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Hall effect in cuprates with an incommensurate collinear spin-density wave
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The presence of incommensurate spiral spin-density waves (SDW) has been proposed to explain the p (hole
doping) to 1 + p jump measured in the Hall number nH at a doping p∗. Here we explore incommensurate
collinear SDW as another possible explanation of this phenomenon, distinct from the incommensurate spiral
SDW proposal. We examine the effect of different SDW strengths and wave vectors, and we find that the nH ∼ p

behavior is hardly reproduced at low doping. Furthermore, the calculated nH and Fermi surfaces give characteristic
features that should be observed; thus, the lack of these features in experiment suggests that the incommensurate
collinear SDW is unlikely to be a good candidate to explain the nH ∼ p observed in the pseudogap regime.

DOI: 10.1103/PhysRevB.96.205132

I. INTRODUCTION

Recently, a measurement of the Hall effect in YbBa2Cu3Oy

(YBCO) by Badoux et al. [1] provided some clues on the
zero-temperature normal state that is found when a magnetic
field prohibits superconductivity. A sharp jump in the effective
carrier density from p (hole doping) to 1 + p was observed
around p∗ ∼ 0.19, the extrapolated zero-temperature value of
the pseudogap line T ∗(p) [2]. It was suggested that this is an
important clue to understand the pseudogap phenomenon.

Since then, an appreciable number of phenomenological
theories were proposed to explain this behavior. Most of
them reproduced the jump in the effective carrier number
measured from the Hall effect nH . The candidate theories can
be separated in two groups: those based on a hypothetical
long-range magnetic order and those based on Mott-like
physics.

In the first group, a simple antiferromagnet [3] was shown
sufficient to reproduce the p behavior at low doping. However,
in experiments, antiferromagnetism does not extend above
p = 0.05 [4] and, therefore, this scenario is unlikely. Spiral
antiferromagnets, commensurate and incommensurate, were
also studied [5]. In the incommensurate case (above p =
0.05), hole pockets twice as large as in the simple antifer-
romagnet were predicted. This would show up in quantum
oscillations.

In the second group of theories, based on Mott physics,
the resonating-valence-bond spin-liquid ansatz of Yang et al.
(YRZ) [6], a phenomenological model of the pseudogap,
was able to reproduce the jump in Hall carrier [3]. An
implementation of the fractionalized Fermi liquid theory (FL*)
was also able to reproduce this jump [7].

All of the above theories can be expressed as two-band
effective models [8]. In other words, a strong-enough order,
introduced as an effective mean field, opens a gap at half-
filling, splitting a single band into two bands. This regime is
associated with an effective carrier density p. If this mean
field order is removed, one recovers the original single band
with an effective carrier density of 1 + p. Each theory that
reproduces the Hall jump [1] tunes this mean field as a function
of doping to recover the two bands (p) at low doping and
a single band (1 + p) above p∗. The charge-density d-wave

superconductivity SU(2) theory gave a different explanation
of this same jump [9].

In this paper, we explore another possibility: the incommen-
surate collinear spin-density wave (SDW, see Fig. 1) [10]. By
collinear, we mean a SDW that is a modulation of the amplitude
of the spin order parameter by contrast with the spiral SDW,
which is a rotation of the spin with constant amplitude [11,12].
It is not clear experimentally whether the SDW is spiral or
collinear, as discussed in the context of La2−xSrxCuO4 (LSCO)
measurements [10]. But we do know that for p > 0.05, there
is an incommensurate SDW that survives at low temperature,
either collinear or spiral. This has been found by neutron
scattering in LSCO and YBCO [4,13,14].

Since calculations for the spiral SDW have already been
done [5], we focus only on the long-range incommensurate
collinear SDW. The tight-binding Hamiltonian along with the
formalism used to evaluate the Hall number nH is shown
in Sec. II. In Sec. III, we present results following a very
gradual approach: we compute nH as a function of p, first
without SDW, then with a commensurate SDW, and finally
with incommensurate SDW. This progression reveals the effect
of each modification and builds a general understanding that
will be useful for our discussion (Sec. IV). In the end, we
show how unlikely it is that the incommensurate collinear
SDW explains the jump in Hall carrier. We conclude that if an
order is associated with the pseudogap at T = 0, it is probably
best represented by a two-band effective model.

II. MODEL

We use the following tight-binding Hamiltonian:

H =
∑
k,σ

ξkc
†
k,σ ck,σ + M

∑
k,σ

σ (c†k,σ ck+Q,σ + H.c.). (1)

The first term is the kinetic energy, where the dispersion
relation ξk is defined with first-, second-, and third-neighbor
hopping energy t , t ′, and t ′′:

ξk = −2t(cos(kx) + cos(ky))

− 2t ′(cos(kx + ky) + cos(kx − ky))

− 2t ′′(cos(2kx) + cos(2ky)) − μ. (2)
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FIG. 1. (a) Local moment distributions for commensurate (π,π )
collinear SDW (left) and incommensurate collinear SDW (right). The
incommensurate SDW is the equivalent to a commensurate SDW
modulated by cos(2πδŷ). Here, L = 9 and δ = 1

18 (see Sec. II B for
definitions). (b) Q in the reciprocal space for commensurate collinear
SDW (left) and incommensurate collinear SDW (right).

