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The extension of the linear flavor-wave theory to fully antisymmetric irreducible representations (irreps) of
SU(N ) is presented in order to investigate the color order of SU(N ) antiferromagnetic Heisenberg models in
several two-dimensional geometries. The square, triangular, and honeycomb lattices are considered with m

fermionic particles per site. We present two different methods: the first method is the generalization of the
multiboson spin-wave approach to SU(N ) which consists of associating a Schwinger boson to each state on
a site. The second method adopts the Read and Sachdev bosons which are an extension of the Schwinger
bosons that introduces one boson for each color and each line of the Young tableau. The two methods yield
the same dispersing modes, a good indication that they properly capture the semiclassical fluctuations, but the
first one leads to spurious flat modes of finite frequency not present in the second one. Both methods lead to
the same physical conclusions otherwise: long-range Néel-type order is likely for the square lattice for SU(4)
with two particles per site, but quantum fluctuations probably destroy order for more than two particles per
site, with N = 2m. By contrast, quantum fluctuations always lead to corrections larger than the classical order
parameter for the tripartite triangular lattice (with N = 3m) or the bipartite honeycomb lattice (with N = 2m)
for more than one particle per site, m > 1, making the presence of color very unlikely except maybe for
m = 2 on the honeycomb lattice, for which the correction is only marginally larger than the classical order
parameter.

DOI: 10.1103/PhysRevB.96.205142

I. INTRODUCTION

The experimental research with ultracold atomic gases
in optical lattices is currently a very active and rapidly
progressing field. This type of experiment offers the possibility
of fully controlling many parameters, allowing the realization
of a vast number of lattice models at low temperature. It
is thus an important tool to help understand the many-body
physics of quantum nature. In addition to the well-studied
systems with SU(2) symmetry, recent experiments demon-
strate that systems characterized by SU(N ) with N � 10
can be implemented with up to two particles per site m � 2
thanks to the strong decoupling between the electronic angular
momentum and the nuclear spin of alkaline-earth atoms
[1–3]. The high symmetry of SU(N ) offers many exciting
prospects, such as simulating non-Abelian lattice gauge
theories well known in high-energy physics or implementing
quantum computing schemes. Another aspect of interest is the
abundance of exotic phases that SU(N ) spin Hamiltonian can
accommodate.

A simple model that describes the above experimental
realization is the fermionic SU(N ) Hubbard model

H = −t
∑

〈i,j〉,μ
(c†i,μcj,μ + H.c.) + U

∑
i,μ<ν

ni,μni,ν, (1)

where c
†
i,μ,ci,μ are fermionic operators with N flavors μ acting

on site i, thus generalizing the conventional two-flavor spin
Hubbard model to N flavors. In the Mott-insulating phase
t � U with one particle per site (m = 1), we obtain the SU(N )

antiferromagnetic (AFM) Heisenberg model

H = J
∑
〈i,j〉

∑
μ,ν

Ŝμ
ν (i)Ŝν

μ(j ), (2)

and the operators Ŝμ
ν admit a fermionic representation

Ŝμ
ν = f †

ν fμ − m

N
δμ
ν . (3)

This model has been studied in various settings. A Bethe ansatz
solution is known in one dimension for any N [4], along with
quantum Monte Carlo (QMC) simulation results [5–7].

The investigation of higher-dimensional systems often
relies on many different numerical techniques. The exact
diagonalization [8,9] can be used for finite cluster sizes,
whereas quantum Monte Carlo methods [10–14] can be
applied to problems that do not suffer from the sign problem.
The variational Monte Carlo [15–19] and tensor network algo-
rithms [20–22] have also been employed for SU(N ) systems,
yielding remarkably accurate results. Analytical investigations
have also been carried out, notably using field-theoretical
methods in the large-N limit [23].

In particular, chiral spin liquid and valence cluster states
are predicted for large N depending on the ratio [24,25]

k = N

m
. (4)

For small values of N , however, it was shown using the linear
flavor-wave theory (LFWT) and different numerical methods
that the antiferromagnetically ordered phase is stabilized
[9,20,26,27] for m = 1, in which two different colors occupy
the adjacent sites of each bond, similar to the spin- 1

2 Heisen-
berg square lattice in a Néel configuration. The LFWT, which
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originates from the pioneering works of Papanicolaou [28,29]
and which was further developed by Joshi et al. [30] and
Chubukov [31], assesses the possibility of a system to retain a
long-range order with quantum fluctuations, and it predicts a
magnetic order for m = 1 up to N = 5 for the square lattice,
and for N = 3 for the triangular lattice [32,33]. It is expected
that the magnetic order would be destroyed as k becomes large
due to the increase of quantum fluctuations and the frustration
in the system that stems from the extensively degenerate
ground-state manifold at the mean-field level for large N . So
far, the LFWT has been applied uniquely on the systems with
one particle per site (m = 1), and it is not yet known if the
magnetic order would survive in systems with relatively small
k and m with more than one particle per site (m > 1).

When placing one particle per site, the N degrees of
freedom of SU(N ), called colors or flavors in reference to
elementary particles, lead to the use of the fundamental irre-
ducible representation of SU(N ), in which the SU(N ) matrices
act on the N -dimensional complex-vector space. However,
placing many particles per site can be seen as generating new
composite particles (e.g., quarks giving mesons in particle
physics), and the action of SU(N ) has to be adapted to
the composite particles, meaning that a different irreducible
representation (irrep) of SU(N ) has to be considered. An irre-
ducible representation of SU(N ) can be depicted by a Young
tableau, labeled by the row lengths (l1, . . . ,lk) or, alternatively,
labeled by a (N − 1)-tuple whose entry is the difference of
the length of the adjacent rows [l1−l2,l2−l3, . . . ,lk−0]. The
antisymmetry of the states is represented in the vertically
stacked boxes, whereas the symmetry is represented in the
horizontally stacked boxes, leading to the constraint that a
Young tableau cannot have more than N rows (1 � k � N ).
Additionally, a row cannot be longer than the row above it
(lk � · · · � l1).

