
PHYSICAL REVIEW B 96, 205204 (2017)

Population decay time and distribution of exciton states analyzed by rate equations
based on theoretical phononic and electron-collisional rate coefficients
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Population distributions and transition fluxes of the A exciton in bulk GaN are theoretically analyzed using
rate equations of states of the principal quantum number n up to 5 and the continuum. These rate equations
consist of the terms of radiative, electron-collisional, and phononic processes. The dependence of the rate
coefficients on temperature is revealed on the basis of the collisional-radiative model of hydrogen plasma for
the electron-collisional processes and theoretical formulation using Fermi’s “golden rule” for the phononic
processes. The respective effects of the variations in electron, exciton, and lattice temperatures are exhibited.
This analysis is a base of the discussion on nonthermal equilibrium states of carrier-exciton-phonon dynamics.
It is found that the exciton dissociation is enhanced even below 150 K mainly by the increase in the lattice
temperature. When the thermal-equilibrium temperature increases, the population fluxes between the states of
n > 1 and the continuum become more dominant. Below 20 K, the severe deviation from the Saha-Boltzmann
distribution occurs owing to the interband excitation flux being higher than the excitation flux from the 1S state.
The population decay time of the 1S state at 300 K is more than ten times longer than the recombination lifetime of
excitons with kinetic energy but without the upper levels (n > 1 and the continuum). This phenomenon is caused
by a shift of population distribution to the upper levels. This phonon-exciton-radiation model gives insights into
the limitations of conventional analyses such as the ABC model, the Arrhenius plot, the two-level model (n = 1
and the continuum), and the neglect of the upper levels.
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I. INTRODUCTION

Wannier excitons in semiconductors have higher radiative
recombination rates than free carriers, and dominate optical
properties at temperatures below a few tens of Kelvin. In wide-
band-gap materials such as GaN, AlN, and ZnO, the exciton
binding energies are tens of meV, and the luminescence spectra
reflect the excitonic recombination processes even at room
temperature [1–3]. In contrast, the lasing from exciton-exciton
scattering in GaN has not been observed above 150 K [4]. This
phenomenon is considered to be due to the Mott transition.
However, it is unclear why the free-carrier density exceeds
the Mott density before the lasing of excitons occurs. The
exciton dissociation is possibly enhanced by the nonthermal
equilibrium state for the different effective temperatures of
carriers, excitons, and lattice. The nonthermal equilibrium
state of excitons has been studied in many works [5–10]. In
Ref. [6], it takes 150 ps for the exciton temperature to decrease
from approximately 110 K to the sample temperature of 20 K.

The recombination probability of free excitons is important
for the optical properties [11–22]. However, the radiative
recombination probability is only partly understood both
experimentally and theoretically [11,12,23]. The inverse of
the radiative recombination probability of 1S excitons in bulk
GaN is theoretically calculated to be 0.34 to 3.8 ns for 60
to 300 K in Ref. [24], but is experimentally estimated to
be 3 to 17 ns in Ref. [25]. As in Ref. [25], the decay time
of 1S-exciton luminescence has been often considered to
be approximately equal to the inverse of the recombination
probability. However, 1S exciton population is supplied from
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the upper levels such as the free carrier and the excitons
with principal quantum number n � 2, which possibly makes
the decay time longer than the inverse of the recombination
probability. In Ref. [26], the recombination probability is
estimated by assuming the Saha equation and taking into
account the transition between 1S excitons and free carriers.
Although this estimation neglected the excitons with n � 2,
the 1S-exciton density possibly varies owing to excitation and
deexcitation related to n � 2. Thus, the population densities
of the excitons with n � 1 and free carriers are required for a
more rigorous estimation of the recombination probability.

Free-carrier dynamics has been often studied using the
ABC model [27–30]. However, below the Mott density, this
model is insufficient because the exciton population has to
be taken into account [31]. The dynamics of excitons and
free carriers has been investigated using the rate equation of
each level (such as free excitons, bound excitons, and free
carriers) [15,16,19,26,31–38]. However, the determination of
the rate coefficients for transitions among these levels has been
considered to be “a formidable challenge for both experiment
and theory” [33]. One experimental piece of data has been
fitted by several free parameters including the rate coefficients.
The rate equations have also been simplified by assumptions
such as the common decay time of all levels [33], the neglect
of the free-carrier level [38], and the Saha equation [19,26].
These fitting and assumptions probably reduce the accuracy of
the parameters obtained by the rate equations.

In addition, there are only a few investigations by the
rate equations including the excitons of n � 2. Recently, an
effective exciton temperature of n = 2 has been observed to
have a longer relaxation time than n = 1 in GaN [39]. This
result indicates the strong coupling between the state of n = 2
and the continuum. The states of n � 2 probably affect the
dynamics of free carriers and 1S excitons. Although the states
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of n � 3 have not been observed in discrete optical spectra of
GaN, these states are presumed to exist as in other materials
(e.g., see Refs. [40–42]) and be included in continuous spectra
near the band edge. It is probably difficult to include the effects
of the states of n � 3 in experimental analyses, and thus these
effects should be theoretically investigated.

In this paper, the rate coefficients among free carriers and
free excitons with n up to 5 in bulk GaN are theoretically
calculated in order to develop a more rigorous model for
the densities of free carriers and excitons. The radiative and
electron-collisional rate coefficients are calculated using the
formulas of the collisional-radiative (CR) model for hydrogen
plasma [43,44]. The rate coefficients for phonon emission
and absorption are calculated by the integration of Fermi’s
“golden rule” with the Maxwellian velocity distribution and
the Bose-Einstein distribution, where the matrix elements for
n up to 5 are rigorously calculated. We show the dependence
of these rate coefficients on the effective temperatures of
electrons (Te), excitons (TX), and lattice (TL), separately. From
these calculations, a phonon-exciton-radiation (PXR) model is
constructed.

The population densities in the steady state are calculated
by solving the rate equations. Dependence of the population
densities on the interband excitation rate and the temperatures
is presented. The effects of the nonthermal equilibrium on
the exciton dissociation are shown. The population densities
calculated using the rate equations are compared with those
obtained by the Saha-Boltzmann distribution, which is related
to the thermal and nonthermal regimes. The Saha-Boltzmann
distribution has been utilized in studies on the dynamics
of excitons and free carriers [19,26,32,36,45]. In Ref. [26],
the Saha equation is utilized for the estimation of the
recombination probability as mentioned above. It is important
to verify the validity of the Saha-Boltzmann distribution.

