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We study the quantum many-body ground states of electrons on the half-filled honeycomb lattice with short- and
long-ranged density-density interactions as a model for graphene. To this end, we employ the recently developed
truncated-unity functional renormalization group (TU-fRG) approach which allows for a high resolution of the
interaction vertex’ wave vector dependence. We connect to previous lattice quantum Monte Carlo (QMC) results
which predict a stabilization of the semimetallic phase for realistic ab initio interaction parameters and confirm
that the application of a finite biaxial strain can induce a quantum phase transition towards an ordered ground state.
In contrast to lattice QMC simulations, the TU-fRG is not limited in the choice of tight-binding and interaction
parameters to avoid the occurrence of a sign problem. Therefore, we also investigate a range of parameters relevant
to the realistic graphene material which are not accessible by numerically exact methods. Although a plethora
of charge-density waves arises under medium-range interactions, we find the antiferromagnetic spin-density
wave to be the prevailing instability for long-range interactions. We further explore the impact of an extended
tight-binding Hamiltonian with second-nearest-neighbor hopping and a finite chemical potential for a more
accurate description of the band structure of graphene’s pz electrons.
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I. INTRODUCTION

The experimental realization of graphene in 2004 [1,2] has
inspired many ideas for a wide range of possible technological
applications due to its superior physical properties [3,4], such
as its excellent electrical conductivity. The semimetallic be-
havior of graphene’s two-dimensional electron gas is protected
by the nature of its low-energy excitations, which come in the
form of Dirac fermions featuring a linearly vanishing density
of states close to the Fermi level. This has fundamental con-
sequences for the possible effects of many-body interactions
[5]: For weak electron-electron interactions, the material re-
mains semimetallic. Instead, it requires intermediate to strong
interactions to turn it into a Mott insulator or any other ordered
many-body ground state [6–8]. Experimental observations for
suspended graphene confirm the stability of the semimetallic
ground state even for very low temperatures [9,10] indicating
a subleading role of electronic interactions in graphene. On
the other hand, specific manipulations of the material such as
the application of a uniform and isotropic strain have recently
been proposed and theoretically found to facilitate the opening
of an interaction-induced band gap [11]. This could pave the
way towards an even broader range of possible technological
applications as, e.g., a graphene transistor.

The question of whether electronic interactions can induce a
metal-insulator transition in an accessible experimental setup
can be approached by theoretical methods in two steps: (1)
Identification of a suitable model to study interacting electrons
in graphene including a determination of model parameters
from ab initio methods. (2) Application of appropriate many-
body methods to the model to predict the ground state of the
system.

As for (1), the paradigmatic model which is used for the
description of the pz electrons in graphene is composed of
a tight-binding Hamiltonian H0 describing electrons hopping
on a honeycomb lattice and an interaction Hamiltonian H1,
which parametrizes the two-body interactions including a
short-ranged part and a long-range tail. For the ab initio
parameters of the tight-binding Hamiltonian, various works
agree on amplitudes of t ≈ 2.7 eV and 0.02t � t ′ � 0.2t for
the hopping of an electron to its nearest neighbor and second-
nearest neighbor on the honeycomb lattice, respectively [12].
For the determination of the interaction parameters from first
principles different methods are available providing different
interaction profiles of graphene’s pz electrons [11,13–16].
Despite the differences in the details, all methods suggest
that the interaction parameters are located in the intermediate
coupling regime defining a considerable challenge for many-
body methods.

Resulting from considerations of the effects of the different
interaction parameters, many qualitative studies have revealed
a rich ground state manifold depending on the magnitude
and ratio of the different local and nonlocal electron-electron
interaction parameters [6–8,17–31]. Possible ground states
include an antiferromagnetic spin-density wave state, differ-
ent commensurate and incommensurate charge-density wave
states, a Kekulé dimerization pattern, and more. More recently,
numerically exact methods, i.e., quantum Monte Carlo (QMC)
simulations have become available which can explore a range
of realistic parameters for the graphene model [27,32,33].
These works confirm the experimentally found semimetallic
behavior of the material. It was further suggested that a biaxial
strain of about 15% can turn graphene into an antiferromag-
netic Mott insulator [11] at least when the Thomas-Fermi
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method for the determination of the interaction profile [16]
is assumed. On the other hand, the ab initio interaction profile
suggested by the constrained random phase approximation
(cRPA) [13] did not indicate a semimetal-insulator transition
up to 18% strain [11]. It may be noted, however, that QMC
methods are limited by the choice of band structure and
interaction parameters [11,33], i.e., to avoid the occurrence of
a sign problem, the long-range tail of the electronic interaction
profile has to decrease fast enough. Therefore, a third option for
the interaction parameters from the Pariser-Parr-Pople model
[15] could not be investigated in Ref. [11]. Also, band structure
parameters other than the nearest-neighbor hopping t have to
be neglected within QMC simulations. This introduces a bias to
the range of available results when aiming at the description of
realistic graphene models. More specifically, the limitation of
the interaction profile to a long-range behavior that pronounces
the local part of the interaction leads to a preference of the
antiferromagnetic ground state. In fact, the antiferromagnetic
ground state is the only ordered state that has been accessed
by QMC simulations with one exception: In Ref. [33] a model
with on-site interaction U and nearest-neighbor interaction V1

was studied and indications for a competition between spin-
and charge-density wave order have been found for specific
choices of parameters giving rise to a multicritical point in
parameter space, cf. also Refs. [34,35].

In this paper we overcome the limitations in the choice
of interaction profiles by employing a recently developed
implementation of the functional renormalization group [36]
approach for correlated fermions [37,38] which allows for
a high resolution of the interaction vertex’ wave vector
dependence—the truncated-unity fRG (TU-fRG) [31,39]—
making use of high-performance computing facilities [40].
In particular, this allows us to explore a large set of band
structure parameters, e.g., a second-nearest-neighbor hopping
term and a chemical potential as well as an extended range of
realistic interaction parameters. It also addresses the necessity
of explicitly dealing with the coupling of energy modes across
the whole band structure [29–31], instead of directly resorting
to an effective low energy description as in a continuum
Dirac model or only considering the scattering among low
energy modes as in usual Fermi surface patching fRG schemes.
Aiming at quantitative results, one must include interactions
between modes from the whole Brillouin zone and not just
from the vicinity of its corners, especially since at the latter
the density of states vanishes.

Recent TU-fRG calculations for an explorative set of
short-ranged interaction parameters already suggest that the
semimetallic nature of graphene’s ground state is not due to
interaction terms that are too weak to induce an ordered state,
but rather because of a complex interplay between different
competing instabilities which leads to an effective frustration
[31]. Moreover, it has been found that the leading instability is
not necessarily an antiferromagnetic spin-density wave state,
but can also be an incommensurate charge-density wave and
other charge modulated states [31]. We note that the fRG is not
a method which provides numerically exact results, however,
numerically exact methods have a much narrower scope.
In the situations accessible to exact methods, a systematic
comparison with fRG results provides confidence for the
method’s application to other regimes. This provides important

insights on the real material, allowing us to go beyond the
statements that are possible within a single theoretical method
alone.

In this work we employ the TU-fRG to facilitate an unbiased
approach to identify the leading instability of electrons on the
honeycomb lattice with realistic band structure parameters and
a long-range interaction tail provided by ab initio approaches.
As a particular strength of the (TU-)fRG approach in this
context, we emphasize that it does take into account the
fermionic fluctuations in an unbiased way. Furthermore, the
TU-fRG is not bound to a sufficiently fast decay of the
(partially screened) Coulomb tail and provides a sufficient
wave vector resolution to resolve the long-range tail. In
particular, it can explore the effect of arbitrary ratios of
short-ranged (nonlocal) interaction terms which are known to
trigger very different types of order. This is a clear advantage
to the numerically exact QMC methods which have a sign
problem if the Coulomb tail does not decay sufficiently fast
and are therefore “biased” towards antiferromagnetic order.
So, while our results will not give quantitative estimates
for gaps or transition temperatures, we will be able to
resolve the qualitative effects and competing orders that
are induced by an extended range of realistic interaction
profiles.

