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Anisotropic excitons and their contributions to shift current transients in bulk GaAs
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Shift-current transients are obtained for near-band-gap excitation of bulk GaAs by numerical solutions of the
semiconductor Bloch equations in a basis obtained from a 14-band k·p model of the band structure. This approach
provides a transparent description of the optically induced excitations in terms of interband, intersubband,
and intraband excitations which enables a clear distinction between different contributions to the shift-current
transients and fully includes resonant as well as off-resonant processes. Using a geodesic grid in reciprocal space
in our numerical solutions, we are able to include the electron-hole Coulomb attraction in combination with
our anisotropic three-dimensional band structure. We obtain an excitonic absorption peak and an enhancement
of the continuum absorption and demonstrate that the excitonic wave function contains a significant amount of
anisotropy. Optical excitation at the excitonic resonance generates shift-current transients of significant strength;
however, due to the electron-hole attraction the shift distance is smaller than for above-band-gap excitation. We
thus demonstrate that our approach is able to provide important information on the ultrafast electron dynamics
on the atomic scale.
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I. INTRODUCTION

The optical excitation of noncentrosymmetric crystals can
be used to generate photocurrents on ultrafast time scales
without the need of an external bias. As shown by Sipe and
coworkers, the lack of inversion symmetry in zinc-blende
III–V semiconductors results in a nonvanishing zero-frequency
second-order optical susceptibility χ (2) which corresponds
to photocurrents that can be generated by optical excitation
with a single frequency [1,2]. One can distinguish between
three types of photocurrents: (i) injection currents originating
from nonsymmetric electronic distributions in k space after
resonant above-band-gap excitation, (ii) shift currents which
are due to the motion of optically excited carriers in real space
after above-band-gap excitation, and (iii) rectification currents
that result from the nonresonant polarization generated for
below-band-gap excitation.

Here, we investigate the ultrafast dynamics of bulk GaAs
following the near-band-gap excitation by femtosecond laser
pulses and focus on analyzing shift currents which are
responsible for the bulk photovoltaic effect. Experimentally,
shift currents have been investigated in bulk semiconductors
[3–7] and semiconductor quantum wells [8–12]. Previous
theoretical research on shift currents was mainly performed
in the frequency domain using a perturbative analysis of the
light-matter interaction to derive analytical expressions for the
considered nonlinear response in terms of matrix elements and
resonance denominators [2,13–16]. Using the semiconductor
Bloch equations (SBE) in the basis of k·p wave functions, it is
possible to obtain photocurrents directly in the time domain, as
was shown for the case of injection currents [17–19] as well as
for shift and rectification currents [12,20,21]. This approach
provides a transparent description of the optical excitations
in terms of interband, intersubband, and intraband excitations,
allows us to treat the light-matter interaction nonperturbatively,
and provides good agreement with experimental results on

injection and shift currents of GaAs-based quantum well
systems (e.g., [12,17]).

Due to the tremendous numerical demands, excitonic
effects have been neglected in most previous theoretical
investigations of photocurrents in semiconductors. Whereas
this is justified for high above-band-gap excitations where
excitonic effects have negligible contributions, for near-
band-gap excitations, the many-body Coulomb interaction,
in particular the electron-hole attraction, strongly modifies
the optical response and therefore needs to be incorporated
into the theoretical approach. Often when many-body effects
are considered, simplified models for the band structure
and electronic states, e.g., isotropic and/or parabolic band
structures and a small number of bands, are used, which
significantly reduces the numerical requirements when solving
the SBE [22–27]. However, since the χ (2) photocurrents in
general originate from anisotropies of the band structure and/or
of the optical matrix elements, they cannot be described
properly by models using isotropic band structure models.
Furthermore, shift currents involve nonresonant excitations
and can therefore not be adequately described by models that
consider only bands that are present at or near the band gap
[12,20].

For the theoretical analysis of excitonic contributions to
shift currents in bulk GaAs we therefore apply our approach
of the SBE formulated in a basis of electronic eigenstates
obtained from a 14-band k·p model. The anisotropic electronic
band structure and the electronic states are well suited to
describe shift-currents transients [12,20,21]. For the incorpo-
ration of excitonic resonances we extend our previous analysis
and include the Coulomb interaction in the time-dependent
Hartree-Fock approximation. Due to the anisotropic band
structure and matrix elements and the need to incorporate
off-resonant excitations, which means that the rotating-wave
approximation cannot be applied, the solutions of the resulting
SBE are numerically very demanding. To obtain converged
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results we employ a geodesic grid in k space which provides
results with reasonable accuracy with a significantly smaller
numerical effort than a Cartesian grid.

