible quantity through the mode-
locking amplitude, the electron spin revival merits a more in-
depth investigation. The electron spin dynamics is intertwined
with the Overhauser field distribution. It determines the
revival behavior since the superposition of configurations with
different Larmor frequencies suppresses the growth of the
central spin revival. That raises the question, which properties
of p(bN,x) influence the final revival amplitude.

The first class of peaks in the Overhauser field distribution
is independent of the external magnetic field for all integer
values of K . Since the period length of all even frequencies
contributing to the electron-spin precession fit into TR as
integer, the central spin configurations are always aligned in
negative z direction before the pulse.

For configurations characterized by the second resonance
condition, the orientation of the electron spin prior to the next
laser pulse depends on the external magnetic field strength:
Contrary to the results of the simple toy model it can acquire
a spin polarization in y direction just before the next laser
pulse that does not influence the value of the spin-polarization
after the pulse. The contribution of those configurations to the
total signal is determined by the spectral weight of the peaks
in the distribution function that cannot be obtained from the
resonance condition.

Figure 7 shows the influence of the external magnetic field
on the amplitude and the z component of the electron spin
revival measured directly before the next pulse as function of

FIG. 7. Revival amplitude and Sz component of the electron spin
for external magnetic fields |�bext(K)| = 2πK/TR applied in the x

direction.

the pulse number NP. For external magnetic field strengths
K � 100, the revival amplitude decreases in the long-time
limit. Here the phase shift leads to a alignment of the central
spin in the y direction before the pulse which does not influence
the pumping process as is seen in Eq. (25).

For larger magnetic fields, i.e., K > 100, the electron spin
polarization is aligned in z direction. Due to the mismatch in
the probability weight of the resonance conditions the revival
amplitude increases. The peaked nonequilibrium Overhauser
field distribution, however, emerges slower for increasing
magnetic fields due to the 1/ωL dependency of the averaged
Knight field, see Eq. (29), leading to a slower increase of the
revival. The electron spin polarization is not yet converged
after 20 000 pulses as seen in the two left panels in Fig. 7.

E. Scaling behavior with the number of nuclear spins

In the experimental setup, the data are measured after
an initial pulsing period which lasts from a few seconds
up to 20 min [10]. For a laser repetition of ∼13.5 ns this
corresponds to 74 × 106 pulses per second. Such large time
scales are impossible to achieve with our simulations even
for the simplified box model. Therefore it is useful to derive
and exploit a scaling relation associated with the number of
nuclear spins in order to extrapolate the possible steady state
of the system.

In Fig. 8, the time evolution of the Overhauser field
distribution for different numbers of nuclear spins is shown:
the larger the number of nuclear spins, the slower the build-up
of p(bN,x). The distribution p(bN,x) is plotted for different
combinations of N and pulse numbers NP for a constant ratio
νP = NP/N = 20, 200, 2000: p(bN,x) is universal and only
depends on the ratio νP .

This observed scaling behavior is attributed to the depen-
dence of the Knight field on the strength of the coupling
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FIG. 8. Time evolution of the Overhauser field distributions
parallel to the external magnetic field for different numbers of nuclear
spins. The three panels show p(bN,x) for three different but fixed ratios
νP = NP/N = 20, 200, 2000, and K = 200.

constants, Eq. (10b), and to the influence of the Overhauser
field on the central spin, Eq. (10a). Since the electron spin
dynamics is fed back to the nuclear spins via the coupling
constant ak = 1/

√
N the build-up scales with a2

k ∝ 1/N . Con-
sequently, the slower feedback of the electron-spin dynamics
onto the p(bN,x) with increasing number of nuclei must be
compensated by an additional number of laser pulses.

Although we have only demonstrated this scaling property
for the box model, we will show below that a qualitatively
similar scaling behavior prevails for an arbitrary distribution
function p(a) when T ∗ is used as a reference time scale
independent of N . We will exploit this scaling law to
perform simulations with as few nuclear spins as possible
and extrapolate our results to the realistic number of nuclear
spins in a QD. The results obtained for N = 10 nuclei and
20 000 pulses are therefore equivalent to those of 105 nuclei
and 2 × 108 pulses, corresponding to approximately 2 sec in a
typical experimental setup.