A broader scope of the insights obtained in this work
is given by the more general set of low-dimensional sp-
electron systems of adatoms on semiconductor surfaces such
as Si(111):X with X = C, Si, Sn, Pb which exhibit both strong
local and nonlocal Coulomb interactions. In these surface
systems, e.g., for Si:X, Mott transitions have been observed,
cf. Ref. [41].

The paper is organized as follows: In Sec. II we introduce
the model Hamiltonian including the tight-binding part and
the interaction part. We present possible choices for its
parameters as suggested by various ab initio methods and
discuss the effect of finite biaxial strain. Section III shortly
introduces the functional renormalization group approach with
a focus on correlated fermion systems. More specifically, we
also discuss the TU-fRG scheme, which is employed here
to facilitate calculations with high wave-vector resolution.
Technical details on this scheme are presented in Appendix A.
In Sec. IV we show our results by first discussing the impact
of a finite second-nearest-neighbor hopping amplitude, then
by systematically extending the range of interaction terms
stepwise and finally by including a large range of nonlocal
interactions suggested by the different ab initio methods.
Conclusions are drawn in Sec. V and further technical details
are discussed in the Appendixes.

II. MODEL AND PARAMETERS

To model the interacting pz electrons on graphene’s half-
filled honeycomb lattice, we consider a tight-binding model
for spin-1/2 fermions enhanced by density-density interaction
terms representing the long-ranged Coulomb interaction.
Therefore, the Hamiltonian has a single-particle hopping term
H0 and an interaction term H1,

H = H0 + H1, (1)
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FIG. 1. Left panel: Real space lattice structure. Right panel: Band
energy dispersion for the tight-binding parameters t = 2.7 eV and
t ′ = 0.2 t with adjusted chemical potential. Energy units are given
in eV.

to be specified in the following. H0 is the tight-binding part

H0 = −t
∑

〈i,j〉,σ
(c†i,A,σ cj,B,σ + H.c.)

− t ′
∑

〈〈i,j〉〉,σ
(c†i,A,σ cj,A,σ + c

†
i,B,σ cj,B,σ + H.c.)

− μ
∑
i,σ

(c†i,A,σ ci,A,σ + c
†
i,B,σ ci,B,σ ), (2)

with nearest-neighbor hopping amplitude t , second-nearest-
neighbor hopping t ′, and chemical potential μ. The nearest
neighbors are given by the position vectors �δ1,�δ2,�δ3 of the
hexagonal lattice, depicted in Fig. 1, which has a two-atomic
basis with sublattice index o ∈ {A,B}. We will interchange-
ably denote o as sublattice or orbital degrees of freedom, not
to be confused with different orbitals within a single atomic
site. The carbon-carbon distance is normalized to unity, i.e.,
|�δi | = a = 1. Moreover, c(†)

i,o,σ annihilates (creates) an electron
at site i in sublattice o with spin σ ∈ {↑,↓}.

This tight-binding model gives graphene’s characteris-
tic valence and conduction bands which touch linearly at
the two inequivalent corner points of the Brillouin zone
(BZ), i.e., the K , K ′, or Dirac points as described by

the energy dispersion E± = ±t

√
3 + d(�k) − t ′d(�k) − μ with

d(�k) = 2 cos (
√

3ky) + 4 cos (
√

3
2 ky) cos ( 3

2kx). Close to the
Dirac points the energy dispersion can be approximated by
E± ≈ 3t ′ ± 3t

2 |�q|, i.e., to put the Fermi level to the Dirac points
we have to adjust the chemical potential to μ = 3t ′. For the
ab initio parameters of the tight-binding Hamiltonian, sug-
gested amplitudes are t ≈ 2.7 eV and 0.02t � t ′ � 0.2t , cf.
Ref. [12].

The interaction part H1 from the Coulomb interaction of the
electrons is parametrized by local and nonlocal density-density
contributions

H1 = U
∑
i,o

ni,o,↑ni,o,↓ +
∑

i �= j, o,o′
σ,σ ′

U
o,o′
i,j

2
ni,o,σ nj,o′,σ ′ ,

(3)

where ni,o,σ = c
†
i,o,σ ci,o,σ represents the electron density oper-

ator, and interaction coefficients read

U
o,o′
i,j = Ui,j

{
δo,o′ for intraorbital (i,j ) pairs,
1 − δo,o′ for interorbital (i,j ) pairs. (4)

Different kinds of ordered states occur when the individual
interaction parameters exceed critical values. Sizable on-
site interactions U > 0 trigger a phase transition towards
an antiferromagnetic spin-density wave (SDW) state. Each
nth-nearest-neighbor repulsion term Ui,i+n = Vn supports a
different ordering transition towards charge order, with the
nearest-neighbor term V1 triggering the conventional charge-
density wave (CDW).

A. Modification of hopping amplitudes from strain

The hopping amplitudes in the tight-binding Hamiltonian
in Eq. (2) are subject to modifications upon lattice distortions
as a result of the change in wave-function overlap. For the ab
initio model parameters from the constrained random phase
approximation of Ref. [13], t has a linear decay vs strain η. To
model the effect of strain on other choices of ab initio model
parameters, where direct results are not available, we assume
an exponential decay of the hopping amplitudes following the
empirical relation [42,43]

tii ′ = t0e
−β(

|�δ
ii′ |
a

−1), (5)

where a is the unstrained lattice constant which we have set to
a = 1 and t0 is the unstrained nearest-neighbor hopping ampli-
tude. The material-dependent factor β is estimated to β = 3.37
for graphene and �δii ′ is the vector connecting sites i and i ′. For
the unstrained second-nearest-neighbor hopping, this formula
provides an numerical value of t ′ = t0 exp[−3.37(

√
3 − 1)] ≈

0.085t which is located in the estimated range.
A finite and uniform strain η can be included using a

strategy suggested in Ref. [11] by the replacement |�δii ′ | = r →
(1 + η)r with strain parameter η. Then the strained hopping
amplitudes are given by

t(r,η) = t0e
−3.37·[(1+η)r−1], (6)

and r has to be evaluated at the equilibrium positions of
the neighboring sites, i.e., r = 1 for the nearest neighbor
and r = √

3 for the second-nearest neighbor. This gives a
strain dependence of the nearest-neighbor hopping of t(η) =
t0 exp(−3.37η) and for the second-nearest-neighbor hopping
t ′(η) = t0 exp{−3.37[(1 + η)

√
3 − 1]}.

B. Ab initio interaction parameters

For the determination of the interaction parameters for pz

electrons in graphene from first principles various methods
are available. In the context of biaxially strained graphene
and its effect on the quantum many-body ground states, three
of these methods have been explored in Ref. [11] for the
case of graphene: The Thomas-Fermi (TF) method [16], the
constrained random phase approximation (cRPA) [13], and
the quantum-chemistry-Pariser-Parr-Pople (QC-PPP) method
[15]. In this work we disregard the TF method, which shows
the strongest decay in the interaction parameters when going
to larger distances. Therefore, this method can be considered
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to be well covered by the QMC simulations. Instead, here we
concentrate on the cRPA and the QC-PPP methods which have
stronger nonlocal short-ranged interactions. In particular, due
to a sign problem, it was not possible to study the interaction
profile suggested by the QC-PPP method and we fill this gap,
here.

