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By using variational wave functions and quantum Monte Carlo techniques, we investigate the interplay
between electron-electron and electron-phonon interactions in the two-dimensional Hubbard-Holstein model.
Here, the ground-state phase diagram is triggered by several energy scales, i.e., the electron hopping t , the on-site
electron-electron interaction U , the phonon energy ω0, and the electron-phonon coupling g. At half filling, the
ground state is an antiferromagnetic insulator for U � 2g2/ω0, while it is a charge-density-wave (or bipolaronic)
insulator for U � 2g2/ω0. In addition to these phases, we find a superconducting phase that intrudes between them.
For ω0/t = 1, superconductivity emerges when both U/t and 2g2/tω0 are small; then, by increasing the value
of the phonon energy ω0, it extends along the transition line between antiferromagnetic and charge-density-wave
insulators. Away from half filling, phase separation occurs when doping the charge-density-wave insulator, while
a uniform (superconducting) ground state is found when doping the superconducting phase. In the analysis
of finite-size effects, it is extremely important to average over twisted boundary conditions, especially in the
weak-coupling limit and in the doped case.
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I. INTRODUCTION

The challenge of understanding the interplay between
electron-electron and electron-phonon interactions has stim-
ulated an intense work in the condensed-matter community,
since the early developments of many-body approaches to de-
scribe metals, insulators, and superconductors [1]. Indeed, the
low-temperature properties of several materials are controlled
by the competition, or sometimes the cooperation, between
these interaction terms. For example, in high-temperature
superconductors, where the presence of a strong electron-
electron correlation is irrefutable, the role of phonons could be
not entirely negligible, as suggested by the kinks in the electron
dispersion [2] or by the signatures of the isotope effect [3,4].
In alkali-metal-doped fullerides, a superconducting phase
appears close to a Mott transition [5,6], even though they are
often considered as phononic superconductors. This particular
feature suggests that both the Coulomb repulsion and the
electron-phonon coupling are strong and cooperate to establish
a strongly correlated superconductor. Similarly, in pnictide
superconductors [7], such as LaOFeAs, and in aromatic
superconductors, such as potassium-intercalated picene [8],
there are evidences that, apart from a moderately strong
electron correlation, there is also a non-negligible coupling
between electrons and lattice degrees of freedom.

In a nutshell, the interplay between electron-electron
repulsion and electron-phonon coupling is due to the fact
that the former one generates spin fluctuations, which in turn
mediate a nonlocal pairing among electrons that may give
rise to d-wave superconductivity, while the latter one directly
mediates a local attraction among electrons, leading to an s-
wave superconductor. In addition, a strong electron correlation
may also lead to spin-density waves and a magnetically ordered
state, which competes with superconductivity; instead, a local
attraction may also generate charge localization, i.e., charge-

density-wave (CDW) or dimerized (Peierls) states. Therefore,
it is a highly nontrivial task to obtain the properties of a
system in which both interactions are relatively strong. In this
respect, the Hubbard-Holstein model represents a prototypical
example that includes these features. This model incorporates
both an on-site Coulomb repulsion U (the Hubbard term) [9]
and a coupling g between electrons and dispersionless Einstein
phonons with energy ω0 (the Holstein terms) [10], as well as
a kinetic term for electrons:

H = −t
∑

〈i,j〉,σ
c
†
i,σ cj,σ + H.c. + U

∑
i

ni,↑ni,↓

+ω0

∑
i

b
†
i bi + g

∑
i

ni(b
†
i + bi ), (1)

where 〈i,j 〉 indicates nearest-neighbor sites (on a square
lattice); moreover, on a given site i, c†i,σ (ci,σ ) creates (destroys)

an electron with spin σ , b†i (bi ) creates (destroys) a phonon, and
ni = ∑

σ ni,σ = ∑
σ c

†
i,σ ci,σ is the electron density. In analogy,

we also define the phonon density on the site i by mi = b
†
i bi .

