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Parity solitons in nonresonantly driven-dissipative condensate channels
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We study analytically and numerically the condensation of a driven-dissipative exciton-polariton system using
symmetric nonresonant pumping geometries. We show that the lowest condensation threshold solution carries
a definite parity as a consequence of the symmetric excitation profile. At higher pump intensities competition
between the two parities can result in critical quenching of one and saturation of the other. Using long pump
channels, we show that the competition of the condensate parities gives rise to a different type of topologically
stable defect propagating indefinitely along the condensate. The defects display repulsive interactions and are
characterized by a sustained wave packet carrying a pair of opposite parity domain walls in the condensate
channel.
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I. INTRODUCTION

A great deal of work has been devoted to understanding
the physics of equilibrium condensate systems such as cold
atoms and superconductors. Within the mean-field theory
the nonlinear nature of these quantum fluids is eloquently
captured revealing superfluid currents, vortices, and solitons
[1]. Solitons are self-supporting wave packets maintaining
their shape and group velocity as a consequence of dispersive
and nonlinear terms compensating each other. They have been
studied and observed in numerous physical systems such as
optical media [2], proteins [3], superfluids [4], Bose-Einstein
condensates [5], and magnetic materials [6]. They can be
classified as nontopological or topological, the latter meaning
that they belong to a group of different homotopy than
the soliton-free state and thus are stable against decay to a
topologically trivial field distribution.

One should also distinguish between conservative soli-
tons appearing in the systems described by the nonlinear
Schrödinger, Korteweg–de Vries, and sine-Gordon equations
and dissipative solitons appearing in the systems described by
various modifications of the complex Ginzburg-Landau equa-
tion [7,8] (also referred to as the generalized Gross-Pitaevskii
equation in the context of Bose-Einstein condensates). The
complex Ginzburg-Landau equation is a powerful tool to
understand wave phenomena in diffusive nonlinear systems
and has successfully predicted the existence of various defects,
chaos, turbulence, bifurcation, with solutions from traveling
waves to Nozaki-Bekki holes. Dissipative solitons are among
these solutions and can exist in exciton-polariton condensates
[9–11], optical parametric oscillators [12,13], cold atoms
[14], and optically driven Rydberg clusters [15]. In all these
cases a dissipative macroscopic quantum state is continuously
replenished by external driving. For this, exciton polaritons
are excellent candidates displaying the solid state analog of
Bose-Einstein condensation under either optical or electrical
driving [11,16–20] for surprisingly high temperatures [21,22].
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This opens a way for the potential application of polaritonic
systems in the design of optoelectronic devices of the next
generation [23,24]. Indeed, polariton solitons [25] have been
considered as candidates for information processing schemes
[26], are compatible with topological polariton systems [27],
and their entanglement has been suggested [28].

Due to strong polariton-polariton interactions polariton
condensates also represent a unique laboratory for the sim-
ulation of a plethora of nonlinear phenomena. Features of
dark and bright solitons, although not shown to stay supported
indefinitely, were recently observed in phase locked polariton
condensates [29] and have been predicted in hyperbolic regions
of negative effective mass in patterned microcavities [30].
Dark solitons [31] were found to eventually relax due to the
dissipative physics of nonequilibrium condensates [32] with
the exception of trapping [33] but with no evidence as of yet for
propagation. The prediction of oblique dark solitons [34] was
also verified for polariton fluids [35] followed by the prediction
of oblique dark half solitons in spinor condensates [36] and
later their controversial experimental observation [37–40].
Furthermore, dissipative solitons [41] and bright solitons have
been predicted [42] with the latter observed [43] in polariton
fluids.

In this paper, we analyze the gain and dissipation properties
of a polariton condensate under nonresonant continuous wave
symmetric spatial pumping. Many properties of the complex
Ginzburg-Landau equation are well studied under uniform
driving [7] but in experiment the use of symmetric pump
shapes is a conventional protocol and thus deserves some in-
vestigation. We show that in one-dimensional (1D) systems the
condensation threshold is determined by an order parameter
of definite parity due to the symmetric coordinate dependent
nature of the pump gain. To the best of our knowledge, only
special instances on how parity relates to the condensation
threshold have been studied [44]. We also show that a second
critical pump intensity exists where the uncondensed parity
suddenly condenses and drives the existing parity to zero, an
effect best described as parity cross saturation. Extending the
1D system to two dimensions opens up a spatial degree of
freedom allowing polaritons to travel parallel to the pump
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where we observe a type of topologically distinct defect
state traveling without dissipation in the condensate. The
defects exist only in the presence of nonlinearities, give rise
to nontrivial currents, and possess a pair of domain walls of
opposite parity to the defect free condensate, making them
parity solitons. They are found to exist over a wide range of
pump powers, pump shapes, nonlinearities and even with no
pump induced or external trapping. Our work shows propa-
gating nondissipative soliton states in nonresonantly driven
polariton condensates–an important step towards realizing
optoelectronic platforms based on soliton signals.