1. Constrained random phase approximation

In the cRPA the effective interaction profile for graphene’s
pz electrons is described by the formula

V (r) = V̄ (r)

1 − V̄ (r)P (r)
, (7)

where V̄ (r) is the bare Coulomb potential and P (r) is a
polarization function. Explicit values for on-site interaction
U , nearest-neighbor interaction V , and the nearest-neighbor
hopping t for unstrained and strained graphene have been
calculated in Ref. [13], exhibiting a linear dependence of
U,V,t on strain. We directly take the values therein, avail-
able till the fourth-nearest neighbor, as the input for our
calculations. The longer-ranged part of the Coulomb tail is
affected by the surrounding electrons leading to a modified
dielectric constant, i.e., 1/r → 1/[r(1 + π rs/2)], where rs =
e2/(κh̄vF ) is the Wigner-Seitz radius of monolayer graphene
which depends on the Fermi velocity vF =

√
3

2 t a, with a =
a0(1 + η). Alternatively, we parametrize the Coulomb tail with
an artificial dielectric constant ε, i.e., 1/r → 1/(ε r), which is
extrapolated from the available short-range terms.

We note that in the limit r → ∞ the Coulomb potential
approaches 1/r again, i.e., ε → 1, as the two-dimensional
fermion degrees of freedom cannot modify the three-
dimensional Coulomb potential. Here we do not take into
account this latter effect. For better comparison, the cRPA
values of terms other than U,V under strain are taken to be the
same values as in Ref. [11].

Note the fact that the constrained RPA only includes
particle-hole processes which involve high energy bands away
from the Fermi level. Thus, the cRPA interaction parameters
contain the screening effects from bands which are neglected
in our tight-binding model, but not those arising purely from
the considered π bands.

2. Ohno interpolation formula

In the context of biaxially strained graphene it was
suggested in Ref. [13] that the Coulomb interaction can be
modeled by the Ohno interpolation formula [44]

V (rij ,ε) = U√
1 + (

ε U
e2 rij

)2
, (8)

where V (0) = U and ε is a variable screening and for
large distances r → ∞ approaches V (r) → e2/(ε r). The
screening parameter ε can generally be tuned in the interval
ε ∈ [0,∞), where ε → ∞ results in a purely local on-site
interaction V (rij ,∞) = U δij . Furthermore, ε = 0 is the limit
of a constant (nonlocal) interaction V (rij ,0) = U and ε = 1
represents the case of benzene [45]. Reference [13] argues
that employing the values for the interaction parameters U

and V1 as given for phenalenyl (3H-C13H9) molecule from

the quantum-chemistry-Pariser-Parr-Pople (QC-PPP) method
provide an upper bound for the Hubbard U and the interaction
potential V (r), see Ref. [15]. The transformation matrix for
the interaction profile as given by the QC-PPP method is not
positive definite, therefore it was not accessible to the QMC
methods promoted in Ref. [15]. We explicitly study this type
of interaction profile and variations of it taking into account
that the interaction parameters are only known approximately.

A finite strain η can be included employing the strategy
suggested in Ref. [11]: Replace r → (1 + η)r in V (r) and use
t → t0e

−3.37η. The QC-PPP method is designed to describe
small system sizes and larger systems are expected to show
stronger screening and therefore a smaller V (r). We therefore
interpret these parameters as providing an upper limit for
a realistic choice of the interaction profile and note that
extrapolation to larger systems has to be interpreted cautiously.

III. METHOD

To study the quantum many-body instabilities of interacting
fermion systems, we employ the functional renormalization
group approach [36–38] which describes the evolution of the
one-particle irreducible (1PI) vertex functions upon integrating
out high-energy fermionic modes. In a standard level-two
truncation, the interacting system is described by an effective
two-particle interaction term which is proportional to

V
b1,b2,b3,b4
	 (k1,k2,k3)c†b4,k4,σ

c
†
b3,k3,σ ′cb2,k2,σ cb1,k1,σ ′ , (9)

depending on four band indices and three momenta in the
presence of translational and the spin-SU(2) invariance. We
neglect self-energy effects and frequency dependencies. The
additional dependence on an auxiliary energy scale 	 follows
from the inclusion of a soft frequency cutoff [46] to regularize
infrared divergences. Then, with 	 serving as flow parameter,
the fRG flow equation for the two-particle coupling function
reads

d

d	
V

b1,...,4

	 (k1,k2,k3) = T b1,...,4
pp (k1,k2,k3) + T b1,...,4

ph,d (k1,k2,k3)

+ T b1,...,4

ph,cr (k1,k2,k3). (10)

It involves contributions from the particle-particle (Tpp) loop,
and from direct (T d

ph) as well as the crossed (T cr
ph ) particle-

hole loops, see Fig. 2. The initial condition for the flow is
given by the microscopic bare coupling V	0 , provided that
the starting scale 	0 is several orders of magnitude bigger
than the bandwidth. Many-body instabilities towards ordered
states become manifest as divergences of specific coupling
components in the flow to lower energies. The nature of the
symmetry-broken ground state is encoded by the diverging
components, and the scale of divergence provides an upper
estimate for the critical scale 	C , which, in turn, can be used
as an order of magnitude estimate for a gap or an ordering
temperature.

The numerical implementation of the flow equation above is
dealt with via the truncated-unity fRG scheme [31,39], which
follows on the methodological improvements of Refs. [46,47],
and allows for the very high resolution in momentum space
necessary to describe the long-ranged bare Coulomb interac-
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FIG. 2. Left panel: Interaction vertex with conventions for wave
vectors and spin projections. Right panel: Diagrammatic represen-
tation of the right-hand side of Eq. (10), consisting of one-loop (a)
particle-particle, (b) crossed particle-hole, and (c) direct particle-hole
contributions.

tion. Briefly put, there are three major manipulations carried
out in Eq. (10) leading to the TU-fRG flow equations:

(1) The two-particle coupling is split into a bare part V	0

and three single-channel coupling functions 
P , 
D , and

C whose scale derivatives correspond to Tpp,T d

ph, and T cr
ph

loops, respectively. The three original dependencies of the
coupling function on external momenta are rearranged in each
channel so that they depend explicitly on the transfer momenta
l involved in their corresponding loop diagrams. The effective
coupling function may develop strong dependencies on either
of these transfer momenta, while having softer dependencies
on the remaining nontransfer momenta k,k′.

(2) The next modification is to expand the weak dependen-
cies onto a form-factor basis of lattice harmonics {fn}. That
brings each single channel coupling 


B,b1,...,4

l,k,k′ to a so-called

exchange propagator B
b1,...,4
m,n (l), where B = {P,D,C}. Since

the weak momentum dependencies can generally be captured
with a small number of form factors, in practice one is reducing
a three-momentum dependent function into three functions of
a single momentum dependence.

(3) The last step is to insert partitions of unity in the form-
factor basis set at the internal lines of the loops in Eq. (10),
which allows us to separate the fermionic Green’s functions
and two-particle couplings in the loop integrals.

Following this procedure, one arrives at the TU-fRG flow
equations for the exchange propagators shown in Appendix A.
During the flow, encountering divergences in the P , D, or
C channel, reflects a pairing, charge, or magnetic instability,
respectively. The transfer momentum l and form factor indices
m,n at which divergences occur reveal the ordering vector
and the symmetry of the order parameter, respectively. We
refer to Ref. [39] for a thorough derivation of the scheme
including details on computational performance and parallel
scalability, or Appendix A for a quick overview, together
with a discussion of the scheme’s limitations in dealing with
long-ranged interactions. In the following, we focus on the
application of the scheme to the problem at hand.

The Brillouin zone mesh, representing the discretization of
the transfer momentum, we normally use is that of Fig. 3, with
6097 points and a very high density around the � point. They

−2π/3

0

2π/3

−4π/3
√√

3 0 4π/3
√√

3

l y

lx

FIG. 3. Brillouin zone (BZ) of the honeycomb lattice with typical
wave-vector discretization as implemented in the TU-fRG approach.
We choose a resolution of the wave-vector discretization with a higher
density around high-symmetry points, i.e., close to the center of the
BZ, �, the corners of the BZ, K and K ′, and the three M points
(M1,M2,M3).

are constructed in a recursive way, starting from the irreducible
�MK triangle in the BZ and dividing it up into four similar
triangles in each recursion. The minimal number of recursions
is five, the density around the M and K points corresponds to
seven and eight recursions, respectively, and over 40 recursive
steps are done around the � point.

