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Restricted Boltzmann machine learning for solving strongly correlated quantum systems
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We develop a machine learning method to construct accurate ground-state wave functions of strongly interacting
and entangled quantum spin as well as fermionic models on lattices. A restricted Boltzmann machine algorithm
in the form of an artificial neural network is combined with a conventional variational Monte Carlo method with
pair product (geminal) wave functions and quantum number projections. The combination allows an application
of the machine learning scheme to interacting fermionic systems. The combined method substantially improves
the accuracy beyond that ever achieved by each method separately, in the Heisenberg as well as Hubbard models
on square lattices, thus proving its power as a highly accurate quantum many-body solver.
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I. INTRODUCTION

Obtaining accurate ground-state wave functions of many-
body quantum Hamiltonians is one of the grand challenges
in condensed matter physics. Great successes so far are, for
example, Bardeen-Cooper-Schrieffer (BCS) wave functions
for conventional superconductivity [1], Bethe-ansatz wave
function for one-dimensional interacting systems [2], and
Laughlin wave functions for fractional quantum Hall effect [3].

However, in order to construct the ground-state wave
functions of many-body interacting systems and grasp the
essential physics encoded in them, we often need to resort
to numerical estimates. Currently, many numerical techniques
are available such as the variational Monte Carlo (VMC)
method [4–9], the density matrix renormalization group
[10,11], tensor network methods [12,13], and the path-integral
renormalization group [14]. Among them, the VMC method
offers an accurate ground-state wave function for quantum
spins as well as fermions on various lattices.

Recently, alternative approaches, based on machine learn-
ing, have attracted growing attention in many-body physics
[15–48]. In particular, Carleo and Troyer [49] have proposed
a machine-learning algorithm, which uses a restricted Boltz-
mann machine (RBM) as a variational wave function |�〉 for
representing the ground states of quantum spin systems. In
this scheme, hidden artificial neurons are introduced on top of
the physical degrees of freedom (quantum spins), to mediate
entanglement in the state. The RBM variational wave functions
are self-optimized through machine learning.

We can express a general quantum state |�〉 by using the
Fock space basis {|x〉} in the form of a variational function as

|�〉 =
∑

x

|x〉F(x)〈x|φref〉 (1)

with a correlation factor F(x) [50,51] and a reference state
|φref〉. The RBM wave function in Ref. [49] is obtained
by employing an RBM for F(x) and a product state for
|φref〉 so that 〈x|φref〉 = 1 is satisfied for any orthonormalized
complete set x. The product state |φref〉 is not able to describe
nonlocal quantum entanglement, although it is essential in
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strongly correlated systems. Then the entanglement has to
be represented solely by the RBM factor F(x). However,
alternative choices of |φref〉 may already incorporate typical
quantum correlations and can potentially allow |�〉 to more
efficiently capture ground state entanglement. In fact, in the
many-variable VMC (mVMC) method [9], a pair-product
(PP) wave function (or equivalently geminal wave function
in quantum chemistry [52–54]) is chosen as |φref〉, which
can efficiently capture a substantial part of the nonlocal
entanglement in strongly correlated quantum systems by using
many variational parameters.

In this paper, we propose a variational wave function
for studying strongly correlated quantum systems called
RBM+PP which combines a flexible and nonempirical cor-
relation factor given by RBM and entangled reference state
given by the PP wave function to inherit the advantages of both.
When applied to the two-dimensional (2D) Heisenberg model
on a square lattice, we show that our method significantly
outperforms the original RBM method [49], which itself
outperforms existing numerical techniques for finite lattices
based on tensor networks.

The PP wave function can also flexibly incorporate nonlocal
correlations in fermionic systems and account for the fermionic
sign, allowing RBM+PP to be applied to interacting systems
of fermions. When applied to the Hubbard model we show
that the combined method achieves greater accuracy than
either method applied separately. The RBM+PP method thus
provides a powerful tool not only for quantum spins but also
for highly entangled quantum states such as strongly correlated
itinerant fermions.

The structure of the paper is as follows. In Sec. II, we
explain the RBM+PP method after introducing individual
RBM and PP wave functions. In Sec. IV, we apply the
RBM+PP scheme to Heisenberg and Hubbard models and
show significant improvement from RBM and mVMC results.
The representability of the RBM+PP wave function is dis-
cussed in detail in Sec. V. Finally, we give a summary and
present future perspectives in Sec. VI.