In this work, we present two different methods of apply-
ing the LFWT to arbitrary irreducible representations, with
emphasis on fully antisymmetric irreps. Such irreps, with a
single column of length m, are very natural in the context of
fermionic cold atoms in optical lattices because they describe
the Mott phases with m particles per site. Owing to the strong
hyperfine interactions, it is possible to load fermionic atoms
with an internal degree of freedom that can take up to N values,
thus implementing the SU(N ) symmetry. It is then possible to
load up to N particles per site, and if the onsite repulsion is
strong enough, to stabilize Mott phases with m particles per
site for 1 � m � N . The best candidates are ytterbium, for
which N can be as large as 6, and strontium, for which N can
be as large as 10.

The first method is an extension of the multiboson spin
wave [34–36] to SU(N ) irreps, where each state of a given
irrep is represented by a boson. A second approach relies
on a different bosonic representation of the states of a given
SU(N ) antisymmetric irrep, used by Read and Sachdev [23].
Based on the ordered nature of the ground state we are
considering, we assume a condensate of multiple colors on
each sublattice, enabling the c-number substitution of the
condensed bosons in the sprit of Bogoliubov [37]. Both
procedures are applied to all the simplest two-dimensional
geometries that can accommodate an antiferromagnetic color
order without frustration. When the classical ground-state

manifold is infinitely degenerate as in the SU(3) AFM
Heisenberg model on the square lattice, the LFWT cannot give
an accurate prediction of the color order due to the infrared
divergency stemming from the degenerate classical ground
states, although this degeneracy is expected to be lifted by
quantum fluctuations, thus allowing the system to retain a
small color order (see Ref. [38]).

Henceforth, we consider the square lattice and the hon-
eycomb lattice in a Néel-type two-sublattice configuration
(nsub = 2), and the triangular lattice with three sublattices
(nsub = 3), with nsub being the number of sublattices required
for a frustration-free color order. For an antiferromagnetic
Heisenberg model with a given N , it is then natural to consider
m = N

nsub
particles per site. We thus apply the method to the

SU(4) AFM Heisenberg model with m = 2 on the bipartite
square lattice and on the bipartite honeycomb lattice, and we
continue with the SU(6) AFM Heisenberg model with m = 2
on the tripartite triangular lattice. We then derive results for any
N on these geometries. We show that N = 4 on the bipartite
square lattice is the only case that can possess long-range order,
in other cases the zero-point quantum fluctuations will destroy
the order.

II. MULTIBOSON LFWT APPROACH

We hereby address fully antisymmetric states expressed
in terms of m fermions per site. The Young tableau of the
corresponding irrep then consists of a single column with m

boxes. In the fundamental representation, the fermionic rep-
resentation (3) allows us to write the Heisenberg Hamiltonian
(2) as

H = J
∑
〈i,j〉

N∑
μ,ν=1

f
†
ν,ifμ,if

†
μ,jfν,j , (5)

where the constant term −m2

N
has been dropped. The Hamil-

tonian is then simply a permutation of two colors from two
neighboring sites. m fermionic particles in an antisymmetric
configuration form

Ñ :=
(

N

m

)
(6)

states on a site that transform into themselves according to
the corresponding irrep. We can thus assign a boson to each
state of the irrep, providing Ñ bosons, and we can rewrite
the action of the Hamiltonian (i.e., the color permutation) in
the basis of this irrep. This amounts to mapping our original
states to SU(Ñ ) states in the fundamental irrep. The boson that
represents the classical ground state can then be condensed in
order to perform the semiclassical expansion by letting nc →
∞ (see Fig. 1). This is analog to the spin-wave expansion
where we let S → ∞. The value of nc will be set to 1 at the
end of the calculations.

A. SU(4) m = 2 on the square lattice

Let us first consider SU(4) with m = 2 on a bipartite square
lattice, on which we assume a Néel-type two-sublattice ordered
state (see Fig. 2). Furthermore, we assume that the first two
colors A and B are condensed on sublattice �AB and the last
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FIG. 1. (a) A generic Young tableau labeled by [1,0,1] or
(2,1,1), a partition of N = 4. This represents one of the irreducible
representations of SU(4). (b) A Young tableau with m vertical boxes

representing the corresponding SU(N ) irrep with Ñ = (N
m

) states.

These states are mapped to states in SU(Ñ ) fundamental irrep, after
which the semiclassical approximation nc → ∞ is performed.

two colors on sublattice �CD . The irrep we are considering is
thus [0,1,0]. Let the basis of this six-dimensional irrep be{

1√
2

(|AB〉 − |BA〉), 1√
2

(|AC〉 − |CA〉),

1√
2

(|DA〉 − |AD〉), 1√
2

(|BC〉 − |CB〉),

1√
2

(|BD〉 − |DB〉), 1√
2

(|CD〉 − |DC〉)
}
, (7)

which we label conveniently as the elements of the set

S := {AB,AC,DA,BC,BD,CD}. (8)

Note that a different choice of basis does not affect the
spectra of the Hamiltonian at the end of the calculations. It
is also worthwhile noting that an orthogonal basis can be
systematically found for any irrep of SU(N ) by using the
orthogonal units developed by Young [9]. This yields six
Schwinger bosons b

†
AB, b

†
AC, b

†
DA, b

†
BC, b

†
BD, b

†
CD and their

Hermitian counterparts in this basis of the irrep, and they
describe the composite particles composed of two SU(4) color
particles. The generators for a given site i can be written as

Ŝμ
ν (i) =

D∑
α=A

α �=μ,ν

b†αν(i)bαμ(i), (9)

in which the bosons are antisymmetric in their indices
b†νμ = −b†μν , such that the indices can be ordered to yield
the aforementioned labels {AB,AC,DA,BC,BD,CD}. The
sign of the permutations takes into account the antisymmetry
of the resulting states. As an example, the operator ŜA

C is

FIG. 2. A Néel-type two-sublattice order on the square lattice
and the honeycomb lattice with two particles per site for the SU(4)
AFM Heisenberg model, and a three-sublattice order on the triangular
lattice with two particles per site for SU(6).

given as

ŜA
C (i) = −b

†
BC(i)bAB(i) − b

†
CD(i)bDA(i), (10)

which is exchanging color A with color C in all the states that
allow this transition. The diagonal operator ŜC

C would be given
as

ŜC
C (i) = b

†
AC(i)bAC(i) + b

†
BC(i)bBC(i) + b

†
CD(i)bCD(i).