The usual number of form-factor shells considered is three
and four, going up to the fifth one for convergence tests.
The flow equations are solved numerically with a third-order
Adams-Basforth multistep ODE solver [48], and higher order
for convergence tests.

IV. RESULTS

We study the interaction-induced quantum-many-body
instabilities of spin-1/2 fermions on graphene’s honeycomb
lattice in three steps:

(A) Starting from a well-tested setup for the pure t-U
model without further interactions, or strain, we investigate the
effect of a finite second-nearest-neighbor hopping amplitude
on the value for UC/t , i.e., the critical Hubbard interaction that
induces the ordering transition to the AF-SDW.

(B) Next, we go back to the pure t-U model and system-
atically consider extended interactions and their effect on the
system stability. The short-range regime is studied starting
from the local model via a stepwise inclusion of interaction
terms up to a few neighbors in order to motivate the lower
bound for the study of long-range interactions.

(C) Finally, we connect to the lattice QMC results that have
studied the ground state of the model using different sets of
ab initio interaction parameters and an effective long-range
tail ∼1/(ε r), cf. Ulybyshev et al. and Tang et al.. For that
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0

0.5 · 10−2

1.0 · 10−2

1.5 · 10−2

2.0 · 10−2

2.5 · 10−2

2.7 2.75 2.8 2.85 2.9

Ω
C

/
t

U / t

t = 0 t
t = −0.1 t

t = −0.15 t
t = −0.2 t

FIG. 4. Effect of t ′ on the critical scale 	C for a model with pure
on-site interaction and truncation at the second shell of form factors
(solid) and at the third shell of form factors (dashed). Results including
the fourth form-factor shell do not deviate from those including only
till the third, indicating good convergence.

matter, we include the effect of strain to profiles given by cRPA
interaction parameters and the Ohno interpolation formula.
Moreover, we study the effect of a second-nearest-neighbor
hopping on the strained long-range interacting system.

A. Impact of second-nearest-neighbor hopping:
Purely local interaction

We start with the simple t-U model and add a second-
nearest-neighbor hopping amplitude t ′ in order to better
model the full band structure of graphene, cf. Eq. (2). As
the second-nearest-neighbor hopping is known only approx-
imately, we sweep through a range of values for t ′ that are
expected to be relevant for graphene, explicitly |t ′| ∈ [0,0.2 t].
Simultaneously, for t ′ �= 0, we adjust the chemical potential
such that the Fermi level lies at the Dirac point, again.

For t ′ = 0, employing the TU-fRG approach, we obtain a
critical Hubbard interaction of UC ≈ 2.7 t . We note that this
value is smaller than the numerical value of UC,QMC ≈ 3.8 t ,
see also the discussion in Ref. [31]. With the instability
already appearing at smaller UC/t , the TU-fRG seems to
overestimate the effect of fermionic fluctuations. Another
effect that tentatively increases the value of UC/t is the
logarithmic renormalization of the Fermi velocity [9]. This
effect is not included within our truncation scheme since we
do not take into account the flow of the self-energy. Therefore,
we note that we do not expect our results to be quantitatively
precise, but nevertheless, we can give estimates for parameter
trends.

We go on to study the impact of t ′ on the critical
scales 	C of the Hubbard model which we interpret as an
estimate for the typical gap size of the system, see Fig. 4.
We observe that a finite t ′ does not significantly change the
value of the critical on-site interaction. This can be rationalized
as close to the critical interaction, the instability will only
appear for small scales and therefore is governed by the
dispersion close to the Dirac points. This dispersion is not
changed by the presence of t ′ except for the shift in the Fermi
level, which we have absorbed by adjusting the chemical
potential. On the other hand, a finite t ′ changes the critical
scales above UC considerably, cf. Fig. 4. We therefore predict
that a finite second-nearest-neighbor hopping t ′ has a sizable

impact on the expected size of the many-body mass gaps
and transition temperatures. For example, for U/t = 2.85, the
critical scale 	C/t is reduced by about 40% upon inclusion
of a second-nearest-neighbor hopping t ′ = −0.2t , suggesting
smaller gaps than the one that would be predicted in a simple
tight-binding model with nearest-neighbor hopping only.

This suppression of the critical scale is an effect beyond
mean-field or single-channel ladder summations. For compar-
ison, switching off the particle-particle channel, i.e., resorting
to an effective single-channel resummation, and setting U =
2.85 t , a second-nearest-neighbor hopping t ′ = −0.2 t leads
to only a 4% critical scale reduction with respect to t ′ = 0.
The result is the same for all truncations up to the fourth
form-factor shell, since without a particle-particle channel,
there is no significant interchannel feedback and there is a
fast convergence with respect to the number of form-factor
shells. That smaller suppression of the critical scale is due to
the breaking of particle-hole symmetry. At t ′ = 0, the whole
Brillouin zone is perfectly nested with respect to interband
scatterings with zero momentum transfer in the magnetic
channel. A finite t ′ respects the approximate particle-hole
nesting around the Fermi level, and therefore its influence
on the critical scale is mild in terms of the particle-hole
channel alone. On the other hand, it flattens the lower energy
band, leading to higher particle-particle correlations, which
are known to inhibit magnetism [49]. We therefore conclude
that the strong suppression of about 40% seen in Fig. 4 is a
consequence of the interplay between different channels.

B. cRPA parameters without strain

Starting again from the simple t-U model, we next add
nonlocal repulsive terms in a stepwise fashion, using cRPA
interaction parameters [13] available till the fourth-nearest
neighbor, and extrapolating them up to the 20th neighbor.
A nearest-neighbor repulsive coupling V1 triggers a CDW
where occupancy alternates between sublattices, and a V2

coupling induces a modulated charge-density wave with tripled
unit cell. The interplay among these coupling terms caused
some controversy regarding possible exotic ground states,
hinting towards spin liquid and topologically nontrivial phases
[20], where most studies focused on the case of spinless
fermions. However, in more recent studies they are falling
out of favor for the more mundane charge order, both in
the spinless [29] as well as in the spin-1/2 case [30,31].
As shown in Ref. [31], results from our current method do
not support exotic phases either, but the high momentum
resolution allowed us to see novel incommensurate charge
ordering tendencies instead. These arise due to competition
effects, with the charge ordering patterns triggered by first-
and second-nearest-neighbor interactions being incompatible
and the system entering geometrical frustration.

Adding further agents to the competition, i.e., other non-
local density-density interaction terms Vi with i > 2, reveals
a rich and complex landscape of charge ordering instabilities,
interspersed by points where the system remains semimetallic
due to the charge ordering tendencies being balanced and
suppressing magnetism. Here we used cRPA interaction
parameters as a reference. The complex picture obtained is
expected to extrapolate to other realistic parameter choices on
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FIG. 5. Critical scales vs the number of considered nearest-
neighbor interactions. Interlattice terms are marked by triangles,
whereas intralattice terms are represented by circles. For interlattice
terms, a further distinction is made depending on the location of the
leading ordering vector. Blue triangles correspond to charge ordering
tendencies with an ordering vector close to the � point, with the point
m = 1 being a standard CDW and the only commensurate case. Green
triangles are ordering tendencies with ordering vectors anywhere in
the BZ other than �. Gray points correspond to semimetallic behavior
and the absence of an instability.