II. RBM+PP METHOD

In this section, we will define RBM and PP states and
explain how these are combined in the RBM+PP method.
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FIG. 1. Schematic illustration of (a) P-RBM and (b) RBM+PP to
represent many-body wave function. Physical variables in the visible
layer couple to artificial neurons in the hidden layer through Wik

interactions in Eq. (2). Whereas no entanglement among physical
variables exists in the absence of the hidden layer in P-RBM,
RBM+PP provides direct entanglement via f σσ ′

ij parameters in
Eq. (3). For visibility, only a small portion of connections by Wik

and f σσ ′
ij are shown.

A. RBM wave function

The RBM state in Ref. [49] for spin Hamiltonians is given
by setting F(x) = N (x) with a neural-network correlation
factor N (x) and |φref〉 to be the product state |φproduct〉
(〈x|φproduct〉 = 1) in Eq. (1), which from now we refer to as
product-basis RBM (P-RBM) [Fig. 1(a)].

N (x) is defined by an artificial neural network (ANN) as

N (x) =
∑
{hk}

exp

(∑
i

aiσi +
∑
i,k

Wikσihk +
∑

k

bkhk

)
, (2)

where x = (σ1,σ2, . . . ,σNvisible ) is a real space configuration
of Nvisible physical variables and σi is the ith discrete-valued
physical variable (visible-layer spin variable). In the S = 1

2
Heisenberg model, we take σi = 2Sz

i = ±1 with Sz
i being the

z component of the S = 1
2 spin at site i. Here Nvisible is equal to

the number of sites Nsite. The auxiliary pseudospin variables
hk = ±1 are for the hidden neurons and {ai,Wik,bk} is a set
of variational parameters. In this study, we take variational
parameters to be real. Importantly, as there are no weights
connecting hidden neurons, the sum over hidden variables can
be evaluated exactly and Eq. (2) can be reduced to the form
N (x) ≡ ∏

k 2 cosh(bk + ∑
i Wikσi) × e

∑
i aiσi , which can be

computed efficiently for each x.
In fermionic models we define a different RBM state which

we refer to as F-RBM. The correlation factor F(x) = N (x)
is taken similarly but by slightly modifying the spin case. For
|φref〉, our most primitive choice is a Fermi-sea state |φFermi-sea〉
rather than the product state. This is because the product
state is too poor in representing fermionic entanglement. The
Fermi sea is the ground state of the noninteracting fermion
lattice models, much like product states are ground states of
noninteracting spin models, and is thus able to account for the
most primitive part of the fermionic entanglement and signs.

We can use the same form of N (x) as Eq. (2) by doubling
the number of the visible-layer variables (Nvisible = 2Nsite)
and mapping fermionic modes to these spins as (σ2i ,σ2i−1) =
(2ni↑ − 1,2ni↓ − 1), where niσ is the number operator for the
fermions at site i with spin σ .

As discussed in Ref. [49], the accuracy of the wave function
can be controlled by the “hidden variable density” α, which is
defined as Nhidden/Nvisible with the number of neurons Nhidden

in the hidden layer and the number of physical variables Nvisible

in the visible layer.

B. PP wave function

Whereas the RBM states in the first step use the product and
Fermi-sea states for |φref〉, more sophisticated choices of |φref〉
are able to incorporate more involved entanglement directly
into the state. In this work we will use the pair-product (PP)
state |φpair〉 as |φref〉. The PP wave function is given by

|φpair〉 =
⎛
⎝ Nsite∑

i,j=1

∑
σ,σ ′=↑,↓

f σσ ′
ij c

†
iσ c

†
jσ ′

⎞
⎠

Ne/2

|0〉, (3)

where Ne is the number of electrons, f σσ ′
ij are variational

parameters, and c
†
iσ is the operator creating a σ -spin electron

at site i. For a given real space configuration x, φpair(x) =
〈x|φpair〉 can be expressed as the Pfaffian of a matrix, and
can be calculated efficiently, much like N (x). Note that an
accurate description of the node position is crucially important
for fermionic wave function while the simple product state with
the positive definite coefficients does not describe the node. In
contrast, the Pfaffian wave function is able to optimize the
nodal structure within the framework of the Pfaffian wave
function. Therefore, the PP wave function can account for
typical nonlocal entanglement not only in nonfrustrated spin
systems but also in frustrated spin and fermionic systems.