Of course, this model gives a simplified description of real
solids, since both the Coulomb repulsion and the electron-
phonon interaction are assumed to be local. In addition, the
latter term is modeled by coupling the lattice displacement
xi ∝ (b†i + bi ) to the electron density ni . A different way to
introduce the electron-phonon coupling has been considered
within the Su-Schrieffer-Heeger model [11], where lattice
displacements are coupled to the hopping term rather than
to the density. While the latter case is more suited to describe
materials with delocalized phonons, the Holstein model can be
used as a good approximation for molecular solids in which
there are local phonon modes (like, for example, fullerene
doped with alkali-metal atoms).
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Although the properties of the Hubbard-Holstein model
depend upon ω0/t and g/t independently, it is useful to
define the quantity λ = 2g2/ω0, which is often considered
to measure the strength of the electron-phonon coupling. This
dimensionless coupling emerges naturally in the antiadiabatic
limit where the phonons have a large energy (i.e., ω0/t → ∞).
In this case, the retarded interaction mediated by phonons
becomes instantaneous. In fact, for ω0 	 t there is an exact
mapping from the Holstein model to the negative-U Hub-
bard model with Uatt = −λ. Therefore, the Hubbard-Holstein
model reduces to the Hubbard model with a renormalized
on-site interaction, i.e., Ueff = U − λ. In the general case
with a finite phonon energy, the multidimensional parameter
space of the Hubbard-Holstein model (i.e., U/t , g/t , ω0/t ,
as well as the electron density n) leads to an extremely rich
physics and various approaches have been used to understand
its ground-state properties.

In one spatial dimension, early works, based upon pertur-
bation theory and Monte Carlo calculations, suggested that
the ground state of the Holstein model displays CDW order
for any nonzero electron-phonon coupling and ω0/t < ∞
[12,13]. Instead, subsequent studies, using density-matrix
renormalization group (DMRG) and Monte Carlo techniques,
have highlighted the existence of a gapless phase (with
dominant superconducting pair correlations) for small values
of the electron-phonon coupling and finite phonon energies,
which persists also for finite values of U/t [14–19]. In the
opposite limit of infinite dimensions, dynamical mean-field
theory (DMFT) has been employed to assess various aspects of
the phase diagram, including the competition between super-
conductivity and CDW order [20–23], the role of phonons in
the vicinity of the Mott transition [24,25], the verification of the
Migdal-Eliashberg theory [26], the polaron formation, and the
existence of the isotope effect [27–29]. The two-dimensional
case has been relatively little investigated in the past. Indeed,
quantum Monte Carlo techniques suffer from the sign problem
and stable simulations can be accomplished only in few cases
[30–32]. Therefore, the Hubbard-Holstein model has been
mainly considered within mean-field approaches [33–36] or
by using perturbative methods [37,38]. Variational Monte
Carlo (VMC) has been also employed to assess the interplay
between electron-electron and electron-phonon interactions in
the Su-Schrieffer-Heeger model [39]. More recently, Ohgoe
and Imada used the VMC approach to assess the ground-state
phase diagram of the Hubbard-Holstein model at half filling
and in its vicinity [40]. The same variational wave functions
have been implemented to study the electron-phonon coupling
in multiband models [41].

One important aspect in the phase diagram of the Hubbard-
Holstein model is the nature of the transition between CDW
(bipolaronic) and Mott insulators at half filling and the
possibility that a metallic/superconducting phase may intrude
in between [42,43]. In the antiadiabatic limit ω0/t → ∞,
given the mapping from the Holstein model to the negative-U
Hubbard model, one should expect a direct transition between
an antiferromagnetic (Mott) insulator, that is stable for U > λ,
and a CDW insulator, that is stable for U < λ. However,
in this limit, the CDW state is degenerate with an s-wave
superconductor, because of the SU(2) pseudospin symmetry

of the negative-U Hubbard model (this fact leads to peculiar
ground-state properties, with both broken translational sym-
metries, i.e., CDW order, and gapless excitations). By contrast,
for any finite values of the phonon energy ω0, there is no reason
for having a direct transition between the two insulating states
and an intermediate phase may emerge. In one dimension,
the existence of a metallic phase, with strong superconducting
correlations, has been reported by DMRG studies [16–18],
with a clear evidence that the intermediate region broadens
with increasing the phonon energy (up to ω0/t ≈ 5). Instead,
DMFT calculations showed contradictory results, with either
a direct transition between CDW and Mott insulators [22]
or the presence of a small intermediate phase [23]. Also in
two dimensions the situation is not conclusive, since only few
calculations have been afforded [31,32], where some evidence
for the emergence of an intermediate metallic phase has been
suggested at finite temperatures. In addition, away from half
filling, the sign problem is so strong that it prevents one
from performing any stable simulation. Therefore, alternative
approaches are highly desirable. One possibility is to define
suitable wave functions that can be treated within the VMC
technique. In this spirit, Ohgoe and Imada have recently
extended the “many-variable” VMC method to include phonon
degrees of freedom [40,44], showing evidence in favor of
a metallic (with weak superconducting correlations) phase
between the CDW and Mott insulators at half filling. In
addition, they highlighted the presence of phase separation
when doping the CDW insulator. Instead, the ground state is
uniform when doping the metallic phase.