(11)

This representation of the SU(N ) generators Ŝμ
ν satisfies the

SU(N ) commutation relation

[
Ŝα

β ,Ŝμ
ν

] = δα
ν Ŝ

μ
β − δ

μ
β Ŝα

ν . (12)

The Hamiltonian (2) can then be written in terms of
the Schwinger bosons. This result is obtained by writing
the Hamiltonian (5) in the basis of the two-site Hilbert
space.

In the language of the composite particles, the constraint
m = 2 can be written as

∑
η

b†η(i)bη(i) = nc, (13)

where nc = 1 and η ∈ S.
Let the site iAB ∈ �AB and the site iCD ∈ �CD . It is now

possible to apply the standard linear flavor-wave theory as in
Ref. [38]. Similar to the 1/S expansion in the spin-wave theory,
the limit nc → ∞ allows us to write

b
λ†
λ (iλ)bλ

λ(iλ) = nc −
∑

η∈S\{λ}
bλ†

η (iλ)bλ
η(iλ)

=⇒ b
λ†
λ (iλ),bλ

λ(iλ) →
√

nc −
∑

η∈S\{λ}
b

λ†
η (iλ)bλ

η(iλ), (14)

where the superscript λ ∈ L := {AB,CD} refers to the cor-
responding sublattice in the spirit of the Holstein-Primakoff
representation. Expanding the square roots in 1/nc gives
rise to a decomposition of the Hamiltonian in powers
of

√
nc:

H = H(0) + H(1) + H(2) + O
(
n

1
2
c

)
. (15)

The term H(0) ∝ nc
2 is the classical energy, whereas H(1) ∝

nc

3
2 is the linear term that vanishes if we start from a classical

ground state. In the following, we truncate the Hamiltonian at
the harmonic order and consider the quadratic term H(2) only.
After the Fourier transform

bλ
η(iλ) =

√
2

N

∑
k∈RBZ

bλ
η(k)e−ik·xi , (16)
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the quadratic Hamiltonian is given by

H(2) = Jnc

∑
k∈RBZ

[
8b

AB†
CD (k) bAB

CD(k) + 8b
CD†
AB (k) bCD

AB (k)

+ 4γsq(k)bAB†
AC (k) b

CD†
BD (−k) + 4γsq(k)bAB

AC (k) bCD
BD(−k) + 4b

AB†
AC (k) bAB

AC (k) + 4b
CD†
BD (−k) bCD

BD(−k)

+ 4γsq(k)bAB†
BD (k) b

CD†
AC (−k) + 4γsq(k)bAB

BD(k) bCD
AC (−k) + 4b

AB†
BD (k) bAB

BD(k) + 4b
CD†
AC (−k) bCD

AC (−k)

+ 4γsq(k)bAB†
DA (k) b

CD†
BC (−k) + 4γsq(k)bAB

DA(k) bCD
BC (−k) + 4b

AB†
DA (k) bAB

DA(k) + 4b
CD†
BC (−k) bCD

BC (−k)

+ 4γsq(k)bAB†
BC (k) b

CD†
DA (−k) + 4γsq(k)bAB

BC(k) bCD
DA(−k) + 4b

AB†
BC (k) bAB

BC(k) + 4b
CD†
DA (−k) bCD

DA(−k)
]
, (17)

with

γsq(k) = 1
2 (cos kx + cos ky). (18)

After the diagonalization of the nondiagonal terms (the only
diagonal terms being those with bAB

CD and bCD
AB ) with the help

of an adequate Bogoliubov transformation,(
b̃

AB†
AC,k

b̃CD
BD,−k

)
=
(

uk vk

vk uk

)(
b

AB†
AC,k

bCD
BD,−k

)
(19)

and similarly for other bosons, the resulting harmonic Hamil-
tonian reads as

H(2) = Jnc

∑
k∈RBZ

⎡
⎣8

(
b

AB†
CD (k)bAB

CD(k) + b
CD†
AB (k)bCD

AB (k)
)

+ ωsq(k)
∑
λ ∈ L

∑
η ∈ S \ L

(
b̃λ†

η (k)b̃λ
η(k) + 1

2

)⎤⎦

− 16Jnc

N

2
, (20)

with

ωsq(k) = 4
√

1 − |γsq(k)|2 . (21)

The dispersion relation is depicted in Fig. 3. Note that it is
identical to the dispersion relation of SU(2).

(a) (b) (c)

FIG. 3. The dispersion relation of the (a) SU(4) square, (b) SU(4) honeycomb, and (c) SU(6) triangular lattice. The first structural Brillouin
zone is depicted in the 2D heat map. Both the honeycomb and the triangular lattices result in the identical first Brillouin zone up to a scaling
factor, as the bonds between two given sublattices are identical in both lattices up to a scaling factor between the bonds.
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FIG. 4. Left panel: weight diagram of SU(4) in the antisymmetric
m = 2 irrep. The group SU(4) being a group of rank 3, the states are
characterized by three coordinates and the weight diagram is thus in
3D. The dots and the circles compose two different planes, the dots
being on top of the circles. Right panel: the direction in which the six
SU(2) ladder operators (Ŝμ

ν ,μ �= ν) operate. The dotted lines have a
nonzero component in the normal of the plane. One can attribute the
labels A,B,C,D to the states accordingly.