The amplitude of the electron spin revival for different
numbers of nuclear spins is depicted in Fig. 9 versus νP =

FIG. 9. Revival amplitude of the electron spin for different
numbers of nuclear spins. Parameters as in Fig. 8.

NP /N following the same scaling law. Since the steady state
is approached but has not been reached even for N = 10 and
20 000 pulses, we conjecture that we would need another factor
10–100 more pulses to achieve final convergence. This would
translate to reaching the steady state after approximately half
a minute to several minutes of pulsing, which is in the same
order of magnitude as in the experiments [10].

F. Influence of an external magnetic field off resonance

For a given applied external magnetic field and a fixed
laser repetition time TR, an individual QD may not fulfill the
resonance condition due to its electron ge factor leading to
a noninteger value of K ′ in (34). We have introduced the
parameter 
K to represent the distance of K ′ to the closest
integer value K in order to measure the distance from the
integer resonance condition.

FIG. 10. (a) Density distribution of the x component of the
Overhauser field bN for deviations from the resonance 
K , recorded
for K = 200 after the 20 000th pulse. (b) Shifted distribution bN,x by
2π
K

TR
. The dashed lines: the corresponding shifted Gaussian envelope.
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FIG. 11. Dynamics of the z component of the central spin for
deviations from the resonance 
K after the 20 000th pulse. (Top) Self-
focusing of the electron spin immediately before and after the pulse.
(Middle) Envelope of the ensemble average. (Bottom) Frequency
shifts at intermediate times.

p(bN,x) is shown for different 
K in Fig. 10. In all
distributions, the distance between every other peak remains
constant, and the envelope follows a Gaussian distribution
with a mean value of zero and a variance of 1/3. Depending
on the magnitude of 
K , however, the peak positions shift to
adjust for the two resonance conditions for the Overhauser
field. After accommodating displacement induced by the
off-resonance external magnetic field into the Overhauser field
by plotting p(bN,x) vs bN,x = bN,x + 2π
K/TR the peak
positions coincide. The peak heights, however, are asymmetric
due to the shifted Gaussian envelope as illustrated in the lower
panel of Fig. 10.

These shifted resonance positions are understood in terms
of the resonance conditions (31) and (32) where the effective
Larmor frequency enters rather then the external magnetic
field. Consequently, our calculations back the conjectured
notion [10] of a self-focusing central spin dynamics by the
dynamical redistribution of p(bN,x) due to the periodic laser
pumping. This is illustrated in Fig. 11 where the averaged
electron spin response is plotted for two different off-resonant
external magnetic fields in comparison with a resonant
field. The top panel demonstrates the congruent dynamics
immediately after and before the pulse. Only at intermediate
times, small dephasing between the response of different QDs
are observable, as shown in the bottom two panels of Fig. 11.

G. Single QD vs QD ensemble

The different QDs in an ensemble not only differ in their
g factors but also in their hyperfine constants ak . Since it
has been established [5] that the key quantity for describing

FIG. 12. Dynamics of the z component of the electron spin for
different scaling factors η of the time scale T ∗. (a) Dynamics of Sz(t)
after the 20 000th pulse. (b) The modulus of the revival of the electron
spin vs the number of pulses. The external magnetic field is given by
K = 200.

the decoherence induced by the hyperfine interaction is given
by T ∗, we parameterize the individual difference of a QD to
a fictitious reference QD characterized by T ∗ via a scaling
factor η

T ∗
η = ηT ∗. (39)

η depends on the different growth processes and the distri-
bution of radii of the QD. Here we investigate only small
variations from η = 0.9 to 1.1: larger η implies a slower
dephasing of the central spin. The difference in the central
spin dynamics for three different T ∗

η is depicted in Fig. 12(a).
T ∗

η determines the characteristic time scale of the initial
decoherence as well as of the revival since it defines the width
of the Gaussian envelope function of the central spin dynamics.

Figure 13 shows that the variation of η does not affect the
peak positions of the distribution. We can conclude that the
subset of QDs resonantly pumped by the laser pulse leads to an
in-phase interference of the central spin dynamics. Therefore
the results obtained by the simulation of a single QD help
understanding the dynamics of the whole QD ensemble.