In this paper, we present further VMC calculations that
are based upon different wave functions and smart average
over twisted boundary conditions (denoted by TABC) in order
to reduce size effects. Indeed, when imposing periodic or
antiperiodic boundary conditions, there are very large size
effects, especially for small values of ω0/t and in the doped
case, preventing us from reaching definitive conclusions in
the thermodynamic limit. Thanks to TABC, we give a clear
evidence that a superconducting phase is present between the
CDW and the antiferromagnetic insulators and that its stability
region broadens when increasing the phonon energy. Finally,
phase separation is found when doping the CDW state, while
a uniform (superconducting) phase is observed by doping the
uniform ground state.

The paper is organized as follows: in Sec. II, we show
the variational wave function and briefly discuss the Monte
Carlo methods that have been used; in Sec. III, we present the
numerical results; finally, in Sec. IV, we draw our conclusions.

II. WAVE FUNCTIONS AND METHODS

In this section, we first describe the variational wave
function that has been used in the numerical calculations.
Then, we briefly discuss the updating scheme that has been
implemented within the VMC method for the phononic
degrees of freedom (for the electrons, we use standard updating
schemes [45]). Finally, we show the TABC procedure to reduce
size effects and we highlight advantages and disadvantages of
the VMC method.
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The wave function is given by the so-called Jastrow-Slater
state that is defined by

|�〉 = JeeJppJepPNe
|�e〉 ⊗ |�p〉. (2)

Here, |�e〉 is the ground state of an auxiliary (quadratic)
Hamiltonian that contains electron hopping and (singlet)
pairing:

Haux = −t
∑

〈i,j〉,σ
c
†
i,σ cj,σ + H.c. − μ

∑
i,σ

c
†
i,σ ci,σ

+
∑
i,σ

(−1)Xi+Yi [�CDW + �AF(−1)σ̄ ]c†i,σ ci,σ

+�SC

∑
i

c
†
i,↑c

†
i,↓ + H.c., (3)

where μ, �CDW, �AF, and �SC are parameters that are
optimized in order to minimize the variational energy [46],
Ri = (Xi,Yi) indicates the coordinates of the site i in the
square lattice, and σ̄ = +1 (−1) for up (down) electrons. The
auxiliary Hamiltonian of Eq. (3) is rather flexible to describe
states with (i) CDW order (when �CDW �= 0 and �AF =
�SC = 0), (ii) antiferromagnetic Néel order (when �AF �=
0 and �CDW = �SC = 0), and (iii) superconducting order
(when �SC �= 0 and �CDW = �AF = 0). Moreover, states with
coexisting orders are also possible. This Hamiltonian can be
easily diagonalized to define the uncorrelated electronic state
|�e〉, which has the following form:

|�e〉 = exp

⎛
⎝∑

i,j

fi,j c
†
i,↑c

†
j,↓

⎞
⎠|0〉, (4)

where the pairing function fi,j depends upon the variational
parameters of the auxiliary Hamiltonian. The total number of
electrons is fixed to Ne by the projector PNe

.
The uncorrelated phononic part is then given by

|�p〉 =
∑
Nb

(eζ b
†
k=0)Nb

Nb!
|0〉, (5)

where b
†
k=0 = 1/

√
N

∑
i b

†
i creates a phonon in the k = 0

momentum state (N is the number of sites). Here, Nb denotes
the total number of phonons. Since the number of phonons is
not conserved by the Hubbard-Holstein Hamiltonian of Eq. (1),
|�p〉 has components on subspaces with any value of Nb; then,
ζ is a variational parameter that plays the role of a fugacity.
Denoting by |m1, . . . ,mN 〉 the (normalized) configuration with
mi phonons on site i, the uncorrelated phononic wave function
can be written as

|�p〉 =
∑

m1,...,mN

eζ
∑

i mi

√
m1! . . . mN !

|m1, . . . ,mN 〉. (6)

Finally, Jee, Jpp, and Jep are density-density Jastrow fac-
tors for the electron-electron, phonon-phonon, and electron-
phonon correlations, respectively:

Jee = exp

⎛
⎝−1

2

∑
i,j

vee
i,j ninj

⎞
⎠, (7)

Jpp = exp

⎛
⎝−1

2

∑
i,j

v
pp

i,j mimj

⎞
⎠, (8)

Jep = exp

⎛
⎝−

∑
i,j

v
ep

i,j nimj

⎞
⎠, (9)

where vee
i,j , v

pp

i,j , and v
ep

i,j are pseudopotentials, including the
on-site terms, that are taken to be translationally invariant,
i.e., they depend only upon the Euclidean distance |Ri − Rj |.
They can be optimized (each one independently) to reach the
optimal variational ansatz [46]. Here, all the pseudopotentials
are taken to be symmetric in the exchange i ↔ j . By a full
optimization of the Jastrow factors, we find that the phonon-
phonon correlations only give a marginal improvement in the
energy and, therefore, they are not employed. By contrast,
the electron-phonon term is fundamental to obtain an accurate
description when g/t and ω0 are finite. As for the Hubbard
model, the electron-electron Jastrow factor is crucial to
reproduce the correct low-energy behavior of the ground state
[47,48].