In Sec. II we describe the fundamentals of our theoretical
approach and the idea behind the use of the geodesic grid in
our simulations. The excitonic absorption spectrum and the
anisotropic exciton wave function are presented in Sec. III A.
Numerical results for shift-current transients including exci-
tonic effects are shown and discussed in Sec. III B.

II. THEORETICAL APPROACH
AND NUMERICAL CHALLENGES

The k·p-based extended Kane model is used for the
calculation of the semiconductor band structure. The extended
Kane model is represented by a 14-band Hamiltonian,

Ĥ14×14 =

⎛
⎜⎜⎜⎜⎝

Ĥ8c8c Ĥ8c7c Ĥ8c6c Ĥ8c8v Ĥ8c7v

Ĥ7c8c Ĥ7c7c Ĥ7c6c Ĥ7c8v Ĥ7c7v

Ĥ6c8c Ĥ6c7c Ĥ6c6c Ĥ6c8v Ĥ7c7v

Ĥ8v8c Ĥ8v7c Ĥ8v6c Ĥ8v8v Ĥ8v7v

Ĥ7v8c Ĥ7v7c Ĥ7v6c Ĥ7v8v Ĥ7v7v

⎞
⎟⎟⎟⎟⎠, (1)

which describes the band structure of zinc-blende crystals near
the � point, GaAs being one prominent example [28–30].
The Hamiltonian includes the split-off band |7v〉, the highest
valence band |8v〉, the lowest conduction band |6c〉, and higher
conduction bands |7c〉 and |8c〉. The band structure is obtained
by solving the eigenvalue equation

Ĥ14×14(k)|λ,k〉 = ελ(k)|λ,k〉, (2)

which is accomplished by a matrix diagonalization. The
coupling between the lowest conduction band |6c〉 and the
higher conduction bands |7c〉 and |8c〉, which is proportional
to the k·p parameter P ′,

Ĥ8c6c = −
√

3P ′(Uxkx + kxUx),

Ĥ7c6c = 1√
3
P ′(σxkx + kxσx), (3)

has been shown to be responsible for the shift current, and
consequently, the respective bands have to be included in
the simulations [20]. In Eq. (3) σx is the corresponding
Pauli matrix, and the matrix Ux describes the coupling of
the energetically highest valence bands to the split-off band;
explicit expressions can be found in Refs. [29,30]. At T = 0 K
the band gap is E0 = 1.519 eVm while the distance between
the valence band |8v〉 and the higher conduction band is
E′

0 = 4.488 eV [31,32]. Thus when numerically solving the
SBE, significantly small time steps have to be used to resolve
the rapid oscillations arising from these energetic differences
of the involved bands.

The time evolution of the photoexcited system is described
by the SBE [12,18,33], i.e., the Heisenberg equations of motion
for xλλ′

k = 〈a†
λkaλ′k〉 representing the coherences (λ �= λ′) and

the occupations (λ = λ′) of the system in k space, which read

d

dt
xλλ′

k = i

h̄

(
ελ

k − ελ′
k

)
xλλ′

k

+ i
∑

μ

(
�

μλ

k x
μλ′
k − �

λ′μ
k x

λμ

k

) − 1

T1/2
xλλ′

k , (4)

with ελ
k and ελ′

k being the energies of bands |λ〉 and |λ′〉 at point
k in reciprocal space. The generalized Rabi frequency

�λλ′
k = 1

h̄

⎛
⎝ e

m0
A(t) · �λλ′

k +
∑
μμ′q

V
λμλ′μ′

k,q x
μμ′
k+q(t)

⎞
⎠ (5)

contains the light-matter interaction, here written in the
velocity gauge � · A(t), and the Coulomb interaction
in the time-dependent Hartree-Fock approximation [18,34]. In
the velocity gauge the light-matter interaction is described by
the electrodynamic vector potential A(t) and the momentum
matrix elements [35,36]

�λλ′
k = m0

h̄
〈∇kH (k)〉λλ′ . (6)

The Coulomb matrix element is given by [18,27]

V
λ1,λ2,λ3,λ4

k,q = e2

εε0 L3 q2
〈λ1,k + q|λ4,k〉〈λ2,k|λ3,k + q〉,

(7)

where L3 is the volume of the crystal and ε = 12.9 is the
dielectric constant of GaAs [37].

