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Green’s function method to study thin diffraction gratings
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The anomalous features in diffraction patterns first observed by Wood over a century ago have been the
subject of many investigations, both experimental and theoretical. The sharp, narrow structures—and the large
resonances with which they are sometimes associated—arise in numerous studies in optics and photonics. In
this paper we present an analytical method to study diffracted fields of optically thin gratings that highlights
the nonanalyticities associated with the anomalies. Using this approach we can immediately derive diffracted
fields for any polarization in a compact notation. While our equations are approximate, they fully respect energy
conservation in the electromagnetic field, and describe the large exchanges of energy between incident and
diffracted fields that can arise even for thin gratings.
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I. INTRODUCTION

Over a century ago, Wood observed anomalies in the
angular dependence of light reflected from a metal sheet [1],
and since then there have been many studies of these anomalies
and their applications in optics and photonics, particularly as
they arise in the reflection from surfaces on which a grating is
intentionally deposited. Maystre [2] has recently presented
a detailed review of the history of research in this field.
Generally, two mechanisms have been identified as sources of
the anomalies: The first is a transition between propagation and
evanescence in one of the diffracted orders [3], and the second
is the excitation of a leaky mode within the grating region [4].
These anomalies have been discussed for a number of years
[5] and some ambiguity exists in the literature concerning the
distinction between these mechanisms and the terms used to
refer to them. In this paper, we follow the convention that
anomalies related to a transition in a diffracted order are
referred to as Rayleigh anomalies, and those associated with
the resonant excitation of a leaky mode in the grating region
are referred to as Wood anomalies. Maradudin [6] has recently
shown that the resonant excitation of any surface wave in a
substrate below the grating, by scattering from the grating,
can lead to anomalies in the reflectance as well; we also refer
to these as Wood anomalies.

Rayleigh anomalies are square-root-like, sharp, narrow
peaks that arise in the irradiance of both the specularly
reflected and diffracted beams. Wood anomalies are associated
with extraordinary increases in the specular reflectance [7–9],
and have seen wide use in applications where gratings serve
as filters [10–12], modulators [13,14], and sensors [15,16].
Because even very thin gratings can lead to very large effects
on the reflectivity in the region of these anomalies, the
simplest perturbation theories are not sufficient to describe
them; it is essential to consider the full interaction between
diffracted and specularly reflected beams. Over the years a
wide range of approaches have arisen to treat such systems.
These include guided-mode techniques such as coupled-mode
theory [17–20], transfer-matrix approaches [10], and a variety
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of robust numerical techniques based on finite-element and
RCWA (scattering matrix) methods [21–24].

In this paper we present a semianalytic method for the
treatment of thin gratings, with advantages that are not all
present in earlier work. We consider the grating structure
shown in Fig. 1(a) in this first communication. Based on a
Green’s function formalism [25] that treats the scattered light
in terms of its s- and p-polarized components, the method
leads to an immediate identification of the features in the
scattering equations that describe the anomalies, and allows for
the easy inclusion of effects of surface waves of the substrate
as well as leaky modes in the grating region. Light with any
plane of incidence, any polarization, and at any incident angle
is treated, and anisotropy in the response of the material in
the grating region is included; the substrate can consist of an
arbitrary set of layers with uniaxial optical properties. The
description of the reflected and diffracted light is necessarily
approximate, since we simplify our equations based on the
grating being thin, but it is nonetheless completely robust
with respect to energy conservation: In the absence of any
absorption in the material media, at whatever number the
inclusion of diffracted and evanescent fields in the calculation
is truncated, the approximate equations respect conservation
of energy in the electromagnetic field, despite large exchanges
of energy between diffracted and reflected fields. For simple
incidence configurations, and if only a few diffracted orders
are important, the set of equations to be solved is small and the
physics easily identified. This is an important advantage, since
gratings are now being used to access resonances for enhanced
sensing applications [26,27] and in novel 2D materials such
as graphene [28–31]. Our simple but robust treatment of the
optics of the grating should allow for such work to focus on
the physics of the medium being probed.

The outline of the paper is as follows. In Sec. II we
first treat the simpler, symmetric grating structure shown in
Fig. 1(b). In the limit of a thin grating, we show how the
scattering equations lead naturally to the assignment of a
uniform dielectric tensor for a layer associated with the grating
region; see Fig. 1(c). The scattering by the grating can be best
understood as occurring with this as part of the background
optical response, and it is the waveguide modes of this nominal
layer that become the resonances associated with the Wood
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FIG. 1. The general structure studied and discussed in this paper
(not to scale). (a) A thin grating placed on top of a multilayer structure
with a substrate with relative dielectric constant εQ. The grating
parameters are the same as in (b), and the relative dielectric constant
of the cladding is ε1. (b) An isolated grating with relative dielectric
tensor εg suspended in a medium with relative dielectric constant ε1.
(c) An effective dielectric slab with relative dielectric tensor εlayer that
characterizes the average properties of the grating relation. (d) The
corresponding effective planar structure consisting of the effective
dielectric slab and the multilayer structure.

anomalies, discussed alongside Rayleigh anomalies in Sec. III
and identified in the resulting scattering equations in Sec. IV.
In Sec. IV A we build a scattering matrix for the problem.
This can of course be done in many ways, but we adopt
an approach that leads to a proof that the equations respect
energy conservation, and allows for an easy generalization
to include an arbitrary layered substrate [Fig. 1(a)]. These

equations are separated by polarization and simplified in
Sec. IV B for a simple configuration chosen as an example. In
Sec. IV C a two-wave-vector model is used to derive analytic
expressions for the scattered fields alongside a discussion of
their poles that signal the Wood anomalies. We discuss how
the Wood anomalies associated with the waveguide modes
of the grating region [Fig. 1(c)] are modified—or disappear—
in the presence of the substrate in Sec. IV D and present, as
a sample calculation, results for a simple silicon grating atop
a glass substrate and confirm the validity of our approximate
treatment by comparison with convergent, numerically exact
calculations. We focus on a dielectric system to highlight the
pronounced spectral features associated with the excitation of a
Wood anomaly. As derived the method presented is applicable
to a wider range of materials, such as metallic gratings. Our
conclusions are presented in Sec. V. Some of the details of
the derivations, a discussion of waveguide dispersion, and our
proof of energy conservation are relegated to appendices.

II. THIN GRATINGS

We begin by considering a grating in the region −D/2 <

z < D/2, with the rest of space taken to be filled with an
isotropic dielectric; see Fig. 1(b). In the presence of a field
Ein(r,t) incident on the grating region we write the total field
as

E(r,t) = Ein(r,t) + Esc(r,t), (1)

where Esc(r,t) is the scattered field. We take all such time-
dependent fields F(r,t) to be stationary,

F(r,t) = F(r)e−iωt + c.c.,

and we assume the refractive index of the surrounding
dielectric, n1 = √

ε1, is real at frequency ω. Denoting by R
the projection in the xy plane of a position vector r = R + z ẑ,
we take ê to be the unit vector in the xy plane that identifies
the direction in which the susceptibility varies, and write the
(possibly complex) spatially dependent (tensor) susceptibility
in the grating region as χ (ζ ), where ζ = ê · R.

It will be convenient to Fourier-transform our field ampli-
tudes F(r) only in the xy plane,

F(r) = F(R; z) =
∫

dκ

(2π )2 eiκ ·RF(κ ; z), (2)

where κ has x and y components, so for example

E(R; z) = Ein(R; z) + Esc(R; z),

E(κ ; z) = Ein(κ ; z) + Esc(κ ; z). (3)

In the usual example of an incident plane wave, the incident
field will be characterized by a single κ in, and there will be
scattered fields characterized by κ in + mK, where m ranges
over all positive and negative integers, and

K = 2π

a
ê, (4)

where a is the fundamental period of the grating. For
|κ in + mK| > ω̃n1, where ω̃ ≡ ω/c, the scattered fields are
evanescent, confined to the neighborhood of the grating region;
for |κ in + mK| < ω̃n1 the scattering leads to diffracted fields
that can carry energy away from the grating region.
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We write

χ (ζ ) = χ1 + χ add(ζ ), (5)

where in dyadic form

χ1 = (ε1 − 1)(x̂ x̂ + ŷ ŷ + ẑ ẑ)

is just the susceptibility that would be present were the
background dielectric extended into the grating region, and
χ add(ζ ) is an additional contribution that is responsible for the
ζ dependence of the susceptibility in the grating region. We
assume that one of the principal axes of χ add(ζ ) is the z axis,
and we choose the x and y axes to coincide with the other
principal axes,

χ add(ζ ) = x̂ x̂χxx
add(ζ ) + ŷ ŷχyy

add(ζ ) + ẑ ẑχzz
add(ζ ). (6)

We let P(r) denote the polarization in the grating region,
above and beyond that which would result if the grating
region consisted solely of the background isotropic dielectric
medium. Then

P(R; z) = ε0χ add(ζ ) · E(R; z),

for −D/2 < z < D/2. (7)

The scattered field contribution to (3) is determined by

Esc(κ ; z) =
∫ D/2

−D/2
dz′G(κ ; z − z′) · P(κ ; z′), (8)

where the Green’s function [25] is

G(κ ; z − z′) = g(κ ; z − z′) − 1

ε0ε1
δ(z − z′) ẑ ẑ, (9)

with

g(κ ; z − z′) = iω̃2

2ε0w1
θ (z − z′)eiw1(z−z′)(ŝ ŝ + p̂1+ p̂1+)

+ iω̃2

2ε0w1
θ (z′ − z)e−iw1(z−z′)(ŝ ŝ + p̂1− p̂1−),

and where

ŝ = κ̂ × ẑ, p̂1± = κ ẑ ∓ w1κ̂

ω̃n1
(10)

identify the s- and p-polarized field components of the radiated
fields. Here w1 ≡

√
ω̃2ε1 − κ2, where κ = |κ |; to ensure

proper radiation conditions, the square root is made unique
by taking Im

√
Z � 0, and taking Re

√
Z � 0 if Im

√
Z = 0.

