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Spatial frequency maps of power flow in metamaterials and photonic crystals:
Investigating backward-wave modes across the electromagnetic spectrum
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We present spatial frequency maps of power flow in metamaterials and photonic crystals in order to provide
insights into their electromagnetic responses and further our understanding of backward power in periodic
structures. Since 2001, many different structures across the electromagnetic spectrum have been presented in
the literature as exhibiting an isotropic negative effective index. Although these structures all exhibit circular
or spherical equifrequency contours that resemble those of left-handed media, here we show through k-space
diagrams that the distribution of power in the spatial frequency domain can vary considerably across these
structures. In particular, we show that backward power arises from high-order right-handed harmonics in photonic
crystals, magnetodielectric crystals, and across the layers of coupled-plasmonic-waveguide metamaterials, while
arising from left-handed harmonic pairs in split-ring resonator and wire composites, plasmonic crystals, and
along the layers of coupled-plasmonic-waveguide metamaterials. We also show that the fishnet structure exhibits
the same left-handed harmonic pairs as the latter group. These observations allow us to categorize different
metamaterials according to their spatial spectral source of backward power and identify the mechanism behind
negative refraction at a given interface. Finally, we discuss how k-space maps of power flow can be used to
explain the high or low transmittance of power into different metamaterial or photonic crystal structures.
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I. INTRODUCTION

Over four decades ago, Veselago proposed that an isotropic
and homogeneous double-negative medium (with simulta-
neously negative values of ε and μ) could theoretically
sustain left-handed plane waves with antiparallel phase and
energy velocities [1]. This would imply that the equifrequency
contours (EFCs), which are traced out by the wave vectors in
k space at each frequency, would be spheres whose frequency
gradient (the group velocity) points inwards everywhere over
their surfaces. This extraordinary property (unobserved in
natural materials) can be completely characterized by a three-
dimensionally isotropic negative refractive index and has been
predicted to result in many interesting phenomena such as
negative refraction and perfect imaging [1,2].

Although backward modes (in which energy flows in the
opposite direction to the wavefronts) have long been observed
in transmission-line and waveguide structures [3,4], negative
refraction and perfect imaging require bulk media with two
or three-dimensional isotropy. Artificial structures known as
metamaterials and photonic crystals have been proposed and
fabricated in order to implement such negative effective index
media from microwave to optical frequencies [5–9]. These
subwavelength periodic structures are able to support propa-
gating backward Bloch modes in which the time-and-space-
averaged Poynting vector S and the Floquet-Bloch wave vector
kFB are in opposite directions. Through careful design, this
behavior can be preserved for all directions of propagation in a
two-dimensional plane or in three-dimensional space resulting
in nearly circular or spherical EFCs resembling that of an
isotropic left-handed Veselago medium. If we consider only
the average power and Floquet-Bloch wave vector [located in
the first Brillouin zone (BZ)], these circular EFCs imply that
a 2D or 3D left-handed response can be mimicked and that

*loic.markley@ubc.ca

negative refraction of both power and phase would be feasible.
Experiments showing negative refraction of electromagnetic
beams have been used as corroborating evidence of a left-
handed response and has led to the general characterization
of these structures as isotropic negative-index media. In this
work, we assess the validity of these characterizations.

Homogenization approximations have been widely used
to model negatively refracting periodic structures by homo-
geneous media with double-negative effective constitutive
parameters (or equivalently, negative effective index neff and
effective impedance ηeff) [10–14]. These models effectively
map backward Bloch modes to single left-handed plane waves
located in the first BZ. With this mapping, however, important
information about the behavior of EM fields inside the medium
can be hidden and the validity of effective medium models
cannot be guaranteed in a general periodic structure.

It has been shown using spatial frequency maps of power
flow that the fundamental harmonic of a Bloch mode (which
has a wave vector equal to kFB) can have a nonsignificant
contribution to the total power flow with most of the power
carried outside the first BZ [15–18]. Spatial frequency maps are
formed by decomposing the electric and magnetic Bloch-mode
fields into complete sets of spatial frequency harmonics and
plotting the corresponding Poynting vectors in k space. This
provides a simple visual representation of the electromagnetic
behavior based off a systematic and general procedure that
can be applied to any periodic structure, regardless of fre-
quency, periodicity, or constituent materials. For example, in
Ref. [17], we investigated a coupled-plasmonic-waveguide
metamaterial, which had been characterized by a three-
dimensionally isotropic effective negative refractive index
n = −1. Although this structure achieves a nearly spherical
EFC and demonstrates wide-angle negative refraction of light
beams, we showed that the spatial frequency distribution of
power flow is revealed to be strongly anisotropic and that the
spatial frequency origin of backward power evolves from pairs
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of left-handed harmonics for propagation along the layers to
higher-order right-handed harmonics for propagation across
the layers. This identification of the dominant harmonics
(i.e., those with significant contributions to the total power
flow) enabled us to determine the spatial frequency origin
of observed negative refraction and predict alternative wave
excitations to better couple power into the structure. For
example, we showed that negative refraction at the interface
parallel to the layers originates from the refraction of higher-
order right-handed components, not from left-handedness.
In addition, we showed that exciting the dominant higher-
order power harmonics rather than the fundamental harmonic
at the interface perpendicular to the layers could increase
the coupling efficiency by a factor of five. These findings
revealed the limitations of relying on EFC analysis alone
to characterize the response of a metamaterial or photonic
crystal and demonstrated the importance of first considering
the spatial-frequency power distribution when attempting to
use the Bloch impedance to model wave propagation across
the interface of a general periodic structure.