The k·p band structure Hamiltonian can be written as a sum
which distinguishes the involved symmetries [38]

Ĥ = Ĥsphere + Ĥcube + Ĥtetra. (8)

For small k vectors the spherical k2 terms have the largest
contribution to the Hamiltonian, while for large k vectors
higher-order k terms representing cubic and tetrahedral sym-
metry become more relevant. Thus at the � point the energy
contributions to the total Hamiltonian can be ordered as [39]

Ĥsphere > Ĥcube > Ĥtetra. (9)

which is the reason why the band structure at the � point can
be reasonably well approximated by a parabolic dispersion
and the analytic solutions of Wannier excitons, which have
a spherical |S〉 symmetry known from the hydrogen atom,
are in good agreement with experimental results [39,40].
The application of a spherical grid takes advantage of the
predominant spherical symmetry at the � point, reducing
the amount of wasted simulation space and, consequently,
saving computational effort. In a spherical grid based on a
spherical coordinate system, r(r,θ,ϕ), the point density on
a sphere surface is inhomogeneous and increases towards
the poles. This numerically undesirable property of spherical
coordinates is circumvented in a so-called geodesic grid, which
is a spherical grid that is frequently used in climate simulations
[41,42] in which the sphere’s surface is constructed almost
completely from equilateral hexagons. The total number of
points in a geodesic grid is Nk = NANR , with NA being the
number of points per sphere and NR being the number of
spheres.

The by far most demanding term when numerically solving
the SBE is the summation over the k space and the double
summations over the bands that originate from the Coulomb
interaction [see Eq. (5)]. The Coulomb matrix elements depend
on four band indices (λ1,λ2,λ3,λ4) and two three-dimensional
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k-space vectors (k,q). Evaluating the Coulomb matrix for
all 14 bands results in 144 = 38 416 possible combinations
of band indices. This number can be drastically reduced
by considering only the resonantly excited bands near the
band gap, i.e., |8v〉 and |6c〉, which leaves 64 = 1296 band
index combinations but still is sufficient to properly describe
the excitonic absorption. Additionally, the Coulomb matrix
couples all k-space vectors k and q, which leads to a numerical
effort for calculating the matrix elements and solving the SBE,
which grow quadratically as a function of the total number
of k points Nk . Using a standard Cartesian grid in k space
with Nk = N3, with N being the number of k points in one
direction, thus results in a numerical effort that grows with N6.
To achieve converged results an unreasonably high memory
and computer time would be required. Using a geodesic grid,
the numerical evaluation of the SBE with Coulomb interaction
can be reduced from a N6 scaling to a more moderate
N2

RN2
A scaling, which is a huge improvement regarding

the required numerical resources. Further details can be
found in [43].

III. NUMERICAL RESULTS

Here, we present and discuss results on the excitonic
absorption and the exciton wave function in Sec. III A and
on the shift currents in Sec. III B. In our calculations we use
a geodesic grid with NR = 60 spheres and NA = 12 points
per sphere, and we thus assign more importance to the radial
resolution than to the angular resolution. This can be justified
by the fact that spherical symmetry is the dominant symmetry
of the k·p Hamiltonian at the � point and that this resolution
results in a converged exciton resonance. Additional numerical
evaluations that have been performed with smaller NR and
larger NA also support this reasoning, i.e., that our grid is able
to provide converged results for the near-band-gap excitation
conditions considered in this work. For numerical stability we
introduce a weak screening and evaluate the Coulomb matrix
element as

V
λ1,λ2,λ3,λ4

k,q = e2

εε0 L3
(
q2 + c2

S

) 〈λ1,k + q|λ4,k〉

× 〈λ2,k|λ3,k + q〉. (10)

As a screening constant we use cS = 4.5 × 10−3 nm−1,
which is much smaller than the inverse of the exciton Bohr
radius 1/aB ≈ 1/12 nm = 0.083 nm−1 and thus only weakly
influences the spectra. In our simulations we use a dephasing
time of T2 = 800 fs, which is chosen to be sufficiently long
to spectrally separate the exciton peak properly from the band
edge.