Of the two terms on the right-hand side of (9), the second
will typically lead to the larger contribution for our thin
gratings of interest, and it can be dealt with explicitly. If we
define a modified field,

Emod(κ ; z) = Ein(κ ; z) +
∫ D/2

−D/2
g(κ ; z − z′) · P(κ ; z′)dz′,

(11)

we have

E(R; z) = Emod(R; z) − 1

ε0ε1
ẑ ẑ · P(R; z),

and we can write the expression (7) for the polarization as

P(R; z) = ε0χmod(ζ ) · Emod(R; z), (12)

where

χmod(ζ ) = x̂ x̂χxx
mod(ζ ) + ŷ ŷχyy

mod(ζ ) + ẑ ẑχzz
mod(ζ ), (13)

with

χxx
mod(ζ ) ≡ χxx

add(ζ ),

χ
yy

mod(ζ ) ≡ χ
yy

add(ζ ),

χzz
mod(ζ ) ≡ χzz

add(ζ )

1 + χzz
add(ζ )/ε1

.

From (11) we see that as D → 0 we typically have
Emod(R; z) → Ein(R; z), and so in that limit χmod(ζ ) can
be understood as an effective local susceptibility relating the
(excess) polarization to the incident field, rather than to the
field in the grating region itself.

So far we have made no approximations, and an exact
description of the scattering could proceed by numerically
solving (11) and (12) for any specified Ein(κ ; z). Instead, we
develop an approximate description of the scattering based on
the condition that the thickness D of the grating region is much
less than the wavelength of light, ω̃n1D � 1, and as well that
the variation in z of the scattered fields over the grating region
is negligible for κ of interest, |w1|D � 1. This leads to the
ansatz that a number of fields can be taken as independent of
z within the grating region,

F(κ ; z) → F(κ) for −D/2 < z < D/2, (14)

and for such fields we write

F(R) =
∫

dκ

(2π )2 eiκ ·RF(κ).

A full solution of the fields in the grating material would
show variations over a distance on the order of (ω̃

√|εg|max)−1,
where |εg|max is the maximum of the absolute values of the
eigenvalues of εg , the dielectric tensor of the grating material.
So we expect the condition ω̃

√|εg|maxD � 1 is also required
for this approximation to be valid, as we confirm in our
example calculations in Sec. IV. Naturally for the incident
field we simply take Ein(κ) = Ein(κ ; 0), while to determine
P(κ) self-consistently we approximate the field Emod(κ ; z)
as uniform over the grating region by taking Emod(κ ; z) →
Emod(κ), where

Emod(κ) = Ein(κ) + 1

D

∫ D/2

−D/2
dz

∫ D/2

−D/2
dz′g(κ ; z − z′) · P(κ).

In the limit |w1|D � 1 this leads to

Emod(κ) = Ein(κ) + g(κ) · P(κ), (15)

where

g(κ) = iω̃2D

2ε0w1

[
ŝ ŝ + 1

2
( p̂1+ p̂1+ + p̂1− p̂1−)

]

= iω̃2D

2ε0w1
ŝ ŝ + iw1D

2ε0ε1
κ̂ κ̂ + iκ2D

2ε0ε1w1
ẑ ẑ,

and in this limit Eq. (12) reduces to

P(R) = ε0χmod(ζ ) · Emod(R). (16)

Within these approximations the fields in the grating region
are determined by the solution of (15) and (16).
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At this point it is useful to separate out the spatial average
of our various quantities. In particular for χmod(ζ ) we have

〈χmod〉 = 1

a

∫ a/2

−a/2
χmod(ζ )dζ,

and we put

χv(ζ ) ≡ χmod(ζ ) − 〈χmod〉. (17)

Our equations (15) and (16) can then be written as

P(κ) = ε0〈χmod〉 · Emod(κ) + Pv(κ),

Emod(κ) = Ein(κ) + g(κ) · P(κ), (18)

where

Pv(R) = ε0χv(ζ ) · Emod(R) (19)

is the only contribution from the variation of the effective
susceptibility with ζ . If we define χ layer according to

χxx
layer ≡ 〈

χxx
mod

〉 = 〈
χxx

add

〉
,

χ
yy

layer ≡ 〈
χ

yy

mod

〉 = 〈
χ

yy

add

〉
,

χzz
layer

1 + χzz
layer/ε1

≡ 〈
χzz

mod

〉 =
〈

χzz
add

1 + χzz
add/ε1

〉
, (20)

where the last equation is to be solved for χzz
layer, we can

identify χ layer as the effective (excess) susceptibility of the
thin layer that would lead to the optical response of the grating
region were the variation χv(ζ ) in the effective susceptibility
ignored; this is the scenario sketched in Fig. 1(c). For if we
would return to (7) and (8), take χ add(ζ ) → χ layer, and repeat
the derivation and approximations leading to (18), we would
recover precisely those equations with Pv(κ) absent, and with
the components of 〈χmod〉 replaced by the components of
χ layer according to (20). Note that if we write the full relative
dielectric tensor in the grating region as ε(ζ ) ≡ ε1 + χ add(ζ ),
and the full relative dielectric tensor associated with χ layer as
εlayer ≡ ε1 + χ layer, where ε1 = ε1(x̂ x̂ + ŷ ŷ + ẑ ẑ), we have

εxx
layer = 〈εxx〉,

ε
yy

layer = 〈εyy〉,
1

εzz
layer

=
〈

1

εzz

〉
. (21)

We return to Eqs. (18), and can now understand them as
describing the scattering due to a variation in the effective
excess susceptibility, χv(ζ ), in the presence of a uniform
background dielectric tensor εlayer in the grating region. Below
we will construct an expression for Pv(κ), and then these
equations can be solved consistently for P(κ). Once that is
done we can construct the scattered fields above the grating
region (z > D/2) and below the grating region (z < −D/2).
We denote these by E+

sc(κ ; z) and E−
sc(κ ; z), respectively, and

they follow immediately from the general expression (8) for
the scattered field [25]; we have

E±
sc(κ ; z) = e±iw1zE±

sc(κ), (22)

where

E±
sc(κ) = G±(κ) · P(κ) (23)

and

G±(κ) = iω̃2D

2ε0w1
(ŝ ŝ + p̂1± p̂1±), (24)

and we have again assumed |w1|D � 1. Now the incident
field satisfies the Maxwell equations with a uniform relative
dielectric constant ε1, and so everywhere in space it is of the
form

Ein(κ ; z) = E+
in(κ ; z) + E−

in(κ ; z), (25)

where

E±
in(κ ; z) = e±iw1zE±

in(κ) (26)

[cf. (22)]. Then given any κ , for z > D/2 we label
the full upward-propagating (or evanescent) fields as
E+

out(κ) exp(iw1z), while for z < −D/2 we label the
full downward-propagating (or evanescent) fields as E−

out
exp(−iw1z); we clearly have

E±
out(κ) = E±

in(κ) + E±
sc(κ). (27)

Before solving for these fields, we identify how the Rayleigh
and Wood anomalies are captured in their calculation.

III. RAYLEIGH AND WOOD ANOMALIES

Returning to the expression (24) for G±(κ), and writing
p̂1± in terms of κ̂ and ẑ, we see that in this basis of real unit
vectors there are terms in G±(κ) proportional to w1, and terms
proportional to 1/w1 These are both nonanalytic in κ , since
w1 is purely real for κ < ω̃n1, purely imaginary for κ > ω̃n1,
and vanishes at κ = ω̃n1; 1/w1 thus diverges at κ = ω̃n1. The
transition from real to imaginary w1 can arise as the angle
of incidence is varied, and κ is associated with a diffracted
order that becomes evanescent in the background dielectric as
κ first approaches and then exceeds ω̃n1. Of course, although
the G±(κ) diverge as w1 → 0, the E±

sc(κ) do not; the same
nonanalyticity as w1 → 0 appears in g(κ), since

g(κ) = 1
2

[
G+(κ) + G−(κ)

]
,

and once the expression for Pv(κ) is included the self-
consistent solution of the set of equations (18) leads to finite
fields everywhere at all κ , as we show in detail below. This
is enforced by the coupling among the different diffracted
and evanescent orders, and by the coupling between each
of them to the specularly reflected and transmitted fields;
the source of these couplings is of course the grating that
is itself responsible for the existence of the diffracted and
evanescent orders themselves. Another consequence of these
couplings is that the nonanalyticity associated with the passing
of a diffracted order into evanescence appears as well in the
expressions for the amplitudes of the other diffracted orders,
and in those of the specularly reflected and transmitted fields.
These are the Rayleigh anomalies.