Alternatively, in the structural Brillouin zone, we obtain

H(2) = Jnc

∑
k

⎧⎨
⎩8b†(k)b(k)

+ ωsq(k)
4∑

β=1

(
b̃
†
β(k)b̃β(k) + 1

2

)⎫⎬
⎭ − 8JncN, (22)

in which the boson b† originates from the decoupled bosons
bAB

CD and bAB
CD , whereas the bosons b̃† stem from the Bogoliubov

transformation in Eq. (19). We obtain 10 bands in the reduced
Brillouin zone, which correspond to 5 bands in the structural
Brillouin zone. From the five branches, four are dispersive
and one is flat at energy 8Jnc. The (degenerate) dispersive
bands are associated to the possible flavor exchanges (e.g.,
A ↔ C and A ↔ D). The flat band, however, originates from
having the same colors AB (or CD) on two neighboring sites
of a bond. This is a higher-order transition, as two colors are
different with respect to the chosen classical ground state. In
other words, it requires the action of two ladder operators:
this can be seen in the weight diagram of this irrep, Fig. 4,
where AB and CD are two edges apart. Thus this higher-order
excitation does not interact in the harmonic order of the bilinear
Heisenberg exchange Hamiltonian [35], and this results in a
localized flat band.

The energy per site of the system due to quantum
fluctuations is

E/N = Jnc

(
−8 + 4 ·

〈
ωsq(k)

2

〉)
= −1.264Jnc. (23)

We now define the ordered color moment on the site
i ∈ �λ, as

mi = 1

nc

〈
b

λ†
λ (i)bλ

λ(i)
〉

= 1

nc

⎛
⎝nc −

〈 ∑
η∈S\{λ}

bλ†
η (i)bλ

η(i)

〉⎞⎠, (24)

so that the fully polarized classical Néel state is mi = 1.
Then, the reduction of the ordered moment due to quantum

fluctuations is

�mi = 1

nc

〈 ∑
η∈S\{λ}

bλ†
η (i)bλ

η(i)

〉

=
〈
4 · 1

2

(
4Jnc

Jncωsq
− 1

)〉

= 0.786, (25)

where we used the fact that 〈bAB†
CD (i)bAB

CD(i)〉 =
〈bCD†

AB (i)bCD
AB (i)〉 = 0 whereas 〈bλ†

η (i)bλ
η(i)〉 is finite for

λ ∈ L and η ∈ S \ {λ} as a consequence of the Bogoliubov
transformation. This merely reflects the impossibility for
the state AB to fluctuate into the state CD with the bilinear
Heisenberg exchange in the harmonic order.

The ordered moment is then

mi = 1 − �mi = 0.214. (26)

Since the ordered moment mi > 0, this theory predicts that the
system potentially retains a finite magnetic order. Note that the
correction is not small, however. It is close to 80%. So, order
is likely but not guaranteed.

Note that we could alternatively define the ordered moment
as in Ref. [14] in which it is defined on any site i of a bipartite
lattice as

malt
i = 2

N

⎛
⎝N/2∑

μ=1

Sμ
μ (i) −

N∑
μ= N

2 +1

Sμ
μ (i)

⎞
⎠, (27)

giving an ordered moment of mi = (−1)i for a classical
Néel configuration, where the sign depends on the sublattice.
Following this definition, one finds

malt
i = (−1)i0.214. (28)

B. SU(4) m = 2 on the honeycomb lattice

Following the same construction as in Sec. II A, we assume
two sublattices �AB and �CD , and L = {AB,CD}, S =
{AB,AC,DA,BC,BD,CD} as before (see Fig. 2). Then, the
harmonic Hamiltonian for the bipartite honeycomb lattice can
be given as follows:

H(2) = Jnc

∑
k∈BZ

⎡
⎣6

∑
λ∈L

∑
η∈L\{λ}

bλ†
η (k)bλ

η(k)

+ωhon(k)
∑
λ∈L

∑
η∈S\L

(
b̃λ†

η (k)b̃λ
η(k) + 1

2

)⎤⎦
− 6JncN, (29)

where k runs over the structural Brillouin zone of the
honeycomb lattice, thus giving rise to doubly degenerate
bands. The dispersion relation of the dispersive (“magnetic”)
branch (see Fig. 3) is given by

ωhon(k) = 3
√

1 − |γhon(k)|2, (30)

where

γhon(k) = 1
3

(
eiky + ei(

√
3

2 kx− 1
2 ky ) + ei(−

√
3

2 kx− 1
2 ky )). (31)
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The energy per site due to quantum fluctuations is

E/N = Jnc

(
−6 + 4 ·

〈
ωhon(k)

2

〉)
= −1.259Jnc. (32)

The reduction of the ordered moment is

�mi = 1

nc

〈
6∑

η=2

b1†
η (i)b1

η(i)

〉

= 1

nc

〈
4 · 1

2

(
4Jnc

Jncωhon
− 1

)〉
= 1.0328. (33)

The reduction is larger than the classical moment. It is
thus likely that no finite order exists on the two-sublattice
honeycomb lattice for N = 4 with two particles per site. Note,
however, that the reduction is only marginally above 100%.
So, it cannot be excluded on this basis that a small moment
survives quantum fluctuations.

C. SU(6) m = 2 on the triangular lattice

Similar considerations can be done for the triangular lattice
for which we assume a three-sublattice order with two particles
per site (see Fig. 2), i.e., with sublattices �AB, �CD, �EF

where we assume a basis similar to Eq. (7).
Adding all the bonds together and merging them to form

bands in the structural Brillouin zone, we obtain

H(2) = Jnc

∑
k

[
6∑

α=1

6b†α(k)bα(k)

+ ωtri(k)
8∑

β=1

(
b̃
†
β(k)b̃β(k) + 1

2

)⎤⎦ − 12Jnc, (34)

with the dispersion relation (see Fig. 3)

ωtri(k) = 3
√

1 − |γtri(k)|2 (35)

in which

γtri(k) = 1

3

(
eikx + 2e−i 1

2 kx cos

√
3

2
ky

)
. (36)

It is worth noting the similarity between Eqs. (36) and (31),
as the geometric bonds between two sublattices have the same
angle in both the triangular and the honeycomb lattices. We
obtain six bands that sit high in energy and eight bands
associated to the exchange of flavors that always keep one
flavor on the site, e.g., AB to AC.