The peak height, however, increases with decreasing η as
expected from the feedback mechanism of the Overhauser field
and the Knight field: the smaller η, the larger the hyperfine
coupling, the faster the build-up of the distribution function.
Figure 12(b) also illustrates this effect of T ∗

η onto the time
evolution of the revival amplitude of the central spin. Since we
already discussed the influence of the number of nuclear spins
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FIG. 13. Density distribution of the x component of the Over-
hauser field bN after 20 000 pulses for different scaling factors η of
the time scale T ∗.

N onto the time evolution, we can plot the amplitude versus
NP /η2 to accommodate the leading effect of η. The plots
demonstrate the scaling, confirming the underlying feedback
mechanisms between electron and nuclear spin system via the
Overhauser field and Knight field. However, deviations are
observable for η = 1.1. We attribute that to the fact that the
ratio TR/T ∗

η changes in comparison to Sec. III D 1 where this
ratio was kept constant.

H. Influence of nuclear Zeeman effect

While in experiments, the nuclear Zeeman effect cannot
be switched off, we performed numerical simulations for the
different ratios ζ = gkμN

geμB
= 0, 1/800, and 1/500. As discussed

above, ζ = 1/800 corresponds to the typical experimental
situation of a GaAs based QD and has been used in all previous
calculations of this paper. ζ = 1/500 is the highest realistic
ratio given by the g factor for 71Ga with gk = 1.7.

We found a striking difference in the revival amplitude for
ζ = 0 in comparison to ζ > 0 as shown in Fig. 14. The data for
ζ = 1/800 included here have already been plotted in Fig. 7.
While the build-up of the revival amplitude increases slightly
by artificially doubling of the nuclear Zeeman term, the ζ = 0
result shows a fundamentally different behavior. Initially, the
revival spin polarization is identical for all cases, since it is of
purely electronic origin. After some 100 pulses, the feedback
of the electron spin polarization on the nuclear spin system

FIG. 14. Evolution of the electron spin amplitude for different ζ .
The data for ζ = 1/800 are taken from Fig. 4. Parameters as in Fig. 7.

FIG. 15. Density distribution of the x component of the Over-
hauser field bN for different ratios ζ = gkμN

geμB
.

becomes relevant. For ζ = 0, the revival amplitude rapidly
decreases and is stabilized at a rather low value of 0.06.

We present the corresponding Overhauser field distribution
p(bN,x) in Fig. 15. While the shape of the envelope remains
Gaussian and the distance as well as the position of the
peaks stays the same, the weights of these peaks differ
significantly. Only marginal differences are observed for the
two finite ζ values. For ζ = 0, the weights have shifted almost
completely to the subset of peaks connected to the resonance
condition (32) corresponding to an additional phase shift
of 
ωLTR = 
φ = 2 arctan(ωL/γ ), accumulated during the
laser repetition time TR, compared to the integer resonance
condition (31). Our findings perfectly agree with a recent fully
quantum-mechanical investigation of the mode locking [22] in
the absence of the nuclear Zeeman effect.

In order to gain some better understanding of this surprising
decay, we used the distribution p(bN,x) as a guide and
resort to the toy model presented in Sec. II B 5. Peaks
are found in p(bN,x) fullfiling both resonance conditions,
(31) and (32). Assuming a ratio of 1 : 3 between Gaussian
envelope function corresponding to the peaks defined by (31)
and respectively the peaks defined by (32), allows one to
superimpose the results for the toymodel depicted in Figs. 1(a)
and 1(b) with these modified spectral weights. This leads to a
finite spin-polarization after the laser pulse, which completely
destructively interferes before the next laser pulse as depicted
in Fig. 16.

Therefore the rapid decrease of the revival amplitude for
ζ = 0 plotted in Fig. 14 to a small finite value is related to the
strong weight imbalance between the two subsets of peaks. A
slightly different broadening and deviations from the trial ratio
1 : 3 are responsible for a small but finite revival amplitude.

We emphasize that the toy model phenomenologically
explains the low revival amplitude but not the deeper reason
for the strong weight imbalance between the peak heights of
the two subclasses. It has been conjectured, that the imbalance
between the peak weights of the two resonance conditions
might be attributed to the nuclear spin precession. In our
SCA, we do not see any indication of the reported quantum
mechanical effects [23]. No indication for a transfer of weight
between both resonance conditions when altering ζ or K were
observed in the results obtained by our approach.
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FIG. 16. The toy model for a ratio of 1:3 between the peaks of
the resonance subclasses shows no electron spin revival.

