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Casimir stress in materials: Hard divergency at soft walls
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The Casimir force between macroscopic bodies is well understood, but not the Casimir stress inside bodies.
Suppose empty space or a uniform medium meets a soft wall where the refractive index is continuous but its
derivative jumps. For this situation we predict a characteristic power law for the stress inside the soft wall and
close to its edges. Our result shows that such edges are not tolerated in the aggregation of liquids at surfaces,
regardless whether the liquid is attracted or repelled.
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I. INTRODUCTION

In 1948 Casimir [1] found an enigmatic formula for the
part of the zero-point energy density of the electromagnetic
field between two perfect mirrors that can do physical
work:

U = π2

240

h̄c

a4
, (1)

where a is the distance between the mirrors, h̄ Planck’s
constant divided by 2π , and c the speed of light in vacuum.
These days, nearly 70 years later, the field of Casimir forces
is an established research area where modern theory [2,3] can
predict the results of high-precision experiments with good
accuracy. The Casimir force between macroscopic bodies is
well understood, but surprisingly [4], not the force inside
bodies. Only very recently, after several attempts [5,6] of
establishing a theory of the Casimir stress inside materials,
one was found [7] that appears to be satisfactory. Here we
report on the first prediction of that theory: The Casimir
stress σ near the edge of a soft wall [8] (Fig. 1) behaves
like

σzz = 23

240 (2π )2

h̄c

a2b2
, (2)

where σzz is the physically relevant stress component and
a denotes the distance from the edge to empty space.
Here the refractive index n changes continuously along
the z coordinate while its first derivative jumps by 1/b

[Fig. 1(a)].
Equation (2) shows that at discontinuities of the derivative

of n, the Casimir stress diverges with a characteristic power
law. The power law follows already from dimensional analysis:
To get a stress with the dimensions of an energy density one
has to divide h̄c by the fourth power of lengths. There are two
lengths, a and b, that the stress near an edge must depend on.
As the stress must vanish far from the edge, or when there is no
jump, there are three physically reasonable scaling behaviors
σzz ∼ 1/ab3 ,1/a2b2, or 1/a3b. Our result, Eq. (2), is one
of them. Note that there is a body of work on the Casimir
effect of soft walls [8]; none, however, got these scaling
behaviors.

At discontinuities of the derivative of n, the Casimir stress
diverges with a power law. In contrast, at discontinuities of n

itself, σzz does not diverge, but merely jumps [9], and gives
Eq. (1) for two plates with n → ∞. Note that the divergency

of the stress at the edge of the soft wall is a physical effect,
not an artefact of the infinite bare zero-point energy that is
removed in the renormalization of the Casimir force [7]. The
infinite physical stress at the edge implies that a discontinuity
of the derivative of n is not tolerated in liquids: if, for
example, a liquid aggregates as a soft wall on a boundary,

FIG. 1. Soft versus hard wall. (a) Soft wall. Refractive-index
profile n(z) of a planar material where the first derivative of n jumps
by 1/b at the edge to free space with n = 1. Equation (2) describes the
Casimir stress near the edge with a being the distance from the edge.
The dotted line indicates the Beltrami profile of Eq. (7), fitting the
actual profile at the edge, employed to calculate the stress analytically.
(b) The hard walls of a cavity of length a generate the Casimir energy,
Eq. (1), in the limit of perfect mirrors, n → ∞.
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such discontinuities are immediately removed by the force
density ∇ · σ putting the liquid into motion. Discontinuities
of n, on the other hand, are locally stable, leading only to
forces between bodies and not to tension inside. Our result thus
shows a striking feature in the aggregation process: regardless
whether n rises or falls, i.e., Regardless whether the Casimir
force is attractive or repulsive [10], a liquid cannot tolerate the
edge of a soft wall; preferably it will form a discontinuity of the
refractive index: either it will be aggregated or repelled. This
application of the theory of Casimir forces inside materials [7]
resembles the early tests of the Lifshitz theory [11] of forces
between materials in the wetting of surfaces [12]. There the
Casimir stress at the interface between a liquid and a solid wall
gives the wetting angles of droplets on the surface; here the
Casimir stress inside the liquid describes the consolidation of
surfaces.