In this paper, we apply k-space analysis to several common
metamaterials and photonic crystals that have been described
in the literature as negative index media. Mapping the complete
power distribution of spatial frequency harmonics provides
new insights into the behavior of propagating modes, enabling
us to identify the spatial frequency origin of backward power
and distinguish between the electromagnetic responses of
structures with similar EFCs. Since heterogeneous structures
can only mimic the electromagnetic behavior of left-handed
media, spatial spectral power maps can be used to provide
a quantitative comparison with an ideal left-handed medium
in order to compare and contrast different metamaterials
across the electromagnetic spectrum. We will show that the
source of backward power in metamaterials and photonic
crystals arises primarily from either higher-order right-handed
harmonics or from pairs of left-handed waveguide modes. In
other words, we can use the spatial frequency maps of power
flow as a signature to categorize different structures that carry
backwards power. The knowledge of how power is distributed
in k space provides an explanation for why some periodic
structures can exhibit all-angle negative refraction of power
despite the lack of a left-handed response. It also reveals why
an incident plane wave that is phase and impedance matched
to the effective medium parameters does not necessarily result
in high transmission into a periodic structure.

The remainder of the paper is divided into eight sections.
In the next section, we present a general method to
analyze periodic structures based on their spatial power
harmonics. The next six sections apply this method to a
split-ring resonator and thin-wire composite, a photonic
crystal, a magnetodielectric crystal, a plasmonic crystal, a
coupled-plasmonic-waveguide metamaterial, and a fishnet
structure. The spatial frequency power maps are compared and
similar features are highlighted. The final section concludes
the paper and summarizes our findings.

II. METHODOLOGY

In order to calculate the power distribution of a backward
Bloch mode over k space, we must first determine the electric

and magnetic fields of that mode. The Floquet-Bloch theorem
[19,20] states that electric and magnetic fields in an infinite
and periodic structure have the form of

E(r,t) = ue(r)ei(kFB·r−ωt), (1)

H(r,t) = uh(r)ei(kFB·r−ωt), (2)

where ue(r) and uh(r) are periodic vector functions with the
same periodicity as the medium, ω is the frequency, and kFB is
the Floquet-Bloch wave vector (located in the first BZ) which
can generally be complex and expressed as kFB = k + iα.
The real part k is the fundamental propagating wave vector
and the imaginary part α is the attenuation vector. As the
attenuation is embedded in the complex Floquet-Bloch wave
vector, the vector functions ue(r) and uh(r) always represent
the nonattenuating periodic component of E(r,t) and H(r,t),
respectively. The Bloch modes supported by the periodic
structure can be determined by solving the Helmholtz equation
as an eigenvalue problem at fixed frequencies. Substitution of
Eqs. (1) and (2) into the Helmholtz equation yields

∇ ×
(

1

p
∇ × u

)
+ ikFB ×

(
1

p
∇ × u

)

+ i∇ ×
(

1

p
kFB × u

)

+ kFB · kFB

p
u − kFB

p
(kFB · u) − q

ω2

c2
u = 0, (3)

where u = ue, p = μ, and q = ε for the electric field and
u = uh, p = ε, and q = μ for the magnetic field [21]. Here,
μ and ε are the relative permeability and permittivity of the
periodic medium, respectively, both of which can be complex
and dispersive in general. In order to solve this equation as an
eigenvalue problem at a fixed frequency, constraints must be
placed on the Floquet-Bloch wave vector kFB so that it can be
expressed in terms of a single scalar eigenvalue λ. Different
constraints can be used for different circumstances, with the
corresponding eigensolutions unique only to that constraint. In
the case of the infinite periodic structures studied in this paper,
we apply a constraint by defining a direction of propagation
and choose kFB = λk̂. Equation (3) can be solved over a single
unit cell for the complex eigenvalue λ and its corresponding
eigenmode u(r) in order to compare the electromagnetic
response in different directions of propagation. The EFC
associated with a particular frequency is then given by
tracing the Floquet-Bloch wave vector across all directions
of propagation. Note that since this formulation is evaluated
at a single frequency, dispersive materials can be treated in
the same manner as nondispersive materials. In this work, we
solved the weak form of the eigenvalue equation (3) for ue
or uh using COMSOL MULTIPHYSICS finite-element software
package [21,22].

It has often been assumed that when the periodicity is
subwavelength, the Bloch mode can be approximated by a
single plane wave with the wave vector kFB [see Eqs. (1)
and (2)]. This has led to the modeling of metamaterials and
photonic crystals by equivalent homogeneous media (using
effective parameters) [10–14,23] or by repeated zone EFC
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diagrams [9,24]. The periodicity of the EFCs in the spatial
frequency domain, however, has been shown to lead to an
ambiguity in assigning a single wave vector (i.e., a single phase
velocity) to the propagating mode [15,17,18]. This ambiguity
implies that the feasibility of modeling the propagating modes
with a single plane wave inside the first BZ is not guaranteed
in periodic structures and hence their characterization by
effective parameters or dispersion diagrams alone can be
misleading.