Another nonanalyticity implicit in these equations can be
revealed by inserting the second of (18) into the first and
formally solving for P(κ),

P(κ) = [I − ε0〈χmod〉 · g(κ)]−1

× [ε0〈χmod〉 · Ein(κ) + Pv(κ)], (28)
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where I = x̂ x̂ + ŷ ŷ + ẑ ẑ is the unit dyadic. The expression
(28), in which the grating contributions above the averaged
optical response are contained in Pv(κ), is valid as long as
[I − ε0〈χmod〉 · g(κ)]−1 has no divergent components, and this
holds as long as the determinant of a matrix representing
[I − ε0〈χmod〉 · g(κ)] does not vanish. In the special case where
εxx

layer = ε
yy

layer ≡ ε
‖
layer, which holds if the dielectric constants

of the materials satisfy εxx = εyy [recall (20) and (21)], the
matrix εlayer can be easily written out in the (ŝ,κ̂,ẑ) basis,
since x̂ x̂ + ŷ ŷ = ŝ ŝ + κ̂ κ̂ ; we find

det [I − ε0〈χmod〉 · g(κ)]

=
[

1 − iω̃2D

2w1

(
ε

‖
layer − ε1

)][
1 − iw1D

2ε1

(
ε

‖
layer − ε1

)]

×
[

1 − iκ2D

2w1

ε⊥
layer − ε1

ε⊥
layer

]
, (29)

where we have put ε⊥
layer ≡ εzz

layer. For reasonable ε
‖
layer the mid-

dle bracketed term in (29) cannot vanish, since by assumption
|w1|D � 1; thus the determinant in (29) can vanish only if
one of the following conditions is met:

1 − iω̃2D

2w1

(
ε

‖
layer − ε1

) = 0,

1 − iκ2D

2w1

ε⊥
layer − ε1

ε⊥
layer

= 0. (30)

In Appendix B we show that the first of (30) is the dispersion
relation for the fundamental s-polarized mode, and the second
for the fundamental p-polarized mode, of a thin enough
planar uniaxial waveguide with relative dielectric tensor
(x̂ x̂ + ŷ ŷ)ε‖

layer + ẑ ẑε⊥
layer, bounded above and below by a

uniform isotropic dielectric with dielectric constant ε1; recall
that in the limit of a thin enough planar waveguide at most
one waveguide mode of each polarization exists. Around the
values of κ where they vanish, the left-hand sides of (30) can be
written as proportional to (κ − κS) and (κ − κP ), respectively,
where at frequency ω the s- and p-polarized waveguide modes
have wave numbers κS and κP , respectively; if there is no
absorption, κS and κP are real. Thus the nonanalyticities of
[I − ε0〈χmod〉 · g(κ)]−1 are poles, on the real κ axis if there
is no absorption, associated with the waveguide modes of
the “effective waveguide” established by the average optical
response in the grating region.

Despite these divergences, the solution of (28) for P(κ) is
again always finite. The waveguide modes exist for κ > ω̃n1,

“beyond the light line,” and no physical field incident from
infinity can be described by nonzero Ein(κ) for κ in the range
of the divergences. Of course, by coupling through the grating,
Pv(κ) can acquire κ components for κ at wave numbers near or
at the waveguide modes if the angle of incidence of the incident
field is properly chosen, as we see in detail below. However,
a grating that allows Pv(κ) to acquire those κ components
from the incident field will also couple part of any field that
Pv(κ) generates back to the wave vector of the incident field,
thus modifying the effective incident field driving Pv(κ) and
ameliorating the response; the effective waveguide pole is
moved off the real κ axis, as we illustrate in an example later.

Another consequence is that the resonant structure associated
with one of the evanescent orders being close to an effective
waveguide mode will lead, through coupling by the grating, to
resonant structures in other diffracted and evanescent orders,
and in the specularly reflected and transmitted fields. These
are the Wood anomalies.

Thus within the approximation of a thin-grating region
even a schematic discussion as presented above can identify
Rayleigh and Wood anomalies with nonanalyticities in the
response of the grating structure to an incident field: Rayleigh
anomalies are associated with square-root divergences as a
diffracted order becomes evanescent, and Wood anomalies
are associated with pole divergences as an evanescent order
approaches an effective waveguide mode of the grating region.
Full calculations within this approximation presented below
will confirm this connection, and show that our equations,
while approximate, exhibit exact energy conservation. As
well, since for thin-grating regions the dispersion relations
of the effective waveguide modes lie close to the light line,
we can expect a complicated response because the resonances
associated with the anomalies, considered independently, lie
close to each other. This is considered in some examples
presented in Sec. IV.

IV. COUPLED WAVE VECTOR EQUATIONS

We now turn to the solution for the fields in the presence of
a grating χ (ζ ) of the form (5), where since χv(ζ ) is taken as
periodic with period a, we can expand it in a Fourier series

χv(ζ ) =
∑
m

χv[m]e
imK·R,

where m ranges over the integers and K is given by (4); here

χv[m] = 1

a

∫ a/2

−a/2
e−imKζ χv(ζ )dζ,

with K = |K|. Note that by virtue of the definition (17) of
χv(ζ ) we have χv[0] = 0. Since Pν(R) is the response (19) to
Emod(R) due to χv(ζ ), we seek a solution for our fields of the
form

F(κ) = (2π )2
∑
m

δ(κ − κ in − mK)F(κ in + mK),

where

F(R) =
∑
m

F(κm)ei(κ in+mK)·R, (31)

and here and henceforth we put

κm ≡κ in + mK.

Here κ in characterizes the incident field, but we actually allow
the incident field Ein(R) to be of the general form (31), with
Ein(κm) nonzero for m �= 0; in later sections we will consider
a grating above a substrate, and terms with m �= 0 will arise
from reflection of scattered light off the substrate. Using the
expansion (31) in (19) we have

Pν(κm) = ε0

∑
m′

χv[m−m′] · Emod(κm′ ), (32)
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for example; equations for the Fourier components of other
quantities will be given below. The set of these equations can
be organized as matrix equations in many ways; below we
present one approach that is both useful for calculations, and
allows for an easy proof of energy conservation even when the
number of Fourier components is truncated.

A. S-matrix equations

To complete a calculation we approximate sums over m

by a restriction to |m| � N , where the threshold integer N

includes at least all diffracted, propagating orders. For each
field F(R) we then introduce F̄ , a column of columns

F̄ =

⎡
⎢⎢⎢⎢⎣

F̄(κN )

F̄(κ (N−1))
...

F̄(κ (−N))

⎤
⎥⎥⎥⎥⎦, (33)

where each F̄(κm) is a column with the three Cartesian
components of F(κm),

F̄(κm) =

⎡
⎢⎣

x̂ · F(κm)

ŷ · F(κm)

ẑ · F(κm)

⎤
⎥⎦, (34)

and so the full column F̄ has 3(2N + 1) elements. For
the tensors we introduce (2N + 1) × (2N + 1) matrices with
elements that are themselves 3 × 3 matrices; thus in each of
these there are 3(2N + 1) × 3(2N + 1) elements in all. We put

ḡ =

⎡
⎢⎢⎢⎢⎣

ḡNN 0̄ · · · 0̄

0̄ ḡ(N−1)(N−1) · · · 0̄
...

...
. . .

...

0̄ 0̄ · · · ḡ(−N)(−N)

⎤
⎥⎥⎥⎥⎦,

a block-diagonal matrix where 0̄ indicates a 3 × 3 matrix of
zeros, and the 3 × 3 matrices ḡmm are given by

ḡmm =

⎡
⎢⎣

[x̂ · g(κm) · x̂] [x̂ · g(κm) · ŷ] [x̂ · g(κm) · ẑ]

[ ŷ · g(κm) · x̂] [ ŷ · g(κm) · ŷ] [ ŷ · g(κm) · ẑ]

[ẑ · g(κm) · x̂] [ ẑ · g(κm) · ŷ] [ ẑ · g(κm) · ẑ]

⎤
⎥⎦.

For example, let the associated polarization vectors associ-
ated with κm be ŝm and p̂m±, such that

ŝm = κ̂m × ẑ, p̂1±,m = κm ẑ ∓ w1(κm)κ̂m

ω̃n1
, (35)

with κ̂m = κm/|κm| and w1(κm) = √
ω̃2ε1 − κ2

m [compare
(10)]. If we then let φm indicate the rotation in the xy plane
between the sets of unit orthogonal vectors (x̂, ŷ) and (ŝm,κ̂m)
(see Fig. 2), we have

ḡmm

= iω̃2D

2ε0w1(κm)

⎡
⎢⎣

1 − κm

ω̃2ε1
sin2 φm

κm

2ω̃2ε1
sin 2φm 0

κm

2ω̃2ε1
sin 2φm 1 − κm

ω̃2ε1
cos2 φm 0

0 0 κm

ω̃2ε1

⎤
⎥⎦.

FIG. 2. Plane containing the set of axes (x̂, ŷ) and basis vectors
(ŝm,κ̂m).

Block-diagonal matrices Ḡ± and χ̄o are defined similarly,
where the blocks χ̄o;mm of χ̄o are all identical, χ̄o;mm =
diag(〈χxx

mod〉,〈χyy

mod〉,〈χzz
mod〉). The matrix of matrices χ̄v rep-

resenting the grating is not block diagonal, but is given by

χ̄v =

⎡
⎢⎢⎢⎢⎣

0̄ χ̄v;N(N−1) · · · χ̄ν;N(−N)

χ̄v;(N−1)(N) 0̄ · · · χ̄v;(N−1)(−N)

...
...

. . .
...

χ̄v;(−N)(N) χ̄v;(−N)(N−1) · · · 0̄

⎤
⎥⎥⎥⎥⎦,

(36)

where

χ̄v;mm′

=

⎡
⎢⎣

x̂ · χv[m−m′] · x̂ 0 0

0 ŷ · χv[m−m′] · ŷ 0

0 0 ẑ · χv[m−m′] · ẑ

⎤
⎥⎦,

and the diagonal elements of χ̄v vanish because χv[0] = 0. In
this notation Eq. (32) for the Pν(κm) can be written in full
matrix form as

P̄v = ε0χ̄vĒmod,

and combining this with the matrix form of (18) we find

P̄ = ε0(χ̄o + χ̄v)Ēmod,

Ēmod = Ēin + ḡP̄,

with a formal solution

P̄ = ε0(χ̄o + χ̄v)[1̄3 − ε0ḡ(χ̄o + χ̄v)]−1Ēin, (37)

where 1̄j denotes the j (2N + 1) × j (2N + 1) unit matrix,
with j an integer. Introducing columns Ē±

sc to describe the
scattered fields, from (23) we then have

Ē±
sc = ε0Ḡ

±(χ̄o + χ̄v)[1̄3 − ε0ḡ(χ̄o + χ̄v)]−1Ēin.