In spin models, to prohibit the double occupation, PP wave
function is supplemented by the Gutzwiller factor P∞

G =∏
i(1 − ni↑ni↓). This form of reference function |φref〉 =

P∞
G |φpair〉 is able to represent resonating valence bond (RVB)

wave functions [55,56].

C. RBM+PP wave function

In this paper, we will study the combined wave function
RBM+PP [Fig. 1(b)] with F(x) = N (x) and |φref〉 = |φpair〉
(itinerant fermions) or P∞

G |φpair〉 (spins) in Eq. (1). We remark
that the RBM+PP wave function is similar to that used
in the mVMC method [9], except that the mVMC method
uses an empirical form of F(x) instead of more flexible
and unbiased neural-network factor N (x). Specifically, in
the mVMC method, F(x) is given by F(x) = 〈x|PGPJ|x〉
with Gutzwiller PG (controlling double occupancy) [51] and
Jastrow PJ (for long-ranged charge-charge correlation) [50]
factors. In Appendix A, we show that the neural-network
factor N (x) is indeed more flexible than the empirical factors
by showing that N (x) can represent both the Gutzwiller and
Jastrow factors. TheN (x) factor can also represent many-body
(more than two-body) correlations [57] at the same time.

Various symmetries can be imposed on the wave function
to improve accuracy and reduce computational cost [58]. In
this study, as in Ref. [49], we impose translational symmetry
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in the variational parameters {ai,Wik,bk} in the RBM. In
the antiferromagnetic Heisenberg and half-filled Hubbard
models, because

∑
i σi = 0 holds in the ground state, the

translationally-invariant bias term ai = a becomes irrelevant.
Therefore, we neglect it. Furthermore, as the ground states
of the Hamiltonians considered have total spin S = 0 and
momentum K = 0, we apply the projections onto these
subspaces, respectively, LS=0 andLK=0, to |φpair〉 orP∞

G |φpair〉
to improve accuracy. If we apply both LS=0 and LK=0,
the reference state becomes |φref〉 = LK=0LS=0|φpair〉 for
itinerant fermions and |φref〉 = LK=0LS=0P∞

G |φpair〉 for spins.

D. Machine learning of variational parameters

The form of the wave function in Eq. (1) allows calculating
physical quantities and derivatives with respect to variational
parameters to be approximated efficiently using Markov
chain Monte Carlo sampling over the probability distribu-
tion p(x) = 〈�|x〉〈x|�〉/〈�|�〉. We use a machine learning
method (called stochastic reconfiguration in Ref. [8] and
natural gradient in Refs. [59,60]) to optimize the variational
parameters in the wave function with respect to the energy.
The computational cost of the optimization scales as O(N3

site)
for RBM+PP, compared to O(αN2

site) for P-RBM [49]. Thus,
the improved accuracy of RBM+PP over P-RBM comes at
some additional computational cost. Details and comparisons
of the variational wave functions we introduced in this section
are listed in Appendix B.

III. MODELS

We apply the RBM+PP scheme to calculate the ground
states of 2D S = 1

2 antiferromagnetic (AFM) Heisenberg and
2D Hubbard models on the square lattice. Their Hamiltonians
are defined as follows:

HHeisenberg = J
∑
(i,j )

Si · Sj (J > 0), (4)

HHubbard = −t
∑
(i,j )σ

c
†
iσ cjσ + U

∑
i

ni↑ni↓. (5)

The sum over sites i, j is restricted to nearest-neighbor pairs.
We take the exchange constant J and hopping t as an energy
unit in each case. The onsite repulsion U controls the strength
of correlation in the Hubbard model.

In our calculations, fully periodic boundary conditions
are imposed for the Heisenberg model, while periodic (in
the x direction) and antiperiodic (in the y direction) (P-AP)
boundary conditions are imposed for the Hubbard model.
Further details of the computation conditions are available
in Appendix C.