Instead, a complete description of Floquet-Bloch modes
that retains all spatial field information can be achieved by
expanding the electric and magnetic fields into a complete set
of spatial frequency harmonics as follows:

H(r) =
∑
l,m,n

hl,m,ne
iGl,m,n·reikFB·r, (4)

E(r) =
∑
l,m,n

el,m,ne
iGl,m,n·reikFB·r, (5)

where Gl,m,n is the reciprocal vector and l, m, n span the
set of all integers. In this formulation, hl,m,n and el,m,n

are the three-dimensional spatial Fourier transforms of the
nonattenuating periodic components of the magnetic and
electric field vectors, respectively. The harmonic components
of the electric and magnetic fields each have a real wave
vector given by kl,m,n = k + Gl,m,n and an attenuation vector
given by α = Im{kFB}. By pairing corresponding electric and
magnetic field harmonics, the Bloch mode can be expressed
as a spectrum of unique plane waves located at discrete real
kl,m,n points in the spatial frequency domain (k space). The
time-averaged Poynting vector associated with each (nonat-
tenuating) plane wave can be calculated using the following
expression:

Sl,m,n = 1
2 Re{el,m,n × h∗

l,m,n}. (6)

Each plane-wave harmonic therefore has a well-defined
wave vector kl,m,n and Poynting vector Sl,m,n from which
handedness can be defined. To calculate each harmonic’s
handedness, the wave vector and Poynting vector are projected
onto a reference axis defined by the direction of propagation
k̂. If the projected vectors are parallel (in the same direction),
the harmonic is considered to be right handed, while if they
are antiparallel (in the opposite direction), the harmonic is
considered to be left handed. This generalizes the definition
of handedness for individual harmonics from definitions that
rely only on the direction of average power flow [25].
Consequently, since we use individual harmonic Poynting
vectors to determine the direction of harmonic power flow
(which can differ from the direction of average power flow),
the sign relation between the real and imaginary components
of a complex harmonic wave vector (in periodic structures with
absorbing materials) no longer provides a sufficient criterion
for determining the handedness of that harmonic.

Due to the orthogonality of the harmonics, the individual
harmonic Poynting vectors can be related to the total time-
and-space-averaged Poynting vector through the following
summation:

S = 1

V

∫
V

1

2
Re{ue(r) × u∗

h(r)}dv =
∑
l,m,n

Sl,m,n, (7)

where V is the volume of the unit cell. Rather than being
confined to the first BZ, we can now map the total power
flow across all spatial frequency harmonics for a complete
characterization of the relationship between phase and power
flow in periodic structures. This mapping can reveal cases
where most of the power lies outside the first BZ, or reveal
whether the power is carried primarily by right-handed or
left-handed harmonics.

Note that in a general heterogeneous medium, handedness
can be defined for individual harmonics but not for the medium
itself. This is because a consistent phase progression typically
does not exist when a medium is not homogeneous in the
direction of propagation [17]. We must therefore refrain from
associating any kind of handedness to the relative orientations
of kFB and S (or equivalently, to the complex sign relation of
kFB) and discuss only the handedness of harmonics which can
be determined using the method described above.

This method provides a systematic and generalized spatial
frequency analysis that can be applied to arbitrary periodic
structures (with dielectric, magnetic, and conductive modula-
tions) under arbitrary polarization. In the following sections,
this method is applied to several common metamaterials and
photonic crystals to carefully investigate wave behavior that
has been described in the literature as arising from negative
refractive index.

III. SPLIT-RING RESONATOR AND THIN-WIRE
METAMATERIAL

The first experimental demonstration of negative refraction
was performed at microwave frequencies using a composite
metamaterial consisting of arrays of split-ring resonators
(SRRs) and thin wires (TWs) [5,26]. In these experiments,
measured refraction angles were shown to be consistent
with Snell’s law when the structure was modeled using a
double-negative homogeneous and isotropic effective medium
[27,28]. Negative effective permeability μ was attributed to
out-of-phase magnetic moments induced within the SRRs [29],
while negative permittivity ε was attributed to the plasmalike
behavior of the thin-wire arrays [30].

Here, we apply the k-space analysis to provide new insights
into the response of the SRR-TW structure. We consider a
two-dimensional array of thin wires aligned with the z axis
interspaced between two orthogonal arrays of SRRs and
consider propagation parallel to the xy plane. The lattice has
a periodicity a in the x and y directions and a periodicity
d = 0.86a in the z direction. The SRRs and thin wires are
modeled as perfect electric conductors (PECs) with radii of
0.016a and 0.02a, respectively. The SRRs embedded within
crossed dielectric layers of permittivity ε = 7 and thickness
0.1a. Each unit cell contains two complete SRRs (oriented
orthogonally to each other) and one complete thin wire, as
illustrated in the inset diagrams of Fig. 1.