II. THEORY

Spinless driven-dissipative polariton condensates can be
accurately modeled using the complex Ginzburg-Landau
equation for the scalar order parameter � [8,45,46]:

i�̇ =
[
− h̄∇2

2m
+ (gP + i)Pf (r) − i� + (α − iR)|�|2

]
�.

(1)

Here f (r) and P are the nonresonant pump profile and
intensity, gP is the exciton reservoir blueshift induced by
the pump, m is the polariton mass, � is the polariton
decay rate, α > 0 accounts for polariton-polariton interactions
(defocusing), and R is the saturation rate.

We begin our analysis on a symmetrically excited conden-
sate in 1D geometry [f (x) = f (−x)] and setting α = gP = 0.
The dynamics of the order parameter is then characterized only
by the dispersion and gain-dissipation mechanics. By slowly
ramping the pump intensity, polaritons condense at P = Pcond

into a lowest threshold solution with definite parity. Since
the condensate decays quickly to zero as polaritons move
away from the pump we can choose the infinite quantum
well basis {ψn} with boundaries |x| = L/2 far away from the
condensate in order to extract the parity dependent behavior
of the condensate; the order parameter is then written � =∑

n An(t)ψn(x). Integrating out the coordinate dependence we
get

Ȧn = − (iωn + �)An + P
∑
m

fnmAm

− R
∑
jkl

MnjklA
∗
jAkAl. (2)

Here h̄ωn are the linear real eigenenergies. The pump elements
fnm are written as fnm = ∫

f (x)ψnψm dx, being nonzero only
when the product ψnψm is even. The nonlinear elements are
written as Mijkl = ∫

ψiψjψkψl dx. Defining nn ≡ |An|2 and
looking at the rate of the modes in the linear regime (|�|2 ∼ 0)
we have

ṅn

2
= P

∑
m

fnm

√
nnnm cos (φn − φm) − �nn, (3)

where φn is the phase of An. This means that the maximum
gain of the system is determined by a superposition of same
parity modes coupled through fnm. This is in agreement with
numerical results where P in Eq. (1) is adiabatically ramped

FIG. 1. Four separate threshold results for a 1D condensate driven
by a symmetric pump profile f (x) (inset) resulting in a definite parity
condensate. Here α = gP = 0.

from a weak stochastic initial condition for different pump
profiles (see Fig. 1).

As the pump intensity is increased, we observe a second
critical pump power P = Pcrit where the condensate suddenly
flips its parity followed by a shift in energy [see Fig. 2(a)].
The effect demonstrates the presence of a second condensate
solution of the opposite parity, for which the occupation rate
changes from net negative to positive and which in return
quenches the first solution. This scenario becomes clear if
one uses a truncated basis of linear eigenstates, � = A0ψ0 +
A1ψ1, which results in the following coupled equations:

Ȧ0

A0
= − (iω0 + �) + Pf00 − R

[
M0000|A0|2

+ 2M0011|A1|2 + M0011A
2
1e

−i2φ0
]
, (4)

Ȧ1

A1
= − (iω1 + �) + Pf11 − R

[
M1111|A1|2

+ 2M0011|A0|2 + M0011A
2
0e

−i2φ1
]
. (5)
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FIG. 2. (a) Mode population and condensate energy (inset)
as a function of pump power for 1D system showing the parity
switch. (b) Equations (4) and (5) propagated with increasing
pump power with ω0 = ω1 = 0. Element values were set to
M0000 = 0.001 μm−1, M1111 = 0.0573 μm−1, M0011 = 0.01 μm−1,

f00 = 0.032, f11 = 0.095, R = 0.0012 ps−1 μm, and � = 0.1 ps−1.
Equations (8) and (9) give Pcond = 1.05 ps−1 and Pcrit = 5.3 ps−1 in
good agreement with numerical results.
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The rate equations then become