I. Influence of the distribution function p(a)

In this section, we extend our investigation to the influence
of different distributions p(a) for the coupling constants ak

on p(bN,x). The distribution used for the data labeled ξ = 3
is defined by Eq. (36), while for ξ = 2 the exponential
distribution of the coupling constants in a two-dimensional
QD is given by ak ∝ exp(−λ(k − 1)) with k = 1..N and
λ = (r2

0 /N ) = 0.1 [35,37,38], see Eq. (37).
Figure 17 shows p(bN,x) for these two nonconstant p(a)

and a fixed number of laser pulses in comparison with
the box model, where ak = 1/

√
N . The distribution of the

Overhauser fields still features the two classes of peaks inside
the Gaussian envelope. The differences can be seen in the
speed of the Overhauser field build-up. Distributions with
nonequal coupling constants lead to a faster development of
the Overhauser field distribution.

This corresponds to a faster build-up of the revival for
nonconstant p(a), see Fig. 18. Since the coupling constant
enter quadratically into the change of the Overhauser field,

d

dt
�bN =

∑
k

a2
k
�S × �Ik + ζ �bext × �bN , (40)

its time dependency is dominated by the larger coupling
constants for fixed T ∗. A nonconstant distribution is therefore

FIG. 17. Density distribution of the x component of the Over-
hauser field bN after 20 000 pulses for different distributions of the
coupling constants. The external magnetic field is given by K = 200.
N = 100 and a cutoff radius r0 = 1.5 in (36) for ξ = 3. For a
(ξ = 2)-dimensional QD, λ = 0.1 in Eq. (37), i.e., r0 ≈ 3.16.

FIG. 18. Revival of the central spin amplitude for different
distributions of the coupling constants. Parameters as in Fig. 17.

equivalent on a reduced number of nuclear spins in the box
model plus distribution specific corrections, cf. Sec. III E.

1. N dependent scaling behavior for distributed
coupling constants

In order for a potential speed-up the numerics, the scaling
behavior with the number of nuclear spins for nonconstant p(a)
is very important. Contrary to the box model, each spin must
be simulated individually hence the run time is proportional
to N · NP, and the validity of the scaling argument is even
more desirable. To test its applicability the distribution given
by Eq. (36) with ξ = 3 and r0 = 1.5 was chosen.

The results for p(bN,x) using the same distribution function
p(a) is shown in Fig. 19 for the combinations (N,NP) =
(100,20 000), (10,2000), (10,4000). Clear deviations from
the νP = NP/N scaling established only for the box model are
noticeable: p(bN,x) for (100,20 000) almost coincides with the
results for the combination (10,4000). While in the box model,
all nuclear spins rotate synchronized, in general, different
nuclear spins have different precession speeds.

We have demonstrated that νP has to be replaced by a distri-
bution dependent scaling variable xP = νP f (p(a),N ) where
the deviation from the box model scaling has to be included
in the unknown correction f (p(a),N ) depending on the dis-
tribution function p(a) as well as the total number of samples
taken. We can estimate the ratio f (p(a),100)/f (p(a),10) = 2
for the single data point provided by Fig. 19: we need a larger
number of pulses compared to number of nuclei to achieve the
same scaling behavior exhibited in the box model. This implies
that f (p(a),NA) < f (p(a),NB) if NA < NB. This shows that
computation time in the full classical model can be reduced by
a smaller system size not only because the argument presented
in Sec. III E still holds but also because, in contrast to the box
model, less nuclear spin EOM are required to be solved.

IV. EXPERIMENTAL STUDIES OF
THE MODE SPECTRUM

Experimental access to the precessional mode spectrum can
be gained through Faraday rotation measurements, in which
the impact of the periodic pump pulses onto the electron spins
in quantum dots is traced by a linearly polarized probe pulse
whose polarization change is measured after transmission
through the sample. The spin precession dynamics about a per-
pendicular magnetic field is determined by varying the delay
between pump and probe, from which the precessional mode
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FIG. 19. Scaling behavior for N = 100 and 10 with coupling
constants which are distributed according to Eq. (36) with ξ = 3 and
r0 = 1.5 in an external magnetic field of K = 200. (a) shows that
the combination (N,NP) = (100,20000) coincides with (10,4000),
whereas (10,2000), which was equivalent to the first tuple in the
box model now corresponds to lower pulse count. (b) shows the
Overhauser field distribution for (N,NP) = (10,20000).

spectrum can be retrieved by taking the Fourier transform.
Further, by choosing a delay between pump and probe that is
only slightly shorter than the pulse separation time, we can
measure directly the mode-locking amplitude due to the spin
revival.