The time evolution of the population densities is also
calculated using the rate equations. For various temperatures
and densities, we quantitatively reveal the difference between
the 1S-exciton decay time and the recombination probability.

II. RATE EQUATIONS

The rate equations for exciton density NX(n) are

d

dt
NX(n) = �in(n) − �out(n), (1a)

�in(n) =
∑
n′ �=n

[A(n′,n) + C(n′,n)Ne + WXX(n′,n)]NX(n′)

+ [β(n) + α(n)Ne + WCX(n)]NeNh + RV X(n),

(1b)

�out(n) =
⎧⎨
⎩

∑
n′ �=n

[A(n,n′) + C(n,n′)Ne + WXX(n,n′)]

+S(n)Ne + WXC(n) + Prec(n)

⎫⎬
⎭NX(n), (1c)

where �in(n) and �out(n) are population influx and outflux,
respectively, for the state of n. Ne and Nh are densities

of free electrons and holes, respectively. A(n,n′), C(n,n′),
and WXX(n,n′) are the rate coefficients of transitions from
n to n′ by radiative, electron-collisional, and phononic pro-
cesses, respectively. β(n), α(n), and WCX(n) are the exciton-
formation rate coefficients of radiative, electron-collisional,
and phononic processes, respectively. S(n) and WXC(n) are the
exciton-dissociation rate coefficients of electron-collisional
and phononic processes, respectively. Prec(n) is the recom-
bination probability of excitons in the state of n. RV X(n) is the
excitation rate of excitons from the vacuum state (electrons
in the valence band) to the state of n. As in the hydrogen
plasma model [43,44], NX(n,l,m) = NX(n)/n2 is assumed,
where NX(n,l,m) denotes the exciton density for the azimuthal
quantum number l and the magnetic quantum number m. The
rate equation for Ne is

d

dt
Ne = �e

in − �e
out, (2a)

�e
in =

∑
n

[S(n)Ne + WXC(n)]NX(n) + RV C, (2b)

�e
out =

∑
n

[β(n) + α(n)Ne + WCX(n)]NeNh, (2c)

where �e
in and �e

out are electron-population influx and outflux,
respectively. RV C is the excitation rate from the vacuum state
to the continuum state (electrons in the conduction band).
Figure 1 shows a schematic diagram of the energy levels and
transition processes included in the rate equations.

In this paper, the levels of crystal defects and impurities
are excluded. The charge neutrality condition Ne = Nh is
assumed. The parameters used in our calculation are listed in
Table I. The Maxwellian velocity distribution is assumed for
free carriers and excitons. The Bose-Einstein distribution is as-
sumed for phonons. The hole effective temperature is assumed
to be equal to Te. The temperatures of Te, TX, and TL are varied
within a range from 10 to 300 K. NX(n) and Ne are lower than
the Mott density for n = 5, which is NM (5) = 3.6×1017cm−3.
This Mott density is estimated from NM (5) = 1/(5aX)3, where
aX is the 1S-exciton Bohr radius. Our model excludes the
exciton-exciton scattering, the biexciton processes, and the
recombination of free electrons and holes. A theoretical study
showed that the rate coefficient B of the recombination of free
electrons and holes is approximately proportional to T

−3/2
e ,

and is 0.47×10−10 cm3 s−1 at 300 K [24]. Thus, B is possibly
lower than 8×10−9 cm3 s−1 in the range from 10 to 300 K.
This value is much lower than WCX(n) > 3×10−6 cm3 s−1

presented in Sec. III B.
Although GaN has the anisotropic wurtzite structure, the

isotropic system is assumed for our calculations.

III. RATE COEFFICIENTS

A. Radiative and electron-collisional rate coefficients
based on the hydrogen plasma model

The radiative rate coefficients A(n,n′) and β(n) and the
electron-collisional rate coefficients C(n,n′), S(n), and α(n)
are calculated using the CR model for hydrogen plasma
[43,44]. The electron rest mass m0 and the vacuum dielectric
constant ε0 in the formulas for hydrogen plasma are replaced
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FIG. 1. Schematic diagram of the energy levels and transition processes (arrows) included in the rate equations. The rate coefficients are
displayed above the arrows.

with the electron effective mass me and the static dielectric
constant εs of GaN, respectively. The exciton Bohr radius
aX and the exciton binding energy EB(n) = EB(1)/n2 are
calculated using εs and the exciton effective reduced mass
μ = (m−1

e + m−1
h )−1, where mh is the hole effective mass.

The relative velocity of electrons to excitons is assumed to be
equal to the absolute velocity of electrons, as in the CR model,
because the A exciton effective mass M = me + mh = 1.96m0

is approximately ten times greater than me = 0.20m0.
The radiative deexcitation rate coefficient A(n,n′) for

n > n′ is

A(n,n′) = 2πe2
0[E(n,n′)]2

h2μc3
0εs

g(n′)
g(n)

fn′,n, (3)

where e0 is the elementary charge, E(n,n′) is |EB(n) −
EB(n′)|, h is the Planck constant, c0 is the speed of light
in vacuum, g(n) = 2n2 is the statistical weight, and fn,n′

is the oscillator strength listed in Table II. The radiative
excitation rate coefficient A(n,n′) for n < n′ is assumed to be
zero.

The radiative exciton-formation rate coefficient β(n) is

β(n) = 28

3
√

3

√
πa2

X

(
EB(1)

μc2
0

)2

c0

(
EB(n)

kBTe

)3/2

× exp

(
EB(n)

kBTe

)∫ ∞

EB (n)/(kBTe)

e−x

x
dx, (4)

where kB is the Boltzmann constant.
For Ne < 1018 cm−3 and 10 � Te � 300 K, the transition

rates of A(n,n′) and β(n)Ne are lower than 105 s−1, and are
also lower than 0.01% of the phononic transition rates shown
in the next section. Thus, A(n,n′) and β(n) affect little the
results of the population densities.

TABLE I. Parameters used in our calculation for free A excitons in bulk GaN. m0 is the electron rest mass. ε0 is the dielectric constant of
vacuum. h and h̄ are the Planck constants. e0 is the elementary charge. q is the phonon wave number.