1

2

ṅ0

n0
= Pf00 − � − R{M0000n0 + M0011n1[2 − cos (2φ)]},

(6)

1

2

ṅ1

n1
= Pf11 − � − R{M1111n1 + M0011n0[2 + cos (2φ)]},

(7)

where φ = φ1 − φ0. The condensation threshold is then
determined by

Pcond = � min
{
f −1

00 , f −1
11

}
. (8)

Let us assume that Pcond = �/f11 is minimal. Then the A1

mode condenses first and has a steady state according to n1 =
(Pf11 − �)/RM1111. Equations (6) and (7) show that cross-
saturation effects are tunable through the phase difference
between the two modes. Without any loss of generality we
can set ω0 = ω1 = 0 which restricts the phase to φ = kπ/2
where k ∈ Z. It becomes then obvious that k = 0 creates the
optimum condition for the A0 mode to become populated since
it minimizes the saturation caused by the A1 mode. The critical
pump power where the rate of the A0 mode turns positive is
then

Pcrit = �
1 − M0011/M1111

f00 − M0011f11/M1111
. (9)

The above expression predicts the condensation of the uncon-
densed parity (here A0) but does not necessarily guarantee
that the existing parity (A1) is driven to zero. The complete
quenching of the existing parity corresponds then to a class
of solutions determined by the elements fnm and Mijkl where
P � Pcrit causes the rate of the previously dominant parity to
become strictly negative, driving it to zero. If M1111 > M0011

and f11 � f00 > f00M0011/M1111 then one has Pcrit � Pcond.
For f11 < f00 the lowest threshold belongs to the other parity,
for f00 < f00M0011/M1111 one has Pcrit < 0 which has no
physical interest. In Fig. 2(b) we show the parity flip for
Eqs. (4) and (5) for an arbitrary set of pump and nonlinear
elements in good agreement with Eqs. (8) and (9). We
explicitly synchronized the energies in order to emphasize
that the effect can purely be explained via the gain-decay
mechanism. We also note that the effect does not vanish
for nonzero real interactions α and/or additional confining
potentials V (x), and can be retrieved using the reservoir
approach (see Appendix A). Such pump induced pattern
reconfiguration was previously observed in Ref. [48] but
lacked explanation on the underlying mechanism.

In the case of an asymmetric pump profile the pump
elements fnm start mixing together the gain of the two parities.
We investigate the effect of such asymmetry and find that
at critical skewing strength the parity switch is replaced
by a solution of mixed modes resulting in an asymmetric
condensate. The presence of noise in the pump is also
investigated and is found to have a small effect on the parity
switch (see Appendix B).

FIG. 3. Normalized density (a) and phase (b) of the condensate in
an odd parity solution with ky �= 0 with P = 1 ps−1. (c),(d) The same
channel after driving the pump intensity past Pcrit. Background noise
and finite ky wave vectors result in the formation of defects traveling
along the channel indefinitely (white arrows). Here P = 3.5 ps−1.
(e) Mode population at y = const from panels (c) and (d). The even
parity (blue lines) of the channel drops to zero when the odd parity
defects travel past. Here the two defects travel at a fixed velocity and
without decaying.

III. PARITY SOLITONS

We now return to Eq. (1) with α �= 0 and gP �= 0.
Considering the realistic case of 2D exciton polaritons in
planar microcavity structures we chose the pump profile from
Fig. 1(a) in the form of a channel along the y axis. The
same results as for 1D systems are observed if the order
parameter possesses zero longitudinal wave vectors (ky = 0).
In the case of ky �= 0 [see Figs. 3(a) and 3(b)] the parity switch
threshold (Pcrit) with weak stochastic noise can result in the
formation of localized defect states traveling along the channel
carrying opposite parity charges [see Figs. 3(c)–3(e)]. The
phase pattern of the defects reveals that they are topologically
distinct from the defect-free solution and thus they can
be classified as topologically stable. We set our parameter
values similar to previous works [8]: α = 0.003 ps−1 μm2,
R = 0.3α, � = 0.1 ps−1, m = 10−4m0, gP = 3α, where m0

is the free-electron rest mass.
Instantaneous switching of the pump and subsequent

condensation of the polaritons is a transition from a linear
state to a saturated state which can also give birth to defects
seeded by random noise. Nonresonant pulsing of the defect
free channel can also induce their formation. In Figs. 4(a)
and 4(b) we show the final state after instantaneous switching
of the pump where three defects travel in unison along the
channel. Differently from Fig. 3 where the channel is of even
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FIG. 4. Condensate (a) density and (b) phase with three defect
states after instantaneous switching of the pump at P = 1 ps−1.
(c) Mode population for y = const. In the final state the defects
are equidistant from each other and travel along the channel showing
regular parity beats. (d) Defects traveling along a circular pump.