Corresponding studies on InGaAs/GaAs quantum dot en-
sembles so far had revealed only modes which fulfill the con-
dition that the precession frequency is an integer of the laser
repetition rate according to Eq. (31) and dominate the spectrum
(we call them integer modes in the following for brevity).
Indications for modes that do not fulfill this condition but
can be associated with modes fulfilling Eq. (32) had not been
observed.

We have carefully repeated Faraday rotation studies in
order to find indications for the additional modes predicted
by Eq. (32). Details about the experiments can be found
in Refs. [3,10]. The challenge in these experiments is to
scan a large enough temporal range in time to obtain
sufficient resolution in frequency space. This is complicated
by the variation of the electron g-factor in the studied dot
ensembles, which leads to a fast dephasing of the signal and
a corresponding broadening of the precession modes after
Fourier transformation. Further, also a more complex form

FIG. 20. (a) Faraday rotation measurements as function of delay
between pump and probe for magnetic fields applied in the Voigt-
configuration varied between 0 and 6 T. (b) The amplitude of the
mode-locked signal before the pump pulse as derived from these
measurements as function of the external magnetic field.

of the hyperfine coupling or additional interactions such as
dipole-dipole couplings may lead to a more complex behavior
of the experimental data.

As suggested by the theory, some indications for the
additional modes may be found from the amplitude of the
mode-locking signal right before the next pump pulse where
the spin revival occurs. The modes that fulfill the integer spin
revolution criterion (31) add constructively to this amplitude.
On the other hand, the modes associated with Eq. (32) can add
to the amplitude if their frequency is not too different from the
integer modes. However, if they are located around the middle
between these modes, their orientation is opposite to the one of
the modes fulfilling Eq. (31). These modes then destructively
contribute to the total amplitude of the mode-locked signal.

The interplay of these two types of modes can be varied
through varying the magnetic field strength. Corresponding
magnetic field measurements from B = 0 up to 6 T are shown
in Fig. 20(a), where we focus on the amplitude of the mode-
locked signal right before the pump. Clearly the amplitude
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of this signal shows a nonlinear dependence with increasing
magnetic field as confirmed by the magnetic field dependence
of the mode-locked signal amplitude shown in Fig. 20(b).
This strong variation may be related to the calculation results
in Fig. 6, which indicate that the signal amplitude does not
show a simple variation with magnetic field, but a much more
complex behavior, even though the results there are not fully
converged.

From the data in Fig. 20 one can in particular see that
the mode-locked amplitude becomes particularly weak at
about 4 T. This may correspond to a situation where the
modes according to Eq. (31) and those according to Eq. (32)
almost compensate each other. For other magnetic fields the
noninteger modes after Eq. (32) influence the mode-locking
amplitude apparently much weaker.

To get a more direct proof of these modes we have irradiated
the quantum dot sample for an extended period of pump pulses
and have switched off then the pump, to monitor the free
evolution of the spin ensemble. The ensemble dynamics then
shows revivals that occur periodically with a separation equal
to the separation between the laser pulses in the previously
applied pump protocol. To obtain sufficient resolution, we
have recorded the Faraday rotation signal over several of these
echoes as long as they show significant amplitudes.

Figure 21 shows corresponding Faraday rotation traces (top
panel, recorded at 2 and 4 T) and the corresponding Fourier
transforms (bottom panel). Indeed, the spectrum at 2 T is
dominated by the integer spin revolution modes. However, at
4 T, side modes appear, whose frequencies do not fulfill the
criterion of Eq. (31), which have not been reported before.
We want to highlight that these modes are prominent around
the field strengths where the mode-locked spin amplitude
shows a minimum, providing a consistent phenomenology.
This is a clear signature that indeed not only the integer
precession modes after Eq. (31) appear, but also additional
modes contribute to the time-periodic steady state.