IV. RESULTS

A. Heisenberg model

Figure 2 shows the RBM+PP ground-state energy for the
8 × 8 2D Heisenberg model compared to quantum Monte
Carlo calculations using the stochastic series expansion (SSE-
QMC) at sufficiently low temperature T of 1/T = 64 [61],
which gives practically exact ground state energy. For com-
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FIG. 2. RBM+PP results for energy of 2D AFM Heisenberg
model defined on the 8 × 8 square lattice with fully periodic
boundary condition. (a) Relative error of energy to SSE-QMC energy
(E/J = −0.673487(4)) [61] as a function of 1/α (α: hidden variable
density). 	 (
) symbol: RBM+PP |�〉 = NLK=0LS=0P∞

G |φpair〉
(|�〉 = NLS=0P∞

G |φpair〉). © symbol: P-RBM |�〉 = N |φproduct〉.
α = 0 (solid horizontal lines) corresponds to the mVMC results
(red: |�〉 = LK=0LS=0P∞

G |φpair〉, green: |�〉 = LS=0P∞
G |φpair〉). Two

arrows (from top to bottom) indicate the result of entangled-plaquette
states (EPS) [62] and variational QMC to evaluate the projected
entangled pair states (PEPS) for virtual bond dimensions of 16 [63].
(b) Variance �var extrapolation of energy. The cross (×) on the
ordinate shows the SSE-QMC energy. The data points plotted in
this variance range are α = 0, 2, 4, 8, 16, 32 (from right to left) for
red 	 symbols, α = 2, 4, 8, 16, 32 for green 
 symbols, and α = 8,
16, 32 for blue © symbols, respectively. Linear fit and extrapolation
to �var → 0 is shown as solid lines. All the data points in this range
except α = 0 data in red are used in the fit. Error bars show standard
errors of Monte Carlo measurements of energy [and also variance in
case of (b)] for the optimized variational wave function.

parison, the mVMC results [9] and the P-RBM wave function
employed in Ref. [49] are shown. Here, mVMC is equivalent
to α = 0 of RBM+PP. This is because the Gutzwiller factor
PG is fixed to freeze charge degrees of freedom and Jastrow
factor PJ becomes irrelevant in the absence of charge degrees
of freedom.

As discussed in Refs. [64,65], the resonating valence bond
(RVB) wave function is known to provide a highly accurate
description of the 2D Heisenberg model. The relative error in
the result of the mVMC function, which can represent the RVB
wave function, is indeed less than 0.2 percent. We see that the
nonempirical P-RBM wave function is also powerful, giving a
comparable accuracy to the mVMC results. The RBM+PP
wave functions, which take advantages of the above two,
substantially improve the accuracy of independent mVMC and
P-RBM schemes.

It is interesting to note that each of the three curves in
Fig. 2 corresponds to the results with the very same form
of correlation factor N (x) but with different reference wave
functions |φref〉. The lowest energy is obtained when |φref〉 =
LK=0LS=0P∞

G |φpair〉 followed by |φref〉 = LS=0P∞
G |φpair〉,

with the product state |φref〉 = |φproduct〉 having the highest
energy. Therefore, improving reference function helps the
RBM to learn the ground state more efficiently.
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TABLE I. P-RBM and RBM+PP results for spin structure factor
S(π,π ) in 2D Heisenberg model. For comparison, S(π,π )/Nsite =
0.05986(3) in mVMC and 0.059280(3) in SSE-QMC [61] results.

S(π,π )/Nsite × 102

Wave function α = 2 α = 8 α = 32

N |φproduct〉 6.017(2) 5.955(2) 5.946(2)

NLK=0LS=0P∞
G |φpair〉 5.969(2) 5.956(2) 5.944(2)

In Fig. 2(b), we plot the total energy as a function of its
variance �var = (〈H2〉 − 〈H〉2)/〈H〉2. The variance is zero
in the case of an exact ground state (or more generally, an
exact eigenstate of Hamiltonian). By the linear fit of the
energy as a function of the variance and extrapolating to
�var = 0, we can obtain a more accurate estimate of the
ground state energy [8,14,66–68]. The variance extrapolation
works better for the RBM+PP than the P-RBM wave function
because the variance is already small. The accuracy of the
extrapolated energy for RBM+PP wave functions with spin
and momentum quantum projections NLK=0LS=0P∞

G |φpair〉
[red line in Fig. 2(b)] reaches an order of 10−5 (0.001 percent)
in the relative error, which is comparable to the size of error
bars of SSE-QMC calculations [61].