The energy per site due to quantum fluctuations is

E/N = Jnc

(
−12 + 8 ·

〈
ωtri(k)

2

〉)

= −2.518Jnc. (37)

The reduction of the ordered moment is

�mi = 1

nc

〈
15∑

η=2

b1†
μ (i)b1

μ(i)

〉

= 1

nc

〈
8 · 1

2

(
3Jnc

Jncωtri(k)
− 1

)〉

= 2.066, (38)

hence, we can conclude that the long-range color order is
almost certainly destroyed by quantum fluctuations.

D. General m

For any antisymmetric SU(N ) irrep with m particles, the
generators Ŝμ

ν for a given site i can be written as

Ŝμ
ν (i) =

∑
α1, . . . ,αm

α1, . . . ,αm �= μ,ν

sgn(σ1) sgn(σ2)

× b
†
σ1·(α1...αmν)(i)bσ2·(α1...αmμ)(i), (39)

with α1, . . . ,αm run over the N colors and σ1,σ2 are permu-
tations that order the letters in the alphabetical order. This
is a direct generalization of Eq. (9), and its action is the
permutation of color μ with ν while taking care of the sign
change due to the antisymmetry of the states. Note that this
can be generalized further for any general irrep by determining
the action of the generator Ŝμ

ν on the basis states of the
irrep.

From the three models above, we observe the existence
of dispersive branches and nonzero flat branches at the
harmonic level of the Hamiltonian. The dispersive branches
stem from the transitions occurring from exactly one color
exchange between two neighboring sites. In the case of the
bipartite SU(4) square lattice, the state AB can decay into
four different states (AC,DA,BC,BD) when exchanging one
color with the neighboring state CD, yielding four dispersive
branches. However, going from AB to CD requires the
exchange of two colors at least, resulting in a flat band in
the harmonic order with an energy sitting at 2Jz, i.e., the
energy cost of exchanging two colors with z possible nearest
neighbors.

In general, we can have bands with energy nzJnc (n ∈
{2, . . . ,m}) depending on the number of the required color
exchanges for a possible target state. Consequently, it is
possible to deduce the diagonalized quadratic Hamiltonian
by determining the number of color exchanges that are needed
for every possible transition. In general, for any m with k = 2
for the square or k = 3 for the triangular lattice, the quadratic
Hamiltonian is given by

H(2) = Jnc

∑
k

⎧⎨
⎩

m∑
n=2

nz

(m

n)(
N−m

n )∑
α=1

b†α(k)bα(k) + ωsq/tri(k)

×
m(N−m)∑

β=1

(
b̃
†
β(k)b̃β(k) + 1

2

)⎫⎬
⎭ − m(N − m)

2
zJncN,

(40)

where the sum runs over the structural Brillouin zone, and
z is the coordination number between two sublattices (z = 4
for the square lattice and z = 3 for the triangular lattice). The
dimension of the considered antisymmetric irrep [m,0, . . . ]
is (Nm). The use of the Holstein-Primakoff bosons with the

limit nc → ∞ leads to (Nm) − 1 branches in the structural

Brillouin zone, of which (m1)(N − m

m ) = m(N − m) branches are
dispersive. Since N = mnsub for a given value of m, the square
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lattice will have m2 dispersive branches and the triangular
lattice will have 2m2 branches. Hence, we can conclude that
for a given number of particles per site m, the reduction of the
magnetization �mi is given by

�m
sq
i (m) = m2

〈
1

2

(
4Jnc

Jncωsq
− 1

)〉

= 0.197m2

for the square lattice, and

�mtri
i (m) = 2m2

〈
1

2

(
3Jnc

Jncωtri(k)
− 1

)〉

= 0.516m2

for the triangular lattice.
As for the flat modes, there are (Nm)(N − 1

n ) flat branches at
energy nzJnc, with n ∈ {2, . . . ,m} being the number of color
exchanges applied at a state.

The same conclusion also applies for the honeycomb lattice,
with the only difference being the number of branches that is
doubled in the first structural Brillouin zone. Introducing an
index ξ to account for the doubling of the branches, we obtain

H(2) = Jnc

∑
k

2∑
ξ=1

⎧⎨
⎩

m∑
n=2

nz

(m

n)(
N−m

n )∑
α=1

b
†
α,ξ (k)bα,ξ (k)

+ ωhon(k)
m(N−m)∑

β=1

(
b̃
†
β,ξ (k)b̃β,ξ (k) + 1

2

)⎫⎬
⎭

− m(N − m)

2
zJncN (41)

for the honeycomb lattice, where z = 3. Hence, the reduction
of the magnetization as a function of the number of particles
per site is given by

�mhon
i (m) = m2

〈
1

2

(
4Jnc

Jncωhon(k)
− 1

)〉

= 0.258m2.

In all cases, the reduction of the local order parameter is much
larger than 1 for m � 3, making the presence of long-range
order very unlikely.

III. READ AND SACHDEV BOSONIC REPRESENTATION

Harmonic fluctuations can be analyzed with an alternative
approach by using a different bosonic representation for
the SU(N ) generators. This bosonic representation briefly
mentioned in Ref. [23] is an extension of the Schwinger
bosons, and can be applied to any irreps whose Young tableaux
contain m rows and nc columns. It assumes one boson for
each color as well as for each row of the Young tableau, and
the bosons are then antisymmetrized in accordance with the
chosen irrep. In this realization, the SU(N ) operators can be
written as

Ŝμ
ν =

m∑
a=1

b†νabμa − nc

2
δμν, (42)

where μ,ν ∈ {A,B, . . . } ≡ {1, . . . ,N} are the color indices
and a ∈ {1, . . . ,m} are the row indices. They naturally satisfy
the SU(N ) commutation relations. The constraints

N∑
α=1

b†αabαb = δabnc, (43)

with a ∈ {1, . . . ,N} and a,b ∈ {1, . . . ,m}, ensure that we work
in the given irrep. The constraints that involve the same line
indices are the same as the constraints of the Schwinger bosons,
whereas the other equations are additional constraints that
enforce the antisymmetry of the irrep.