We proceed as follows. In Sec. II we briefly review the
theory [7] of the Casimir stress in planar inhomogeneous
media, including the renormalization, setting the scene for
Casimir forces inside soft walls. In Sec. III we take ideas
from geometry that simplify the renormalization. With these
geometric insights and with the help of asymptotic considera-
tions, we derive our analytic result Eq. (2) in Sec. IV. There we
make an additional assumption: We presume that the Casimir
stress density near the edge of the soft wall is dominated
by discontinuities of the derivative of the refractive index.
Equation (2) is consistent with this assumption. In Sec. V
we test the self-consistent theory, Eqs. (2) and (27), against
an example where the stress is calculated directly using the
numerical tools developed in Ref. [7], which verifies that the
assumption made describes correctly the Casimir physics of
the soft wall.

II. THEORY

Consider a planar material that varies only in the z direction.
In this case, the Casimir-force density ∇ · σ also points in the z

direction, while σ is diagonal, such that σzz is indeed the only
physically relevant stress component. According to Lifshitz
theory [7,11],

σzz = − h̄c

(2π )2

∫ ∞

0

∫ ∞

0
(W − W0) u du dκ, (3)

W =
∑

p=E,M

1

νp

(
u2 + n2κ2 − ∂z∂z0

)
g̃p

∣∣∣∣∣∣
z0→z

, (4)

with κ being the imaginary wave number and u the spa-
tial Fourier component. Going to imaginary wave numbers
improves the convergence of the stress [2] as an integral
of the spectral stress density W and, more importantly,
describes the broadband nature of the Casimir effect, as
each imaginary frequency requires a Hilbert transform of the
material parameters over a wide range of real frequencies
[2,13]. These parameters are the electric permittivity ε and
magnetic permeability μ that give rise to

n = √
εμ, νE = μ, νM = ε, (5)

for the two polarizations E and M of the electromagnetic field
with Fourier-transformed Green functions g̃p satisfying the

FIG. 2. Casimir stress. Numerical computation (dots) of the
Casimir stress σzz for the profile ε(z) of the electric permittivity
shown (gray curve), μ = 1. The solid black curve shows the sum
of our formula for the stress near each edge, Eq. (27), in excellent
agreement with the numerical results near the edges. The stress is
zero in the constant parts of the profile. We employed the profile of
Eq. (28) that includes Lorentzian-type dispersion (in the shown profile
of the permittivity we plot ε for κ = 0). Dispersion is necessary for
the convergence of the Casimir stress [7].

inhomogeneous wave equation,

∂z

1

νp
∂zg̃p − u2 + n2κ2

νp
g̃p = δ(z − z0). (6)

The quantity W0 represents the diverging part in the spectral
stress density of the electromagnetic zero-point fluctuations
inside the material, which is removed in the renormalization
of the Casimir stress, Eq. (3). There we use the point-splitting
method [11]: Each point in space is mentally split into two,
representing an emitter (at z0) and a receiver (at z). The emitter
sends out an electromagnetic wave; the receiver responds to
the part of the electromagnetic wave that is scattered back.
In this picture, renormalization amounts to subtracting from
the full Green function the part that is purely outgoing such
that the scattered part remains. We argued in Ref. [7] that the
outgoing wave is given by the geometrical-optics expression
of the Green function in the vicinity of the point of emission
(up to quadratic order). This procedure was proven [7] to
remove the unphysical divergencies of the Casimir stress inside
planar media. It also gives a recipe for computing the stress
numerically: Fig. 2 shows the stress calculated numerically for
a profile with discontinuities in the derivative of the refractive
index (details of the calculation are described in Sec. V). One
clearly sees the physical divergencies of the stress at the edges
that remain after renormalization.