The goal of this experimental augment is the demonstration
that the precessional mode spectrum is more complex than
being just given by Eq. (31), rather than to claim quantitative
agreement with the calculations of spectral positions and
amplitudes of the additional modes according to Eq. (32).
Such agreement cannot be expected, not only because of the
ensemble study but also because of the much larger number
of nuclei of about 105 in each dot in combination with a more
complex distribution of hyperfine couplings.

Additional interactions such as the electric quadrupolar in-
teraction [14,25,26] as well nuclear dipole-dipole interactions
[4] neglected in the simulations are also expected to lead to a
broadening of the peaks in the Overhauser distributions and,
therefore, to a reduction in the steady-state revival amplitude.
While the experiments clearly reach the steady state, the
theoretical revival amplitude has not been converged even after
20 000 pulses, as can be seen from Fig. 7.

The experimental data presented in Fig. 20 clearly demon-
strate a nonmonotonic dependency of the mode locking
amplitude on the external magnetic field. The discussion of
the toy-model in the Secs. II B 5 and III H suggests that an
almost complete vanishing of the mode locking amplitude
might originate in the different amplitude ratios for the even
and the odd resonance revival contributions.

FIG. 21. (a) Faraday rotation measurements of the spin dynamics
recorded after pumping the system by periodic pulses with 13.2 ns
separation. The pumping is then switched off and the Faraday rotation
is recorded over longer time scales in which periodic revivals occur
due to the previous periodicity of the pumping. (b) Taking the Fourier
transform of the traces provides sufficient accuracy to resolve the
precession modes. In particular, at B = 4 T, additional modes can be
seen which are an indication for the additional modes according to
Eq. (32). The curves are vertically shifted for clarity.

V. SUMMARY AND CONCLUSION

We have derived a semiclassical description of the system,
also encompassing the trion decay, for the simulation of a
periodically pulsed QD. Using the FOA, we derived two
classes of steady-state resonance conditions: one depends
only on the repetition rate of the pulses, ωLTR = 2πn and
the other is also influenced by the trion decay rate via
ωLTR = 2 arctan(ωL/γ ) + 2πn. By the means of a simple toy
model, we have analytically shown how the Overhauser field
distribution and the electron spin dynamics, especially the
revival of the electron spin immediately before the next pulse,
are connected in the limit of large external magnetic fields.

Nuclear self-focussing was demonstrated in the build-up of
the Overhauser field distribution as well as in the revival of the
central spin signal employing the full semiclassical simulation
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of the model for equal coupling constants. The theoretical
predictions of the peak positions also hold for nonconstant
Overhauser fields with only a small margin of error. For large
external magnetic fields bext(K > 100), the peaks are placed at
integer multiples of π and the electron spin revival increases
over time, while the behavior for smaller external magnetic
fields exhibits peaks shifted by the arctan and an electron spin
revival decrease with an increasing number of pulses.

It has been shown that larger numbers of pulses are
accessible in the box model at the same computational effort by
reducing the system size and exploiting the scaling properties
defined by the variable νP = NP/N . This scaling argument is
used to make conjectures about the steady state for realistic
numbers of nuclear spins after several seconds of pulsing that
is not directly accessible to our numerical simulations.

We have investigated the QD ensemble features by includ-
ing the effects of g-factor variations as well as the change
of the characteristic time scale T ∗ from QD to QD. We
have demonstrated that the electron spin dynamics shortly
after and shortly before each pulse is essentially independent
of the individual properties of each QD, and the steady
state is determined by a Floquet condition. The Overhauser
field distribution displayed self-focussing by shifting the peak
positions to accommodate the resonance conditions. This was
reflected by the congruent central spin dynamics immediately
before and after the pulse. The different hyperfine coupling
constants in each QD lead to a rescaling of the characteristic
time scale T ∗. Larger hyperfine couplings do not only cause
a shorter dephasing time but also induce a faster build-up of
the Overhauser field distribution and the electron spin revival.
At the end, the Floquet condition imposes the self-focussing
superposition of the dynamics of different QDs and a congruent
central spin behavior. Therefore the investigation of the
dynamics in a single QD can be used to gain an understanding
of the ensemble properties.