a qualitative level. Results are shown in Fig. 5, which can be
viewed as a path in a 20-dimensional parameter space, starting
from just on-site and first-nearest-neighbor cRPA parameters,
and each step being taken in a new coupling direction. When
considered alone, pure nth-nearest-neighbor interactions result
in different tendencies depending on whether the interaction
is interlattice or intralattice. Interlattice repulsive terms are
all equivalently minimized by the standard CDW, together
with more complex patterns for interactions other than V1,
which are usually subleading due to degeneracy. Intralattice
repulsive terms each support differently modulated charge-
density waves, with tripled, 9×, and 12× extended unit cells
for pure V2, V5, and V6 terms, respectively, to name some
examples. The rich interplay that arises when considered
together shows ordering vectors and critical scales going back
and forth, from situations which are very unstable towards
incommensurate charge order with a modulation close to that
of the CDW, down to situations where the semimetal remains
stable. The high critical scales take place when there is a big
majority of interlattice terms, since they all have the CDW as
common tendency. The ordering vectors may lie very close to
the � point, but due to the presence of other tendencies they
stay incommensurate. When the situation is better balanced
and the scales drop, ordering vectors may appear anywhere in
the BZ. For instance, as seen in Fig. 5, adding a V3 coupling
yields a lower 	C than for m = 2, and an ordering vector
close to the K point. Even though it supports the CDW, V3

also triggers stripe ordering patterns, manifest as subleading
peaks in the charge propagator which are threefold degenerate
and not dominant, but still take part in the competition. To
highlight the complexity of the interplay, it must be mentioned
that the CDW triggering tendencies in V1 and V3 do actually
reinforce each other, as critical scales are higher if they are
considered together rather than separate, and with all other
couplings set to zero. In contrast, if U and V2 are not set to

zero, the additional tendencies brought by V3 to the interplay
lead to a lower critical scale.

This analysis is meant to motivate our choice for the lower
bound of the Coulomb tails considered next. We include at least
interactions up to the 50th neighbor, where charge order effects
are sufficiently suppressed to have a robust semimetal. This
is the case for both choices of interaction parameters, either
from cRPA or from the Ohno interpolation formula. On the
other hand, although the discussion of this intermediate-range
physics might not be directly relevant to strained graphene,
it is of importance in the context of cold atoms trapped in
optical lattices, where this rich charge order landscapes may
be physically realized.

Here we add a short technical discussion of the RG
flow for a stable semimetal, before going into the study
of strain-induced instabilities. At T = 0 and t ′ = μ = 0,
Coulomb interactions stay unscreened due to the vanishing
DOS at the Fermi level. Using the soft frequency 	 regulator
of Ref. [46], the intraband particle-hole bubble with zero
momentum transfer is suppressed by the regulator itself when
	 is large, whereas for small 	 the vanishing DOS brings
it down. The interband particle-hole bubble does not play a
qualitatively relevant role for charge screening [50], and thus
we focus on the intraband components in this discussion. The
particle-hole bubble’s behavior in flows with the 	 regulator
is shown in Appendix C. In the TU-fRG flow equations,
cf. Eqs. (A7), the bubbles involved are differentiated with
respect to 	. These exhibit a sign change at 	 ≈ 0.63t , where
the bubble has an extremum. Thus, the Coulomb interaction
experiences screening in the flow for 	 > 0.63t , followed by
antiscreening as 	 goes to zero, reconstructing the unscreened
bare interaction one had for 	 → ∞. This works out well
for single-channel flows with the charge channel only which
is equivalent to RPA. However, in the full flow with all
three channels, the additional contributions from interchannel
feedback may prevent the neat reconstruction of the bare
interaction, which either saturates to a screened interaction,
or overshoots and becomes fully unscreened for a finite 	.
Whether it saturates or overshoots depends very sensitively
on the choice of parameters, and the order of the ODE
solver and step size. Therefore, this effect is most likely a
numerical artifact, since we are attempting to obtain a divergent
solution using explicit ODE solvers, which lack A-stability.
It is thus unsurprising that inaccuracies in the interchannel
feedback, mainly due to form-factor basis truncation, may
lead to more severe accumulated inaccuracies in the charge
screening behavior. The latter mainly happens near critical
values for a magnetic instability in the presence of long-ranged
charge correlations (see gray areas in the phase diagrams of
next section). In such situations we cannot flow below scales of
	 ∼ 10−3–10−2t without encountering numerical overflows
in the charge channel, due to the overestimated antiscreening.
For more details about computational complications we refer
to the Appendix C.

C. Effects of strain

The Brillouin zone meshes used allow us to resolve inter-
action profiles including beyond the 106th-nearest neighbor.
To parametrize the interaction range, instead of including
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FIG. 6. cRPA and Ohno interaction profiles for λ = 1/r103 with
0% and 12% strain.

different number of neighbors as done in Sec. IV B, all
terms up to the 104th-nearest neighbor are considered and
an artificial screening factor e−λr is multiplied to the potential
to smoothly switch off the long-range tail at the indicated
number of nearest-neighbor interactions, i.e., λ = 1/rn, with
rn being the distance to the furthest interaction parameter.
Further ranged profiles are considered whenever critical strain
values do not converge before λ = 1/r104 . Strain is accounted
for as described in Sec. II B, with example profiles shown in
Fig. 6. In the last subsection we study the effect of including a
finite second-nearest-neighbor hopping.

1. cRPA parameters with strain

Setting t ′ and μ to zero on our model parameters, we employ
a cRPA interaction profile and study the effect of finite strain η

on the system’s many-body instabilities. The concrete values
used are the same as in Refs. [11,13]. We find that long-ranged
cRPA interaction profiles give rise to an antiferromagnetic
SDW instability for a strain larger than a critical value, see
Fig. 7. The critical strain necessary to induce the instability
converges with respect to the inclusion of yet longer-ranged
Coulomb tails, staying at 6% for profiles ranging up to the
105th neighbor and a corresponding λ = 1/r105 . Importantly,
we observe that this type of interaction profile does not give
rise to other leading instabilities, but the AF-SDW, i.e., no
charge ordering tendencies, dominate the phase diagram. We
have checked that our results are robust with respect to denser
wave-vector meshes, the inclusion of a fifth form-factor shell,
or the use of a fifth-order ODE solver. The dominance of the
AF-SDW ordering tendency agrees well with findings from
the QMC simulations on a qualitative level. Based on our
earlier considerations within the honeycomb-Hubbard model,
cf. Sec. IV A, we expect that our approach overestimates the
effects from fermionic fluctuations and therefore gives rise
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FIG. 7. Effect of strain on the electronic instabilities of the
model with cRPA interaction parameters. The horizontal axis de-
notes an artificial screening length set at the nth neighbor’s bond
distance. The black regions marked with white crosses represent
the semimetallic behavior. Filled white circles indicate an instability
towards a SDW-AFM, with corresponding critical scales encoded in
the background color. Gray regions are expected to stay semimetallic,
but unfortunately we cannot flow down to low enough scales for those
points. See text for further details.

to an underestimated critical strain. This expectation agrees
with the result from the QMC calculations where for the cRPA
parameters no semimetal insulator transition could be observed
for strains up to 18%.

We note that there is some ambiguity in the initialization
procedure, relating to which channel contains the on-site
Hubbard contribution: The most neutral or unbiased choice is
to assign 1/3 of it to each of the three channels, resulting in the
phase diagram presented here. However, other formally equiv-
alent ways to initialize the on-site term are expected to yield
similar results, and we consider them as a consistency check.
If the on-site Hubbard U is fully assigned to the magnetic
channel, one introduces some bias towards magnetism and
obtains a critical strain of 3% for the longer-ranged profiles. In
contrast, if U is fully assigned to the charge channel instead,
a critical strain of 10% is obtained for long-ranged profiles.
A more detailed discussion of this issue can be found in
Appendix B. The qualitative picture that the cRPA interaction
profile gives rise to an AF-SDW transition beyond a critical
strain is nevertheless the same, independent of initialization.