The configuration space that is sampled along the Markov
chain is defined by specifying both electron and phonon
occupations on each site (i.e., we work in a basis in which
the number of phonons mi is specified on each lattice site,
as well as the number of up- and down-spin electrons ni,σ ).
In our case, where the uncorrelated phononic part is given
by Eq. (6) and contains a single variational parameter ζ ,
we do not need to include any cutoff in the number of
phonons. By contrast, Ohgoe and Imada [40,44] used a
more involved parametrization of the phonon wave function,
with several parameters (i.e., one for each boson number);
therefore, they considered a cutoff in the maximum number
of phonons. Moreover, along the Markov chain, they sampled
the displacement xi , using a different electron-phonon Jastrow
factor, which couples the electron density nj to xi (rather
than to the phonon number mi). Finally, also the electronic
part used in Refs. [40,44] is slightly different from the one
that is employed here: they do not obtain |�e〉 from the
auxiliary Hamiltonian (3), but perform a full optimization
of the pairing function fi,j of Eq. (4). In our opinion, this
procedure may be problematic, especially for large sizes, since
one must deal with several variational parameters [i.e., O(N )
for a translationally invariant case] and the optimization of the
long-range tail of the pairing function can be difficult within
a stochastic approach. An advantage of our parametrization
is that the nature of the wave function is transparent from
the optimized values of the parameters, e.g., obtaining a finite
�CDW immediately implies that the state displays CDW order.
We also mention that the present approach allows us to easily
detect metastable phases, with given physical properties: for
example, by fixing �AF = 0, we are able to obtain the best
paramagnetic state, even in a region where the ground state is
antiferromagnetically ordered.

When using the wave function of Eq. (2), the Metropolis
algorithm can be easily implemented to propose a change in
the phononic configuration. Indeed, let us consider the case
in which one phonon is created/destroyed at site l, i.e., mi →
mi ± δil . Then, in order to compute the Metropolis acceptance
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probability, it is necessary to evaluate the following ratio:

R±
l = 〈m1, . . . ,ml ± 1, . . . ,mN |JppJep|�p〉

〈m1, . . . ,ml, . . . ,mN |JppJep|�p〉 , (10)

which can be explicitly given by the expressions of the
uncorrelated phononic state (6) and the Jastrow factors (8)
and (9):

R+
l = eζ

√
ml + 1

exp

[
−

∑
i

(
v

ep

i,l ni + v
pp

i,l mi

) − v
pp

l,l

]
, (11)

R−
l = √

ml e−ζ exp

[
+

∑
i

(
v

ep

i,l ni + v
pp

i,l mi

) − v
pp

l,l

]
. (12)

Finally, let us discuss the TABC method to reduce the size
effects. Our calculations are performed on square clusters with
N = L × L sites. In most cases, periodic (or antiperiodic)
boundary conditions are employed on both the Hamiltonian
and the variational wave function (i.e., the auxiliary Hamil-
tonian defined above). However, strong size effects may
be present, due to a large correlation length. It has been
proposed that a selected twist in the boundary condition, or
an average over different boundary conditions, may improve
the convergence to the thermodynamic limit [49,50]. On the
lattice, by explicitly indicating the coordinates of the site in
the creation operators [i.e., c

†
i,σ → c

†
Ri ,σ

, where Ri = (Xi,Yi)
denotes the coordinates of the site i in the lattice], twisted
boundary conditions correspond to impose

c
†
Ri+Lx,σ

= eiθσ
x c

†
Ri ,σ

, (13)

c
†
Ri+Ly,σ

= eiθσ
y c

†
Ri ,σ

, (14)

where Lx = (L,0) and Ly = (0,L) are the vectors that define
the periodicity of the cluster; θσ

x and θσ
y are two phases in

[0,2π ) that determine the twists along x and y directions. In
order to preserve time-reversal invariance, we must impose that
θ

↑
x = −θ

↓
x , and similarly for the y term. Then, for each choice

of θ ≡ (θ↑
x ,θ

↓
x ,θ

↑
y ,θ

↓
y ), we define the many-body wave function

|�θ 〉, which is obtained from the auxiliary Hamiltonian (3)
with twisted boundary conditions (notice that the Jastrow
factors are not affected by the twist, since they contain
density-density correlations).