We begin our study by solving the eigenvalue equation (3)
to find the Bloch mode periodic function uh(r) and the Floquet-
Bloch wave vector kFB associated with each direction of
propagation. Once ue(r) is calculated from uh(r), both periodic
functions are expanded to their Fourier harmonics and each
harmonic Poynting vector is then calculated. Figures 1 and 2
plot the harmonic Poynting vectors alongside the EFC contours

205157-3



IMAN AGHANEJAD AND LOÏC MARKLEY PHYSICAL REVIEW B 96, 205157 (2017)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

1st BZ

kz = 0

S000 S100

k

S

TW

SRR

x

y

kxa/2π

(a)

k
y
a
/
2
π

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

1st BZ

ky = 0S001

S00-1

S000 S100

k

S

TW

SRR

x

z

kxa/2π

(b)

k
z
b/

2
π

FIG. 1. The k-space diagrams for a backwards eigenmode prop-
agating in-plane along the x axis of the SRR-TW metamaterial
(φ = 0). The Bloch harmonics are plotted on the kz = 0 plane (a)
and on the ky = 0 plane (b). Left-handed plane-wave components in
k space are plotted with red arrows, while right-handed components
are plotted with blue arrows. The EFCs are given by the solid and
dotted curves inside and outside the first BZ, respectively, where
the first BZ is indicated by the light grey dashed rectangle. The
unit cell is shown from the top (a, inset) and side (b, inset) with
PEC boundary conditions (solid lines) in the z direction and periodic
boundary conditions (dashed lines) in the x and y directions.

of the structure for Bloch waves propagating parallel to and
diagonally to the in-plane axes, respectively. The normalized
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FIG. 2. The k-space diagrams for a backwards eigenmode propa-
gating in-plane along the diagonal axis of the SRR-TW metamaterial
(φ = 45◦). The Bloch harmonics are plotted on the kz = 0 plane (a)
and on the kx = ky plane (b). Note that only the average power S must
be normal to the EFC. Individual harmonic Poynting vectors are free
to point in any direction.

frequency of operation is � = a/λ0 = 0.0647, where λ0 is
the wavelength in free space. The time-and-space-averaged
Poynting vector S of the global fields calculated by Eq. (7) is
shown by the thick black arrow with the fundamental wave
vector shown by the thin black arrow. The location of the
fundamental harmonic is also indicated by a black dot. Note
that unlike the total power flow S, the individual harmonic
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Poynting vectors Sl,m,n are not necessarily normal to their
corresponding repeated EFCs.

In conventional EFC analysis, the Bloch mode is modeled
as a single plane wave located within the first BZ and
no information about the harmonic distribution of power
is available. Observing that the average power flow points
opposite to the fundamental wave vector would therefore seem
to imply a left-handed response characterized by a single
negative refractive index. By plotting the harmonic Poynting
vectors in the spatial frequency domain, however, information
is provided about the Bloch mode field variations across
each unit cell that is not available from EFC diagrams nor
from effective parameters. We can see from Figs. 1 and 2
that the electromagnetic fields are a strong mixture of Bloch
harmonics, containing both left-handed harmonics (in red) and
right-handed harmonics (in blue), with only a fraction of the
total power residing within the first BZ (i.e., residing within
the fundamental).

The dominant harmonics in Fig. 1 can be separated into
two distinct sets: the right-handed components are arranged
longitudinally along the axis of propagation while the left-
handed components are arranged in the transverse direction
along an axis perpendicular to the direction of propagation. We
will show later that this distribution of right and left handed
components is not unique to this Bloch mode. The presence
of one or both of these harmonic sets can reveal the spatial
frequency origin of backward power in metamaterials and
photonic crystals. Let us now explore each of these harmonic
sets further.

The left-handed transverse harmonics S0,0,1 and S0,0,−1

shown in Fig. 1(b) can be interpreted as two plane waves
bouncing back and forth within the parallel-plate waveguide
formed by the unit cell PEC symmetry planes. These higher
harmonics are symmetric with respect to the kxky plane and
form standing waves in the direction transverse to the plane
and propagating waves in the direction parallel to the plane.
Together they form a backward “waveguide” mode in which
power flows in the direction opposite to phase. As the direction
of propagation changes in the xy plane, these left-handed
harmonic pairs rotate about the kz axis to maintain their
transverse position and continue to provide backward power
flow to the mode [as shown in Fig. 2(b)]. The SRR-TW
structure can be therefore said to support a backward
waveguide mode that is nearly isotropic in the xy plane.

The right-handed longitudinal harmonics S0,0,0 and S1,0,0

provide an uneven power distribution of forward waves propa-
gating in opposite directions (resulting in a partial cancellation
of right-handed power). These waves are distributed in k space
at regular intervals with opposing power flow arising due
to reflections off the lattice of inclusions. As the angle of
propagation is changed from parallel to the x axis (φ = 0◦) to
diagonally between the x and y axes (φ = 45◦), the lattice
periodicity re-distributes the higher-order harmonic power
from S1,0,0 to S1,0,0 and S0,−1,0 as shown in Fig. 2(a). For all
angles of propagation, however, the net contribution of these
components to the total power flow ranges is minor (less than
4% for φ = 0◦).