2. Ohno formula and strain

Next, setting again t ′ and μ to zero on our model
parameters, we study Ohno interaction profiles with finite
strain η which remained elusive to the QMC calculations.
We set the unstrained values in Eq. (8) to U/t = 3.0, and
choose ε so that V1/t = 2.0, then proceed analogously to the
previous subsection, cf. Fig. 8. The choice of a slightly smaller
U than in cRPA is purposely done for contrast, keeping a
similarly strong nonlocal tail. Also note that under strain, the
cRPA parameters tend faster towards a localized interaction
than the Ohno parameters. This leads to a considerably larger
critical strain for this interaction profile as compared to the
strained cRPA parameters. In fact, the critical strain necessary
to induce an instability converges to 11% when including up
to the 105th neighbor in the interaction. Also, in this case no
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FIG. 8. Effect of strain on the electronic instabilities of the
model with Ohno interaction parameters. The horizontal axis de-
notes an artificial screening length set at the nth neighbor’s bond
distance. The black regions marked with white crosses represent
the semimetallic behavior. Filled white circles indicate an instability
towards a SDW-AFM, with corresponding critical scales encoded in
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but unfortunately we cannot flow down to low enough scales for those
points. See text for further details.

leading instability other than the AF-SDW appears. Our results
are as well robust with respect to the use of denser wave-vector
meshes, the inclusion of a fifth form-factor shell, or the use
of a fifth-order ODE solver. Again, there is some ambiguity
in the initialization procedure. The results presented in Fig. 8
correspond to the most neutral or unbiased choice, distributing
the on-site U contribution equally among the three channels.
With the on-site Hubbard U fully contained in the magnetic
channel, we get a critical strain of 8% for the longer-ranged
profiles, and if U is fully assigned to the charge channel
instead, the critical strain is 15%. As a general trend, we
observe that a more strongly pronounced long-range tail in the
interaction profile tends to increase the critical strain required
to induce a semimetal-insulator transition or, in other words,
it stabilizes the semimetallic behavior of the graphene model.

We also consider deviations from the model parameters
used so far, with the aim of testing the qualitative robustness
of the SM to AF-SDW transition indicated by our instability
analysis. We find that slight modifications of ε in Eq. (8)
result in a shift of the critical strain, but does not change
the nature of the instability, i.e., the tendency towards the
AF-SDW instability prevails. In Fig. 9 we exhibit the effect
of increasing ε to a value that yields V1/t = 1.75, resulting
in a smaller critical strain. This is in agreement with our
earlier observation since the larger value of ε leads to a
less-pronounced long-range tail. Setting smaller ε’s aggra-
vates the aforementioned technical difficulties that arise with
the unscreening of charge interactions. For instance, when
choosing ε such that V1/t = 2.25, we can only say that the
critical strain is shifted to about 15%–18%, but cannot give a
more definite answer. Instead of raising the nonlocal terms to
higher values, we can alternatively lower the on-site interaction
strength. If we set U/t = 2.5, keeping the rest unchanged, we
obtain an instability to incommensurate charge order for strains
above 10%–15%, and recover the antiferromagnet when strain
reaches about 30%. In these comparisons, one has to push
the ratio between on-site and extended terms to unrealistic
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FIG. 9. Critical scales vs strain for different interaction strengths
of the Coulomb tail in the Ohno formula.

values in order to trigger instabilities other than the AF-SDW.
This is due to the fact that the Coulomb tail is modified as
a whole, which does not sufficiently disturb the balanced
competition among charge ordering tendencies. However, if
we disturb that balance, charge order is much more likely to
appear. In the original set of parameters, with U/t = 3.0 and
ε = 1.25, it suffices to increase V1/t = 2.0 to V1/t = 2.25
while keeping the rest unchanged, to make even the unstrained
system unstable towards an iCDW. The quantitative impact of
this deviations has not been tested for convergence.

3. t-t ′-Hubbard-Coulomb model with strain

Finally, we study the full model Hamiltonian to explore
a close-to-realistic model for graphene. To that end, we
include a second-nearest-neighbor hopping as well as the two
interaction profiles from the cRPA and the Ohno method and
investigate the effect of a finite amount of strain. Explicitly,
we compare the critical scales for the appearance of a many-
body instability for three different choices of the unstrained
second-nearest-neighbor hopping t ′ ∈ {0,−0.1t,−0.2t}. We
note that the application of strain quickly reduces the value of
the second-nearest-neighbor hopping t ′ following the relation
in Eq. (6), while increasing the interaction strength relative to
t . Therefore, we expect a smaller impact of t ′ on the critical
scales as compared to the pure modification of the Hubbard
interaction as studied in Sec. IV A. The results of this study
are shown in Fig. 10 and confirm this expectation. For both,
the cRPA as well as the Ohno interaction profiles, the critical
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FIG. 10. Critical scales vs strain for different values of the
second-nearest-neighbor hopping with cRPA (solid) and Ohno
(dashed) interaction parameters.
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TABLE I. Effective Hubbard repulsion according to Ref. [14] for
the different interaction profiles at different values of strain. Ohno
1 and 2 denote the two different profiles considered in Fig. 9 with
stronger and weaker Coulomb tails, respectively. See the text for
further discussion.

i.a. profile Strain U/t V1/t U ∗/t Instability

cRPA 0% 3.3 2.0 1.3 x
cRPA 6% 4.05 2.25 1.8

√
cRPA 12% 5.0 2.6 2.4

√

Ohno 1 0% 3.0 2.0 1.0 x
Ohno 1 12% 4.5 2.75 1.75

√

Ohno 2 0% 3.0 1.75 1.25 x
Ohno 2 8% 3.9 2.15 1.75

√

scales for different values of strain only weakly depend on
the chosen unstrained value of the second-nearest-neighbor
hopping t ′.

Finally, we comment on a suggestion for an effective
honeycomb Hubbard model derived from the honeycomb
Hubbard-Coulomb model as put forward by Schüler et al in
Ref. [14]. Noting that nonlocal charge interactions stabilize
the Dirac semimetal against magnetic ordering, and provided
the absence of other instabilities, they proposed a pure on-site
Hubbard model with downscaled local interaction U ∗ as a
reasonable approximation. More specifically, one would then
have U ∗ = U − V̄ , where V̄ is a weighted average of nonlocal
terms which they further approximate by V̄ ≈ V1. Concrete
values for the interaction profiles considered in this work can
be found in Table I, where a common trend of U ∗

C ≈ 1.75t

can be inferred, which is to be compared to the UC ≈ 2.7t

of the original local Hubbard model. Nonetheless, quantitative
differences aside, our results support the validity of an effective
on-site model. The crucial aspect here is the absence of leading
ordering tendencies other than antiferromagnetism.

V. CONCLUSIONS

In the following, we summarize our main results. First, we
find a sizable reduction of up to 40% for the critical scales in
the antiferromagnetic transition of the honeycomb-Hubbard
model upon inclusion of a finite second-nearest-neighbor
hopping t ′ chosen within the range of suggested ab initio
values. We showed that this effect is beyond single-channel
resummations and results from the complex interplay between
different interaction channels. This finding suggests that a
finite t ′ causes a considerable reduction of expected gap sizes
in the honeycomb-Hubbard model.

Furthermore, the consecutive inclusion of more and more
remote nonlocal interaction terms up to the 20th-nearest
neighbor following the unstrained cRPA interaction profile
provides a sequence of different (in-)commensurate charge
ordering patterns. The critical scales of these charge orders
discontinuously jump from rather large values to zero and
back, indicating a strong competition between these orders.
Magnetic instabilities are suppressed. When including enough
interaction terms, the competition between the charge ordering
patterns drives the system into a frustrated regime where no

instability appears and semimetallic behavior prevails. We
conclude that the semimetallic behavior of graphene is not
a result of the smallness of interactions but due to a strong
competition and an eventual frustration of different ordering
tendencies.