In TABC, an average over a large number Nθ of phases
(typically Nθ = 576 points in the Brillouin zone) is considered
in order to evaluate the expectation value of the Hamiltonian
or any other operator Oθ , which in general depends upon the
twist through Eqs. (13) and (14):

〈O〉 = 1

Nθ

∑
θ

〈�θ |Oθ |�θ 〉
〈�θ |�θ 〉 . (15)

By imposing that all the twists share the same variational
parameters, we can reach much faster the thermodynamic
limit. For example, by considering uncorrelated (i.e., mean-
field) wave functions, we verified that this procedure allows us
to get the thermodynamic results even when using a small
cluster. Moreover, within a Monte Carlo optimization, the
average of Eq. (15) is very conveniently implemented, since
the statistical error decreases with 1/

√
Nθ and, therefore,

several boundary conditions can be considered without any
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FIG. 1. Size scaling of the energy per site at half filling
(with ω0/t = 1, λ/t = 0.98, and U = 0) for periodic-periodic (red
squares), periodic-antiperiodic (black circles), and twisted average
(blue diamonds) boundary conditions. Error bars are smaller than the
size of the symbols.

extra computational cost. In Fig. 1, we show the size scaling
of the energy per site when applying the TABC procedure
at half filling (for U = 0, λ/t = 0.98, and ω0/t = 1), in
comparison with the standard cases with periodic-periodic
and periodic-antiperiodic boundary conditions. In all three
cases, the optimized variational wave functions have �SC �= 0
(and �CDW = �AF = 0) and the extrapolated values are all
consistent (within few error bars), giving E/t = −2.1725(1).
Away from half filling, size effects become even more
pronounced and TABC are crucial to extract an accurate value
in the thermodynamic limit. In Fig. 2, we report the case at
quarter filling (with U = 0, λ/t = 2, and ω0/t = 1). Here,
periodic-periodic boundary conditions give scattered results,
while averaging over twisted boundary conditions gives rise
to a rather smooth extrapolation to E/t = −1.652(1). The
important message is that, while the cases with fixed boundary
conditions possess huge size effects and require large clusters
to reach accurate results in the thermodynamic limit, a
remarkable flat size scaling is obtained by using TABC,

-1.68

-1.66

-1.64

-1.62

-1.6

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07

E
/t

1/N

PBC
TABC

FIG. 2. Size scaling of the energy per site at quarter filling (with
ω0/t = 1, λ/t = 2, and U = 0) for periodic-periodic (red squares)
and twisted average (blue diamonds) boundary conditions. Error bars
are smaller than the size of the symbols.
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thus allowing us to consider relatively small clusters in our
numerical simulation, with small finite-size errors.

We would also like to briefly discuss the advantages and
disadvantages of computing ground-state properties by means
of a Monte Carlo sampling over variational wave functions.
The main advantage is that strongly correlated states may
be treated beyond perturbative approaches. For example, the
physical properties (e.g., energy and correlations functions) of
the simple Gutzwiller wave function can be assessed without
considering the Gutzwiller approximation [51,52]. In order to
compute expectation values over variational states, a Monte
Carlo sampling is necessary, thus leading to statistical errors,
which, however, can be safely kept under control (i.e., they
scale to zero by increasing the length of the simulation). The
energy computed with variational Monte Carlo gives an upper
bound to the exact value, thus providing a criterion to judge
the quality of the variational states. Moreover, it is possible to
assess quite large clusters, with all relevant spatial symmetries
(translations, rotations, and reflections) preserved. The main
disadvantage is that it is difficult to quantify the systematic
errors, which are introduced by the choice of the trial state.

III. RESULTS

In this section, we start by showing our numerical results
for the half-filled case n = Ne/N = 1 and then move to the
doped region with n < 1.