Separating out the upward-propagating (or evanescent) con-
tributions of the incident field from the corresponding down-
ward propagations [see (26)], we have Ēin = Ē+

in + Ē−
in , and

introducing columns for the full outward-propagating (or
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evanescent) fields for z > D/2 and z < −D/2 [see (27)], with
new columns defined as indicated we can write

Ē+
out = ε0Ḡ

+(χ̄o + χ̄v)[1̄3 − ε0ḡ(χ̄o + χ̄v)]−1

× (Ē+
in + Ē−

in ) + Ē+
in ,

Ē−
out = ε0Ḡ

−(χ̄o + χ̄v)[1̄3 − ε0ḡ(χ̄o + χ̄v)]−1

× (Ē+
in + Ē−

in ) + Ē−
in . (38)

The subcolumns of Ē±
in , Ē±

in (κm), contain the three Cartesian
components of E±

in (κm) [recall (34)]. However, these are not
independent, since for any κm there are only s- and p-polarized
components,

E±
in (κm) = ŝmE

±
in;s(κm) + p̂1±,mE

±
in;p(κm),

with two independent amplitudes E±
in;s(κm) and E±

in;p(κm). As
such we can write

Ē±
in (κm) =

⎡
⎢⎣

x̂ · E±
in (κm)

ŷ · E±
in (κm)

ẑ · E±
in (κm)

⎤
⎥⎦

= σ̄±
in (κm)Ē±

in(κm),

where

σ̄±
in (κm) =

⎡
⎢⎣

(x̂ · ŝm) (x̂ · p̂1±,m)

( ŷ · ŝm) ( ŷ · p̂1±,m)

( ẑ · ŝm) ( ẑ · p̂1±,m)

⎤
⎥⎦ (39)

is a 3 × 2 matrix for each of the (+) and (−) examples, and

Ē
±
in(κm) =

[
E±

in;s(κm)

E±
in;p(κm)

]
(40)

is a column of two elements. Constructing the full column for
all κm components of Ē±

in we have [recall (33)]

Ē±
in = σ̄±

in Ē
±
in, (41)

where

Ē
±
in =

⎡
⎢⎢⎢⎢⎢⎣

Ē
±
in(κN )

Ē
±
in(κ (N−1))

...

Ē
±
in(κ (−N))

⎤
⎥⎥⎥⎥⎥⎦, (42)

which for each of the (+) and (−) examples is a column
with 2(2N + 1) elements, once all the Ē±

in(κm) are written out.
Further,

σ̄±
in =

⎡
⎢⎢⎢⎢⎣

σ̄±
in (κN ) 0̄ · · · 0̄

0̄ σ̄±
in (κ (N−1)) · · · 0̄

...
...

. . .
...

0̄ 0̄ · · · σ̄±
in (κ (−N))

⎤
⎥⎥⎥⎥⎦, (43)

which for each of the examples is a 3(2N + 1) × 2(2N + 1)
matrix, once all the elements of the σ̄±

in (κm) are written out;
here 0̄ are 3 × 2 matrices with all elements vanishing.

Similarly, for each Ē±
out(κm) in Ē±

out there will be only s- and
p-polarized components,

E±
out(κm) = ŝmE

±
out;s(κm) + p̂1±,mE

±
out;p(κm),

which we can immediately see will be identified by the G±(κm)
[see (24)] that appear in Ḡ±. Nonetheless, we can formally
extract those amplitudes E±

out;s,p(κm) by writing

Ē
±
out = σ̄±

outĒ±
out, (44)

where

Ē
±
out =

⎡
⎢⎢⎢⎢⎢⎣

Ē
±
out(κN )

Ē
±
out(κ (N−1))

...

Ē
±
out(κ (−N))

⎤
⎥⎥⎥⎥⎥⎦

is a 2(2N + 1) column for each example (±) once the elements
of

Ē
±
out(κm) =

[
E±

out;s(κm)

E±
out;p(κm)

]

are written out, and

σ̄±
out =

⎡
⎢⎢⎢⎢⎣

σ̄±
out(κN ) 0̄ · · · 0̄

0̄ σ̄±
out(κ (N−1)) · · · 0̄

...
...

. . .
...

0̄ 0̄ · · · σ̄±
out(κ (−N))

⎤
⎥⎥⎥⎥⎦, (45)

where the 0̄ denote 2 × 3 matrices with all their elements
vanishing, and

σ̄±
out(κm) =

[
(x̂ · ŝm) ( ŷ · ŝm) ( ẑ · ŝm)

(x̂ · p̂1±,m) ( ŷ · p̂1±,m) ( ẑ · p̂1±,m)

]
. (46)

Using (41) and (44) in (38), we can write

Ē
+
out = T̄gE

+
in + R̄gE

−
in,

Ē
−
out = R̄gĒ

+
in + T̄gĒ

−
in,

where R̄g and T̄g are 2(2N + 1) × 2(2N + 1) matrices,

T̄g = σ̄±
out{1̄3 + ε0Ḡ

±(χ̄o + χ̄v)[1̄3 − ε0ḡ(χ̄o + χ̄v)]−1}σ̄±
in ,

R̄g = σ̄±
outε0Ḡ

±(χ̄o + χ̄v)[1̄3 − ε0ḡ(χ̄o + χ̄v)]−1σ̄∓
in . (47)

Since we consider the same dielectric above and below the
grating, the transmission and reflection properties are the same
whether light is incident from above or below; thus the
expressions (47) are the same whether the + or − matrices on
the right-hand side of the equations are used in their evaluation.

Finally, combining the two columns Ē
+
out and Ē

−
out, each

with 2(2N + 1) elements, to form one column with 4(2N +
1) elements, and likewise for Ē

+
in and Ē

−
in, we can form a

4(2N + 1) × 4(2N + 1) scattering matrix S ,

S ≡
[
T̄g R̄g

R̄g T̄g

]
, (48)
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FIG. 3. A simple 1D grating configuration with the grating ori-
ented such that ê = ŷ. Incident, reflected, transmitted, and diffracted
rays are shown by black (thick) lines, and labeled by the notation used
to indicate their field amplitudes; the projection of the wave vectors
on the xy plane is shown by red (thin) lines.

so that [
Ē

+
out

Ē
−
out

]
= S

[
Ē

+
in

Ē
−
in

]
. (49)

With the equations in this form, a proof of energy conservation
is possible, and is presented in Appendix C. That proof, and the
equations from which it was derived, hold for any orientation
of the grating direction ê in the xy plane and any plane of
incidence.

B. A simple configuration

In this subsection we simplify the equations above for a
common scenario of interest: We take the grating susceptibility
to be uniaxial, χxx

add(ζ ) = χ
yy

add(ζ ) [recall (5) and (6)], choose
ê = ŷ, and assume the plane of incidence contains ẑ and ê = ŷ,
as illustrated in Fig. 3; for the isolated grating treated above
and in this section, we have ε2 = ε1. The wave vectors κm

that are relevant here are then either in the ŷ or − ŷ direction,
so κ̂m · ŷ = sgn(κ̂m · ŷ) = ŝm · x̂; the form of the expressions
(39) for the σ̄±

in (κm) simplifies to

σ̄±
in (κm) =

⎡
⎢⎣

(κ̂m · ŷ) 0

0 ∓w1(κm)
ω̃n1

(κ̂m · ŷ)

0 κm

ω̃n1

⎤
⎥⎦,

and similarly for the form of the expressions (46) for σ̄±
out(κm),

which are the transpose of the σ̄±
in (κm). When these are assem-

bled into σ̄±
in and σ̄±

out in (43) and (45) and the results used in
(47) for R̄g and T̄g , we find that because of the high symmetry
of the problem each of these 2(2N + 1) × 2(2N + 1) matrices
can be reorganized into two (2N + 1) × (2N + 1) matrices,
one relevant for s-polarized light and one for p-polarized
light. For each polarization the relevant matrices can then be
combined into a 2(2N + 1) × 2(2N + 1) scattering matrix,
and in place of (49) we have two sets of equations,[

Ē
+
out,α

Ē
−
out,α

]
= Sα

[
Ē

+
in,α

Ē
−
in,α

]
, (50)

where α = s,p, each Ē
+
in,α is a (2N + 1) element column,

Ē
−
in,α =

⎡
⎢⎢⎢⎢⎣

E−
in,α(κN )

E−
in,α(κN−1)

...