The Heisenberg Hamiltonian in this bosonic representation
is given by

H = J
∑
〈i,j〉

∑
μ,ν

Ŝμ
ν (i)Ŝν

μ(j )

= J
∑

<i,j>
μ,ν

m∑
a,b=1

b†νa(i)bμa(i)b†μb(j )bνb(j ). (44)

A. SU(4) m = 2 on the square lattice

We now turn our attention to the square lattice with m = 2.
Let us assume an ordered state in which the colors A and
B sit on the sublattice �AB and the colors C and D are on
the sublattice �CD of the square lattice. Note that we have
deliberately broken the symmetry by choosing specific colors
for the sublattice. In the limit nc → ∞, we assume that there is
a condensate of colors A and B on the site i and a condensate
of colors C and D on the site j . Consequently, it is possible to
perform the Bogoliubov substitution of the condensed bosons
with c-numbers (with c ∈ C), i.e.,

b
†
Aa(i) → z∗

Aa, b
†
Ba(i) → z∗

Ba,

b
†
Ca(j ) → z∗

Ca, b
†
Da(j ) → z∗

Da,
(45)

for any i ∈ �AB, j ∈ �CD , and a ∈ {1, . . . ,m}. This replace-
ment is true when considering the expectation value of the
bosonic number operators and the operators Sμ

ν . It is also
worthwhile noting that the conventional SU(2) spin-wave
theory in the harmonic order also corresponds to replacing
the condensed bosons by a c number.

In this limit of the large condensate nc → ∞, the constraints
(43) for the sublattice �AB to order O(nc) are reduced to

z∗
A1zA1 + z∗

B1zB1 = nc,

z∗
A2zA2 + z∗

B2zB2 = nc, (46)

z∗
A1zA2 + z∗

B1zB2 = 0.

The complex-conjugate counterpart of the third equation in
Eq. (46) has been dropped as they are equivalent.

When written in a matrix form UAB such that

zμa =:
√

nc [UAB]μa (47)

with μ ∈ {A,B} (the first N
2 colors) and a ∈ {1,2} ≡

{1, . . . ,m}, the set of equations (46) amount to imposing
a unitarity condition on the matrix UAB . Alternatively, the
matrix elements of this unitary matrix can be parametrized in
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the following way. The set of equations (43) can be written as∑
a,b

z∗
Aaδa,bzAb +

∑
a,b

z∗
Baδa,bzBb = 2nc,

(48)∑
a,b

z∗
Aaσ

(α)
a,bzAb +

∑
a,b

z∗
Baσ

(α)
a,bzBb = 0,

where σ
(α)
a,b are Pauli matrices with α = x,y,z or

z∗
A · zA + z∗

B · zB = 2nc,
(49)

z∗
A · σ (α) · zA + z∗

B · σ (α) · zB = 0.

We can think of the problem as having two antiferromagneti-
cally alligned SU(2) spins (the A and the B), the (z∗

A1,z
∗
A2) and

(z∗
B1,z

∗
B2) being the SU(2) spinors of the two spins, and they

can be parametrized as

zA1 = √
nc eiχAB cos

ϑAB

2
,

zA2 = √
nc eiχAB sin

ϑAB

2
e−iϕAB ,

zB1 = √
nc sin

ϑAB

2
, zB2 = −√

nc cos
ϑAB

2
e−iϕAB (50)

when condensed.
The same consideration can be done for the sublattice �CD ,

starting from the constraints (43) in the limit of the large nc:

z∗
C1zC1 + z∗

D1zD1 = nc,

z∗
C2zC2 + z∗

D2zD2 = nc, (51)

z∗
C1zC2 + z∗

D1zD2 = 0.

This can be rewritten further in a unitary matrix form UCD:

zμa =:
√

nc [UCD]μa (52)

with μ ∈ {C,D} (the last N
2 colors) and a ∈ {1,2} ≡

{1, . . . ,m}, or alternatively, with the following
parametrization:

zC1 = √
nc eiχCD cos

ϑCD

2
,

zC2 = √
nc eiχCD sin

ϑCD

2
e−iϕCD ,

(53)

zD1 = √
nc sin

ϑCD

2
,

zD2 = −√
nc cos

ϑCD

2
e−iϕCD .

Following this procedure, the bosons b
(†)
Aa(i),

b
(†)
Ba(i), b

(†)
Ca(j ), b

(†)
Da(j ) can be finally replaced by their

corresponding c numbers in the Hamiltonian (44), yielding a
quadratic Hamiltonian H(2) of the order O(nc). After Fourier
transforming,

bμa(i) =
√

2

Nsites

∑
k∈RBZ

bμa(k) (54)

with Nsites being the number of sites, the quadratic Hamiltonian
suited for the generalized Bogoliubov transformation is then

given by

H(2) = zJnc

2

∑
k∈RBZ

(b†
k,

t b−k)Mk

(
bk

t b†
−k

)
− 2zJncN, (55)

with z = 4 the coordination number and

b†
k = (b†C1(k),b†C2(k),b†D1(k),b†D2(k),

b
†
A1(k),b†A2(k),b†B1(k),b†B2(k)), (56a)

b−k = t(bC1(−k),bC2(−k),bD1(−k),bD2(−k),

bA1(−k),bA2(−k),bB1(−k),bB2(−k)), (56b)

Mk = 1

2

(
18 Bk

B
†
k 18

)
, (56c)

Bk =
(

0 γ ∗
k Uᵀ

γkU 0

)
. (56d)

The geometrical factor γk is defined in Eq. (18) with the
property that γ−k = γ ∗

k , and the matrix U stems from UAB and
UCD:

U =

⎛
⎜⎝

zA1zC1 zA2zC1 zA1zD1 zA2zD1

zA1zC2 zA2zC2 zA1zD2 zA2zD2

zB1zC1 zB2zC1 zB1zD1 zB2zD1

zB1zC2 zB2zC2 zB1zD2 zB2zD2

⎞
⎟⎠, (57)

i.e., it is equal to UAB ⊗ U
ᵀ
CD with permuted columns, and

is thus also unitary. Note that the structure of the matrix Mk
above is true in general for any N and corresponding m for
any of the three lattices considered in this work, as this is a
consequence of the structure of the Hamiltonian in Eq. (55).