A. Half-filled case

In Fig. 3, we show the ground-state phase diagram for
three values of ω0/t , i.e., ω0/t = 1, 5, and 15, at half filling.
Here, we identify three different phases. For large electron-
electron interaction, the lowest-energy state has long-range
antiferromagnetic order (namely the uncorrelated part of the
electronic wave function has �AF �= 0). The stability region
of this phase is approximately bounded (from below) by the
line U = λ, for all the values of the phonon energies. This
is a remarkable feature, which has been already obtained by
different approaches, especially in one dimension by DMRG
[16–18] and in two dimensions by VMC [40]. In fact, this
is expected in the antiadiabatic limit where ω0/t → ∞, but
there are no simple reasons that it should also hold for finite
(and relatively small) values of ω0. For large electron-phonon
coupling, the ground state is a CDW insulator, where doubly
occupied sites (doublons) and empty sites (holons) form a
checkerboard pattern; this charge modulation is accompanied
by a considerable phonon “dressing”, namely a large number
of phonons are present on top of doublons, while no phonons
are present on empty sites. This phonon cloud gives a drastic
reduction of the kinetic energy of electrons, which hardly
hop around in the lattice. Finally, there is an intermediate
superconducting phase (with pairing correlations that increase
by increasing ω0/t) that intrudes between the previous
insulators. For small values of the phonon energy, it is limited
to a narrow region for small couplings, while for intermediate
values of ω0/t , it expands inside the region where U < λ. By
further increasing ω0/t , the superconducting correlations get
stronger and stronger, eventually pervading the whole CDW
region. It should be mentioned that, when ω0/t → ∞, the

 0
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FIG. 3. Ground-state phase diagram in the (λ/t,U/t) plane for
the Hubbard-Holstein model at ω0/t = 1 (upper panel), ω0/t = 5
(middle panel), and ω0/t = 15 (lower panel). Antiferromagnetic
(AF), charge-density-wave (CDW), and superconducting (SC) phases
are present, the latter one being marked in blue. The calculations have
been performed on the 12 × 12 cluster with TABC. The dotted line
U = λ is also marked for reference.

CDW state returns into the game, being degenerate with the
superconducting one [due to the emerging SU(2) pseudo-spin
symmetry that connects the superconducting and the CDW
states]. In practice, we cannot recover an exact degeneracy
between these two states, since the density-density Jastrow
factor favors the superconducting one for very large phonon
energies.

For ω0/t = 1 and large λ/t , the transition between the
CDW and the antiferromagnetic insulators is first order, since
both wave functions can be stabilized also when the com-
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FIG. 4. Antiferromagnetic (red circles) and charge-density-wave
(blue squares) parameters for the case with ω0/t = 1. The cases
with λ/t = 4.5 (upper panel), where a first-order phase transition
between these two insulators is present, and with λ/t = 2 (lower
panel), where a continuous phase transition takes place, are reported.
The calculations have been performed on the 12 × 12 cluster with
TABC and error bars are smaller than the size of the symbols.

petitor gives the lowest variational energy. For example, the
variational parameters �AF and �CDW across the transition for
λ/t = 4.5 are reported in Fig. 4. By decreasing λ/t , the local
minima disappear and the transition appears to be continuous.
For λ/t = 2, which approximately corresponds to the tip
of the superconducting region, CDW and antiferromagnetic
parameters vanish for U/t ≈ 1.2; see Fig. 4. For smaller
values of λ/t , a superconducting phase can be stabilized for
small enough electron-electron repulsions, with a small but
clearly finite pairing term �SC. We would like to remark
that for U = 0, within our variational approach (implemented
with TABC), we obtain a finite value of the electron-phonon
coupling λ/t ≈ 1, separating superconducting and CDW
phases. In the noninteracting limit, at the density where the
Van Hove singularity occurs (i.e., at half filling, when only the
nearest-neighbor hopping t is present), both the particle-hole
and the particle-particle susceptibilities diverge as ln2(t/�)
[53], where � is an infrared cutoff. The former one has a
larger prefactor with respect to the superconducting one, thus
implying that, within the mean-field approach, an infinitesimal
interaction will lead to CDW. However, bare susceptibilities
may lead to an incorrect prediction and it is important to
go beyond this approximation. Our variational calculations
should capture the correct qualitative picture, i.e., the presence
of an extended superconducting region below a given λ/t , even
though we cannot exclude subtle finite-size effects that could
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FIG. 5. Antiferromagnetic (red circles), charge-density-wave
(blue squares), and superconducting (black diamonds) parameters
for the case with ω0/t = 5. The cases with λ/t = 4.5 (upper panel)
and λ/t = 2 (lower panel) are reported. In both cases, there is a
small region where the ground state is superconducting with no
charge-density-wave order. The calculations have been performed
on the 12 × 12 cluster with TABC and error bars are smaller than the
size of the symbols.

be particularly difficult to control even by using TABC. In this
respect, our results contrast with recent calculations obtained
by using a finite-temperature quantum Monte Carlo method
[54].