The RBM+PP method can also be used to accurately
calculate other physical quantities, besides the energy. For
instance, we also measure spin structure factor S(q) =

1
3Nsite

∑
i,j

∑
α=x,y,z〈Sα

i Sα
j 〉eiq·(ri−rj ). The result for S(qpeak) =

S(π,π ) is shown in Table I, indicating high accuracy of the
correlation functions by the RBM+PP.

B. Hubbard model

Figures 3(a) and 3(b) show the RBM+PP result for
the ground state energy of 8 × 8 Hubbard model at half
filling for U/t = 4 and 8, respectively. The relative error to
the auxiliary-field quantum Monte Carlo (AF-QMC), which
gives practically the exact results within the error bars, is
plotted. For comparison, the mVMC results using Gutzwiller-
Jastrow correlation factors and the F-RBM results are shown
as well.

In both cases (U/t = 4 and U/t = 8), the F-RBM has an
error of several percent. The RBM+PP method, in which the
variational parameters in both the N and |φpair〉 are optimized,
achieves significantly higher accuracy. We see the same trend
as the Heisenberg model; namely, the accuracy is improved by
choosing a better reference wave function |φref〉.

The RBM+PP wave function also surpasses the accuracy
of the mVMC wave function, which indicates superiority of
more unbiased neural-network factor N (x) to the empirical
Gutzwiller-Jastrow factors P(x) = 〈x|PGPJ|x〉. We expect
that the advantage of a self-optimized neural network will be
more substantial for more complicated Hamiltonians than the
single-band Hubbard model. In more complex Hamiltonians,
more flexible forms for correlation factors are likely to be
necessary. Another advantage of the RBM+PP to the mVMC
methods is that the accuracy improves as U increases (see
Appendix D and Fig. 4), while the mVMC results show the
opposite trend [9].
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FIG. 3. RBM+PP result for energy of 2D Hubbard model at
half filling with (a) U/t = 4 and (b) U/t = 8 on 8 × 8 square
lattice with P-AP boundary condition. Relative error of the RBM+PP
energy to the AF-QMC energy (E/t = −0.8642(2) and −0.5259(3)
for U/t = 4 and U/t = 8, respectively) [69] as a function of 1/α

(α: hidden variable density) is shown. 	 (
) symbol: RBM+PP
|�〉 = NLK=0|φpair〉 (|�〉 = N |φpair〉). © symbol: F-RBM |�〉 =
N |φFermi-sea〉. Solid horizontal red (green) lines: results of mVMC
functions |�〉 = PGPJLK=0|φpair〉 (|�〉 = PGPJ|φpair〉). The arrow in
(a) indicates the TNVMC result [70]. Error bars show standard errors
of Monte Carlo measurements of energy for the optimized variational
wave function.

At U/t = 4 [Fig. 3(a)], the best RBM+PP accuracy is
comparable to the accuracy of TNVMC (tensor network com-
bined with mVMC), where the relative error is ∼0.25 percent
as obtained at available maximum tensor bond dimension
D = 16, which is the computationally practical upper limit
[70]. In the TNVMC method, the mVMC wave function
is supplemented by the tensor network enabling one of the
most accurate schemes among existing numerical methods
[70]. Compared to the TNVMC method, the RBM+PP has an
advantage, because it can be applied flexibly and easily to any
kind of lattice and does not require an involved contraction
procedure [13] in contrast to the TNVMC method.

The spin structure factor S(π,π ) is listed in Table II. At both
U/t = 4 and U/t = 8, with increasing α, the value becomes
closer to the exact AF-QMC value.

V. DISCUSSION

While the physical properties of the RBM have only
recently started being discussed in condensed matter physics

TABLE II. RBM+PP (NLK=0|φpair〉) results for spin structure
factor S(π,π ) computed for 2D Hubbard model at half filling. For
comparison, mVMC (PGPJLK=0|φpair〉) and AF-QMC [71] results
are also listed.