The different isotopes of the QD are modeled by the ratio ζ

between the nuclear Zeeman energy and the electron Zeeman
energy. While realistic, nonzero values of ζ lead to a similar
behavior in the Overhauser field and the central spin dynamics,
ζ = 0 stands out. The peaks of the class of odd resonance
condition are pronounced and only a minuscule electron spin
revival is observed similar to what has been reported for a
fully quantum mechanical treatment of the problem for a small
number of nuclei [22].

For nonequal coupling constants, the computation time
increases drastically since all EOM for each individual spins
have to be solved in order to achieve reliable results for the
long-time asymptotic. The basic features such as the position
of the Overhauser peaks or the increase of electron spin revival
remain untouched. The build-up speed of the peak amplitudes,
however, as well as the spin revival amplitude is different for
different distributions of hyperfine fine couplings for the same
number of pulses. While a reduced number of nuclear spins still
leads to a faster convergence to the steady state the scaling be-
havior is not as pronounced as it is for the box model: the reduc-
tion of the number of nuclei in the simulation is less efficient.

One of the main findings of the calculations is the claim of
the existence of additional precession modes besides those
described by Eq. (31). Only those had been reported in
experimental studies so far. By designing experiments with

proper resolution in frequency space, we could indeed resolve
additional modes which may be related with those fulfilling
Eq. (32). These modes should lead to a reduction of the
spin revival, which has been confirmed for the magnetic field
strengths where they appear most prominently in the spectra.
On the other hand, at field strengths where they hardly are
observable the spin mode-locking amplitude is large. It will
be an effort for future activities to provide a quantitative
comparison of experimental data with model calculations.
This will require elaborating tools (spectroscopy on refined
samples) by which the precession spectra can be measured
with even higher resolution in combination with calculations
that are extended towards the steady state and in which further
relevant interactions are included.
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APPENDIX A: UNITARY TRANSFORMATION OF
DENSITY OPERATOR VIA AN IDEAL π LASER PULSE

The density operator of the electronic subsystem including
the trion is transformed according to

ρap = T̂ ρbpT̂ †, (A1)

where T̂ is a unitary operator accounting for the laser pulse.
Under resonance conditions, one finds (5)

T̂ = i|↑↓⇑〉〈↑| + i|↑〉〈↑↓⇑| + |↓〉〈↓| (A2)

and its the matrix representation

T =
⎛
⎝0 0 i

0 1 0
i 0 0

⎞
⎠ (A3)

for an ideal π pulse.
Starting from the initial density matrix for the central spin

in a single classical configuration,

ρbp
μ =

⎛
⎝ρ↑↑ ρ↑↓ ρ↑T

ρ↓↑ ρ↓↓ ρ↓T

ρT ↑ ρT ↓ ρT T

⎞
⎠, (A4)

we arrive at

ρap
μ =

⎛
⎝ ρT T iρT ↓ ρT ↑

−iρ↓T ρ↓↓ −iρ↓↑
ρ↑T iρ↑↓ ρ↑↑

⎞
⎠. (A5)

Assuming that the trion was completely decayed, this matrix
reduces to

ρap
μ =

⎛
⎝0 0 0

0 ρ↓↓ −iρ↓↑
0 iρ↑↓ ρ↑↑

⎞
⎠ =

⎛
⎝0 0 0

0 1
2 − Sz Sy − iSx

0 Sy + iSx Sz + 1
2

⎞
⎠,

(A6)

205419-18



NONEQUILIBRIUM NUCLEAR SPIN DISTRIBUTION . . . PHYSICAL REVIEW B 96, 205419 (2017)

so that the initial electron spin is away aligned in z direction
after the pulse �S(0) = 1/2((Sz − 1/2))�ez.

APPENDIX B: INTERIM RESULTS FOR ANALYTICAL
STEADY-STATE SOLUTION

S
bp
z can be derived from the steady-state condition S

bp
z =

Sz(TR),

Sbp
z = 1

2A
(γω sin(ωTR) − ω2 cos(ωTR)), (B1)

with
A = (ω2 + γ 2)(2 − cos(ωTR)) − γω sin(ωTR)

− γ 2 cos(ωTR). (B2)

Then the z component of the time averaged central spin is
given by the expression

〈Sz〉TR = 1

2ATR
[γ (1 − cos(ωTR)) − ω sin(ωTR)]. (B3)
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