When increasing the phonon energy, the region of stability
for the superconducting phase broadens, intruding between
the two insulators also when λ/t is large. In Figs. 5 and 6,
we report the behavior of the variational parameters �AF,
�CDW, and �SC for ω0/t = 5 and 15. In the intermediate
region, both �AF and �CDW are vanishing, while �SC is
finite. Notice that �SC is also finite inside the insulating
CDW region. This fact does not lead to a supersolid ground
state (i.e., a superconducting state with CDW order), since
the presence of a finite �CDW is associated with a gap in
the excitation spectrum (we determine whether the system
is metallic or insulating by looking at the density-density
correlations; see for instance Ref. [55]). By contrast, this result
may be ascribed to the fact that superconducting and CDW
solutions become degenerate for ω0/t → ∞, and, therefore,
at the variational level, some energy gain can be obtained
by mixing superconductivity and CDW order, even when the
phonon energy is large but finite. Finally, we remark that
the transition between the antiferromagnetic insulator and
the superconductor appears to be continuous, i.e., both �AF

and �SC vanish (approximately) at the same point. This is a
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FIG. 6. Antiferromagnetic (red circles), charge-density-wave
(blue squares), and superconducting (black diamonds) parameters
for the case with ω0/t = 15. The cases with λ/t = 4.5 (upper panel)
and λ/t = 2 (lower panel) are reported. In this cases, there is a
substantial region where the ground state is superconducting with
no charge-density-wave order. The calculations have been performed
on the 12 × 12 cluster with TABC and error bars are smaller than the
size of the symbols.

particularly remarkable and unexpected feature, since s-wave
superconductivity and local moments are not compatible.

B. Doped case

Let us now move to the doped case, for which we want
to assess the stability toward phase separation. When doping
an antiferromagnet, phase separation could appear for small
hole concentrations, as found in the repulsive-U Hubbard
model, whenever the loss in the magnetic contribution to the
total energy is larger than the gain due to the kinetic part.
The presence of phase separation in the repulsive-U Hubbard
model has been confirmed by different methods, even if its
extension as a function of U is still controversial [56–62]. In
order to highlight the possible presence of phase separation in
the Hubbard-Holstein model, it is very useful to consider the
so-called energy per hole [63]:

ε(δ) = E(δ) − E(0)

δ
, (16)

where E(δ) is the energy per site at hole doping δ = 1 − n. For
a uniform phase, ε(δ) has a monotonically increasing behavior
with increasing δ from 0 to 1; by contrast, phase separation is
marked by the presence of a minimum of ε(δ) on any finite-size
clusters and a flat behavior (up to δc) in the thermodynamic
limit. These facts can be easily understood by considering that
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FIG. 7. Energy per hole of Eq. (16) for λ/t = 2 and various values
of U/t (upper panel) and for U = 0 and various values of λ/t (lower
panel). In both cases ω0/t = 1 and calculations are performed on the
12 × 12 cluster with TABC. Error bars are smaller than the size of
the symbols.

ε(δ) represents the slope of the line joining (0,E(0)) to (δ,E(δ))
and that, in a stable uniform phase E(δ) is a convex function,
while phase separation implies (after Maxwell construction) a
linear behavior of E(δ) up to δc.

The results of the energy per hole are shown in Fig. 7.
First of all, we discuss the case with U = 0, ω0/t = 1,
and finite λ (lower panel). Here, the system does not phase
separate for small values of the electron-phonon coupling, i.e.,
when doping the superconducting phase at half filling. Most
importantly, the ground state remains superconducting also
when the electron density is n < 1. This fact is most evident
when ω0/t is large enough, since the superconducting signal is
rather small in the adiabatic limit and increases with ω0/t . In
order to show this feature, we present the results for ω0/t = 15
in Fig. 8. As for the half-filled case, in order to get smooth
results when the electron density is varied, it is fundamental
to consider TABC, since fixed boundary conditions (here,
periodic-antiperiodic ones) give rise to a strongly scattered
behavior. By contrast, when entering into the CDW phase for
large values of λ/t , a small hole doping leads to a charge
instability, with the region where phase separation is obtained
increasing with λ. We remark that, within TABC, the results
show a smooth behavior that is not obtained by using fixed
boundary conditions. As for the case of an antiferromagnetic
phase, also in the presence of CDW order the injection of
few mobile holes that damage the charge periodicity is not
compensated by a kinetic energy gain. Thus, phase separation
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FIG. 8. Variational parameter �SC as a function of the electron
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twisted average (blue diamonds) boundary conditions on the 12 × 12
cluster. Here, ω0/t = 15 and λ/t = 0.98. Error bars are smaller than
the size of the symbols.

appears for sufficiently small hole doping. In Fig. 7, we also
show the results for λ/t = 2 and various values of U/t (upper
panel). Here, the electron-electron repulsion opposes to the
electron-phonon coupling, leading to a reduction of phase
separation until it eventually disappears above a critical value
of U/t (by further increasing the electron-electron repulsion,
antiferromagnetism settles down at half filling, thus leading
again to phase separation, as discussed in the positive-U
Hubbard model).