Electron effective mass me 0.20m0 Ref. [46]
Hole effective mass mh 1.76m0 Ref. [46]
Exciton effective reduced mass μ 0.180m0 μ−1 = m−1

e + m−1
h

Static dielectric constant εs 9.5ε0 Ref. [47]
High-frequency dielectric constant ε∞ 5.35ε0 Ref. [47]
1S-exciton Bohr radius aX 27.99 Å aX = 4πεsh̄

2/
(
μe2

0

)
1S-exciton binding energy EB (1) 27.07 meV EB (1) = μe4

0/
(
8ε2

s h
2
)

Mass density ρ 6.15 g/cm3 Ref. [48]
Acoustic deformation potential (conduction band) De 8.3 eV Ref. [48]
Acoustic deformation potential (valence band) Dh −8.3 eV Ref. [48]
Piezoelectric constant ePZ 0.73 C/m2 Ref. [49]
Lattice constant of the wurtzite a axis aL 3.189 Å Ref. [50]
Lattice constant of the wurtzite c axis cL 5.185 Å Ref. [50]
Effective isotropic lattice constant aeff 2.881 Å See text in Sec. III B

Longitudinal-optical (LO) phonon energy ELO
q 90.51 − 3.720 sin4 aeffq

2
meV Ref. [51] (� to M point)

Longitudinal-acoustic (LA) phonon energy ELA
q 37.82 sin

aeffq

2
meV Ref. [51] (� to M point)
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TABLE II. Oscillator strength fn,n′ . The last row shows fn,c for
the continuum. The values excluding f5,c are from Table 3.1(b)
of Ref. [44]. f5,c is obtained from fn,c = 8

3
√

3π

1
n
〈gbf 〉 with the

assumption of the Gaunt factor 〈gbf 〉 = 1.

n′ n = 1 n = 2 n = 3 n = 4 n = 5

2 0.4162
3 0.0791 0.641
4 0.0290 0.120 0.841
5 0.0139 0.045 0.150 1.038
c 0.4350 0.231 0.160 0.124 0.0980

The electron-collisional excitation rate coefficient C(n,n′)
for n < n′ is

C(n,n′) =
∫ ∞

E(n,n′)
σn,n′ (Ee)fM (Ee)vdEe (5a)

= 8a2
X

√
2π

μkBTe

[EB(1)]2

E(n,n′)
fn,n′

∫ ∞

E(n,n′)/(kBTe)

e−x

x
dx,

(5b)

where σn,n′ (Ee) is the electron-collisional excitation cross
section given by

σn,n′ (Ee) = 4πa2
X

(
EB(1)

E(n,n′)

)2

fn,n′
E(n,n′)

Ee

ln
Ee

E(n,n′)
. (6)

v is the electron velocity. Ee = (1/2)μv2 is the electron
kinetic energy. fM (Ee) is the Maxwellian velocity distribution
function for Ee given by

fM (Ee) = 2

√
Ee

π

1

(kBTe)3/2
exp

(
− Ee

kBTe

)
. (7)

The electron-collisional deexcitation rate coefficient
C(n,n′) for n > n′ is

C(n,n′) = g(n′)
g(n)

exp

(
E(n′,n)

kBTe

)
C(n′,n), (8)

where the detailed balance of the Boltzmann distribution
between processes of C(n,n′) and C(n′,n) is assumed.

The electron-collisional exciton-dissociation rate coeffi-
cient S(n) is

S(n) =
∫ ∞

EB (n)
σn,c(Ee)fM (Ee)vdEe (9a)

= 8a2
X

√
2π

μkBTe

[EB(1)]11/4

[EB(n)]7/4
fn,c

×
∫ ∞

EB (n)/(kBTe)

e−x

x
dx, (9b)

where σn,c(Ee) is the electron-collisional exciton-dissociation
cross section given by

σn,c(Ee) = 4πa2
X

(
EB(1)

EB(n)

)11/4

fn,c

EB(n)

Ee

ln
Ee

EB(n)
. (10)

fn,c is the oscillator strength from the state of n to the
continuum, which is listed in the last row of Table II.

The electron-collisional exciton-formation rate coefficient
α(n) is

α(n) = g(n)

2

(
2πh̄2

μkBTe

)3/2

exp

(
EB(n)

kBTe

)
S(n), (11)

where the detailed balance of the Saha-Boltzmann distribution
between the processes of S(n) and α(n) is assumed.

Figure 2 shows dependence of C(1,n), C(n,1), S(n),
and α(n) on Te. The excitation and exciton-dissociation
rate coefficients C(1,n) and S(n) increase as Te increases.
The deexcitation and exciton-formation rate coefficients
C(n,1) and α(n) increase and decrease, respectively, as Te

increases.
As shown in Figs. 2(a) and 2(b), the excitation or deex-

citation rate coefficients C(n,n′) increase with the decrease
in E(n,n′) (the energy difference between n and n′). The
exciton-dissociation and formation rate coefficients S(n) and
α(n) also increase with the decrease in EB(n) (the energy
difference between n and the continuum). For n � 2, S(n)
is higher than C(1,n) because EB(n) < E(1,n). This relation
indicates stronger coupling of the states of n � 2 with the
continuum than with n = 1.

B. Phononic rate coefficients

The phononic rate coefficients WXX(n,n′), WXC(n), and
WCX(n) are calculated using Fermi’s “golden rule.” The wave
number at the edge of the first Brillouin zone is set to be π/aeff,
where aeff is the effective isotropic lattice constant. The value
of aeff is determined such that the volume of the first Brillouin
zone of the isotropic system, (4/3)π (π/aeff)3, is equal to that
of wurtzite, 16π3/(

√
3a2

LcL). Here, aL and cL are the lattice
constants of the a and c axes, respectively, which are shown
in Table I.

The phononic excitation and deexcitation rate coefficient
WXX(n,n′) is

WXX(n,n′) =
∑

I=FR,DP,PZ

∑
±

2

g(n)

∑
l,m,l′,m′

∫∫ (
nq + 1

2
± 1

2

)

× 2π

h̄

∣∣DI
ν,ν ′(−→q )

∣∣2
δ(EK ′ − EB(n′)

− [EK − EB(n)] ± Eq)

× fM (M,
−→
K ,TX)d3K

Vint

(2π )3
d3q, (12)

where I denotes the mechanism of the interaction between
excitons (or free carriers) and phonons. These mecha-
nisms are Fröhlich (FR) interaction with longitudinal-optical
(LO) phonons, deformation potential (DP) interaction with
longitudinal-acoustic (LA) phonons, and piezoelectric (PZ)
interaction with LA phonons. The symbol of “±” denotes
the phonon emission (+) and absorption (−). −→

q and
−→
K are
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FIG. 2. Dependence of the electron-collisional rate coefficients (a) C(1,n), (b) C(n,1), (c) S(n), and (d) α(n) on the electron temperature Te.