From this analysis, we can conclude that the negative
refraction observed in SRR-TW metamaterial experiments is
due to refraction of the right-handed free-space wave vector

into the left-handed transverse harmonics. Furthermore, the
presence of a strong fundamental harmonic (S0,0,0) yields a
spatial spectral overlap with free space that enables mode
matching to an incident or transmitted plane wave. This is
consistent with the high transmittance observed in experiment
with SRR-TW metamaterials.

IV. PHOTONIC CRYSTAL

Photonic crystal (PC) structures with strong periodic
modulations in dielectric constant have also been shown to
exhibit negative refraction of power at an interface [31,32].
In contrast to SRR-TW structures, PCs rely on band-folding
to achieve negative refraction rather than double-negative
effective parameters. It has been shown that a two-dimensional
square lattice of silicon cylinders in air can support backward
Bloch modes with noncircular EFCs (i.e., the fundamental
wave vector kFB and the averaged power flow S are not
always collinear for all direction of propagation). Although
this structure does indeed refract incident beams negatively,
Lombardet et al. has shown through Fourier analysis that
the refracted beam is a right-handed plane wave outside
the first BZ, and that this behavior should be described
through diffraction phenomenon rather than left-handedness
[15].

Here, we apply the k-space analysis to a 2D photonic
crystal composed of a dielectric containing a dense hexagonal
(triangular) array of cylindrical holes. This crystal supports
backward Bloch modes in all directions perpendicular to the
holes and is an interesting case study for our analysis: unlike
the structure in Ref. [15], it has circular EFCs that could be
interpreted as corresponding to a two-dimensionally isotropic
negative effective index [6,31,32]. In this photonic crystal,
the holes have a diameter 2r = 0.8a and are arranged with
a lattice constant a inside a dielectric medium of dielectric
constant ε = 12.96. The two-dimensional rectangular unit
cell of the structure [identified by the solid black lines in
the inset of the Fig. 3(a)] has the width a and height

√
3a

along the x and y directions, respectively. By using this unit
cell and applying periodic boundary conditions, the Bloch
modes are solved for TE polarized waves (where the electric
field lies perpendicular to the xy plane) at a normalized
frequency � = a/λ0 = 0.32 and then expanded to its spatial-
frequency harmonics. Figures 3(a) and 3(b) plot the power
maps alongside the EFC contours of the structure for Bloch
waves propagating along the symmetry axes 	K and 	M,
respectively. Again, we can see that the Sm,n Poynting vectors
are not necessarily normal to their corresponding EFCs.
Although conventional EFC analysis would attribute backward
power and observed negative refraction to an isotropic left-
handed response, these power maps provide a completely
different perspective. They reveal that backward modes are
composed of right-handed TEM plane wave harmonics (where
the Poynting vector and wave vector are parallel) in which
the fundamental harmonic contributes negligibly to the total
power. There are no left-handed components and backward
power flow arises from right-handed higher-order harmonics,
which propagate in the backward direction with respect to
the fundamental Bloch wave vector. This insight reveals the
right-handed origin of the observed negatively refracted beams
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FIG. 3. The k-space diagrams for backward eigenmodes prop-
agating along the (a) 	K and (b) 	M directions in the hexagonal
photonic crystal. All Bloch harmonics for this structure are TEM
right-handed plane waves plotted with blue arrows. The EFCs are
given by the solid and dotted curves inside and outside the first BZ,
respectively, where the first BZ is indicated by the light grey dashed
hexagon. The photonic crystal geometry with its rectangular unit cell
is illustrated in the inset. Again, as seen above, individual harmonic
Poynting vectors are not restricted to being normal to the EFCs.

in photonic crystal prisms [24,32] and clearly demonstrates
that an effective index should not be assigned to a periodic
structure based solely on refraction observations. According
to k-space power maps, Bloch modes in a periodic structure
do not in general have a well-defined phase velocity, which
therefore means that refraction beam angles cannot in general
be related to a effective index of refraction in a consistent
fashion.

FIG. 4. The transverse electric field Ez is plotted for two Gaussian
beams normally incident onto two different interfaces of a rectangular
photonic crystal sample. The orthogonal incidence angles illustrate
the different coupling efficiencies into the crystal. Note that both
reflected beams have been omitted for clarity.

Figure 4 illustrates the transmission of Gaussian beams
normally incident from free space onto two different interfaces
of the photonic crystal [corresponding to the horizontal and
vertical interfaces shown in the inset diagram of Fig. 3(a)].
Although the circular EFC of the photonic crystal would
imply an isotropic response, the simulation results show a
different transmission behavior at each interface. The beam
propagating along the 	K axis is almost completely reflected
at the interface while the beam propagating along the 	M axis
shows high transmittance through the photonic crystal. This
result is consistent with our k-space power maps once we
recognize that the fundamental harmonic carries almost zero
power (four orders of magnitude less than the total power). A
plane wave incident along the 	K axis has ky = 0 and cannot
phase match to a harmonic carrying any significant power,
leading to poor coupling efficiency and high reflectivity. By
contrast, a plane wave incident along the 	M axis has kx = 0
and can phase match to the dominant S0,2 harmonic, thereby
coupling strongly to a mode inside the photonic crystal.