III. GEOMETRY

For getting an analytic expression of the characteristic
behavior of the Casimir stress we apply insights from
geometry—transformation optics [14]—combined with the
features of Casimir physics. The Casimir stress is given by the
reflected waves inside the material and at its boundaries [1–8].
As we are employing waves with imaginary frequencies, their
amplitudes are exponentially falling while propagating; waves
scattered from distant regions are exponentially suppressed.
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We thus only need to consider the immediate vicinity of the
point where most of the scattering occurs: the discontinuity of
dn/dz. Moreover, there we can replace the actual refractive-
index profile [solid line of Fig. 1(a)] by one that also contains
the characteristic feature—the discontinuity of dn/dz—but
does not cause scattering elsewhere [dotted line of Fig. 1(a)].
As the renormalized stress [7] originates from the scattered
part of the Green function, the renormalization becomes
trivial: It is equivalent to subtracting from the total Green
function the Green function of propagation in the scatteringless
refractive-index profile. This argument allows us to calculate
the asymptotics of the Casimir stress for all planar refractive-
index profiles with μ = 1 having a jump in the derivative
of n.

In the following we show that such a scatteringless profile
is the one of the Beltrami space [15] [Fig. 1(a), dotted line]:

n = −b

z
for z < 0, (7)

that describes a maximally symmetric, open space [16] of
constant negative curvature for the electromagnetic field if, as
in transformation optics [14],

ε = μ = n. (8)

We prove by direct calculation that this profile is scatteringless.
Then we show that it remains so in the realistic case of ε =
n2,μ = 1. To avoid clutter in our calculations we set the spatial
units such that

b = 1, (9)

and reinstate units later.
For the Beltrami profile of Eq. (7) one can solve the equation

for the Green function exactly:

g = − e−κs

2π c+c−
, s = 2 artanh

c−
c+

, (10)

where

c± =
√

x2 + y2 + (z ± z0)2. (11)

One verifies that g solves Eq. (6) with u2 = −∂2
x − ∂2

y in
physical space. One also verifies that s satisfies the eikonal
equation (∇s)2 = n2, which proves that s is the geodesic
length—the optical path length. From this follows that g

is exactly of the form required by geometrical optics, as it
depends on frequency only through the exponential factor
exp(−κs) where κ = −iω/c (with positive imaginary ω in
our case): Geometrical optics is exact for the Beltrami profile.
Note that this is only true for the profile of Eq. (7) from −∞
to 0 in its entirety. If n turns to a constant at z = −1, forming
an edge in the profile, the discontinuity in the refractive index
will cause scattering, i.e., a violation of geometrical optics,
and hence Casimir forces [7].

For the undisturbed profile of Eq. (7) we solve for the
Green function in Fourier space, Eq. (6), and obtain for both
polarizations:

g̃ = −Iκ (−uz0)Kκ (−uz), (12)

for z < z0 and z and z0 interchanged for z > z0, where K and
I are the modified Bessel functions [17]. We will make use of
this form in the case of realistic profiles with ε �= μ where the

interpretation of the material as establishing a geometry for the
electromagnetic field is no longer exact [14]. As it turns out in
the next section, the Beltrami profile will still be scatteringless.

IV. REALITY

In the remainder of this paper we consider the realistic case
of planar media with the Beltrami profile, Eqs. (7), (9), and

ε = n2, μ = 1. (13)

In this case, the electric and magnetic properties of the material
are different, and so the E and M polarizations differ as well:

g̃E = −√
z0z Iν(−uz0)Kν(−uz),

(14)

g̃M = − 1√
z0z

Iν(−uz0)Kν(−uz),

for z < z0 and z and z0 interchanged for z > z0, while we get
for the index,

ν =
√

κ2 + 1/4. (15)

The Green functions for the realistic case of Eq. (13) thus
differ from Eq. (12) of the geometric case of Eq. (8) by the
prefactors (z0z)1/2 and (z0z)−1/2, respectively, which means
that they are also scatteringless in space. However, as the
index, Eq. (15), is different from κ , their temporal behavior is
modulated due to the different dependence on frequency icκ;
there is geometric dispersion [7]. Yet for the renormalization
of the Casimir stress in planar media, geometric dispersion is
not relevant [7]; we can thus regard the Green functions (14) as
describing the outgoing waves that give rise to W0 via Eq. (4)
and are subtracted in the renormalization of the stress, Eq. (3).