In Fig. 9, we further show that, at finite values of the phonon
energy, the extent of phase separation depends upon the actual
values of both U and λ. Indeed, we observe that, for ω0/t =
1, phase separation is more pronounced for U/t = 1.38 and
λ/t = 3.38 than for U = 0 and λ/t = 2, even if both cases
would give the same effective interaction Ueff = U − λ. This
fact can be explained by the presence, at half filling, of a larger
CDW parameter in the former case with respect to the latter
one.
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FIG. 9. Energy per hole of Eq. (16) for U = 0 and λ/t = 2 (red
squares), compared with U/t = 1.38 and λ/t = 3.38 (black circles),
that corresponds to the same value of the effective interaction Ueff =
U − λ. In both cases ω0/t = 1 and calculations are performed on the
12 × 12 cluster with TABC. Error bars are smaller than the size of
the symbols.
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bars are smaller than the size of the symbols.

Finally, we compare the energy per hole for U = 0 and
λ/t = 2 for different values of ω0/t ; see Fig. 10. In all these
cases, the ground state at half filling has CDW order (see Fig. 3)
and, therefore, phase separation is expected to appear away
from half filling. However, in the antiadiabatic limit ω0/t →
∞, there is no phase separation, since the Holstein model
maps to the negative-U Hubbard model, which has a uniform
ground state away from half filling. In fact, we find that phase
separation reduces when increasing ω0/t , i.e., the position
of the minimum in the energy per hole shifts toward δ = 0,
indicating that our variational approach correctly reproduces
the expected physical behavior.

IV. CONCLUSIONS

In conclusion, we have performed accurate VMC calcu-
lations to extract thermodynamic properties of the Hubbard-
Holstein model, where finite-size effects have been strongly
reduced by implementing an average over twisted boundary
conditions. At half filling, our results confirm the existence of
a gapless phase between the CDW and the antiferromagnetic
insulators, as recently obtained by different VMC calculations
[40]. Moreover, within our approach, which is based upon a
transparent parametrization of the variational wave functions,
we are able to observe the presence of superconducting
correlations in the intermediate phase. When the phonon
energy becomes large, pairing correlations strengthen and
the superconducting region broadens to the detriment of
CDW order. The emergence of superconductivity in the
half-filled Hubbard-Holstein model is an example on how
two competing tendencies (i.e., antiferromagnetism, favored
by electron-electron interaction, and CDW order, favored by
electron-phonon coupling) may lead to a third stable phase.
In addition, we studied the effect of hole doping for both
regimes where the half-filled ground state has either CDW or
superconducting order. In the former case, a substantial phase
separation is present at small dopings, resembling the case of
a doped repulsive-U Hubbard [56–62]. In the latter case, in-
stead, the ground state remains uniform with superconducting
order. However, superconductivity is found to monotonically
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decrease upon doping. We remark that, away from half filling,
TABCs are fundamental to reduce finite-size effects.

From general grounds, within the Hubbard-Holstein model,
superconductivity is rather fragile against electron-electron
repulsion and also against electron doping. Indeed, since
phonons are coupled to the local electronic density in the
Hubbard-Holstein model, there is a direct competition between
the formation of superconducting pairs and the local Coulomb
repulsion U . In addition, superconducting pairing is maximum
at half filling and strongly reduces in the presence of hole
doping. In this respect, a different scenario is expected
within the Su-Schrieffer-Heeger model [11], where lattice
displacements are coupled to the hopping term: here, no
superconductivity is expected at half filling, since a Peierls
insulator should take place for any electron-phonon coupling at

U = 0 (similarly to what happens in one dimension [64–66]).
On the contrary, superconductivity is expected to emerge upon
doping, being also more robust against Coulomb repulsion than
in the Hubbard-Holstein model. Therefore, the Su-Schrieffer-
Heeger model would provide a different mechanism for
electron pairing, more pertinent for cuprate and iron-pnictide
superconductors. Further variational investigations in this
direction could benefit from the use of backflow terms, as
introduced to improve the quality of the wave functions in the
Hubbard model [55,67].
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