E−
in,α(κ−N )

⎤
⎥⎥⎥⎥⎦, (51)

[compare (40), (42)], and likewise for Ē
+
in,α and Ē

±
out,α , and

where

Sα ≡
[
Tg,α Rg,α

Rg,α Tg,α

]
,

with

Tg,s = β̄

[
1̄1 − iω̃2D

2
w̄−1

1 χ̄‖
]−1

β̄,

Rg,s = Tg,s − 1̄1, (52)

and

Tg,p =
[

1̄1 − iD

2ε1
κ̄χ̄⊥κ̄

]−1

+ β̄

[
1̄1 − iD

2ε1
χ̄‖w̄1

]−1

β̄ − 1̄1,

Rg,p =
[

1̄1 − iD

2ε1
κ̄χ̄⊥κ̄

]−1

− β̄

[
1̄1 − iD

2ε1
χ̄‖w̄1

]−1

β̄. (53)

Here each of Tg,s , Rg,s , Tg,p, and Rg,p is a (2N + 1) ×
(2N + 1) matrix. The matrices β̄, κ̄, and w̄1 are diagonal
matrices of the same dimension, β̄ = diag(κ̂N · ŷ,κ̂N−1 ·
ŷ, . . . ,κ̂−N · ŷ), κ̄ = diag(|κN |,|κN−1|, . . . ,|κ−N |), and
w̄1 = diag(w1(κN ),w1(κN−1), . . . ,w1(κ−N )), with w1(κ) =√

ω̃2n2
1 − κ2. Finally, χ̄‖ and χ̄⊥ are (2N + 1) × (2N + 1)

matrices with (mm′) elements χ̄
‖
mm′ = δmm′ 〈χxx

mod〉 +
(x̂ · χv[m−m′] · x̂) = δmm′ 〈χyy

mod〉 + ( ŷ · χv[m−m′] · ŷ) and
χ̄⊥

mm′ = δmm′ 〈χzz
mod〉 + ( ẑ · χv[m−m′] · ẑ). We note that the

relation between Ts and Rs is simple because the reference
vectors ŝm for the fields are all the same or differ simply by a
minus sign; while that betweenTp andRp is more complicated
because, even for a particular κm, the z components of p̂1+,m

and p̂1−,m are identical, but the y components differ by a sign
[see (35)].

C. An example

The expressions (52) and (53) for the reflection and
transmission matrices, and indeed the more general expres-
sions (47), can be used to calculate specular reflection and

205140-8



GREEN’s FUNCTION METHOD TO STUDY THIN . . . PHYSICAL REVIEW B 96, 205140 (2017)

transmission, and diffraction, for the choice of any number
2N + 1 of wave vectors κm in the calculation. However, in
certain circumstances further approximations are possible. For
example, if the grating period a [see Fig. 1(b)] is small enough,
then for at least some angles of incidence there will be only
one propagating diffracted order (m = −1) in addition to the
specularly reflected and transmitted fields (see Fig. 3, again
with ε1 = ε2). A choice of 2N + 1 = 3 could be adopted, but
since the field associated with κ1 is evanescent we can neglect
that field and still respect energy conservation in a lossless
structure if we keep only the fields at κ0 and κ−1, simply
neglecting the fields at κ1. If we do this, and consider the simple
excitation scenario presented above, each of the Tg,α and Rg,α

is a 2 × 2 matrix, and the resulting equations for the specularly
reflected and transmitted fields, and the diffracted fields, can be
solved easily. We refer to this as the “two-wave-vector model.”
Considering an incident field from z = −∞, for s polarization
we find specularly transmitted and reflected fields

E+
out,s(κ0)

E+
in,s(κ0)

= U−1
s

(
1 − iω̃2D

2w1(κ−1)
χ̄

‖
00

)
,

E−
out,s(κ0)

E+
in,s(κ0)

= E+
out,s(κ0)

E+
in,s(κ0)

− 1, (54)

and upward and downward diffracted fields that are equal in
amplitude,

E±
out,s(κ−1)

E+
in,s(κ0)

= U−1
s

( −iω̃2D

2w1(κ−1)
χ̄

‖
(−1)0

)
, (55)

where

Us =
(

1 − iω̃2D

2w1(κ0)
χ̄

‖
00

)(
1 − iω̃2D

2w1(κ−1)
χ̄

‖
00

)

+ ω̃4D2

4w1(κ0)w1(κ−1)
χ̄

‖
0(−1)χ̄

‖
(−1)0,

while for p polarization we find specularly transmitted and
reflected fields

E+
out,p(κ0)

E+
in,p(κ0)

= U−1
z

(
1 − iκ2

−1D

2w1(κ−1)ε1
χ̄⊥

00

)

+ U−1
κ

(
1 − iw1(κ−1)D

2ε1
χ̄

‖
00

)
− 1,

E−
out,p(κ0)

E+
in,p(κ0)

= U−1
z

(
1 − iκ2

−1D

2w1(κ−1)ε1
χ̄⊥

00

)

− U−1
κ

(
1 − iw1(κ−1)D

2ε1
χ̄

‖
00

)
, (56)

and upward and downward diffracted fields

E±
out,p(κ−1)

E+
in,p(κ0)

= U−1
z

(
iκ0κ−1D

2w1(κ−1)ε1
χ̄⊥

(−1)0

)

± U−1
κ

(
iw1(κ0)D

2ε1
χ̄

‖
(−1)0

)
, (57)

where

Uκ =
(

1 − iw1(κ0)D

2ε1
χ̄

‖
00

)(
1 − iw1(κ−1)D

2ε1
χ̄

‖
00

)

+ w1(κ0)w1(κ−1)D2

4ε2
1

χ̄
‖
0(−1)χ̄

‖
(−1)0,

Uz =
(

1 − iκ2
0 D

2w1(κ0)ε1
χ̄⊥

00

)(
1 − iκ2

−1D

2w1(κ−1)ε1
χ̄⊥

00

)

+ κ2
0 κ2

−1D
2

4ε2
1w1(κ0)w1(κ−1)

χ̄⊥
0(−1)χ̄

⊥
(−1)0.

Of course, the diffracted fields only appear for κ−1 < ω̃n1,
and the expressions above are to be used only in that range.
The more complicated form of the results for p-polarized light
arises because of the two components (κ̂ and ẑ) of the light
that arise, as opposed to the simpler results for s polarization
where there is only one component (ŝ).

As an example, we consider a grating with thickness D =
25 nm consisting of an isotropic medium with refractive index
3.5 embedded in vacuum; we take the grating period to be
a = 1.25 μm, with a fill fraction of one-half (d/a = 0.5), and
consider incident s-polarized light at a wavelength of 1.55 μm.
In Fig. 4 we plot the relative irradiance of the radiated electric
fields in this system,

I+
s (κm) = |E+

out,s(κm)|2n1 cos θ1(κm)

|E+
in,s(κ0)|2nQ cos θ

,

I−
s (κm) = |E−

out,s(κm)|2 cos θQ(κm)

|E+
in,s(κ0)|2 cos θ

, (58)

(deg) (deg)

(deg) (deg)

FIG. 4. Comparison between the numerically exact relative ir-
radiances (red solid curves), the irradiances predicted by the full
thin-grating model with 2N + 1 = 7 (blue dash-dot curves), and
the irradiances predicted from the two-wave-vector model (green
dashed curves). The calculation is for a 25 nm thick grating with
a = 1.24 μm, d = 0.62 μm, and a refractive index of ng = 3.5
suspended in vacuum and subject to an s-polarized field incident
at angle θ at a wavelength of 1.55 μm. The vertical, dotted, black
line marks the Rayleigh anomaly.
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for κm < ω̃n1, and I±
s (κm) = 0 for κm > ω̃n1 where the fields

are evanescent. Here θ is the angle of incidence, cos θ =
wQ(κ0)/ω̃nQ, cos θ1(κm) = w1(κm)/ω̃n1, and cos θQ(κm) =
wQ(κm)/ω̃nQ. In green (dashed lines) we show the predictions
of the specularly and diffracted reflectance and transmission
as a function of incident angle θ (see Fig. 3) for the two-
wave-vector model (54) and (55); we plot in blue (dash-
dot) the predictions of the full thin-grating model (50) with
2N + 1 = 7; and we plot in red (solid) the predictions of a
full numerical calculation using the approach of Whittaker
and Culshaw [22,23], which can be considered exact. We see
that even our simple analytic two-wave-vector model (54) and
(55) gives a very good approximation of the diffracted and
specularly reflected and transmitted fields, and the calculation
with (2N + 1) = 7 wave vectors is essentially exact. Similar
good agreement between the approximate calculations and the
numerically exact calculation is found for p-polarized light.

The vertical, dotted, black lines in Fig. 4 identify the onset of
diffraction, and thus the angle at which the Rayleigh anomalies
appear in the specularly reflected and transmitted fields. At
lower angles is the Wood anomaly: The peak in the specularly
reflected intensity, and the dip in the specularly transmitted
intensity, arise from a pole in the response functions of the
structure; the pole is associated with the “effective waveguide”
discussed in Sec. III. Returning to the full response equations
(47), we see that the poles of the full structure are given by

det[1̄3 − ε0ḡ(χ̄o + χ̄v)] = 0, (59)

[compare (29), (30)]. Poles here are off the real κ axis; the
K �= 0 components of the grating provide coupling into and out
of the uniform waveguide, with a dispersion relation identified
approximately by the expressions (30), giving the position of
the pole in the κ plane an imaginary contribution, as well as a
shift in the real component of the pole. To verify this, we restrict
ourselves to excitation with κ0 · ŷ > 0 and expand our analytic
expressions for the specular component of the electric field in
(54) and (56) about κ0 = κ̌ , with κ̌ defined by the expression

κ̌ − 2π

a
= −κWG,

where κWG is the magnitude of the wave vector satisfying
the approximate dispersion relations of the isolated
waveguide mode given by (30); expressions for κWG

for s and p polarization are given by (B2) and (B3)
in Appendix B. For κ0 in this region κ−1 · ŷ < 0, and
κ−1 = −(2π/a − κ0) = −κ−1 ŷ is close to the wave vector
of a waveguide mode propagating in the − ŷ direction,
κ−1 ≈ κ̌ ′