wave vectors of phonons and excitons, respectively. Vint is
the effective interaction volume. Eq is LO or LA phonon
energy (Eq = ELO

q for FR or Eq = ELA
q for DP and PZ,

which are shown in Table I). nq = 1/{exp[Eq/(kBTL)] − 1}
is the phonon occupation number (Bose-Einstein distribu-
tion). δ is the delta function. The exciton wave vector−→
K ′ after the transition is determined by the momentum
conservation

−→
K = −→

K ′ ± −→
q . (13)

EK = h̄2K2/(2M) is the exciton kinetic energy.
fM (mp,

−→
k ,Tp) is the Maxwellian velocity distribution

function for particles with mass mp, wave vector
−→
k , and

temperature Tp, which is given by

fM (mp,
−→
k ,Tp) =

(
h̄2

2πmpkBTp

)3/2

exp

(
− h̄2k2

2mpkBTp

)
. (14)

ν denotes the set of (n,l,m). The effective coupling constant
DI

ν,ν ′(−→q ) is [52]

DI
ν,ν ′(−→q ) = CI

e,qSν,ν ′ (β−→
q ) − CI

h,qSν,ν ′ (−α
−→
q ), (15)

where β = mh/M and α = me/M . The coupling constant CI
σ,q

(σ = e,h) is [52,53]

CFR
σ,q = e0

[
ELO

q

2Vq

(
1

ε∞
− 1

εs

)]1/2
1

q
, (16a)

CDP
σ,q = h̄(

2ρELA
q Vq

)1/2 Dσq, (16b)

CPZ
σ,q = e0ePZh̄

εs

(
2ρELA

q Vq

)1/2 , (16c)

where Vq is the effective phonon volume. As in Ref. [52],
Vq = Vint is assumed. Other parameters are listed in Table I.

The exciton form factor Sν,ν ′(
−→
k ) is [52]

Sν,ν ′ (
−→
k ) =

∫
d3r�∗

ν ′(−→r )ei
−→
k ·−→r �ν(−→r ), (17)

where −→
r is the real-space coordinate and �ν(−→r ) is the

hydrogenic wave function of excitons.
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The phononic exciton-dissociation rate coefficient
WXC(n) is

WXC(n) =
∑

I=FR,DP,PZ

∑
±

2

g(n)

∑
l,m

∫∫∫ (
nq + 1

2
± 1

2

)

× 2π

h̄
|D̃I

±|2δ(Ee + Eh − [EK − EB(n)] ± Eq)

× Veh

(2π )3
d3khfM (M,

−→
K ,TX)d3K

Vint

(2π )3
d3q, (18)

where Veh is the normalization volume for electrons and holes.−→
k e and

−→
k h are the wave vectors of electrons and holes,

respectively.
−→
k e is determined by the momentum conservation

−→
K = −→

k e + −→
k h ± −→

q . (19)

Ee = h̄2k2
e /(2me) and Eh = h̄2k2

h/(2mh) are the electron and
hole kinetic energy, respectively. The effective coupling
constant D̃I

± is [52]

D̃I
± = CI

e,qSν(−→q e) − CI
h,qSν(−→q h), (20a)

−→
q e ≡ β(

−→
k e ± −→

q ) − α
−→
k h, (20b)

−→
q h ≡ β

−→
k e − α(

−→
k h ± −→

q ). (20c)

The form factor Sν(
−→
k ) is [52,54]

Sν(
−→
k ) =

∫
d3r

1√
V PW

eh

ei
−→
k ·−→r �ν(−→r ), (21)

where V PW
eh is the normalization volume for the plane waves

of electrons and holes. V PW
eh = Veh is assumed.

The phononic exciton-formation rate coefficient WCX(n) is

WCX(n) =
∑

I=FR,DP,PZ

∑
±

∑
l,m

∫∫∫ (
nq + 1

2
± 1

2

)

× 2π

h̄
|D̃I

∓|2δ(EK − EB(n) − (Ee + Eh) ± Eq)

×V int
eh fM (me,

−→
k e,Te)d3kefM (mh,

−→
k h,Te)d3kh

× Vint

(2π )3
d3q, (22)

where V int
eh is the interaction volume between electrons and

holes. V int
eh = V PW

eh is assumed.
−→
K is determined by the

momentum conservation
−→
k e + −→

k h = −→
K ± −→

q . (23)

Figure 3 shows the dependence of WXX(1,2) on TX at
TL = 10 K and on TL at TX = 10 K. As TX increases at TL =
10 K, WXX(1,2) of the LO phonon emission process (“FR,
em”) drastically increases compared to the other processes.
For TX > 180 K, WXX(1,2) of the LO phonon emission
is dominant over the LA phonon emission (“DP, em” and
“PZ, em”). As TL increases at TX = 10 K, WXX(1,2) of the
LO phonon absorption increases and becomes higher than
1010 s−1, while those of the other processes remain lower than
104 s−1.

FIG. 3. Dependence of WXX(1,2) on (a) TX and (b) TL. “em” and
“ab” denote the emission and absorption of phonons, respectively.

Figure 4 shows the dependence of WXX(1,n) and WXX(n,1)
on TX = TL. As the temperatures increase or E(1,n) decreases,
WXX(1,n) and WXX(n,1) both increase. This tendency is
similar to those of the electron-collisional rate coefficients
shown in Figs. 2(a) and 2(b).

Figure 5 shows the dependence of the 1S-exciton dissocia-
tion rate on EK , which is denoted by WXCK (1) satisfying

WXC(1) =
∑

I=FR,DP,PZ

∑
±

∫
WXCK (1)fM (M,

−→
K ,TX)d3K.

(24)

The 1S-exciton dissociation with the LA phonon emission
is forbidden for EK < EB(1) = 27 meV owing to the energy
conservation. Because the minimum energy of the LO phonon
is 87 meV, the dissociation with the LO phonon emission is
forbidden for EK < 114 meV (the sum of 27 and 87 meV). As
EK increases in the range of EK > 120 meV, the dissociation
rate of this process drastically increases compared to the
other processes. As for the phonon absorption, LO and LA
phonon absorption processes are dominant in the range of
EK < 30 meV and EK > 40 meV, respectively. The scattering
of some data points (sharp peaks) such as “DP, ab” at
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FIG. 4. Dependence of (a) WXX(1,n) and (b) WXX(n,1) on
TX = TL.

EK = 118 meV is attributed to the finite division number of
numerical integration for WXC(n).