These observations demonstrate that despite the presence
of negative effective refractive index and circular EFC dia-
grams, an isotropic left-handed Veselago medium cannot truly
describe the behavior of this photonic crystal. At this point,
we must point out that the distribution of power across higher-
order right-handed harmonics occurs for negatively refracting
photonic crystals of all lattice spacings [18]. In other words,
the k-space distribution does not change significantly when the
unit cells are made extremely sub-wavelength and the medium
enters what would typically be considered to be an effective
medium regime. We will see in the following section that
highly subwavelength crystals of magnetodielectric cylinders
contain weak fundamental harmonics similar to those observed
in photonic crystal structures.
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V. SUB-WAVELENGTH MAGNETODIELECTRIC
CRYSTAL

It has been shown that dense arrays of magnetodielectric
subwavelength inclusions embedded in a host dielectric
can support electric and magnetic resonances in the
same frequency band and have been homogenized as
double-negative media [7,12,33,34]. Here, we apply k-space
analysis to a square two-dimensional crystal of nearly
touching magnetodielectric cylinders in air which have been
modeled by a two-dimensionally isotropic effective negative
index n = −1. The cylinders are made of a magetodielectric
medium with n = ε = μ = 20 and have a diameter 2r = 0.9a,
where a is the lattice constant of the crystal. This metamaterial
supports backward Bloch modes under TM polarization (i.e.
the magnetic field lies perpendicular to the xy plane) at the
normalized frequency � = a/λ0 = 0.0639 for all angles
of propagation in the xy plane. The corresponding power
maps for propagation along the x axis (φ = 0◦) and along
the diagonal (φ = 45◦) are illustrated in Figs. 5(a) and 5(b),
respectively. Although backward power in this metamaterial
structure has been attributed to an isotropic left-handed
response, our power maps suggest that backward power
actually arises from higher-order right-handed harmonics
similar to the photonic crystal (as shown in Fig. 3).

A complete analysis of phase and power flow in this
metamaterial therefore requires a harmonic expansion and
cannot be modeled solely through an effective negative
refractive index or EFC diagrams. A thorough k-space study
of magnetodielectric crystals was presented in Ref. [18]. The
details will not be repeated here, however, that study showed
that power was carried in high-order right-handed harmonics
(as in Fig. 5) regardless of how subwavelength the unit cell
was made to be.

VI. SUBWAVELENGTH PLASMONIC CRYSTAL

A dense 2D array of metallic subwavelength cylinders has
also been shown to support backward Bloch modes at optical
frequencies in all directions of propagation perpendicular
to the metallic cylinders [8,35]. This structure, known as a
plasmonic crystal, operates below the plasma frequency of
the metallic inclusions (with ω = 0.6ωp) and has been shown
to have a circular EFC with an inward pointing frequency
gradient for TM polarized waves. Here we study a plasmonic
crystal with a square lattice of metal cylinders embedded in air.
The cylinders have a permittivity εmetal = −1.78ε0 and a di-
ameter 2r = 0.9a. At the normalized frequency � = a/λ0 =
0.0954, this metamaterial structure has been modeled as a
two-dimensionally isotropic double-negative metamaterial.

The spatial frequency power maps of the structure are plot-
ted in Figs. 6(a) and 6(b) for backward Bloch modes propagat-
ing parallel and diagonally to the lattice vectors, respectively.
We can see from these diagrams that the concentrated fields
surrounding the plasmonic cylinders resulted in power flow
being distributed across many Bloch harmonics. Furthermore,
we see that backward power arises from a combination of both
right-handed and left-handed harmonics. The appearance of
left-handed harmonic pairs (i.e., waveguide-mode pairs) with
roughly isotropic behavior resembles the left-handed response
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FIG. 5. The k-space illustration of Bloch harmonics for backward
eigenmodes propagating in the magnetodielectric crystal (a) parallel
to the x axis (φ = 0◦) and (b) diagonal to the x and y axes (φ = 45◦).
The schematic geometry of the magnetodielectric crystal and the
square unit cell are shown in the inset diagram.

of the SRR-TW metamaterial. Although the physical geometry
of the plasmonic crystal strongly resembles that of a PC or
an MD metamaterial, as do its EFCs and its homogenized
effective refractive index, its electromagnetic behavior is very
different. Instead of most of the power being contained in
higher-order harmonics with large longitudinal wave vector
components, the plasmonic crystals also have a strong funda-
mental and strong left-handed components adjacent to the first
BZ. The presence of this strong fundamental implies that an
external plane-wave can always phase-match to the plasmonic
crystal modes, a conclusion consistent with the high transmit-
tance through the plasmonic crystal lens observed in Ref. [35].
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FIG. 6. The k-space illustration of Bloch harmonics for backward
eigenmodes propagating in the plasmonic crystal (a) parallel to x

axis (φ = 0◦) and (b) diagonally to x and y axes (φ = 45◦). Left-
handed plane wave components are plotted with red arrows, while
right-handed components are plotted with blue arrows. The schematic
geometry of the plasmonic crystal and the square unit cell are shown
in the inset.