This frustration can be lifted by application of a biaxial
strain which we have studied by employing two different
types of long-ranged interaction profiles, i.e., the cRPA and
the Ohno interpolation, to take into account the uncertainties
in the determination of interaction parameters. We showed
that for both the cRPA as well as the Ohno profiles, a critical
strain exists beyond which the system develops a quantum
many-body instability. The TU-fRG values for the critical
strain lie between about 5% (cRPA) and 11% (Ohno). Notably,
the nature of the leading instability for these long-ranged
interaction profiles is of AF-SDW type, i.e., charge order-
ing tendencies are never preferred despite their importance
for intermediate-range potentials. This option could not be
explored before, as the QMC calculations typically suffer
from a sign problem for interaction potentials with a strong
tail. The nature of the possible instabilities turn out to be the
same for both pure on-site and long-ranged interacting models,
which also persists under inclusion of a finite second-nearest-
neighbor hopping term. Thus, this is supporting evidence for
the qualitative validity of effective honeycomb t-U -Hubbard
models in place of t-t ′-Hubbard-Coulomb models.

Generally, the results of the TU-fRG approach presented
here, overestimate the effect of fermionic fluctuations which
leads to an earlier onset of ordering tendencies. We conjecture
that this is in part caused by the neglect of self-energy
effects which would, for example, lead to finite lifetime
effects [51–53] and the renormalization of the Fermi velocity
[9]. Therefore, for more quantitative estimates, an inclusion
of self-energy effects within the fRG approach would be
desirable. We expect this task to be numerically demanding
but feasible in the future.
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APPENDIX A: TRUNCATED-UNITY FUNCTIONAL
RENORMALIZATION GROUP SCHEME

In the presence of U(1), SU(2), and translational invariance,
the flow equation for the two particle coupling function in the
level-two truncation of the hierarchy for 1PI vertices reads

∂	V b1,...,4 (k1,k2,k3) = T b1,...,4
pp (k1,k2,k3) + T cr, b1,...,4

ph (k1,k2,k3)

+ T d, b1,...,4

ph (k1,k2,k3),
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where ki = (ωi,ki), dependencies on the regularization scale 	 are implicitly understood. The three contributions in the right-hand
side read

T b1,...,4
pp = −

∫
dp[∂	 G(p,b) G(k1 + k2 − p,b′)]V b1b2bb′

(k1,k2,p) V bb′b3b4 (p,k1 + k2 − p,k3),

T cr, b1,...,4

ph = −
∫

dp[∂	 G(p,b) G(p + k2 − k3,b
′)]V b1b

′bb4 (k1,p + k2 − k3,p) V bb3b2b
′
(p,k2,k3),

T d, b1,...,4

ph = −
∫

dp[∂	 G(p,b) G(p + k3 − k1,b
′)][−2V b1bb3b

′
(k1,p,k3) V b′b2bb4 (p + k1 − k3,k2,p)

+ V b1b
′bb3 (k1,p,p + k1 − k3,p) V bb2b

′b4 (p + k1 − k3,k2,p) + V b1b
′bb4 (k1,p,k3) V bb3b2b

′
(k2,p + k1 − k3,p)]. (A1)

where
∫

dp is shorthand notation for
∫

dp
ABZ

1
β

∑
ω

∑
bb′ , and G’s are regularized bare Green’s functions including the soft

frequency cutoff introduced in Ref. [46]. For a frequency independent interaction and setting external frequencies to zero, the
internal frequency sum in Eqs. (A1) can be done analytically. For momentum dependencies, we follow the steps outlined in Sec.
III, which lead to the TU-fRG scheme [31,39]. The coupling function V is rewritten into a bare part V 	0 and three single-channel
coupling functions

V {bi }(k1,k2,k3) = V
	0, {bi }

k1,k2,k3
− 


SC, {bi }
k1+k2,

k1−k2
2 ,

k3−k4
2

+ 

C, {bi }
k3−k2,

k1+k4
2 ,

k2+k3
2

+ 

D,{bi }
k1−k3,

k1+k3
2 ,

k2+k4
2

, (A2)

which are generated during the flow in the following way:

∂	

SC, {bi }
k1+k2,

k1−k2
2 ,

k3−k4
2

= −T {bi }
pp (k1,k2,k3),

∂	

C, {bi }
k3−k2,

k1+k4
2 ,

k2+k3
2

= T cr, {bi }
ph (k1,k2,k3), (A3)

∂	

D, {bi }
k1−k3,

k1+k3
2 ,

k2+k4
2

= T d, {bi }
ph (k1,k2,k3).

Each 
 has a strong dependence on the transfer momenta involved in its corresponding loop diagram (first argument), which
will be kept explicitly, and two other dependencies which will be expanded onto a basis of lattice harmonics:



SC, {bi }
l,k,k′ =

∑
m,n

fm(k) f ∗
n (k′) P {bi }

m,n (l), (A4)



C, {bi }
l,k,k′ =

∑
m,n

fm(k) f ∗
n (k′) C{bi }

m,n(l), (A5)



D, {bi }
l,k,k′ =

∑
m,n

fm(k) f ∗
n (k′) D{bi }

m,n(l). (A6)

After the insertion of partitions of unity in the form factor basis in-between V ’s and G’s in Eqs. (A1), the flow equations for 
s
in (A3) can be rearranged into flow equations for the so-called exchange propagators P , C, D,

Ṗ {bi }
m,n (l) =

∑
m′,n′

∑
b,b′

V
P, b1b2bb′
m,m′ (l) χ̇

pp, bb′
m′,n′ (l) V

P, bb′b3b4
n′,n (l),

Ċ{bi }
m,n(l) =

∑
m′,n′

∑
b,b′

−V
C, b1b

′bb4
m,m′ (l) χ̇

ph, bb′
m′,n′ (l) V

C, bb3b2b
′

n′,n (l),

(A7)
Ḋ{bi }

m,n(l) =
∑
m′,n′

∑
b,b′

[
2V

D, b1bb3b
′

m,m′ (l) χ̇
ph, bb′
m′,n′ (l) V

D, b′b2bb4
n′,n (l) − V

C, b1b
′bb3

m,m′ (l) χ̇
ph, bb′
m′,n′ (l) V

D, bb2b
′b4

n′,n (l)

− V
D, b1bb3b

′
m,m′ (l) χ̇

ph, bb′
m′,n′ (l) V

C, b2b
′bb4

n′,n (l)
]
,

with

χpp, bb′
m,n (l) =

∫
dp G

(
ωp ,

l
2

+ p,b

)
G

(
−ωp ,

l
2

− p,b′
)

f ∗
m(p) fn(p),

(A8)

χph, bb′
m,n (l) =

∫
dp G

(
ωp ,p + l

2
,b

)
G

(
ωp ,p − l

2
,b′

)
f ∗

m(p) fn(p),

and channel-projected coupling functions

V P, {bi }
m,n (l) = P̂ [V {bi }]m,n(l), V C, {bi }

m,n (l) = Ĉ[V {bi }]m,n(l), V D, {bi }
m,n (l) = D̂[V {bi }]m,n(l), (A9)
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where projection operators P̂ , Ĉ, D̂ act as an inverse to the expansions (A4), and derivatives with respect to 	 are written in dot
notation.