Figure 6 shows the dependence of the exciton-dissociation
rate coefficient WXC(1) on TL at TX = 10 K. This dependence

FIG. 5. Dependence of the phononic exciton-dissociation rate
WXCK (1) on EK .

FIG. 6. Dependence of WXC(1) on TL.

is similar to that of W (1,2) in Fig. 3(b). For TL � 40 K, WXC(1)
of the LO phonon absorption is more than 104 times higher
than that of the other processes. This is because WXCK (1) of the
LO phonon absorption is dominant over the other processes for
EK < 20 meV (kBTX = 0.86 meV at TX = 10 K), as shown
in Fig. 5.

Figure 7 shows the dependence of WXC(n) on TX = TL and
WCX(n) on Te = TL. As TX and TL increase, WXC(n) increases.
The increase in WXC(n) is higher for lower n, particularly
below 50 K. As EB(n) decreases, WXC(n) and WCX(n) both
increase. These tendencies are similar to those of the electron-
collisional rate coefficients shown in Figs. 2(c) and 2(d).

In the case of Te = TX = TL = T , it is possible to mathe-
matically prove that the phononic rate coefficients of Eqs. (12),
(18), and (22) satisfy

WXX(n,n′) = g(n′)
g(n)

exp

(
EB(n′) − EB(n)

kBT

)
WXX(n′,n),

(25)

WCX(n) = g(n)

2

(
2πh̄2

μkBT

)3/2

exp

(
EB(n)

kBT

)
WXC(n). (26)

These equations correspond to the detailed balance conditions
of the Saha-Boltzmann distribution.

C. Exciton-recombination rate coefficient

In this section, the applied value of the exciton-
recombination rate coefficient (probability) Prec(n) in Eq. (1c)
is presented. The nonradiative recombination processes are
excluded for this applied value, though the effects of the
nonradiative recombination are also discussed in our results
of the population distribution and decay time in the following
sections.

The radiative decay time (or lifetime) of 1S excitons in
bulk GaN has been estimated experimentally in many studies
[12,25,26,33,55–57]. However, the decay time differs from the
recombination time defined as τrec(n) ≡ 1/Prec(n). This is due
to the net population flux �others except for the recombination,
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FIG. 7. Dependence of (a) WXC(n) on TX = TL and (b) WCX(n)
on Te = TL.

which is included in the rate equation expressed as

d

dt
NX(1) = −Prec(1)NX(1) + �others. (27)

In Ref. [25], the observed luminescence decay time of 2 to
17 ns (for 8 to 295 K) was interpreted as τrec(1). However, this
interpretation is questionable because the effect of �others is
neglected. In Ref. [26], τrec(1) was experimentally estimated
by taking into account the flux between the 1S-exciton and
free-carrier levels, where the rate equations of Ne and NX(1)
were analyzed and the Saha equation was assumed. This τrec(1)
in the range from 60 to 300 K agrees with the theoretical
function in Ref. [24], which is

τrec(1) = (0.73 ps/K3/2)T 3/2
X . (28)

At temperatures lower than tens of Kelvin, the radiative
recombination probability is considered to be determined
by the exciton-polariton picture, where the recombination
probability depends on the sample thickness and quality
[12,23,33,58]. This dependence on the sample thickness and
quality possibly causes the variation in the decay time.
According to Ref. [58], the theoretical value of τrec(1) is

300 ps for the excited-region thickness L = 0.1μm, and is
proportional to L3/5. In our calculation, τrec(1) = 300 ps is
adopted for TX � 55 K. Equation (28) is applied for TX >

55 K. That is, the recombination time for our calculation is

τrec(1) =
{

300 ps (TX � 55 K)

(0.73 ps/K3/2)T 3/2
X (TX > 55 K)

. (29)

For n � 2, τrec(n) = n3τrec(1) is assumed.

IV. POPULATION DENSITY IN THE STEADY STATE

In this section, we show the dependence of the population
densities in the steady state on the excitation rate and the
temperatures. The rate equations (1) and (2) are solved for
NX(n) and Ne by setting d

dt
NX(n) = 0 and d

dt
Ne = 0. In this

section, RV X(n) is assumed to be zero (i.e., the interband
excitation).

Figure 8 shows the dependence of the population densities
on the interband excitation rate RV C at Te=TX=TL=10 K.
NX(1) and NX(2) are nearly proportional to RV C . NX(3),
NX(4), and NX(5) are also nearly proportional to RV C in
the range of RV C < 1014 cm−3 ns−1, but deviate from the
linear dependence with the increase in RV C . The decrease
in Ne/NX(1) by increasing RV C is more distinct than that
in NX(n)/NX(1). This is because the increase in the exci-
ton formation rate [α(n)Ne + WCX(n)]N2

e by increasing Ne

is more drastic than the increase in the dissociation rate
[S(n)Ne + WXC(n)]NX(n) by increasing NX(n). In this paper,
the maximum RV C for the steady state is 7.5×1016 cm−3 ns−1,
which corresponds to laser excitation power of 33 mW for
photon energy of 3.5 eV, penetration depth of 0.1 μm, and
spot diameter of 0.1 mm. These values are reasonable for
experimental situations.

Figures 9(a), 9(b), and 9(c) show the dependence of the
population densities on Te, TX, and TL, respectively. In these
figures, the temperatures excluding the horizontal axis are fixed
at 10 K. Figure 9(d) shows the dependence of the population
densities on temperature T in the case of T = Te = TX = TL.

FIG. 8. Dependence of the population densities on the interband
excitation rate RV C in the steady state.
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FIG. 9. Dependence of the population densities on (a) Te, (b) TX , (c) TL, and (d) Te = TX = TL in the steady state. The temperatures
excluding the horizontal axis are 10 K, and RV C is 1015 cm−3 ns−1.

In Fig. 9, RV C is fixed at 1015 cm−3 ns−1. Figures 9(b) and
9(d) show the increase in NX(1) with the increase in TX and
Te = TX = TL, respectively. This is ascribed to the decrease in
Prec(1) with the increase in TX. In many experimental studies,
the nonradiative recombination rate is thought to increase
with the increase in temperature. In this case, NX(1) possibly
decreases as temperature increases.

As shown in Fig. 9(d), the ratios of the upper-level densities
[NX(n) of n � 2 and Ne] to NX(1) increase as the temperature
increases. The increase in the upper-level densities is due to
the significant increase in the rate coefficients of excitation
and dissociation from the 1S state with the increase in the
temperatures, as compared to those of deexcitation and exciton
formation (Figs. 2–7). The variation of NX(n) and Ne by
increasing Te in Fig. 9(a) is weak as compared to the increase of
the upper-level densities by increasing TX and TL in Figs. 9(b)
and 9(c), respectively. Thus, the increase of the upper-level
densities in Fig. 9(d) is ascribed to the phononic processes
rather than the electron-collisional processes.