A. Linear absorption and exciton wave function

To calculate linear absorption spectra, we numerically
solve the SBE for excitation with a weak linearly polarized
ultrashort pulse and obtain the time-dependent total optical
polarization P(t) = ∑

cv,k
iωcv

k
m0

�cv
k xcv

k (t). Here, ωcv
k is the

transition frequency between the valence band v and the
conduction band c at wave vector k, and the term iωcv

k
m0

�cv
k

corresponds to the transition dipole matrix element. The linear
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FIG. 1. (a) Linear absorption spectra for bulk GaAs calculated
with (blue) and without (red) Coulomb interaction. The excitation
energy is defined relative to the low-temperature band gap of GaAs
of Egap = 1.519 eV. The weak oscillations are caused by the finite
integration time of 3 ps. (b) The absolute value of the optically excited
microscopic polarization k2

i |p(ki)| as a function of the radius |ki |. The
black (A), red (B), and blue (C) symbols represent different directions
in k space present in the geodesic grid, as explained in the main text.

absorption is then taken to be proportional to the imaginary
part of the Fourier-transformed polarization in the direction of
the linear excitation (x), i.e., α(ω) ∝ Im[Px(ω)]. Figure 1(a)
shows the calculated absorption spectrum of bulk GaAs with
and without excitonic effects. Without Coulomb interaction the
absorption starts at the band gap Egap and follows a

√
E − Egap

dependence which originates from the density of states in
three dimensions for a parabolic dispersion. When excitonic
effects are included, the absorption spectrum contains a well-
defined exciton peak at EX ≈ 4.0 meV; thus the obtained
exciton binding energy is in good agreement with literature
values. Furthermore, Fig. 1(a) shows the Coulomb-enhanced
continuum absorption, which is basically constant for energies
slightly above the band gap. The increased absorption direction
below the band gap originates from excited exciton states
which are not resolved individually and merge with the
continuum absorption.

Unlike a parabolic band structure, the k·p band structure
contains anisotropies, e.g., small splittings caused by the
spin-orbit interaction that appear in the (111) and (100)
directions. To investigate the influence of this anisotropy on
the exciton wave function, we solve the SBE with a vector
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potential corresponding to a weak and slowly rising electric
field, which is given by

E(t) =
{

exp
{ − (

t
400 fs

)2}
sin(ωLt), t < 0,

sin(ωLt), t � 0,
(11)

where the excitation frequency ωL is chosen to be resonant
with the exciton. We integrate the SBE up to t = 3 ps, and due
to the narrow spectral width of the excitation only the exciton
is significantly excited. Thus for the chosen exciting field, the
microscopic polarization in reciprocal space is proportional to
the exciton wave function, i.e.,


exc(k) ∝ |p(k)|. (12)

The microscopic polarization p(k) is determined as the x

component of iωcv
k

m0
�cv

k xcv
k , which is the component in the

direction of the linearly polarized excitation pulse. Since each
point on a sphere of the geodesic grid contributes proportional
to the square of the radius when integrating over k space, we
multiply |p(k)| by k2 in Fig. 1(b). We see that the exciton wave
function has a peak at approximately |k| ≈ 0.08 nm−1, which
corresponds to the inverse Bohr radius 1

aB
, with aB ≈ 12 nm

being the effective Bohr radius of the exciton in GaAs [44].
For an isotropic exciton the wave function does not depend
on the direction in k space, and only a single line should be
in Fig. 1(b). In our k·p approach, however, the anisotropy of
the band structure leads to a dependence of the exciton wave
function on the direction in k space, as is evidenced by the
three different lines visible in Fig. 1(b). Line (A) corresponds
to (0,+1,+ϕ) in reciprocal space, where ϕ = 1+√

5
2 ≈ 1.618 is

the so-called golden ratio which is used in the construction of
the geodesic grid [41,42]. Very similar results are also obtained
in (0,−1,+ϕ), (0,+1,−ϕ), and (0,−1,−ϕ), so we can write
(0, ± 1, ± ϕ) as a shorthand notation for these directions.
Lines (B) and (C) correspond to the four directions (±1,±ϕ,0)
and (±ϕ,0,±1), respectively. The difference between the
wave-function amplitudes in the different directions is sig-
nificant and amounts to approximately 20% and thus clearly
demonstrates the anisotropy of the exciton wave function.