Consider now the full profile of the soft wall [Fig. 1(a)]
with ε = μ = 1 for z < −1 and the Beltrami profile of
Eq. (7) for −1 < z < 0. At the edge of the soft wall, z = −1,
the derivative jumps from zero to dn/dz = 1 in our units
(dn/dz = b−1 in general). For −1 < z0 < 0 and z < z0 the
Fourier-transformed Green functions are given by the outgoing
waves of Eq. (14) plus a solution of the homogeneous wave
equation:

g̃E = −√
z0z Iν(−uz0)[Kν(−uz) + ρEIν(−uz)],

(16)

g̃M = − 1√
z0z

Iν(−uz0)[Kν(−uz) + ρMIν(−uz)],

with coefficients ρE and ρM for −1 < z, and

g̃E ∝ ewz, g̃M ∝ ewz, w =
√

κ2 + u2, (17)

for z < −1. We see from Eq. (6) that at z = −1 both g̃ and ∂zg̃

must be continuous (the latter, because ε and μ are continuous
there). As the outgoing waves are the Iν(−uz0)Kν(−uz) waves
we simply drop them in the renormalization and use only the
reflected waves in Eqs. (3) and (4) of the Casimir stress. In this
way we obtain

σzz = − h̄c

(2π )2

∫ ∞

0

∫ ∞

0
(ρEWE + ρMWM)u du dκ, (18)
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with WE and WM given by

WE = −(n2κ2 + u2 − ∂z∂z0 )
√

z0z H

∣∣∣∣
z0→z

,

(19)

WM = −1

ε
(n2κ2 + u2 − ∂z∂z0 )

1√
z0z

H

∣∣∣∣
z0→z

,

and H = Iν(−uz0)Iν(−uz). For evaluating the integrals in
Eq. (18) we use polar coordinates,

κ = w cos θ, u = w sin θ, (20)

and the asymptotics of the integrand in the limit of w → ∞,
as a rapid growth of the stress in physical space corresponds
to large components in Fourier space. We thus replace the
modified Bessel functions by their uniform asymptotics for
both order (ν ∼ κ) and argument (x ∝ u) [17]:

Kν(x) ∼
√

π

2

e−√
ν2+x2+ν arsinh(ν/x)

4
√

ν2 + x2
,

Iν(x) ∼ e
√

ν2+x2−ν arsinh(ν/x)

√
2π

4
√

ν2 + x2
,

(21)

and obtain for the WE and WM of Eq. (19) in the limit of
w → ∞ the expressions:

WE ∼ − cos2 θ

2πz [z2 − (z2 − 1) cos2 θ ]
e2wφ(z),

WM ∼ 2z2 + (1 − 2z2) cos2 θ

2πz [z2 − (z2 − 1) cos2 θ ]
e2wφ(z),

(22)

with the exponent given by

φ(z) =
√

cos2 θ + z2 sin2 θ + cos θ arsinh
cot θ

z
. (23)

We also solve for ρE and ρM as follows: Since ∂zg̃ = wg̃ for g̃

of Eq. (17) for z < −1, continuity of g̃ and ∂zg̃ requires that
the same is true for g̃ of Eq. (16) at z = −1, which establishes
a linear equation for each ρp. Using the asymptotics of the
modified Bessel functions, Eq. (21), gives in the limit of w →
∞:

ρE ∼ −π cos2 θ

4w
e−2wφ(−1),

ρM ∼ π (2 − cos2 θ )

4w
e−2wφ(−1).

(24)

Next we consider the asymptotics for z → −1 in the integral
of Eq. (18) for the stress. The convergence of the integral
is controlled by the exponents in Eqs. (22) and (24), hence
we take φ(z) − φ(−1) ∼ −(z + 1) to first order in z + 1 from
Eq. (23), while for the prefactors we put z = −1. We substitute
ζ = cos θ and obtain

σzz = h̄c

16π2

∫ ∞

0
e−2w(z+1)w dw

∫ 1

0
(2 − 2ζ 2 + ζ 4)dζ

= 23

960π2

h̄c

(z + 1)2
. (25)