The dominance of the phononic processes in the excitation
and the dissociation from the 1S state is also seen in Fig. 10.

In this figure, the width of the each arrow indicates the
population transition flux (cm−3 ns−1). For the excitation and
the dissociation from the 1S state at 300 K, the phononic
population fluxes are more than ten times higher than the
electron-collisional fluxes. On the other hand, among the
states of n � 2 and the continuum, the electron-collisional
fluxes are comparable to the phononic fluxes. When the
temperature increases, the fluxes between the states of n � 2
and the continuum become more dominant compared to those
between the states of n and n + 1. This result indicates the
increase in the coupling between the states of n � 2 and the
continuum.

The increase of Ne/NX(1) by increasing temperature in
Fig. 9 possibly partly explains the disappearance of the lasing
based on the exciton-exciton scattering above 150 K in Ref. [4].
A further increase in Ne leads to the Mott transition. From
Figs. 9(a) to 9(c), the increase in Ne/NX(1) is mainly ascribed
to the increase in TL. For further comparison with Ref. [4],
it is necessary to treat higher density such as 1018 cm−3

and include the exciton-exciton scattering and the Mott
transition.
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FIG. 10. Population transition fluxes in the energy-level diagram
for RV C = 1015 cm−3 ns−1 and Te = TX = TL of (a) 10 K and (b)
300 K in the steady state [corresponding to Fig 9(d)]. The numbers,
the letter V, and the letter C at the right edge denote n, the vacuum
state (the valence band for electrons), and the continuum state (the
conduction band for electrons), respectively. The width of each arrow
indicates the magnitude of the flux, which corresponds to the scales
at the bottoms of the graphs. For the fluxes lower than 0.1% of the
sum of all fluxes, the arrows are omitted.

V. COMPARISON WITH THE SAHA-BOLTZMANN
DISTRIBUTION

In this section, the population densities obtained by the rate
equations are compared with the Saha-Boltzmann distribution
when Te = TX = TL = T is assumed. In the Boltzmann
distribution, NX(n) for n � 2 is given by [44]

NXB(n) = NX(1)
g(n)

g(1)
exp

(
−E(1,n)

kBT

)
, (30)

where NXB(n) denotes NX(n) obeying the Boltzmann distri-
bution. In the Saha equation, Ne is given by [19,44]

(NeS)2 = NX(1)

(
μkBT

2πh̄2

)3/2

exp

(
−EB(1)

kBT

)
, (31)

where NeS denotes Ne obeying the Saha equation. In this
paper, “the Saha-Boltzmann distribution” includes both the
Boltzmann distribution and the Saha equation. We evaluate
the difference from the Saha-Boltzmann distribution by using
the parameters of rB(n) = NX(n)/NXB(n) and rS = Ne/NeS ,
where NX(n) and Ne are obtained by the rate equations in the
steady state. NXB(n) and NeS are calculated from Eqs. (30)
and (31), respectively, using NX(1) obtained by the rate
equations.

Figure 11 shows the dependence of rB(n) and rS on
the temperature T (= Te = TX = TL) for the total excited
density Ntot ≡ [

∑
n�1 NX(n) + Ne] of 1013, 1014, 1015, and

1016 cm−3. The large open symbols and the small filled
symbols correspond to the cases of the interband excitation
[RV C �= 0 and RV X(n) = 0] and the 1S-resonant excitation
[RV X(1) �= 0 and RV C = RV X(n) = 0 for n � 2], respectively.
For the interband excitation below 20 K (insets), rB(n) and
rS are higher than 103 and 10, respectively, which means
that the ratios of the upper-level densities [NX(n) for n � 2
and Ne] to NX(1) are much higher than those in the Saha-
Boltzmann distribution. This significant increase in the upper-
level densities is due to higher interband excitation flux RV C

than excitation flux from the 1S state as shown in Fig. 10(a).
When the states of n � 2 are excluded, this phenomenon can
be quantitatively understood as follows. Figure 12(a) shows the
schematic diagram of the population fluxes in this case, where
RV C , �in(1), and �out(1) are balanced. The relation of �in(1) =
�out(1) gives N2

e = NX(1)Prec(1)/[α(1)Ne + WCX(1)], which
is more than two orders of magnitude higher than the value of
Eq. (31). Thus, Ne is more than one order of magnitude higher
than that of the Saha equation when the states of n � 2 are
excluded. From the result in Fig. 11, such significant deviation
from the Saha-Boltzmann distribution also occurs when the
states of n � 2 are taken into account. Our calculation reveals
that the Saha-Boltzmann distribution cannot be applied to the
interband excitation at such low temperatures. In this case,
it is unsuitable that the activation energy is estimated from
exponential fitting of the luminescence intensity ratio between
n = 1 and the upper levels.

On the other hand, for the 1S-resonant excitation, deviation
from the Saha-Boltzmann distribution below 20 K is minor as
shown in Fig. 11. When the states of n � 2 are excluded for
the 1S-resonant excitation case as shown in Fig. 12(b), the flux
�e

out from the continuum to n = 1 is balanced with the flux �e
in

from n = 1 to the continuum. This relation of �e
out = �e

in gives

[α(1)Ne + WCX(1)]N2
e = [S(1)Ne + WXC(1)]NX(1). (32)

Substituting Eqs. (11) and (26) into Eq. (32) leads to the
Saha equation [Eq. (31) for NeS = Ne]. That is, the population
densities exactly obey the Saha equation (rS = 1) for any T

and Ntot. When the states of n � 2 are taken into account, the
population densities deviate from the Saha-Boltzmann distri-
bution. Our results of rS in Fig. 11 give quantitative correction
for the two-level model (only n = 1 and the continuum). For
10 � T � 300 K and Ntot � 1016 cm−3, rB(n) and rS are in
the range between 0.2 and 2.0. It is found that the deviation
from the Saha-Boltzmann distribution becomes strong with
the increase in Ntot.
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FIG. 11. Dependence of rB (n) = NX(n)/NXB (n) and rS = Ne/NeS on the temperature T (= Te = TX = TL) for the interband excitation
(large open symbols) and the 1S-resonant excitation (small filled symbols). The insets show the interband excitation case below 50 K in the
wide ranges of rB (n) and rS . The dotted line denotes rB (n) = 1 and rS = 1.