B. Excitonic and near-band-gap shift currents

The photocurrents induced by optical interband excitation
are determined from solutions of the SBE by [12]

J(t) = e

m0 L3

∑
λ,λ′ �=λ,k

�λλ′
k xλλ′

k . (13)

The shift current is a χ (2)(0; ω, − ω) response and as such
represents the ω ≈ 0 components of Eq. (13). Therefore J(t) is
Fourier transformed, and to the resulting J(ω) a frequency filter
is applied around ω ≈ 0. Considering a filter function F (ω)
which cuts off frequency components with h̄ω � 100 meV, we
obtain Jshift(ω) = F (ω)J(ω). By Fourier transforming back to
the time domain we finally obtain Jshift(t). As J(t) is given
by a double summation over the 14 bands, i.e.,

∑
λλ′ , one

can distinguish different contributions arising from transitions
between different valence and conduction bands. Thus one can
write Jshift(t) as a sum,

Jshift(t) = Jval(t) + Jcon(t) + Jpol(t), (14)

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

-20 -15 -10 -5 0 5 10 15 20

sh
ift

 c
ur

re
nt

 (
t=

0)
 [1

0-5
 A

/c
m

2 ]

excitation energy [meV]

Jtotal
Jval
Jcon
Jpol

FIG. 2. Excitation-frequency-dependent shift currents evaluated
at the center of the Gaussian excitation pulse. The solid and the
dashed lines display simulation results with and without Coulomb
interaction, respectively. The black lines represent the full currents,
while the red, blue, and green lines show the subcurrents generated by
the valence band, the conduction band, and the interband polarization,
respectively. The intensity of the incident pulse is 0.1 W/cm2, and its
duration is 500 fs (FWHM of the pulse intensity).

where Jval (Jcon) originates from intersubband transitions be-
tween different valence (conduction) bands and Jpol originates
from interband transitions between a valence and a conduction
band.

In Fig. 2 we show shift currents which are generated by
excitation with a Gaussian pulse of 500-fs duration (FWHM
of the pulse intensity) with and without Coulomb interaction
as a function of the excitation frequency. The currents shown
are evaluated at the center of the pulse, i.e., at t = 0. The
pulse is linearly polarized in the (110) direction, which leads
to a shift current J z(t) in the (001) direction. Without Coulomb
interaction the shift current vanishes for excitation frequencies
below the band gap and follows the square-root-like behavior
of the three-dimensional density of states for above-band-gap
excitation. Clearly, with Coulomb interaction the shift current
is strongly enhanced. At E − Egap ≈ −4.0 meV a peak is
visible in the total shift current which corresponds to excitation
of the exciton resonance. For excitation energies above the
band gap the total current initially grows with excitation energy
and then approaches a basically constant value.

Analyzing the different subcurrents, introduced above,
offers an explanation for this behavior. Jcon and Jpol, the shift
currents created by the conduction band and the interband
polarization, both have a peak at the exciton and remain mostly
constant for above-band-gap excitation. Jval, the valence-band
shift current, displays a very different behavior. At the exciton
energy Jval displays a negative current and remains negative
up until E − Egap ≈ 7 meV, where the current changes its
direction and then changes to a positive current. The reason
for this behavior is twofold. For excitation at the exciton and at
the band gap the holes are correlated with the electrons and, on
average, flow in the same directions. Due to the opposite sign
of their charges, the resulting signs of corresponding currents
are opposite. For excitation energies higher in the band the
holes are less correlated with the electrons, and therefore as
in the case without Coulomb interaction, both currents have
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FIG. 3. Temporal dynamics of the total shift current and its
subcurrents for excitation energies of (a) −4 meV, (b) 0 meV, and
(c) 4 meV, with vertical dash-dotted lines marking the center of the
excitation pulse (t = 0) at which the current values shown in Fig. 2
are taken. The dashed black line is the total shift current without
Coulomb interaction for the respective excitation energies. The weak
oscillations that appear in some transients are a numerical artifact
arising from the finite integration time due to the Fourier filtering
procedure.

a positive sign, which corresponds to electrons and holes
moving in opposite directions. In addition to the shift-current
contribution, Jval also includes the intersubband coherence
between the heavy-hole and the light-hole band. Since both
bands are degenerate at the � point, their energy difference
starts with �εhh−lh = 0 and thus cannot be removed from the
valence-band shift current via Fourier filtering. This coherence
is also present without Coulomb interaction and leads to a very
small negative current when exciting at the band gap in Jval.

The calculated time evolution of shift currents after excita-
tion with a pulse with a Gaussian envelope of 500-fs duration
that has its maximum at t = 0 is shown in Fig. 3. For excitation
at the band gap [see Fig. 3(b)], Jcon and Jpol have a Gaussian
shape, centered at t ≈ 0. This is to be expected since the shift
current involved is an off-resonant excitation process, and in

the limit of a purely off resonant excitation the signal should
strictly follow the envelope of the optical excitation E2

env(t)
[2]. This behavior is also in agreement with previous results
obtained with the SBE [12,20,21] where excitonic effects have
been neglected. Jval, however, shows a weak temporal delay
to positive times which originates from optically induced
coherences between the heavy- and light-hole bands. When
exciting 4 meV above the band gap [see Fig. 3(c)], Jcon and Jpol

remain basically unchanged. Jval, however, clearly displays a
slow oscillatory behavior which is caused by the now dominant
influence of the coherences between the heavy- and light-hole
bands, whose average energetic separation increases with
increasing distance from the � point and thus with excitation
energy.