−1 ≡ −(2π/a − κ̌) ŷ = −κWG ŷ. Since κWG > ω̃n1,
w1(κWG) is purely imaginary; we put q = −iw1(κWG),
use superscripts s and p on κ̌, κWG, and q to indicate the
appropriate polarization, and also use ws

1 and w
p

1 as shorthand
for w1(κ̌ s) and w1(κ̌p), respectively. Looking at the transmitted
specular field, for κ0 in the neighborhood of κ̌ ŷ we find the
expressions (54) and (56) can be written approximately as

E+
out,s(κ0)

E+
in,s(κ0)

≈ ηs

κ−1 − κWG

κ−1 − (
κs

R + iκs
I

) ,

E+
out,p(κ0)

E+
in,p(κ0)

≈ ηp

κ−1 − κWG

κ−1 − (
κ

p

R + iκ
p

I

) + C, (60)

where κ
s,p

R ≡ κ
s,p

WG + κ
s,p

δ , with

κs
δ = − (qs)2

κs
WG

(
ω̃2D

2ws
1

)2 χ̄
‖
0(−1)χ̄

‖
(−1)0

1 + (
ω̃2D
2ws

1
χ̄

‖
00

)2 ,

κs
I = (qs)2

χ̄
‖
00κ

s
WG

(
ω̃2D

2ws
1

)
χ̄

‖
0(−1)χ̄

‖
(−1)0

1 + (
ω̃2D
2ws

1
χ

‖
00

)2 ,

ηs = 1

1 − iω̃2D
2ws

1
χ̄

‖
00

,

and

κ
p

δ = −
(

(κ̌p)2D

2ε1w
p

1

)2
κ

p

WG[(
κ

p

WG

)2
/(qp)2 − 2

] χ̄⊥
0(−1)χ̄

⊥
(−1)0[

1 + ( (κ̌p)2D

2ε1w
p

1
χ̄⊥

00

)2] ,

κ
p

I = 1

χ̄⊥
00

(
(κ̌p)2D

2ε1w
p

1

)
κ

p

WG[(
κ

p

WG

)2
/(qp)2−2

] χ̄⊥
0(−1)χ̄

⊥
(−1)0[

1+( (κ̌p)2D

2ε1w
p

1
χ̄⊥

00

)2] ,

ηp = 1

1 − i(κ̌p)2D

2ε1w
p

1
χ̄⊥

00

,

and where

C = 1

Uκ

(
1 + qpD

2ε1
χ̄

‖
00

)
− 1

is negligible for sufficiently thin gratings. We do not plot (60),
but note that in the region of the dip of the specular transmission
for both s- and p-polarized light the pole expansion gives
an extremely good fit to the more exact expressions (54) and
(56) in the two-wave-vector model, as well of course to the
results (52) and (53) of the (2N + 1)-wave-vector model and
to the exact numerical results with which the two-wave-vector
model agrees well. The inclusion of the imaginary parts κ

s,p

I

of the pole positions are obviously essential in achieving this,
but the inclusion of the shifts κ

s,p

δ in the real part of the pole
positions are as well and should not be neglected; both are
second order in the grating coupling amplitudes.

D. Including a substrate

Returning to our general scattering treatment (49) of an
isolated grating, we can move to a transfer matrix treatment
by solving for the upward and downward propagating (or
evanescent) field amplitudes above the grating (Ē+

out and
Ē

−
in) in terms of the upward and downward propagating (or

evanescent) field amplitudes below the grating (Ē+
in and Ē

−
out),[

Ē
+
out

Ē
−
in

]
= M̄g

[
Ē

+
in

Ē
−
out

]
, (61)

where

M̄g =
[
T̄g − R̄g(T̄g)−1R̄g R̄g(T̄g)−1

−(T̄g)−1R̄g (T̄g)−1

]
(62)

has 4(2N + 1) × 4(2N + 1) elements, as does the scattering
matrix (48). Returning to our general structure of Fig. 1(a),
we can now combine the transfer matrix (62) of the grating
region with the transfer matrix of the multilayer below to form
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a transfer matrix for the whole structure, in terms of which the
optical properties of the structure can be calculated. To do this,
consider first light characterized by a single κ in the presence
of the multilayer structure of Fig. 1(a), but without the presence
of the grating. The transfer matrix of the multilayer structure
relating upward and downward propagating (or evanescent)
amplitudes of light just above the multilayer in the medium
with relative dielectric constant ε1 [at z = (−D/2)+] to
upward and downward propagating (or evanescent) amplitudes
of light at the largest z to which the substrate, with relative
dielectric constant εQ, extends, takes the form

M1Q =
[
TQ1 − R1Q(T1Q)−1RQ1 R1Q(T1Q)−1

−(T1Q)−1RQ1 (T1Q)−1

]
. (63)

This is a 4 × 4 matrix, but as long as the layered materials are
isotropic or uniaxial it will be composed of 2 × 2 block matri-
ces Tij = diag(Ts

ij ,T
p

ij ) where Ts,p

ij is the Fresnel coefficient
for the transmitted s- or p-polarized fields from εi to εj andRij

is similarly defined for their reflected counterparts [25]. We can
immediately extend this to a transfer matrix M̄1Q of the layered
structure involving all our (2N + 1) κm of interest by writing

M̄1Q =
[
T̄Q1 − R̄1Q(T̄1Q)−1R̄Q1 R̄1Q(T̄1Q)−1

−(T̄1Q)−1R̄Q1 (T̄1Q)−1

]
, (64)

a 4(2N + 1) × 4(2N + 1) matrix where [T̄1Q]mm = diag
(Ts

1Q(κm),Tp

1Q(κm)) and other terms are similarly defined.
We can now construct a transfer matrix for the full structure

shown in Fig. 1(a) by imagining an infinitesimal layer of
material with relative dielectric constant ε1 inserted between
the bottom of the grating structure and the top of the highest
layer in the multilayer structure below. Then the transfer matrix
relating the upward and downward propagating (or evanescent)
field amplitudes just above the grating to the upward and
downward propagating (or evanescent) field amplitudes at the
largest z in the substrate is given by

M̄
′
1Q = M̄gM̄1(D/2)M̄1Q,

where

M̄1(D/2) =
[
L̄

+ 0̄

0̄ L̄
−

]

is composed of 2(2N + 1) × 2(2N + 1) block matrices with
L̄

±(κm) = e±iw1(κm)D/2[1 0
0 1] and propagates the fields from

the center of the grating at z = 0 to the position of the
substrate at z = −D/2. Through simple algebra we can write
the elements of M̄′

1Q as

M̄
′
1Q =

[
T̄

′
Q1 − R̄

′
1Q(T̄′

1Q)−1R̄
′
Q1 R̄

′
1Q(T̄′

1Q)−1

−(T̄′
1Q)−1R̄

′
Q1 (T̄′

1Q)−1

]
, (65)

where

T̄
′
1Q = T̄1QL̄

+[1̄2 − R̄gR̄1Q(L̄+)2]−1T̄g,

T̄
′
Q1 = T̄gR̄1Q(L̄+)2[1̄2 − R̄gR̄1Q(L̄+)2]−1(R̄1Q)−1T̄Q1L̄

−
,

R̄
′
1Q = R̄g + T̄gR̄1Q(L̄+)2[1̄2 − R̄gR̄1Q(L̄+)2]−1T̄g,

R̄
′
Q1 = R̄Q1 + T̄1QL̄

+[1̄2 − R̄gR̄1Q(L̄+)2]−1R̄gT̄Q1L̄
+ (66)

are easily identified as the transmission and reflection matrices
of the entire structure [compare (62), (64)].

The analytic structure of the new Fresnel matrices (66)
is inherited from that of the isolated grating (47) and from
the R̄ij and T̄ij of the multilayer below it. Besides the poles
of T̄g and R̄g signaling the waveguide modes in the isolated
grating structure, we can in general expect poles in R̄ij and T̄ij

signaling the presence of waveguide modes in the multilayer.
The positions of the poles in the new Fresnel matrices (66)
will exhibit the interaction between these excitations, and we
will turn to a general analysis of the new excitations in a
later publication. Here we focus on a first application our
thin-grating model in the presence of a substrate, and on some
of the qualitative features that arise from the interaction. Thus
we consider the simplest multilayer structure possible, taking
the substrate with relative dielectric constant εQ to extend
up to z = −D/2. The grating, suspended in a medium of
dielectric constant ε1 which also serves as a cladding, then
resides on a semi-infinite substrate of dielectric constant εQ,
which we now relabel ε2 (see Fig. 3). Taking ε2 to be real and
positive there are no modes associated with the substrate, and
so the only effect of the substrate will be to modify the modes
identified by the poles of the isolated grating structure [see
Fig. 1(b)].