parity with odd parity defects, here the channel is of odd
parity with even parity defects. This result underlines that
the defects can exist in either parity opposite of the channel.
We observe defect formation at pump values where only one
channel solution is stable verifying that the origin of the defects
is not due to the bistability between the channel solutions
[49]. We observe that the number of defects forming in the
channel scales with the pump intensity at both Pcond and Pcrit

(see Appendix C). Formation of the defect domains scaling
with the system control parameters (here P ) is known as the
Kibble-Zurek mechanism [50,51] and has been investigated for
uniform pumping scenarios in polariton condensates [52,53].

The defects are found to possess repulsive interactions and
are unable to pass through each other. Instead, they display
damped oscillatory behavior until maximum separation is
achieved between the defects where they either become static
or move in unison along the channel. If the channel ends are
open the defects escape and dissipate. In order to capture the
defects in experiment, a circular channel can be used [see
Fig. 4(d)]. In Fig. 5 we plot the condensate velocity field
(black arrows) and density (color map) for the two different
defect types. In Fig. 5(a) we observe two in-phase sources of
flux and two vortical points (white crosses) causing polaritons
to flow freely across the channel. In Fig. 5(b) we find two
sources of flux π out of phase and a single saddle point
in the center of the channel. We note that the defect in
Fig. 5(b) can be regarded as a type of dark soliton due to
the density minimum gashing diagonally across the channel.
In Fig. 5(a) the defects are reminiscent of bright solitons since
a finite density connects across the channel. From the point
of view of stability our solitons resemble more the infinitely
propagating defects appearing under coherent pumping, which
include domain walls in polariton neurons [54], bright solitons
appearing near the inflection point of lower polariton branch
[42], and parametric solitons [55].

(a) (b)

FIG. 5. Velocity streamlines (black arrows) plotted over the
condensate density (color map) for an (a) even parity defect and
(b) odd parity defect. White crosses denote sources of flux, circula-
tion, and saddle points.

The coordinate dependent physics makes stability analysis
infeasible but rescaling the order parameter � → �/

√
R

shows that the nonlinear physics of the system depend only on
α/R. Starting from an odd parity channel [Fig. 3(a)] populated
by a single traveling defect we numerically resolve the bound-
ary of stable parity solitons in the P−α/R parameter plane
(see Appendix D). Expectedly, the regime of stable defects
depends also on their velocity making current observations
nonexhaustive. For small α/R and P the soliton is unable
to hold together the supercurrents and breaks up. At high
α/R and P a formation of vortex-antivortex pairs appears
along the guide, modulating the density but not destroying
the original soliton. These vortex-antivortex pairs have been
reported before in the stability analysis of dark soliton stripes
[akin to Fig. 3(a)] [32] and observed experimentally [31]. For
increasing P one eventually hits Pcrit where both guide and
existing solitons undergo a dramatic change. Here the domain
walls of the soliton spread apart to fill up the guide, effectively
switching the parity of the entire guide (see animation 2 in the
Supplemental Material [47]). For a finite guide the soliton
would then spread out and vanish (domain walls exit the
system). However, for a closed (periodic) guide the domain
walls meet again forming now a soliton of the opposite parity
preserving the soliton above Pcrit.

Last, we investigated the propagation of the defects in the
presence of static disorder [56]. Depending on the disorder
landscape the defects can either pass unhindered along the
channel, become trapped between disorder maxima, or break
up. To our surprise, we find that a defect trapped in the
potential landscape oscillates without damping as opposed to
damped collisions with other defects (see animation 1 in the
Supplemental Material [47]).