VII. COUPLED-PLASMONIC-WAVEGUIDE
METAMATERIAL

Metamaterials composed of stacked plasmonic waveguides
can also support backward Bloch modes in all directions with
roughly spherical backward-power EFCs at optical frequencies
[9,36]. Here, we study one such metamaterial composed of
a one-dimensional periodic repetition of five alternating thin
layers of silver (Ag) and titanium dioxide (TiO2), as illustrated
in the inset of Fig. 7(b). The individual layers have thickness

−1 0 1

−2

−1

0

1

2

1st BZ

φ = 0

S1

S-1

k

S

kx/k0

(a)

k
y
a
/
2
π

−1 0 1

k

S
1st BZ

φ = 45

S-1

S1

φ

kx/k0

(b)

−1 0 1

k

S
1st BZ

φ = 90

S-1

S1

kx/k0

(c)

a

TiO2

Ag

x

y

FIG. 7. The k-space illustration of Bloch harmonics for modes
propagating in the coupled-plasmonic-waveguide metamaterial at an
angle of (a) φ = 0◦, (b) 45◦, and (c) 90◦. As φ increases, dominant
contributors to power flow shift from left-handed to right-handed
plane-wave components. The schematic geometry of the unit cell
is shown in the inset. Note that only the real parts of the complex
eigenmodal wave vectors are drawn in the EFC diagrams. For a
complete description of the complex wave vectors, the reader is
referred to Ref. [17].

33, 28, 30, 28, and 33 nm, producing a total periodicity of
a = 152 nm. This structure supports backwards Bloch waves
in all directions under TM polarization at a wavelength of
λ0 = 363.8 nm (corresponding to a normalized frequency of
� = a/λ0 = 0.4178) [9]. At this wavelength, the metamaterial
layers were modeled using the complex permittivites εAg =
−2.522 + i0.251 and εTiO2 = 7.835 + i0.392 (nonmagnetic
layers were considered).

Figure 7(a) shows the spatial-frequency power maps of the
backward Bloch mode propagating along the layers (φ = 0◦).
In this figure, the fundamental harmonic carries very little
power and backward power arises primarily from the left-
handed transverse harmonic pair. The presence of this left-
handed waveguide mode in which power and phase propagate
in opposite directions is consistent with the capability of planar
plasmonic waveguides to support backward surface plasmon
modes along their layers [37]. Since this medium is isotropic
parallel to the layers (parallel to the xz plane), this left-handed
response is sustained for all angles of in-plane propagation.
Similarly to the SRR-TW metamaterial, the left-handed
harmonic pairs rotate about the kz axis to maintain isotropy.

However, as can be seen in Fig. 7, this left-handed response
cannot be sustained for propagation across the layers (i.e. prop-
agation anywhere in the xy plane). Figures 7(b) and 7(c) show
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the k-space maps for propagation at an angle φ = 45◦ to the
layers and normal to the layers (φ = 90◦). Unlike the case of
in-plane propagation, the harmonics for these two propagation
directions are all right-handed with a dominant high-order
longitudinal harmonic S1 providing the greatest contribution
to backward power. This response has strong similarities to
those observed in photonic crystals and magnetodielectric
media. Overall, the coupled-plasmonic-waveguide metama-
terial demonstrates the usefulness of spatial frequency maps
of power flow to differentiate between different types of back-
ward modes and identify anisotropies that can be overlooked
using traditional EFC analysis or effective medium theory.

A detailed study of coupling efficiency in Ref. [17] demon-
strates the inherent deficiency of Bloch impedance in modeling
the scattering behavior of the coupled-plasmonic-waveguide
metamaterial. Although the Bloch impedance of the Bloch
mode propagating along the layers in the metamaterial can
be matched to a normally incident plane wave at an interface
perpendicular to the layers, the lack of significant power in the
fundamental harmonic results in a poor coupling efficiency.
By contrast, tailoring the excitation to couple directly to the
dominant harmonics can increase transmittance to 96%.

VIII. FISHNET METAMATERIAL

The final structure analyzed in this paper is the “fishnet”
structure and is made of stacked metallic plates perforated by
periodic hole arrays [38]. Here we study a simple structure
in which perfectly conducting plates with zero thickness are
stacked in air along the x axis with a periodicity d = a/3.
The PEC screens are perforated with square holes of side
length b = a/3 arranged in a square lattice of periodicity a.
The unit cell is shown in the inset diagrams of Fig. 8(b). The
Bloch modes were determined by applying PEC boundary
conditions in the z direction (solid lines) and periodic boundary
conditions along the x and y directions (dashed lines). Bloch
modes propagating parallel to the xy plane were investigated at
a normalized frequency of � = a/λ0 = 0.95 (d/λ0 = 0.317).

In contrast to the periodic structures studied in previous
sections, the EFC diagrams plotted in Fig. 8(a) are not circular
and the fundamental wave vector kFB and the time-and-space-
averaged Poynting vector S (the frequency gradient) are only
collinear (anti-parallel) for propagation normal to the plates
(along the x axis). The spatial frequency power maps of the
backward Bloch mode propagating along x axis are plotted in
Fig. 8. In this figure, the fundamental harmonic is right handed
and backward power arises primarily from the left-handed
transverse harmonic pair (that once again form a backward
waveguide mode). This resembles the k-space power maps of
coupled-plasmonic-waveguide metamaterial for propagation
along the layers and the left-handed response of SRR-TW and
plasmonic crystal metamaterials.