Insight into the nature of this modification can be gleaned
from recalling the simplest picture of the grating region as
an effective anisotropic slab [see Fig. 1(c)]. In a symmetric
environment both s- and p-polarized waveguide modes exist,
but for an environment with ε2 �= ε1 (see Fig. 3) the modes will
not survive if the asymmetry is large enough. In such a situation
we expect the Wood anomalies will vanish, although of course
the Rayleigh anomalies will remain. We demonstrate how
our thin-grating model describes this situation by considering
a grating with D = 25 nm, with a dielectric constant εg =
(3.5)2 appropriate for silicon, a period of a = 1.8 μm, and
a fill fraction d/a = 0.4 in vacuum (ε1 = 1), located above
a substrate of fused silica [ε2 = (1.44)2] and subject to
s-polarized light from below at a vacuum wavelength of
λ = 1.55 μm. For the resulting εlayer we would require an
ε1 > (1.38)2 for a waveguide mode to be contained within
the guiding layer, so the asymmetry here is too great to
allow for Wood anomalies, and only Rayleigh anomalies
should survive. Assuming ε2 > ε1, this can be confirmed by
solving (B1) for ε1 with κ = ω̃

√
ε2. In agreement with this

simple argument, the reflected, transmitted, and diffracted
light intensities exhibits only cusplike Rayleigh anomalies, as
seen in Fig. 5. In blue (dashed-dot) we plot a calculation with
(2N + 1) = 7 wave vectors using (49), while in red (solid) we
plot the exact result found numerically from the approach of
Whittaker and Culshaw [22,23]. There is excellent qualitative
and good quantitative agreement between the results of the
thin-grating model and the exact result, especially considering
that a parameter 2π

√
εgD/λ, which should obviously be small

for our thin-grating approximations (14) to be valid, is here
about 0.35. There is only a significant relative correction in
the diffracted intensities at κ−1, where the diffracted intensities
themselves are very small.

In order for this grating to exhibit a Wood anomaly, we
need to move to a more symmetric system. For dielectric
systems, as the mismatch between ε1 and ε2 is decreased,
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(deg) (deg) (deg)

(deg) (deg)

FIG. 5. Comparison between relative irradiance calculations that are numerically exact (red solid curves) and those predicted by the full
thin-grating model with 2N + 1 = 7 (blue dash-dot curves) around a Rayleigh anomaly. The calculation is for a 25 nm thick grating with
a = 1.8 μm, d = 0.72 μm, and a refractive index of ng = 3.5. The system has a substrate with index nQ = 1.44, a vacuum cladding, and is
subject to an s-polarized incident field from the substrate at angle θ and with a vacuum wavelength of 1.55 μm.

(deg) (deg) (deg) (deg)

(deg) (deg) (deg)

FIG. 6. Comparison of relative irradiance calculations that are numerically exact (red solid curves) and those predicted by the full thin-grating
model (blue dash-dot curves). The calculation is for a 25 nm thick grating with a = 1.8 μm, d = 0.72 μm, and a refractive index of ng = 3.5.
The system has a substrate with index nQ = 1.44, a cladding with index n1 = 1.42, and is subject to an s-polarized field, incident from the
substrate at angle θ with a vacuum wavelength 1.55 μm.

205140-12



GREEN’s FUNCTION METHOD TO STUDY THIN . . . PHYSICAL REVIEW B 96, 205140 (2017)

(deg) (deg) (deg) (deg)

(deg) (deg) (deg)(deg)

FIG. 7. Comparison of relative irradiance calculations that are numerically exact (red solid curves) and those predicted by the full thin-grating
model (blue dash-dot curves). The calculation is for a 25 nm thick grating with a = 1.8 μm, d = 0.72 μm, and a refractive index of ng = 3.5.
The system has a substrate with index nQ = 1.44, a cladding with index n1 = 1.42, and is subject to a p-polarized field, incident from the
substrate at angle θ with a vacuum wavelength 1.55 μm. The insert in the graph of I−

p (κ+1) shows the detail around θ = 23.5◦.

first an s-polarized mode appears, and then a p-polarized
mode. Thus one can expect situations where there will be
a Wood anomaly associated with s-polarized light and not
with p-polarized light, but not the reverse. This result follows
naturally from our approach that associated with the grating
region an effective layer response. For the current grating
the cutoff for p-polarized light is ε1 = (1.4396)2, only very
slightly lower than the substrate ε2 = (1.44)2; recall that the
cutoff for s-polarized light is ε1 = (1.38)2. To move into this
regime, we raise ε1 to (1.42)2, and keep all other parameters
the same; for this value the simple argument used above
predicts a waveguide mode for s-polarized light, but not for
p-polarized light. In accord with this, the calculated reflected,
transmitted, and diffracted light irradiances shown in Figs. 6
and 7 exhibit Wood and Rayleigh anomalies for s-polarized
light, but only Rayleigh anomalies for p-polarized light. Again
in blue (dashed-dot) we plot a calculation using (49) with
2N + 1 = 7, while in red (solid) we give the results from a
full numerical calculation using the approach of Whittaker
and Culshaw [22,23]. For s-polarized light we focus on the
region around the Wood anomaly; note that with the field
incident from the substrate, which has a higher index than
the cladding, the forward-diffracted fields become evanescent
before the backward-diffracted fields. For p-polarized light
we plot the response for all incident angles; the absence of
a Wood anomaly leaves somewhat unremarkable results for
specularly reflected and transmitted light, but yields several
noteworthy features in the diffracted components, which

can propagate up to m = −3. Rayleigh anomalies when the
m = +1, −2, and −3 diffracted orders transition between
evanescence and propagation lead to Rayleigh anomalies that
appear as nonanalyticities in the m = −1 and m = −2 beams.
Additionally, for angles of incidence beyond that which would
yield total internal reflection were the grating absent, the
specular reflectance does not remain at unity. A small dip in the
specular reflectance follows the Rayleigh anomaly associated
with this transition, which is compensated by an increase in
the irradiance of the remaining diffracted components. They
display peaks over this range, which finally drop to zero as the
incidence approaches grazing. We note excellent agreement
between the thin-grating results (49) and the exact calculation
throughout the plots in Figs. 6 and 7, with the largest relative
disagreements appearing only when the intensities involved
are very small.

Although not shown, we note that if the asymmetry
between cladding and substrate is decreased further so that
a p-polarized Wood anomaly appears, we observe a small
shift between its location as predicted by (49) and the full
numerical results, which does not occur for the s-polarized
Wood anomaly shown in Fig. 6. For both s- and p-polarized
Wood anomalies, the disagreements with the full numerical
calculations increase as the dimensionless optical thickness
parameters D̃s and D̃p, given by (B4) and (B5) in Appendix
B, approach unity. In that Appendix we show that this signals
the breakdown of our approximate treatment of the waveguide
modes in the effective anisotropic slab.
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V. CONCLUSIONS

In this work we have presented a treatment for the
optical response of thin gratings. Although approximate, it
nonetheless respects energy conservation exactly, even if there
are large exchanges of energy between specular and diffracted
fields, and between specularly transmitted and reflected fields.
These large exchanges are associated with Rayleigh and Wood
anomalies. Our Green’s function approach makes it easy to see
how the anomalies arise from the structure of the equations
that describe the specular and diffracted fields, with square-
root singularities associated with Rayleigh anomalies and
poles with Wood anomalies; the poles are linked to effective
waveguide modes of the grating region that are easily identified
in the thin-grating limit. This helps in understanding the optical
response even if a set of coupled wave vector equations must
be solved for the specular and diffracted fields. Yet, where
only a few wave vectors are important, analytic expressions
can be given directly for the specular and diffracted fields.
Comparison with full numerical solutions of a 1D grating
response confirms that our approximate solution is in excellent
agreement with the exact response, even near the anomalies.

We expect that the development of approximate yet accurate
treatments of thin gratings, such as the one presented here, will
play an important role in enabling their use as probes of optical
systems. The calculations can be made more easily than full nu-
merical treatments, and the physics can be identified in the rea-
sonably simple sets of equations that are used in calculations.
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APPENDIX A: FOURIER COMPONENTS
FOR A RECTANGULAR GRATING

In this section we evaluate χv[m] for a one-dimensional
rectangular grating, such as the one presented in Fig. 1(b),
composed of isotropic materials. Recalling (17), we have

χv[m] = 1

a

∫ a/2

−a/2
e−imKζ [χmod(ζ ) − 〈χmod〉]dζ, (A1)

where from (13) and our definition of ε(ζ ) ≡ ε1 + χ add(ζ ),
we can write

χ
‖
mod(ζ ) = ε‖(ζ ) − ε1,

χ⊥
mod(ζ ) = ε1

(
1 − ε1

ε⊥(ζ )

)
.

Note that for the system considered, we have

ε⊥(ζ ) = ε‖(ζ ) =
{

εg, |ζ | � d/2,

ε1, |ζ | > d/2,

within a single period of our grating. Additionally, we note
that 〈χmod〉, found from (20), yields 〈χ‖

mod〉 = ε
‖
layer − ε1 and

〈χ⊥
mod〉 = ε1(1 − ε1/ε

⊥
layer) where ε

‖
layer and ε⊥

layer are found
from (21). At this point we can evaluate (A1) to find

χ
‖
v[m] = (

ε
‖
layer − ε1

)
sinc

(
mKd

2

)
,

χ⊥
v[m] = ε1

(
1 − ε1

ε⊥
layer

)
sinc

(
mKd

2

)
.