IV. CONCLUSIONS

We have analyzed analytically and numerically the effects
of symmetric nonresonant pumping in polariton condensates
in 1D systems. We show that the minimum condensation
threshold belongs to a condensate of definite parity. We
also show the existence of a second critical pump power
where the phase degree of freedom allows the opposite parity
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solution to take up the gain and drive the other parity to zero.
Stretching such symmetric pump profiles to form channels in
2D systems allows the formation of solitonic parity defects.
The defects exist over a wide range of parameter values
including no external or pump-induced trapping. The defects
possess nontrivial velocity patterns making them topologically
distinct, and display damped collisions when approaching one
another. We stress that our defect states travel persistently
along the pump channel and do not decay even with constant
dissipation present in the system, unlike what would happen
if one tried, for example, to excite a traditional dark soliton in
a 1D channel geometry.
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APPENDIX A: EXTENSION TO RESERVOIR MODELS

The transition from one parity to another is not exclusive to
Eq. (1) in the main text which describes static gain at the pump
location at all times. An alternative model describes the gain
of polariton through a dynamical reservoir nR of hot excitons
governed by a rate equation [45],

i�̇ =
[
− h̄

2m

∂2

∂x2
+ i

2
(RnR − �)

]
�, (A1)

ṅR = −(�R + R|�|2)nR + P (x). (A2)

Here �R is the reservoir dissipation rate and R now plays
the role of the in-scattering rate from the reservoir to the
condensate. We note that under the current consideration
the effective potential from interactions with polaritons and the
reservoir are set to zero. The reservoir steady state is given by

nR(x) = P (x)

�R + R|�(x)|2 , (A3)

where P (x) = Pf (x). This more complicated expression of
the polariton gain mixes the parities of the system and the
pump elements fnm no longer vanish for n and m of different
parities. A good choice of a pump profile f (x) can however
reproduce the switch in parities (see Fig. 6) underlining that
the transition is still present in reservoir models.

APPENDIX B: EFFECTS OF NOISE AND ASYMMETRY
IN DRIVING FIELD

All results presented are done using a stochastic low ampli-
tude initial condition and background noise added to the order
parameter at time steps much smaller than the characteristic
polariton time scales. The noise serves as a method of breaking
system symmetries and giving rise to nontrivial states at
critical transition points such as condensation (Pcond) and
parity switching (Pcrit).
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FIG. 6. (a) Example choice of pump profile producing the parity
switch by propagating Eq. (A1). (b) Population of the condensate in
the first eight linear basis eigenstates.

We now investigate additional Gaussian distributed noise
field with zero mean added to the pump profile f (x) at small
time steps τ 
 �−1,

f (x) = f0(x) + δ(x,τ ). (B1)

Here f0(x) is the unperturbed pump shape. This tests the
sensitivity of the parity dependent nature of the gain-decay
mechanism. Figure 7(a) shows the parity switching taking
place undeterred by the static noise distribution [Fig. 7(c)]
added to the pump profile [Fig. 7(b)].

We next check static asymmetry in the pump profile. Results
in Fig. 8 show that asymmetric profiles alter the evolution of
the condensate as a function of pump power P0. The transition
takes place over a larger interval of pump powers due to the
pump now mixing different parity eigenstates. Regardless, for
reasonable skewing of the pump profile [Fig. 8(a)] the parity
transition still takes place where a new solution becomes
dominant and quenches the other [Fig. 8(b)]. The results
underline that the physics at play are robust against reasonable
amounts of noise and skewing which can be expected in
experiments. We note that here we have only investigated one
type of a pump profile whereas other profiles with a different
set of pump elements fnm might be less affected by asymmetry.
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FIG. 7. (a) Population of the first eight linear basis eigenstates
showing a change in parity analogous to Fig. 2(a) in the main text.
(b) Snapshot of the noisy pump profile. (c) Distribution of the noise.
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FIG. 8. (a) Skewed (black solid line) vs symmetric (dashed ma-
genta line) pump profile. (b) Population of the first eight linear basis
eigenstates showing a gradual change in parity for the asymmetric
pump profile in panel (a).

APPENDIX C: KIBBLE-ZUREK-TYPE SCALING

We investigate the number of defects/solitons appearing
as a function of pump intensity increasing rapidly above
condensation threshold (Pcond) and parity switching threshold
(Pcrit). It has been shown that the standard Kibble-Zurek theory,
which captures the scaling of the defect number as a function
of control variables (e.g., temperature), does not apply to
nonequilibrium systems such as exciton-polariton condensates
described by the complex Ginzburg-Landau equation [52].
However, the system is still described by competitive time
scales of gain-and-decay and can display scaling between
pump intensity as a control parameter and defect formation
[53,57].