Starting the flow at a high enough 	, the values for the channel-projected V ’s in (A9) are the corresponding projections of
the bare coupling V 	0 , which take the form

P̂
[
V 	0, {bi }]

m,n
(l) =

∑
{oi }

∑
R

{oi }
n

Ṽ {oi }(R{oi }
n

) ∫
dk f ∗

m(k) e−ik·R{oi }
n T̂

b1,o1
l
2 +k

T̂
b2,o2
l
2 −k

∫
dk′ fn(k′) eik′ ·R{oi }

n

(
T̂

b3,o3
l
2 +k′

)∗(
T̂

b4,o4
l
2 −k′

)∗
,

Ĉ
[
V 	0, {bi }]

m,n
(l) =

∑
{oi }

∑
R

{oi }
n

Ṽ {oi }(R{oi }
n

) ∫
dk f ∗

m(k) e−ik·R{oi }
n T̂

b1,o1

k+ l
2

(
T̂

b4,o4

k− l
2

)∗ ∫
dk′ fn(k′) eik′ ·R{oi }

n T̂
b2,o2

k′− l
2

(
T̂

b3,o3

k′+ l
2

)∗
, (A10)

D̂
[
V 	0, {bi }]

m,n
(l) =

∑
{oi }

∑
R

{oi }
n

Ṽ {oi }(R{oi }
n

)
e−il·R{oi }

n

∫
dk f ∗

m(k) T̂
b1,o1

k+ l
2

(
T̂

b3,o3

k− l
2

)∗ ∫
dk′ fn(k′) T̂

b2,o2

k′− l
2

(
T̂

b4,o4

k′+ l
2

)∗
,

where Ṽ {oi }(R{oi }
n ) are the bare coupling strengths at nth-

nearest-neighbor bond vector R{oi }
n connecting the orbitals {oi},

and T̂
bi ,oi

ki
are the transformation elements between orbital and

band degrees of freedom, chosen as

T̂k = 1√
2

(
h(k)
|h(k)| −1
h(k)
|h(k)| 1

)
, (A11)

h(k) =
∑

δ

eik·δ, (A12)

where δ are the nearest-neighbor bond vectors. The exchange
propagators are zero initially, and they absorb the renormal-
ization corrections to the bare coupling during the flow. In
the usual instability analyses, the flow typically begins with
a weakly coupled situation and it must be stopped as soon
as coupling function components grow beyond the order of
magnitude of the single-particle bandwidth. This only applies
till inclusions of very few nearest-neighbor interaction terms
in the bare coupling. The 1

r
behavior of the Coulomb potential

translates to a 1
|l| behavior for its two-dimensional Fourier

transform. Since the number of neighbors in our calculation is
finite, the bare coupling stays finite at zero l, but with a high
enough number of neighbors included it takes values which
are well over the order of magnitude of the single-particle
bandwidth. The alternative is to impose the stopping condition
on the difference between renormalized and bare coupling.
That way, even though the flow starts with a projected bare
coupling in the charge channel exhibiting a strong peak,
attention is paid to whether new sharp structures are generated
during the flow. That not being the case, we interpret the result
as a semimetal.

APPENDIX B: INITIALIZATION PROCEDURE

For the sake of generality and unbiasedness, the initial
bare interaction V 	0 was kept as a separate term in the
channel decomposition of Eq. (A2). However, in practice
it may be more convenient to assign it as initial condition
in the channels, especially when dealing with Coulomb
interactions. For instance, the extended density-density bare
interactions considered in this work are most accurately

described in the D channel, whereas for the constant on-site
bare term it is more natural to split the contribution equally
among channels. This can be understood from Eq. (A10)
if one momentarily ignores the multiorbital case. In a one-
band situation, a Coulomb interaction projected onto the
D channel is fully contained in the l dependence of the
on-site form-factor components. In contrast, the projection
of a Coulomb interaction into the P and C channels
takes the form

∑
Rn

1
|Rn|

∫
dk f ∗

m(k) e−ik·Rn
∫

dk′ fn(k′) eik′ ·Rn ,
which after the R sum, yields nonzero contributions for all
diagonal terms in the form-factor indices, with no dependence
in l. These values correspond to the interaction strength at
the distance where the form factors are defined in real space.
Thus, a given interaction would need as many form factors as
lattice positions covered by its range, in order to be completely
captured in each and every channel. This is not feasible for
long-ranged interactions, and it suffices to have them properly
captured in one channel, and truncated in the remaining two.
We normally include form factors covering at least till the
10th-nearest neighbor, so that channels other than D still get
their fair share of the Coulomb interaction, though truncated. In
the two-band situation considered in this work, the discussion
above holds, although nondiagonal form-factor components
take finite but small initial values.

Going back to the original point, the main problem that
arises when keeping V 	0 separate in the decomposition is
that V P and V C often display spurious behavior. In this
decomposition, D collects big counterterms to V 	0 when the
effective charge interaction gets screened. In turn, the feedback
from D into the other two channels should also counter the
respective projections of V 	0 , so that all three projected
V ’s describe the same screened interaction. However, due
to inaccuracies in the interchannel projections (mainly the
form-factor basis truncation) some V P and V C components
remain unbalanced, vertex symmetries are not satisfied, and
the flow usually ends up signaling unphysical instabilities
when interactions get unscreened. Instead of separating bare
couplings and their renormalized corrections, and having
to rely on their accurate counterbalancing in all channels,
keeping them together results in more numerically stable
flows. Furthermore, one avoids computing some challenging
integrals in Eq. (A10), since extended interactions are all put
into the D channel, where the complex exponential containing
R vectors lies outside the integrals. Initializing extended
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FIG. 11. Particle-hole bubble at zero momentum transfer vs 	,
all in units of t , with intraband (blue) and interband (red) components.

interactions in the other two channels involves integrating
functions of R, which do not have the periodicity of the
reciprocal lattice in a bipartite lattice system, and lead to
discontinuities when backfolded into the first BZ.

The price to pay is some loss of unbiasedness, since with
finite precision and a truncated form-factor basis, different
assignments of the bare interaction onto the channels may
produce different results. In particular, the Hubbard on-site
term U can be equivalently formulated as either density-
density, spin-spin, or pairing interaction. One then introduces
a slight bias towards magnetism when initializing U fully
as spin-spin interaction, for instance. Although splitting U

equally among the three channels is the most neutral choice,
other possibilities can be considered for consistency checks,
as is done in this work. As reference, the critical on-site
coupling strength obtained by splitting U equally among the
three channels is UC = 2.7 t , in accordance with the resulting
UC when keeping V 	0 unassigned to any channel. Initializing
U in the magnetic or charge channels yields UC = 2.5t and
3.1t , respectively.

APPENDIX C: COULOMB UNSCREENING

Here we discuss the behavior of charge interactions at
small 	 scales, where they experience antiscreening and flow
back towards the unscreened bare Coulomb interaction due
to the vanishing DOS. This can be understood by looking at
the scale behavior of the particle-hole bubble χph, defined
in Eq. (A8) and plotted in Fig. 11. The vanishing DOS
suppresses the intraband components as one approaches the
Fermi level, resulting in a sign change of the 	-differentiated
bubbles involved in the flow equations, cf. Eqs. (A7), reversing
the screening of electric charge. As already mentioned in
the main text, this unscreening is not easy to deal with
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FIG. 12. Norm of transfer momentum l for which D is maximal
vs 	, all in units of t .

numerically. Any slight underestimation or overestimation of
unscreening effects is magnified during the flow, resulting in
either some screening persisting, or in charge interactions
becoming fully unscreened before reaching the Fermi level.
The overestimation is more problematic in practice, since
Coulomb interactions suddenly grow huge and may even cause
numerical overflows. Introducing a small chemical potential
has no effect if it is smaller than the lowest scales we can flow
to under this unscreening problematic. A larger μ of the order
of such scales (∼10−3–10−2) naturally leads to a saturation of
unscreening behavior, and as it corresponds to a system with
finite DOS, screening remains.

The unscreening problematic is also exacerbated by in-
creasing the order of the ODE’s solver, being more prone to
overestimation and even displaying oscillating behavior unless
the steps in 	 are taken to be unfeasibly small. Going over to a
predictor-corrector scheme like the Adams-Basforth-Moulton
multistep method cures the oscillations.

Figure 12 illustrates another subtlety of the charge un-
screening in the 	-regulator scheme. In the reconstruction
of the bare Coulomb interaction taking place at low scales,
the maxima of both particle-hole bubble and D propagator
do not stay at the � point, but at small wave vectors, which
nonetheless tend towards � as 	 → 0. The maxima of χph start
off at the K points for very high 	, wander inwards in the BZ,
and outwards again to the M points as one sweeps across the
van Hove singularities in the flow, and inwards again towards
the � point. The D propagator is peaked at � almost for the
whole screening stage. However, as the unscreening stage gets
closer, both get peaked at small but finite momenta. The bubble
peak is located at a bigger wave vector than the propagator,
but follows the same trend as depicted in Fig. 12.
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