APPENDIX B: WAVEGUIDE MODES

Here we compare the exact and approximate dispersion
relations of the waveguide modes of a thin uniaxial slab. For ẑ
perpendicular to the slab we take the relative dielectric tensor
to be εlayer = ε

‖
layer(x̂ x̂ + ŷ ŷ) + ε⊥

layerẑẑ, with the cladding and
substrate of the slab taken to be isotropic media respectively
characterized by relative dielectric constants ε1 and ε2. The
exact solution for the waveguide modes [32] of this system is

(a) s polarization

(b) p polarization

FIG. 8. Comparison of exact (solid red curves) and approximate
(blue dash-dot curves) waveguide mode dispersion calculations over
a range of slab thicknesses. The calculation is for a thin uniaxial
slab characterized by ε

‖
layer = 6.11 and ε⊥

layer = 3.03, suspended in
a medium with index 1.42, subject to either an (a) s-polarized or
(b) p-polarized incident field with a vacuum wavelength of 1.55 μm.
The thickness parameters D̃s and D̃p are given by (B4) and (B5),
respectively.
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given by

cot (hD) = h2 − qp

h(q + p)
, (B1)

where

h =
√√√√(

ε
‖
layer

εb
layer

)(
ω̃2εb

layer − κ2
)
,

q = aq

√√√√ω̃2
(
εb

layer − ε1
) − εb

layer

ε
‖
layer

h2,

p = ap

√√√√ω̃2
(
εb

layer − ε2
) − εb

layer

ε
‖
layer

h2,

and where εb
layer = ε

‖
layer and aq = ap = 1 for s polarization,

and εb
layer = ε⊥

layer, aq = ε
‖
layer/ε1, and ap = ε

‖
layer/ε2 for p

polarization. Taking ε1 = ε2, approximate dispersion relations
can be determined directly from (30); solving those equations
yields

κ2

ω̃2ε1
= 1 + 1

4
D̃2

s , (B2)

for s polarization, and

κ2

ω̃2ε1
= 2

1 +
√

1 − D̃p

, (B3)

for p polarization [33], where

D̃s = ω̃n1

(
ε

‖
layer

ε1
− 1

)
D, (B4)

D̃p = ω̃n1

(
1 − ε1

ε⊥
layer

)
D. (B5)

The approximate dispersion relations can be shown to agree
with the lowest order solution of the exact relations to first
order in the grating thickness. The exact and approximate
dispersion relations are shown in Fig. 8 over a range of
waveguide thicknesses. For the purposes of the calculation
we set ε

‖
layer = 6.11 and ε⊥

layer = 3.03, with ε1 = (1.42)2, as
used in Fig. 6 with the absence of any diffraction.

For both polarizations we begin to see significant deviations
in Fig. 8 as D̃j → 1, where j = s,p. The s-polarized case has
a relative deviation of 1.5% at D̃s = 1, which corresponds
to a thickness of 86 nm, while the p-polarized case has a
deviation of 27% at D̃p = 1. The significantly larger deviation
in the p-polarized results can be attributed to two factors. The
first is that for D̃p > 1 the square root in the denominator
of (B2) becomes imaginary, giving a firm cutoff for its valid
comparison to the exact solution, and the second is due to the
fact that ε

‖
layer > ε⊥

layer for the cases considered in this paper.
While the chosen cutoff for the s-polarized calculation was
found to be 86 nm, the breakdown of the p-polarized case
occurs at 520 nm, a thickness well beyond our underlying
assumption that w1D � 1. To provide a better comparison to
the s-polarized case, we note that (B3) has a relative deviation
of approximately 1.5% at D̃p = 0.7 which corresponds to a
thickness of 364 nm.

APPENDIX C: ENERGY CONSERVATION

Here we confirm that our approximate treatment of diffraction and scattering across the grating satisfies energy conservation
exactly in the limit of no absorption. To do this, we start with the difference between the total irradiance of the outgoing and
incident fields

�I = 2cε0n1

∑
m

(|Ē+
out(κm)|2 + |Ē−

out(κm)|2)W(κm) cos θ (κm) − 2cε0n1

∑
m

(|Ē+
in(κm)|2 + |Ē−

in(κm)|2)W(κm) cos θ (κm), (C1)

where W(κm) ≡ 1 for propagating fields, and W(κm) ≡ 0 for evanescent fields, such that (C1) considers the difference in the
incoming and outgoing energy from the grating via propagating fields; also cos θ (κm) = w1(κm)/ω̃n1. Denoting by θ̄ the diagonal
matrix with elements θ̄mm = 2cε0n1 cos θ (κm) we can write the difference in irradiance as

�I = [Ē+∗
out Ē

−∗
out]

[
W̄ 0̄

0̄ W̄

][
θ̄ 0̄

0̄ θ̄

][
W̄ 0̄

0̄ W̄

][
Ē

+
out

Ē
−
out

]
− [Ē+∗

in Ē
−∗
in ]

[
W̄ 0̄

0̄ W̄

][
θ̄ 0̄

0̄ θ̄

][
W̄ 0̄

0̄ W̄

][
Ē

+
in

Ē
−
in

]
, (C2)

where 0̄ is a 2(2N + 1) × 2(2N + 1) matrix of zeros, and W̄ is a 2(2N + 1) × 2(2N + 1) block-diagonal matrix with diagonal
elements

W̄(κm) = W(κm)

[
1 0

0 1

]
.

After recalling (48), (C2) becomes

�I = [Ē+∗
in Ē

−∗
in ]

[
W̄ 0̄

0̄ W̄

](
S †

[
θ̄ ′ 0̄

0̄ θ̄ ′

]
S −

[
θ̄ ′ 0̄

0̄ θ̄ ′

])[
W̄ 0̄

0̄ W̄

][
Ē

+
in

Ē
−
in

]
, (C3)

where θ̄ ′ = W̄θ̄W̄ and we have made use of the fact that W̄2 = W̄.
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For convenience we introduce the matrix

C̄± = ε0Ḡ
±χ̄tot(1̄3 − ε0ḡχ̄tot)

−1, (C4)

where χ̄tot = χ̄o + χ̄v . Using (C4), we can write our scattering matrix from (48) as

S =
[
σ̄+

out 0̄

0̄ σ̄−
out

](
1̄6 +

[C̄+ C̄+

C̄− C̄−

])[
σ̄+

in 0̄

0̄ σ̄−
in

]
, (C5)

and can then reduce (C3) to

�I = [
Ē

+∗
in W̄σ̄+

out Ē
−∗
in W̄σ̄−

out

]
×

([
�̄+ 0̄

0̄ �̄−

][C̄+ C̄+

C̄− C̄−

]
+

[
C̄+† C̄−†

C̄+† C̄−†

][
�̄+ 0̄

0̄ �̄−

]
+

[
C̄+† C̄−†

C̄+† C̄−†

][
�̄+ 0̄

0̄ �̄−

][C̄+ C̄+

C̄− C̄−

])[
σ̄+

in W̄Ē
+
in

σ̄−
in W̄Ē

−
in

]
, (C6)

where �̄± = σ̄±
in θ̄ ′σ̄±

out.
In simplifying (C6) we find

�I = [Ē+∗
in Ē

−∗
in ]

[
Ī++ Ī+−
Ī−+ Ī−−

][
Ē

+
in

Ē
−
in

]
, (C7)

where

Ī±± = W̄σ̄±
out(�̄

±C̄± + C̄±†�̄± + C̄+†�̄+C̄+ + C̄−†�̄−C̄−)σ̄±
in W̄,

Ī±∓ = W̄σ̄±
out(�̄

±C̄± + C̄∓†�̄∓ + C̄+†�̄+C̄+ + C̄−†�̄−C̄−)σ̄∓
in W̄. (C8)

Before further proceeding we note that through the use of the identity σ̄±
outσ̄

±
in = 1̄2 we can write

�̄±Ḡ± = iω̃cDσ̄±
in W̄σ̄±

out, (C9)

which then allows us to write

�̄±C̄± = iω̃ε0cDσ̄±
in W̄σ̄±

outχ̄tot(1̄3 − ε0ḡχ̄tot)
−1,

C̄±†�̄± = −iω̃ε0cD(1̄3 − ε0χ̄
†
totḡ

†)−1χ̄
†
totσ̄

±
in W̄σ̄±

out, (C10)

where in the latter expression we have made use of the fact that (σ̄±
in W̄σ̄±

out)
† = σ̄±

in W̄σ̄±
out. Next, note that when we premultiply

the 3(2N + 1) × 3(2N + 1) block-diagonal matrix Ḡ+ by the 3(2N + 1) × 3(2N + 1) block-diagonal matrix σ̄+
in W̄σ̄+

out we get a
block-diagonal matrix σ̄+

in W̄σ̄+
outḠ

+ in which each block associated with a propagating (diffracted or scattered) order equals the
corresponding block of Ḡ+, but which vanishes if the block is associated with an evanescent order. In the same way the blocks of
σ̄−

in W̄σ̄−
outḠ

− associated with propagating orders equal the corresponding blocks of Ḡ−, while those associated with evanescent
orders vanish. Recalling that ḡ(κm) = 1

2 [Ḡ+(κm) + Ḡ−(κm)], we have σ̄+
in W̄σ̄+

outḠ
+ + σ̄−

in W̄σ̄−
outḠ

− = ḡ − ḡ†, where the sum
on the left-hand side will either equal 2ḡ or 0̄ as ḡ(κm) = −ḡ†(κm) for propagating orders, while ḡ(κm) = ḡ†(κm) for evanescent
orders. With this in mind and from the use of (C10) we have

C̄+†�̄+C̄+ + C̄−†�̄−C̄− = −iω̃ε2
0cD(1̄3 − ε0χ̄

†
totḡ

†)−1χ̄
†
tot(ḡ − ḡ†)χ̄tot(1̄3 − ε0ḡχ̄tot)

−1. (C11)

Finally, through the substitution of the expressions for �̄±C̄±, C̄±†�̄±, (C10) and (C11), into (C8), and some simple algebra, we
find Ī±± = �̄±σ̄±

in W̄ and Ī±∓ = �̄±σ̄∓
in W̄, where

�̄± = iω̃ε0cDW̄σ̄±
out(1̄3 − ε0χ̄

†
totḡ

†)−1[χ̄tot − χ̄
†
tot](1̄3 − ε0ḡχ̄tot)

−1. (C12)

For nonabsorbing gratings χ̄tot is Hermitian, Ī±± = Ī±∓ = 0, and �I = 0 from (C7). If absorption is present (C12) and (C7) can
be used to calculate its effect on the energy balance between incident and scattered fields.
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