S(π,π )/Nsite × 102

α = 2 α = 8 α = 32 mVMC AF-QMC

U/t = 4 3.078(5) 3.057(5) 3.021(5) 3.107(4) 2.92(2)

U/t = 8 5.233(9) 5.206(9) 5.20(1) 5.30(1) 5.0(1)
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[72–80], more general discussion of representability can be
traced back to earlier studies [81–83], which show that the
RBM is able to describe any smooth function, if arbitrarily
large α is allowed. In the present 2D Heisenberg model, a gauge
transformation can make probability amplitude of the exact
ground-state wave function |�GS〉 positive (〈x|�GS〉 > 0 for all
x). Therefore, the exact ground state can be represented by real-
variable RBM with infinite α. Accordingly, the relative error
should go to zero as 1/α → 0. Indeed, in Fig. 2(a), it looks
that the RBM+PP energy curves (red and green) start bending
toward 0 as 1/α decreases. It is likely that a better reference
state makes 〈x|�GS〉/〈x|φref〉 [to be represented by N (x)]
smoother and helps to reach faster convergence at small α.

For fermionic problems, nodal structure of wave functions
is crucial [84], which is beyond the representability of the
real-variable RBM giving positiveN (x) [79]. In the RBM+PP,
|φpair〉 is expected to accurately reproduce the nodal structure.
Then, 〈x|�GS〉/〈x|φpair〉 may become smooth enough so that
with moderate α, N (x) can represent a quick convergence
to the exact value at α → ∞. However, rigorously speaking,
the nodal structure of |φpair〉 is likely to be different from
the exact one even when the variational parameters contained
in |φpair〉 are ideally optimized. Therefore, introduction of
complex variational parameters in the RBM part may be useful
to adjust the nodes to the exact positions beyond the framework
of the Pfaffian wave function. Although it is an interesting
open question whether the energy curve as a function of 1/α

in the Hubbard model (Fig. 3) goes to 0 as 1/α → 0, in
practical computations, the optimization at larger α becomes
more and more difficult, which might hamper the expected
convergence.

VI. SUMMARY AND PERSPECTIVES

In this paper, we have proposed a variational ansatz
for studying the ground states of many-body interacting
quantum systems. Our variational wave function, which we
call RBM+PP, combines the RBM based on the ANN and the
mVMC methods. We have shown that, in both 2D Heisenberg
and Hubbard models, the RBM+PP results show a dramatic
improvement of accuracy over simple neural network wave
functions (the P-RBM and F-RBM wave functions). We also
see the superiority of the RBM+PP to the mVMC method.
Since the RBM+PP method can be flexibly applied not only
to bosonic (or spin) systems but also to fermionic problems,
the RBM+PP method offers a wide range of applications with
high accuracy and a reasonable computational cost.

As a future perspective, it would be interesting to go beyond
the RBM structure and introduce a second hidden layer [deep
Boltzmann machine (DBM)]. DBM is argued to have more
efficient representation of certain many-body wave functions
than RBM [75]. In DBM, the spin variables of the neurons
distributed in more than one hidden layer cannot be traced out
analytically, thus we need to introduce additional Monte Carlo
samplings for hidden spins.
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APPENDIX A: ABILITY OF RBM TO REPRESENT
GUTZWILLER AND JASTROW FACTORS

The Gutzwiller factor PG = exp(−gni↑ni↓) at site i can
be recast as (except for trivial constant factor and one-body
potential)

PG = exp
(
−g

4
σ2iσ2i−1

)
, (A1)

where (σ2i ,σ2i−1) = (2ni↑ − 1,2ni↓ − 1) are physical vari-
ables in the visible layer defined in Sec. II A. This interaction
between physical variables can be mediated by adding one
hidden neuron h as (except for trivial constant factor)

PG =
∑
h=±1

exp(W1σ2ih + W2σ2i−1h)

= 2 cosh(W1σ2i + W2σ2i−1) (A2)

with W1 = 1
2 arcosh(exp (|g|/2)) and W2 = −sgn g × W1.

This form is consistent with the neural-network factor N
defined in Eq. (2). In the very same way, we can show that the
neural-network correlation factor N can represent the Jastrow
factor PJ = exp(− 1

2

∑
i,j (i �=j ) vijninj ).

APPENDIX B: LIST OF VARIATIONAL WAVE FUNCTIONS
EMPLOYED IN SIMULATIONS

Tables III and IV summarize the forms of the wave functions
employed in the present study for solving the Heisenberg and
Hubbard models, respectively.