Above 100 K, rB(n) and rS for the 1S-resonant excitation
are approximately equal to those for the interband excitation.
This is because the population fluxes among the exciton
states of n and the continuum are much higher than RV X(1)
or RV C [as shown in Fig. 10(b)]. These high population
fluxes are caused by the higher transition rates than 1010 s−1

such as WXX(n,n′) and WXC(n) (Figs. 4 and 7). Once the
value of Ntot is given as a constraint, the population balance
for NX(n) and Ne is determined by these high population
fluxes rather than by RV X(1) or RV C . Thus, above 100 K,
the population distribution is independent of the excitation
path to the state of n = 1 or the continuum. Here, note
that RV X(1) or RV C is balanced with the recombination
fluxes. The population distribution is also independent of the
recombination rate Prec(n) under the condition that Prec(n) is
lower than approximately 10% of the transition rates among
the exciton states of n and the continuum. Therefore, even
when the nonradiative recombination processes are taken into
account, the values of rS and rB(n) are the same as the above
results under this condition.

Although the Saha-Boltzmann distribution has been often
assumed in analyses of experimental data, our results show that

the population densities significantly deviate from the Saha-
Boltzmann distribution for the interband excitation below
20 K. Even for the 1S-resonant excitation, or above 100 K,
rS deviates from unity owing to the states of n � 2. In
Ref. [26], the Saha equation was utilized for the estimation
of the radiative recombination probability above 60 K. In this
temperature range, the significant deviation from the Saha
equation does not occur, but rS is in the range between 0.5
and 1.0 (for Ntot = 1016 cm−3).

VI. DIFFERENCE BETWEEN DECAY TIME
AND RECOMBINATION PROBABILITY

In this section, the time evolution and the decay time of
NX(n) and Ne are shown for the case of Te = TX = TL = T ,
which are calculated using the rate equations (1) and (2).
Figure 13 shows the time evolution of NX(n) and Ne after a
pulsed-interband excitation at t = 0. At t = 0, Ne is 1016 cm−3

and NX(n) is zero. For t > 0, RV C and RV X(n) are zero.
In this time evolution, the temperatures are assumed to be
constant. The gray dashed line is the exponential curve fitted
to NX(1) after the peak of NX(1). At 10 K in Fig. 13(a),
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FIG. 12. Schematic diagram of the population fluxes when the
states of n � 2 are excluded in the cases of (a) interband excitation
below 20 K and (b) 1S-resonant excitation.

the 1S-exciton decay time τd (1) = 0.32 ns is approximately
equal to the recombination time τrec(1) ≡ 1/Prec(1) = 0.30 ns.
However, at 300 K in Fig. 13(b), τd (1) = 143 ns is more than
ten times longer than τrec(1) = 3.8 ns. This result disproves the
conventional idea of τd (1) ≈ τrec(1) in experimental analyses
such as Refs. [25,57]. The longer τd (1) than τrec(1) is due to
the net population flux �others from the upper levels (n � 2
and the continuum) to the 1S level, as indicated in Eq. (27).
The increase in the ratios of the upper-level densities to NX(1)
from 10 to 300 K (as in Secs. IV and V) leads to the increase
in τd (1)/τrec(1).

Figure 14 shows the dependence of τd (1) and τrec(1)
on T for the interband excitation at the excitation density
Ntot|t=0 = 1016 cm−3, where Ntot|t=0 is the value of Ntot

(= Ne) at t = 0. The value of τd (1) is obtained by the fitting
in a time region of the decay of NX(1) from NX(1)|max to
exp(−2)NX(1)|max, where NX(1)|max is the maximum (peak)
value of NX(1). τd (1) in our calculation disagrees with the
law of T 3/2, though this law was applied to the temperature
dependence of the luminescence decay time observed in
Ref. [25]. Nonradiative recombination processes possibly
affect the decay time in this reference.

Figure 15 shows the dependence of τd (1)/τrec(1) on T

for various excitation densities Ntot|t=0. As T increases or
Ntot|t=0 decreases, τd (1)/τrec(1) increases. This is attributed to
the increase in the ratios of the upper-level densities to NX(1)
with the increase in T or the decrease in Ntot. This increase in
the fraction of the upper-level densities is indicated in Sec. IV
and the Saha-Boltzmann distribution. As stated in Sec. V, the
population distribution is independent of the recombination
rate Prec(n) under the condition that Prec(n) is lower than
approximately 10% of the transition rates among the exciton
states of n and the continuum. Under this condition, the
values of τd (1)/τrec(1) in Fig. 15 are also independent of
Prec(n). For example, let us assume that the nonradiative
recombination rate of the 1S exciton is 1012 s−1 = 1/(1ps) at
300 K, which is lower than 10% of WXC(1) ≈ 2×1013 s−1.

FIG. 13. Time evolution of NX(n) and Ne after a pulsed-interband
excitation for (a) 10 K and (b) 300 K. At t = 0, Ne is 1016 cm−3 and
NX(n) is zero. The gray dashed line is the exponential curve fitted
to NX(1). τd (1) is the fitting decay time of NX(1). The 1S-exciton
recombination time τrec(1) ≡ 1/Prec(1) is also shown.

For Ntot|t=0 = 1016 cm−3, τd (1) is approximately 40 ps
because of τd (1)/τrec(1) ≈ 4×101 in Fig. 15.

For Ntot|t=0 = 1013 cm−3 in Fig. 15, τd (1)/τrec(1) is approx-
imately 2 even at 10 K. In the case of the pulsed 1S-resonant
excitation for 10 K and Ntot|t=0 � 1013 cm−3 [Ntot = NX(1) at
t = 0], the upper-level densities are less than 0.01% of NX(1),
as indicated in Sec. V. In this case, τd (1) is approximately
equal to τrec(1). Above 100 K, the population distribution
after the pulsed 1S-resonant excitation becomes approximately
the same as that of the interband excitation within tens of
picoseconds, which is ascribed to the transition rates higher
than 1010 s−1. After that, NX(1) decays with the time constant
approximately equal to τd (1) in Fig. 15. Thus, above 100 K,
the decay time differs from τrec(1) for both the 1S-resonant
and interband excitation.
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FIG. 14. Dependence of τd (1) (the decay time) and τrec(1) (the
inverse of the recombination probability) on the temperature T for
the pulsed-interband excitation.