When exciting at the exciton resonance [see Fig. 3(a)],
the total current Jtotal and the subcurrents have basically a
Gaussian shape. In this case, however, a small delay of about
100 fs to positive times is visible. This temporal shift does not
significantly change when we use different dephasing times in
our simulations. It can be interpreted by the following effect:
When the excitation is tuned at or above the band gap, already
the linear optical polarization corresponds to a superposition
of a continuum of transitions with different frequencies which
interfere destructively and thus lead to a decay of the total
linear polarization on the time scale of the exciting pulse. This
situation is different when we tune the excitation to the exciton
resonance, which is a single discrete optical transition whose
linear polarization increases with the integral over the envelope
of the exciting pulse, at least as long as dephasing is neglected.
The above-explained difference in the dynamics of the linear
optical polarization depending on the spectral position of the
excitation could be responsible for the delayed maximum of
the excitonic shift current seen in Fig. 3(a).

Nastos and Sipe introduced the concept of the shift distance
[2],

dshift = Jshift

e dn
dt

, (15)

where n is the photoexcited density. Here, dshift describes the
average distance that the electrons shift in space when being
optically excited from the valence to the conduction band.
Equation (15) was derived in a frequency-domain approach
considering continuous-wave excitation. Our time-domain
simulations model transient situations with pulsed excitation
and include dephasing and relaxation of the coherences and
occupations, which makes Eq. (15) rather unsuitable. Based
on simple electrodynamic considerations we define a time-
dependent shift distance by

dshift(t) =
∫ t

−∞ dt ′Jshift(t ′)
en(t)

. (16)

Due to the pulsed excitation and the dephasing and relaxation
processes considered in our approach, Eq. (16) can only
approximate the shift distance, and particularly for long times,
dshift(t) may unphysically increase when n(t) decreases due
to relaxation. In our numerical evaluations we find a basically
stationary behavior of the time-dependent shift distance during
early times of the excitations [43]. Therefore, we determine
dshift in the (001) direction by averaging over the rising part
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of the incident optical pulse using the time interval −800 to
−200 fs.

For excitation at the exciton we obtain a shift distance
of dshift(−4 meV) ≈ 89 pm. When shifting the photon energy
to above the band gap, the shift distance increases, e.g.,
dshift(10 meV) ≈ 98 pm and dshift(31 meV) ≈ 103 pm. This
agrees with the interpretation that the attraction between holes
and electrons causes a reduction of the shift distance for
excitations near the exciton. Without Coulomb interaction we
obtain a shift distance dshift ≈ 200 pm which is quite close to
the average shift distance of dshift ≈ 250 pm calculated in [2]
for GaAs considering continuous-wave excitation high above
the band gap. Since the 14-band k·p band structure is not well
suited to describe k vectors far away from the � point, we,
however, cannot analyze excitations very high above the band
gap and thus cannot make a direct comparison with the results
of [2].

IV. CONCLUSIONS

Using the semiconductor Bloch equations in a basis
obtained from a 14-band k·p model of the band structure, we
calculated linear absorption spectra including excitonic effects
and shift-current transients of bulk GaAs for near-band-gap
excitation. The electron-hole Coulomb attraction results in
an excitonic resonance with a binding energy which is in
good agreement with other approaches and experiments. We
showed that the anisotropy of the band structure leads to

a significant anisotropy of the exciton wave function. The
calculated frequency dependence of the shift current has a
peak at the exciton resonance. However, the enhancement at
the exciton is weaker than the excitonic enhancement in the
linear absorption, and correspondingly, the shift distance when
exciting at the exciton is weaker than excitations above the
band gap. The reduced excitonic shift distance as well as the
sign change of the valence-band current for below-band exci-
tation originates from the electron-hole attraction. In addition,
for above-band-gap excitations coherences between the heavy-
and light-hole bands lead to an oscillatory signature in the
current transients. Our findings demonstrate that our approach
is able to provide important information on the ultrafast
electron dynamics on the atomic scale. It is also applicable
to study recently predicted Berry-curvature-induced currents
arising from bound excitons [45], which we plan to investigate
for pulsed excitation in future work.
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