APPENDIX C: DETAILS OF CALCULATION CONDITIONS

1. Stabilization factor

In the present study, the parameters are optimized by
the stochastic reconfiguration (SR) method [8]. The same
optimization scheme is called natural gradient in Refs. [59,60].
This optimization is equivalent to the imaginary-time evolution
e−τH|�〉 of the wave function |�〉 to reach the ground
state for sufficiently large imaginary time τ in the truncated
Hilbert space which is spanned by the variational wave
function. In the SR optimization, the variational parameters
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TABLE III. List of wave functions used in the analysis of the 8 × 8 Heisenberg model (Nsite = 64). To describe the singlet state, the σ and
σ ′ spins in the f σσ ′

ij parameters in the PP wave function are always set to be a pair of ↑ and ↓ spins. We impose 2 × 2 sublattice structure in f
↑↓
ij

parameters in the PP (geminal) wave function. In this case, the number of independent f
↑↓
ij parameters becomes 2 × 2 × Nsite = 4Nsite, and

the other f
↑↓
ij parameters are determined by using spatial translation operations. The RBM part ({bk, Wik}) is taken to be fully translationally

invariant (1 × 1 sublattice structure) [49]. When the double occupancy is completely prohibited by the Gutzwiller factor P∞
G = ∏

i(1 − ni↑ni↓),
the onsite f

↑↓
ii parameters become completely irrelevant, i.e., the wave function and the energy do not depend on f

↑↓
ii at all. Thus the number

of f
↑↓
ij parameters in the table are reduced from 4Nsite to 4(Nsite − 1).

Method Wave function Symbol in Fig. 2 Variational parameters Number of variational parameters

P-RBM N |φproduct〉 open circle (blue) {bk, Wik} α(Nsite + 1) = 65α

RBM+PP NLS=0P∞
G |φpair〉 down-pointing triangle (green) {bk, Wik, f

↑↓
ij } α(Nsite + 1) + 4(Nsite − 1) = 65α + 252

RBM+PP NLK=0LS=0P∞
G |φpair〉 up-pointing triangle (red) {bk, Wik, f

↑↓
ij } α(Nsite + 1) + 4(Nsite − 1) = 65α + 252

mVMC LS=0P∞
G |φpair〉 green solid horizontal line {f ↑↓

ij } 4(Nsite − 1) = 252
mVMC LK=0LS=0P∞

G |φpair〉 red solid horizontal line {f ↑↓
ij } 4(Nsite − 1) = 252

γm (m = 1,2, . . . ,Nv) at the pth iteration are updated as

γ (p+1)
m = γ (p)

m + �γ (p)
m , (C1)

where the difference in the update �γ
(p)
m is given by

Nv∑
n=1

S(p)
mn�γ (p)

n = −�τ g(p)
m (C2)

with a small imaginary time step �τ . Here, S is a positive
definite matrix given by

Smn = 〈∂γm
�̄|∂γn

�̄〉 (C3)

with a normalized variational wave function |�̄〉 =
|�〉/√〈�|�〉 and |∂γm

�̄〉 = ∂
∂γm

|�̄〉. The g vector is the
gradient of energy with respect to the γ parameters:

gm = ∂E

∂γm

= ∂

∂γm

〈�̄|H|�̄〉. (C4)

To stabilize the optimization, we introduce the stabilization
factor to the diagonal elements of the S matrix as

S(p)
mm → S(p)

mm

(
1 + ε

(p)
1

) + ε
(p)
2 max

m

{
S(p)

mm

}
. (C5)

Here, ε1 scales the diagonal elements and ε2 gives a constant
shift to the S matrix. Although ε2 strongly stabilizes the
optimization, it sometimes makes convergence slower, so

we typically put a small number to ε2: ε
(p=0)
2 ∼ 10−3 and

we gradually decrease to ε∞
2 ∼ 10−7–10−6 through the first

several hundred iterations of optimization. As for ε1, we found
that a smaller ε1 (∼10−5–10−4) factor for neural-network-
related variational parameters {bk, Wik} sometimes helps to
lower the energy. Meanwhile, we also found that a small
ε1 (� 10−3) makes the optimization of f

↑↓
ij parameters in the

pair-product (geminal) wave function unstable. To overcome
this problem, we use parameter dependent ε1 factor, namely,
ε

(p)
1 ({f ↑↓

ij }) = ε
(p)
1 ({bk, Wik}) + �ε1 with �ε1 ∼ 10−2. With

this condition, we typically use ε
(p=0)
1 ({bk, Wik}) ∼ 10−2–102

and gradually decrease it to ε∞
1 ({bk, Wik}) ∼ 10−5–10−4 in

the first several hundred iterations of the optimization.
As for the initial {bk, Wik} parameters, we use small random

numbers. We run several calculations with different seeds for
generating random numbers and adopt the wave function that
has the lowest energy.