Using the matrix Y ,

Y =
(
18 0
0 −18

)
, (58)

the generalized Bogoliubov transformation reduces to search-
ing the eigenvalues λ → 1

2ωk of the matrix YMk. The
eigenvalues can be easily found thanks to the simple block
structure of this matrix. With the identity that

B
†
kBk =

(|γk|218 0
0 |γk|218

)
(59)

for any unitary matrix U , it results that

YMkYMk = 1
4 (1 − |γk|2)116

= λ2 116. (60)

The eigenvalues are then given by

λ = ± 1
2

√
1 − |γk|2. (61)

By compactifying the notation, we finally find the diagonalized
quadratic Hamiltonian

H(2) = Jnc

∑
k∈RBZ

ω(k)
8∑

μ=1

(
b̃†μ(k)b̃μ(k) + 1

2

)
− 2zJncN,

(62)

in which the dispersion relation is given by

ω(k) = z

√
1 − |γk|2. (63)
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This yields the same dispersive branches as in the previous
calculations in Sec. II A without the flat branches.

The different choices of the set of parameters ϑAB,ϕAB,χAB

or ϑCD,ϕCD,χCD are all related by unitary transformations,
hence, they result in a unitary transformation of the matrix U in
Eq. (56d). However, since Eq. (59) holds for any unitary matrix
U , it follows that any unitary transformation on U leaves the
eigenvalues of Mk invariant, i.e., any solution that satisfies the
modified constraints (46) leads to the same dispersion relation
in Eq. (63) after the Bogoliubov transformation. Thus, there
exists a gauge degree of freedom U (m) for each sublattice.

As an example, the solution

b
†
A1(i),b†C1(j ) →

√
nc

2
, b

†
B1(i),b†D1(j ) →

√
nc

2
,

b
†
A2(i),b†C2(j ) → −

√
nc

2
, b

†
B2(i),b†D2(j ) →

√
nc

2

(64)

yields the following matrix B̃k in Eq. (56d):

B̃k = γk

2

⎛
⎜⎝

1 −1 1 −1
−1 1 1 −1
1 1 1 1

−1 −1 1 1

⎞
⎟⎠, (65)

which in turn results in the dispersion relation (63) after the
Bogoliubov transformation.

B. Arbitrary m on different lattices

The analysis in Sec. III A can be straightforwardly gen-
eralized to any N and m for a two-sublattice order, i.e., on
the square or honeycomb lattice. This is also easily applied
to the three-sublattice order on the triangular lattice. The only
difference with the two-sublattice order is in the Hamiltonian
generated after the c-number replacement of the condensed
bosons. Unlike in the two-sublattice order calculations where
the resulting Hamiltonian is purely quadratic, higher-order
terms are generated in the Hamiltonian, i.e.,

H = H(2) + H(3) + H(4), (66)

where H(2) ∝ O(nc), H(1) ∝ O(n
1
2
c ), and H(1) ∝ O(1). How-

ever, once we truncate the Hamiltonian to keep only the
dominant term of the order O(nc), the rest of the calculations
are identical to Sec. III A. Hence, the procedure can be applied
to any of the three lattice geometries considered in this work.
For given N,m and assuming a color-ordered ground state
on one of the three lattices we considered, let us denote the
color index of one of the condensed colors on each sublattice
l ∈ {1, . . . ,k} by μl ∈ {1, . . . ,m}, and a,b ∈ {1, . . . ,m}. In
the limit nc → ∞, this allows one to use the Bogoliubov
prescription of replacing the bosons by a c number, provided
that the numbers satisfy the antisymmetrization constraints
(43). In the large-nc limit, these constraints become

m∑
μl=1

zl∗
μaz

l
μb = δabnc (67)

for each sublattice i with corresponding condensed boson
colors μ. One particular solution that satisfies the constraints

(67) are

zl
μa → ϕl

μa(m)

√
nc

m
:= √

ncU
l
μa, (68)

with the phase ϕl
μa(m) defined by

ϕl
μa(m) := e−i(a−1) 2π

m
μ. (69)

It can be easily verified that zμa satisfies the constraints by

using the identity
∑n−1

k=0 eq 2πi
n

k = 0, where n ∈ N>2 and q ∈
{1, . . . ,n − 1}. An example of the phases for four condensed
bosons per site (m = 4) for SU(8) on the square/honeycomb
lattice or for SU(12) on the triangular lattice is shown in Table I.
Any unitary transformation on the matrix Ul yields a solution
of Eq. (67).

Note that it is also possible to parametrize the bosons
similarly to Eqs. (50) and (53) by using the generalized
Gell-Mann matrices in Eq. (48) that is adapted to N and m. Out
of the Nm bosons per site, N

nsub
m = m2 bosons are replaced

by complex numbers satisfying the antisymmetrization
constraints. The Bogoliubov transformation can then be
performed to diagonalize the quadratic Hamiltonian, yielding
Nm − m2 = m(N − m) branches in the structural Brillouin
zone. The resulting dispersive branches and the number of
these branches are identical to the results obtained with the
multibosonic approach in Sec. II D without the flat branches.
Hence, the same conclusion regarding the ordered color
moment can be drawn, namely, that the only Heisenberg
system that can potentially retain the color-ordered ground
state is the SU(4) particles with m = 2 on the square lattice.

IV. DISCUSSION

As seen in the previous considerations in the harmonic
order, the flat branches we obtained with the multibosonic
method are related to the multipole moments requiring
more than one ladder-operator action. Since the Heisenberg
Hamiltonian contains the bilinear term only, these transitions
will thus result in localized branches in the quadratic order,
and they do not intervene in the reduction of the ordering.
The reduction of the color order originates solely from the
fluctuations that come from the permitted decay channels that
yield the dispersive branches.