Writing a = z + 1 and reinstating units gives the main result
of this paper, Eq. (2). It is elementary to generalize it to the
case when a material with uniform refractive index n0 different

from unity meets a soft wall. We simply put the edge of the
Beltrami profile n = −1/z at z = −1/n0, and express n0κ

instead of κ as w cos θ . We obtain along the same lines as
above:

σzz = 23n0

960π2

h̄c(
z + n−1

0

)2 . (26)

As the first derivative of the Beltrami profile −1/z is n2
0 at

z = −1/z0, this corresponds to b = 1/n2
0. Hence we obtain in

general units,

σzz = 23

240 (2π )2n3
0

h̄c

a2b2
. (27)

Finally, in the case the first derivative of n does not rise, but
drops by −b−1 at the edge we follow a similar procedure, and
obtain the same result.

Note that our result is only valid when dispersion, the
frequency dependence of ε and μ, is not important in
the relevant range of w. Ultimately, dispersion will soften
the singularity of the Casimir stress near the edge, but it
will not completely remove it, as the integral over the spatial
Fourier components in Eq. (3) remains divergent there. Our
numerical results (Fig. 2) show that our analytic formula,
Eq. (2), describes well the intermediate regime near the edge
until dispersion softens the power law.

V. EXAMPLE

To check our theory we compare it to a calculation of the
Casimir stress according to the renormalization prescription
of Ref. [7] in a material with a jump in the derivative of the
permittivity:

ε =
⎧⎨
⎩

1 z < 0
εz 0 � z � 1
ε 0 < z

,
ε = κ2 + eκ2

0

κ2 + κ2
0

,
(28)

(κ0 = 200, solid gray curve in Fig. 2 plotted for κ = 0) and
μ = 1. Equation (28) describes a dispersive inhomogeneous
permittivity profile with a Lorentzian dispersion relation for
imaginary frequencies with a resonance at κ0. The Green
functions in an exponential profile are derived in Ref. [6]. We
evaluate numerically the spectral stress density as defined in
Eq. (4); subtracting W0 we then integrate to find σzz according
to Eq. (3). The stress in the homogeneous external shoulders
of the profile (z < 0 and 1 < z) is zero [18], the stress in
the inhomogeneous region is plotted (Fig. 2, black dots).
The asymptotic stress given by Eq. (27) for the two soft
boundaries at z = 0 and z = 1 are summed and also plotted
(black curved) in Fig. 2. One sees that close to the boundaries
the asymptotic formula captures beautifully the behavior
of the stress. However, for smaller a, closer to the jump
in the permittivity’s derivative, the spectral density contributes
to the stress at greater frequencies. For κ ∼ 40 the jump in
the derivative of the permittivity already varies by 5% with
respect to its value at κ = 0, for which the asymptotic stress
is calculated. We thus find numerically that the asymptotic
formula is correct to within 10% for a ∈ [0.05,0.15] in our
arbitrary units.
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VI. SUMMARY

Only recently, one can calculate the Casimir stress inside
materials [7]. We have found that the stress grows with a
characteristic power law, Eq. (2), near the edge of a soft wall
[8] where the first derivative of the refractive index is discon-
tinuous. The final formula, Eq. (27), represents one of the few
analytic results in the theory of Casimir forces [19]. Of course,
the jump in the first derivative of n is an idealization, and so
is the resulting divergence. However, our final result, Eq. (27),
will still describe the leading asymptotics of the Casimir stress
until material dispersion softens it, as our numerical example
has shown. Ultimately, the molecular structure of the material
will make the stress finite due to spatial dispersion. Never-
theless, the stress will remain large, because the molecular
structure can only affect spatial Fourier components in the
spectral stress density that are comparable to the molecular
size. Our result also gives a first glimpse on new phenomena

related to the aggregation of materials by Casimir (van der
Waals) forces at surfaces. Our paper answers the question of
how such forces behave near edges of the refractive-index
profile, but it also raises many more questions that may inspire
future research. For example, what is the best way of measuring
such forces? What are stable configurations of aggregated
materials? What are the time scales of aggregation? How does
diffusion compete with Casimir (van der Waals) forces?
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