We propagate Eq. (1) with weak white-noise order param-
eter (|�| ∼ 0) initial condition and with a set P value (i.e.,
instantaneous activation of the driving field intensity). The
average defect number 〈N〉 is defined here as the number of
observed parity solitons in a 100-μm-long condensate guide
(periodic boundaries), averaged over 30 trials. We set α/R = 3
which, according to Fig. 10, permits stable defects above P ≈
1.8Pcond. Indeed, around this value a linear scaling of the defect
number takes place [see Fig. 9(a)]. Around P ≈ 2.6Pcond the
growth of the defect number changes which is associated with
the guide having reached its maximum number of unmodulated
defects. The soliton size is approximately 13 μm [see Fig. 4(a)]
over a wide range of pump values. Since 8 × 13 μm > 100 μm
we infer that 〈N〉 = 7 is the smallest number of solitons
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FIG. 9. (a) Average number of defects 〈N〉 vs instantaneous
switching of the pump intensity from an uncondensed state. (b) 〈N〉
vs instantaneous increase in pump intensity around Pcrit triggering a
change from an odd parity condensed state to an even parity state.
Blue dashed lines are guides for the eye. In both panels R = 0.3α

and gP = 0.

to be contained in the guide without becoming distorted by
the presence of other solitons and affects the rate of defects
appearing at higher pump powers.

More interestingly, an instantaneous increase of the pump
intensity above Pcrit where the parities of the condensate switch
places also results in defect formation. Using a defect free
condensate at P = Pin < Pcrit as an initial condition, we shock
the system by suddenly changing to P > Pcrit allowing the
formation of defects around the switch [see Fig. 9(b)]. Unlike
condensing the system suddenly, the defect formation here is
due to the singular phase behavior where the order parameter
goes to zero (e.g., at x = 0 for the odd parity state). The defects
are then seeded from stochastic fluctuations when the parity
of the condensate is changing. Given our initial condition, if
the pump is increased too much the condensate overshoots
the parity switch interval and no defect formation is observed
[indicated by the black dotted line in Fig. 9(b)].

We stress that weak white noise was introduced at small
time steps (t 
 �−1) to mimic classical thermal fluctuations.
The heuristic employed here serves to demonstrate, as ex-
pected, an increase in defect formation with greater jumps
in pump intensity although methods relying on the truncated
Wigner approximation and a stochastic set of equations
[58,59] would more accurately bring out the scaling laws at
play.

FIG. 10. (a) Numerically estimated boundaries of stable defects
and condensate instability. Above red circles stable solitons exist
in the channel. Above red crosses vortex-antivortex formation takes
place along the channel. The black solid curves are a power law fit of
the data. Different regimes have been colored for clarity. The asterisk
corresponds to panels (b) and (c) and the black x mark to (d) and
(e). (b)–(e) Condensate density and phase maps where the soliton
location in the channel is marked by a black circle. Here gP = 0.
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APPENDIX D: DEPENDENCE ON PUMP POWERS
AND NONLINEARITIES

By scaling the order parameter it can be shown that the
nonlinear physics of the system depends only on the ratio
α/R. For a given pump profile f (r) (the same as in Figs. 3–5)
we investigate the regime of stable parity solitons as a function
of pump power P and nonlinearity [see Fig. 10(a)]. Here, we
set gP = 0 since it does not play an important role in the
stability of the defects. Above the red circles the solitons are
stable within the condensate. Note that α �= 0 is necessary in
order for the solitons to stay stable through interactions. The
flattening on the horizontal axis corresponds to the increased
density of the condensate requiring smaller values of α to
produce the same net nonlinear effect to stabilize the solitons.

Above the red crosses the condensate starts becoming
turbulent through a small fluctuation and forms a train of
vortices and antivortices interchangeably such that the net
rotation in the condensate is still zero [see Figs. 10(d) and
10(e)]. The boundaries in Fig. 10(a) are resolved by using
a single even parity soliton populating the guide as an
initial condition and then adiabatically tuning the parameters
until the state changes. The asterix refers to Figs. 10(b)
and 10(c) and the black x mark to Figs. 10(d) and 10(e)
where the solitons are marked by black circles. Remarkably,
moving the soliton into the turbulent regime (from the
asterisk to the x mark) does not result in its destruction but
rather it remains as a chink in the chain of vortices and
antivortices.
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