τd (1)/τrec(1) is approximately unity below 20 K and for
Ntot|t=0 � 1014 cm−3 in Fig. 15, though the ratios of the
upper-level densities [at time of peak of NX(1)] to NX(1) are
more than ten times higher than those of the Saha-Boltzmann
distribution as indicated in Sec. V. Even in this case, the
upper-level densities are lower than NX(1) as indicated in
Fig. 8, which is consistent with τd (1)/τrec(1) ≈ 1. Thus, the
difference between τd (1) and τrec(1) is not caused by the
deviation from the Saha-Boltzmann distribution of the thermal
equilibrium. Although the population densities above 100 K
agree with the Saha-Boltzmann distribution within one order
of magnitude (Fig. 11), τd (1) is more than ten times longer
than τrec(1) for some cases in Fig. 15.

For temperatures lower than tens of Kelvin, the observed
luminescence decay time is scattered from tens of picoseconds
to 2 ns [12,25,26,33,55–57]. Our results in Fig. 15 indicate that
the population flux from the upper level to the 1S level does
not cause this variation in the observed decay time for the
low temperatures and for τrec(1) � 300 ps. This variation in
the decay time is possibly ascribed to the dependence of the

FIG. 15. Dependence of τd (1)/τrec(1) (decay time over recom-
bination time of 1S excitons) on the temperature T for the pulsed-
interband excitation. Each symbol corresponds to each value of the
excitation density Ntot (=Ne) at t = 0.

FIG. 16. Dependence of τd (1)/τrec(1) (decay time over recom-
bination time of 1S excitons) on the maximum principal quantum
number nm for the pulsed-interband excitation. Each symbol corre-
sponds to each temperature T .

recombination probability on the sample thickness and quality
in the exciton-polariton picture, as pointed out in Sec. III C.

Figure 16 shows dependence of τd (1)/τrec(1) on maximum
principal quantum number nm for the pulsed-interband excita-
tion, where the states of n > nm are excluded. τd (1)/τrec(1) for
nm of 4 or 5 is up to approximately two times higher than that
for nm � 3. These results quantitatively reveal correction for
the two-level model (nm = 1) used in studies such as Ref. [26].

VII. LIMITATIONS OF CONVENTIONAL ANALYSES

Our model gives insights into the limitations of several
conventional analyses. The ABC model is inappropriate below
the Mott density because the phononic exciton-formation rate
coefficient WCX(n) is much higher than the recombination
rate coefficient B of free electrons and holes as pointed out in
Sec. II. Also, the phononic exciton-dissociation rate coefficient
WXC(n) is higher than 1011 s−1 above 110 K (Fig. 7), which
means that the ABC model is unsuitable if the time scale of
the recombination of free electrons and holes is longer than
hundreds of picoseconds.

Radiative and nonradiative recombination processes of
excitons have sometimes been analyzed by Arrhenius plot
and the formula of 1/[1 + ∑

j Cj exp(−Ej/kBT )], where j

denotes the exciton-annihilation channel, Cj is constant, and
Ej is the activation energy. This formula for the exciton system
is derived from the rate equation expressed as

dNX(1)

dt
= G −

∑
j

RjNX(1) − Prec(1)NX(1) = 0, (33)

Rj ∝ exp(−Ej/kBT ), (34)

where G is the exciton-generation rate (constant) and Rj is the
annihilation rate. However, it is assumed that the activation
of a process characterized by Ej leads to the annihilation
of excitons, and the regeneration (formation) of excitons
is excluded. It is impossible to apply the above formula
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to the exciton-carrier system, where the dissociation and
formation of excitons are balanced and the exciton-formation
rate WCX(n)N2

e strongly depends on temperature as indicated
in Fig. 9(d).

Our model compensates for the weakness of the two-level
model (n = 1 and the continuum). The correction for the Saha
equation is given by rS in Fig. 11. Particularly for the interband
excitation below 20 K, the models assuming the Saha equation
are obviously inappropriate. The decay time of the 1S-exciton
population is enhanced (up to approximately two times) when
the states of n = 4 and 5 are taken into account, as shown in
Fig. 16. Figure 15 indicates the temperature and density ranges
where the decay time is considerably longer than the inverse of
the recombination probability. This result gives the limitation
of the conventional model excluding the effect of the upper
levels such as the continuum state.

VIII. SUMMARY AND CONCLUSIONS

The rate coefficients for transitions among free carriers and
excitons of n � 5 have been theoretically calculated for bulk
GaN. The dependence of the rate coefficients on the respective
temperatures of electrons, excitons, and phonons (lattice) has
been shown. The ratios of the upper-level densities to the
1S-exciton density increase as the excitation density decreases
or the temperatures increase. The 1S-exciton dissociation is
mainly caused by the phononic processes and the increase in
the lattice temperature.

We have shown the values of rB(n) and rS , which are the
ratios of the population densities obtained by the rate equations
to those of the Saha-Boltzmann distribution. For the interband
excitation below 20 K, the population densities significantly
deviate from the Saha-Boltzmann distribution [rB(n) > 103

and rS > 10] owing to the higher interband excitation flux
than the excitation flux from the 1S state. For the 1S-resonant

excitation or above 60 K, rB(n) and rS are in the range
between 0.2 and 2.0. The occupation of the states of n � 2
causes the deviation from the Saha equation. These results
give the correction for the two-level model (only n = 1 and
the continuum).

Our calculations have quantitatively revealed the difference
between the 1S-population decay time τd (1) and the recom-
bination probability Prec(1) = 1/τrec(1). As the temperature
increases or the excitation density decreases, τd (1)/τrec(1)
increases. At 300 K, τd (1) is more than ten times longer
than τrec(1). These results disprove the conventional idea of
τd (1) ≈ τrec(1), and show the temperature and density ranges
where this idea is unsuitable. The limitation of the analyses
neglecting the upper levels has been clarified.

We have constructed the basic model (PXR model) describ-
ing the densities of free carriers and excitons with several n in
bulk system. The results of the population distribution in this
model are also valid for the systems including the nonradiative
recombination processes if the recombination rate is lower than
approximately 10% of the transition rates among the states
of excitons and free carriers. Our model gives insights into
the limitations of the conventional analyses such as the ABC
model, the Arrhenius plot, the two-level model, and the neglect
of the upper levels. It is possible to use our model for other
materials such as GaAs, AlN, and ZnO by changing the param-
eters in Table I and the recombination probability. More rig-
orous models for experiments can be developed by including
other levels and transition processes such as exciton-exciton
scattering, biexcitons, B and C excitons, impurity, and defects.
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