IX. CONCLUSION

In this paper, we have shown how decomposing a backward
Bloch mode into a complete set of spatial frequency harmonics
can provide new insights into the behavior of metamaterials
and other periodic structures that may otherwise be charac-
terized by the same negative effective index of refraction.
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FIG. 8. The k-space illustration of Bloch harmonics (a) over the
kxky plane (top view) and (b) over the kxkz plane (side view) for a
backward eigenmode propagating in the fishnet metamaterial along
the kx axis (normal to the perforated screens). The inset diagrams
show the top view and side view of the unit cell in which the PEC
screen and square hole are specified by the blue and white color,
respectively. The PEC boundary conditions (solid lines) along the z

axis and periodic boundary conditions (dashed lines) along the x and
y axes have been applied in order to investigate propagation parallel
to the xy plane.

Mapping power flow across the harmonics in k space reveals
the phase and power relation (handedness) of each individual
harmonic and provides a complete description of power and
phase that is not available through effective medium theory or
EFC analysis (repeated zone or otherwise). We have shown
that although a medium may have (a) circular or spherical
EFCs resembling that of an isotropic left-handed Veselago
medium, (b) experimentally observed wide-angle negative
refraction of electromagnetic beams, (c) negative effective
parameters extracted through homogenization theory, and (d)
subwavelength periodicity, these are not sufficient criteria for
confirming an isotropic left-handed response and do not pro-
vide enough information to fully describe the electromagnetic
behavior. We have shown that the spatial frequency origin of
backward power flow can change with respect to the direction
of propagation or from one periodic structure to another.
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TABLE I. The categorization of periodic structures that support backward power across the electromagnetic spectrum
based on their distinguishing feature in the spatial frequency domain.

SRR/TW

Plasmonic crystal

Plasmonic waveguide

(along the layers)

Fishnet

Photonic crystal

Magnetodielectric
crystal

Plasmonic waveguide

(normal to the layers)

Backward power through left-handed
waveguide harmonic pairs

Backward power through higher-order
right-handed harmonics

The spatial frequency maps of power flow revealed that
backward power arises through one of two basic mechanisms:
either from pairs of left-handed transverse harmonics or
from right-handed higher-order longitudinal harmonics. These
spatial power maps provide an electromagnetic signature that
can be used to identify and categorize periodic structures with
similar dispersive behavior. In this work, we have shown
that backward power arises from higher-order right-handed
harmonics in structures such as photonic crystals, magnetodi-
electric crystals, and coupled-plasmonic-waveguide metama-
terials (for propagation across their layers). Backward power
is due to pairs of left-handed waveguide modes in SRR-TW
composites, plasmonic crystals, fishnet structures (for on-axis
propagation), and in coupled-plasmonic-waveguides metama-
terials (for propagation along their layers). These results are
summarized in Table I with all six structures classified into two
groups. We also corroborated the hypothesis that k-space maps
of power flow can provide information about the coupling
efficiency into various metamaterials and be used to suggest
incident wave excitation that provide enhanced transmission.

In summary, k-space analysis is shown to be a powerful
tool to investigate metamaterials and photonic crystals (or
any other periodic structures) and provide a simple visual
representation of the complete relationship between phase
and power flow. Using this tool, different structures across
the electromagnetic spectrum can be easily compared and
critical spatial spectral features identified. This method has
been developed for bulk 3D periodic structures, however, it
can be easily applied to planar metamaterials and metasurfaces
to study the spatial spectral content of different surface modes
and facilitate coupling to and from free space.

ACKNOWLEDGMENTS

The authors would like to thank K. Chau for many
stimulating discussions on this topic. This work was supported
by the Natural Sciences and Engineering Research Council of
Canada (NSERC) through the Discovery Grant program. The
authors would also like to acknowledge CMC Microsystems
for the provision of CAD tools that facilitated this research.

205157-10



SPATIAL FREQUENCY MAPS OF POWER FLOW IN . . . PHYSICAL REVIEW B 96, 205157 (2017)

[1] V. G. Veselago, Soviet Physics Uspekhi 10, 509 (1968).
[2] J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[3] L. Brillouin, Wave Propagation in Periodic Structures (Dover,

New York, 1953).
[4] P. J. B. Clarricoats and R. A. Waldron, J. Electron. Control 8,

455 (1960).
[5] R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz,

Appl. Phys. Lett. 78, 489 (2001).
[6] M. Notomi, Phys. Rev. B 62, 10696 (2000).
[7] C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos,

IEEE Trans. Antennas Propag. 51, 2596 (2003).
[8] G. Shvets and Y. A. Urzhumov, J. Optics A 7, S23 (2005).
[9] T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec,

Nature (London) 497, 470 (2013).
[10] D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis,

Phys. Rev. B 65, 195104 (2002).
[11] M. G. Silveirinha, Phys. Rev. B 75, 115104 (2007).
[12] A. Alù, Phys. Rev. B 84, 075153 (2011).
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