The multiboson spin wave in SU(2) spin-S systems as in
Ref. [35] gives us an insight to this method. When applied
to a SU(2) Heisenberg spin-S systems to the harmonic order,
2S branches emerge in the structural Brillouin zone from
which one branch is dispersive and the rest are flat. The
dispersive branch describes the dipole moments of the spins

TABLE I. Phases ϕμa(m) of the numbers replacing the condensed
bosons that satisfy the antisymmetry constraints for m = 4. The phase
ϕμa for a given μ and a can be read from the Table, in which x := 2π

m
.

μ ∈ {A,B,C,D} a = 1 a = 2 a = 3 a = 4

A 0 e−ix e−2ix e−3ix

B 0 e−2ix e−4ix e−6ix

C 0 e−3ix e−6ix e−9ix

D 0 e−4ix e−8ix e−12ix
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on neighboring sites, i.e., one spin flip that results in the
reduction of the fully polarized state Smax = ±S by one
quantum �Sz = ∓1/2. The flat branches correspond to the
higher-order transitions requiring more than one spin flip, thus
reducing the polarization by more than one quantum. It turns
out that the dispersive branch is identical to the dispersive
relation one obtains with the conventional spin-wave theory for
spin S (but in the fundamental irrep), and one obtains exactly
one band. In contrast, higher SU(N ) symmetries yield more
than one dispersive branch due to the more intricate group
structure. For N > 2, there are more possible ways to change
a color, i.e., there are N (N − 1)/2 pairs of ladder operators
(Ŝμ

ν , μ �= ν) whereas SU(2) possesses only one pair of ladder
operators.

The accessible states by one color exchange can be
schematically represented with the weight diagram of the
corresponding irrep, in which a state is associated to a point
[an example of a weight diagram for the SU(4) [0,1,0] irrep
is shown in Fig. 4]. For a given state, the states that can be
reached by one color exchange are the adjacent points on the
weight diagram. The edges that connect points are in one of the
N (N − 1)/2 directions that represent the action of the ladder
operators Ŝμ

ν , μ �= ν, and each direction is associated to one
specific color exchange. In our example, it can be seen that the

state in the irrep (1,1) of SU(4) has four adjacent points, thus
showing the four states accessible by one color permutation.
The action of the ladder operators of SU(N ) can be depicted
as the N (N − 1)/2 directions in which the vertices between
each point lie.

The Hamiltonian obtained through this method that de-
scribes the dynamics of these quantum fluctuations yields
the same dispersive branches as in the second method
with Read and Sachdev bosons in Sec. III, although the
bosonic representations are different in both cases. The second
approach has the advantage of containing exclusively the
physical branches at the quadratic order which contribute to
the quantum fluctuations: the flat multipolar branches do not
appear. Apart from these silent modes, they both give rise to the
same results and yield identical values of the ordered moment
for each system we investigated.

According to the preceding analysis of the magnetization
in Sec. II, the color order persists in the bipartite square
lattice with two SU(4) particles per site, but it is destroyed
in the bipartite honeycomb lattice, although the considered
symmetry is identical [SU(4)] in both bipartite lattices. This
behavior is also observed in the SU(2) spin- 1

2 AFM Heisenberg
model. Comparing the values of the magnetization taken from
Refs. [39,40], we observe that the magnetization is smaller
on the Néel honeycomb lattice than on the Néel square
lattice. The smaller coordination number z of the honeycomb
lattice leads to stronger quantum fluctuations, thus destroying
the magnetic order. It is worthwhile noting that the ratio of
the reduction of the magnetic moment between the square
lattice and the honeycomb lattice 0.1966/0.2582 = 0.7614

is the same as that of the reduction of the color moment of our
models, 0.7864/1.0328 = 0.7614.

The tripartite triangular lattice with two SU(6) particles
per site also does not retain a finite color order. However,
the difference with the bipartite square lattice comes from the
higher symmetry of SU(6) in this case. As N grows, the number
of decay channels of the quantum fluctuations becomes also
larger. Hence, the quantum fluctuations are stronger, and order
is not favored as a consequence. As the study above involved
the smallest nontrivial m = N/k possible for each geometry,
we expect that the only possible candidate for the color order
with many particles per site is the SU(4) Heisenberg model on
the bipartite square lattice. A pinning-field QMC study on this
model has shown that this model retains a finite magnetization
of malt

i ≈ 0.24–0.26 at their largest system size and largest
U [14], a value similar to our result in Eq. (28). However, a
different QMC study shows results with no apparent broken
lattice symmetry [10]. Hence, these results call upon further
investigation to settle the existence or nonexistence of the
magnetic order on this model.

V. CONCLUSION

We have applied the LFWT to systems with more than
one particle per site described by fully antisymmetric SU(N )
irreducible representations that are relevant to experiments
with optical traps with more than one particle per site, first in
the spirit of the multiboson spin-wave theory and, second,
using a different bosonic representation for antisymmetric
SU(N ) irreps. Both methods allow one to compute the ordered
moment of the system and produce identical results. They
predict that the SU(4) AFM Heisenberg model on the bipartite
square lattice with two particles (m = 2) retains a finite
long-range order even after including quantum fluctuations
within the realm of the LFWT. The suggestion that this system
could be magnetically ordered allows one to potentially fill the
corresponding point in the phase diagram of the SU(N ) square
lattice in Ref. [24]. However, it is likely that the quantum
fluctuations destroy completely the color order for higher
N with k = 2 as expected, due to the increase of quantum
fluctuations with increasing N . This is also true for the
honeycomb lattice and the triangular lattice, where the ordered
moment is destroyed even for m = 2, the smallest permissible
m assuming a two-sublattice order or a three-sublattice order,
respectively. The stronger quantum fluctuations in the bipartite
honeycomb lattice compared to the bipartite square lattice
with the same SU(4) symmetry are explained by the lower
coordination number z that reinforces quantum fluctuations.
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