2. Particle-hole transformation of Hubbard model

When we analyze many-body Hamiltonians by theoretical
or numerical solvers, we can utilize transformations of the
Hamiltonians to find a representation suitable for the solver in
hand [86]. In the conventional variational Monte Carlo method,
many-body interacting models defined in the real-space basis

TABLE IV. List of wave functions used in the analysis of the 8 × 8 Hubbard model (Nsite = 64). As in the case of the Heisenberg model,
the σ and σ ′ spins in the f σσ ′

ij parameters are set to be always antiparallel. In the mVMC method, we use Gutzwiller PG and Jastrow PJ factors,

whose forms are PG = exp (−∑
i gini↑ni↓) and PJ = exp (− 1

2

∑
i,j (i �=j ) vij ninj ), respectively. All the gi , vij , and f

↑↓
ij parameters are taken to

be independent (8 × 8 or full sublattice structure). On the other hand, the RBM part is taken to be translationally invariant (1 × 1 sublattice
structure) [49] to save computational cost. We have confirmed that, in the 4 × 4 Hubbard model, taking full sublattice structure in the RBM
part does not help much to lower the energy compared to the 1 × 1 sublattice case, although it drastically increases the number of variational
parameters and hence increases the computational cost.

Method Wave function Symbol in Fig. 3 Variational parameters Number of variational parameters

F-RBM N |φFermi-sea〉 open circle (blue) {bk, Wik} α(2Nsite + 1) = 129α

RBM+PP N |φpair〉 down-pointing triangle (green) {bk, Wik, f
↑↓
ij } α(2Nsite + 1) + 64Nsite = 129α + 4096

RBM+PP NLK=0|φpair〉 up-pointing triangle (red) {bk, Wik, f
↑↓
ij } α(2Nsite + 1) + 64Nsite = 129α + 4096

mVMC PGPJ|φpair〉 green solid horizontal line {gi, vij , f
↑↓
ij } Nsite + 32(Nsite − 1) + 64Nsite = 6176

mVMC PGPJLK=0|φpair〉 red solid horizontal line {gi, vij , f
↑↓
ij } Nsite + 32(Nsite − 1) + 64Nsite = 6176
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FIG. 4. U dependence of RBM+PP (NLK=0|φpair〉 with α = 32)
energy of 2D Hubbard model defined on the 8 × 8 square lattice with
P-AP boundary condition. Relative error of the RBM+PP energy to
that obtained by the AF-QMC [69,71] is shown. For comparison, at
t/U = 0, we show the RBM+PP (NLK=0LS=0P∞

G |φpair〉 with α =
32) result for the 8 × 8 Heisenberg model. Error bars show standard
errors of Monte Carlo measurements of energy for the optimized
variational wave function.

such as the Hubbard model is analyzed as they are, because
the empirical form of the correlation factors is also defined
in the real-space basis. On the other hand, in cases where
we employ machine learning technique, because the neural
network will find a way to lower the energy even when the
form of the Hamiltonian is complicated, we could think of
the “best” transformation of the Hamiltonian such that the
neural network can lower the energy with a small number of
parameters.

Though it would not be the best of the best, we find that
performing a staggered particle-hole transformation (ci↓ →
(−1)ic†i↓ and c

†
i↓ → (−1)ici↓) and mapping onto the attractive

Hubbard model help the RBM+PP wave function to lower
the energy of the Hubbard model. This transformation is
also helpful for mVMC calculations to get a better energy
[87]. Thus, we have solved the Hubbard model with this
transformation. Finding a better transformation (by again
employing machine learning technique) is an interesting future
problem.

APPENDIX D: U DEPENDENCE OF ENERGY IN RBM+PP

Figure 4 shows the U dependence of RBM+PP
(NLK=0|φpair〉 with α = 32) energy of the 2D 8 × 8 Hub-
bard model. The result shows that the error decreases with
increasing U/t .
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