The second term of Hamiltonian Eq. (1) is the SDW mean-field
energy with amplitude M . c

†
k,σ and ck,σ are the creation and

annihilation operators of momentum k. Q is the wave vector of
the SDW.1 σ = ±1 is the spin index. We work in units where
Planck’s constant and lattice spacing are unity.

The commensurate (π,π ) SDW is presented in Sec. II A
and the incommensurate collinear SDW in Sec. II B. Both
SDW are shown in Fig. 1. It is important to emphasize that
we do not solve the truly incommensurate case but only
rational approximations, namely commensurate SDW with
shorter or longer periods, depending on the definition of
Q. This distinction between commensurate (π,π ) SDW and
incommensurate SDW is consistent with common usage in
experiments.

A. Commensurate case

When the wave vector is

Q0 = (π,π ), (3)

the SDW is commensurate with period 2 in x and y directions;
it corresponds exactly to the spin ordering of an Néel
antiferromagnet. In that case, we can define the following
two-orbital spinor:

�
†
k,σ = (c†k,σ c

†
k+Q0,σ

), (4)

and matrix Hamiltonian

Ĥk,σ =
(

ξk σM

σM ξk+Q0

)
, (5)

so that the original Hamiltonian Eq. (1) can be expressed as

H =
∑

k ∈ rBz
σ

�
†
k,σ Ĥk,σ�k,σ . (6)

1Only considering Q is sufficient to generate smaller gaps at the
harmonics 2Q, 3Q, and so on, through the diagonalization of the
Hamiltonian.

The sum is restricted to the reduced Brillouin zone (rBz)
to avoid double counting. In the commensurate case, this
rBz corresponds to the antiferromagnetic Brillouin zone. The
eigenenergies Ek,n (for band n) are simply obtained through
diagonalization of the Hk,σ matrix.

B. Incommensurate case

In cuprates, the SDW does not remain commensurate for
every doping. Beyond a threshold, it becomes incommensu-
rate. The single SDW vector Q0 then splits locally in two wave
vectors:

Q± = 2π

(
1

2
,
1

2
± δ

)
, (7)

as experimentally measured with neutron scattering on single
crystals [4,14] (see Fig. 1). Higher order harmonics are
negligible. Note that this order breaks C4 rotational symmetry.

We can generalize the approach above in a straightforward
way for incommensurate SDW by defining the spinor of
dimension 2L:

�
†
k,σ = (c†k,σ , . . . c

†
k+mQ+,σ . . .), (8)

where m ranges from 0 to 2L − 1. 2L is an even integer that
defines the denominator of the fraction of the incommensura-
bility:

δ = q

2L
, (9)

with q an integer. With this spinor definition, the original
Brillouin zone is then separated in 2L rBz. Hence, with 2L

additions of the vector Q+, modulo a vector of the reciprocal
lattice,2 we cycle through every different rBz. Note that we
need an even number of additions of Q+ to cycle through
every different rBz. We could use Q− and it would cover the
exact same 2L rBz since Q+ = −Q− modulo a vector of the
reciprocal lattice.

The Hamiltonian matrix Ĥk,σ in this basis is of dimension
2L by 2L. It has εk+mQ+ on the diagonal and zero on most of
the off-diagonal elements. When the column index m and the
row index m′ are such that m − m′ modulo 2L is ±1, the matrix
element is the scalar σM . This matrix is almost, but not quite,
tridiagonal due to the finite term at indices (m,m′) = (1,2L)
and (2L,1).

We name this representation where δ �= 0 “incommensurate
SDW.” However, in reality, it is commensurate with a long
period. In other words, since δ is a fraction, the only order that
can be represented by our model repeats every 2L sites in the
y direction and every 2 sites in the x direction.

Note that with δ = 0, we recover the commensurate model
of the previous section.

C. Formula for the Hall conductivity

With h̄ = 1, the electron charge e and the normalization
volume V , the Hall number nH and resistivity RH are [8,15]:

RH = σxy

σxxσyy

= V

enH

, (10)

2Of the original Brillouin zone.
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where σxx is the longitudinal conductivity at zero temperature
in the zero-frequency limit when interband transitions can be
neglected:

σxx = e2π

V

∑
n

k ∈ rBz

(
∂Ek,n

∂kx

)2

A2
k,n(0), (11)

and σxy is the transversal conductivity [3,5,8,15]:

σxy = e3π2

3V

∑
n

k ∈ rBz

[
− 2

∂Ek,n

∂kx

∂Ek,n

∂kx

∂2Ek,n

∂kx∂ky

+
(

∂Ek,n

∂kx

)2
∂2Ek,n

∂k2
y

+
(

∂Ek,n

∂ky

)2
∂2Ek,n

∂k2
x

]
A3

k,n(0).

(12)

Ek,n is the eigenenergy of band n. Here, the band index n

includes the spin index σ . Ak,n(ω) is the spectral weight for
band n:

Ak,n(ω) ≡ − 1

π
Im

(
1

ω + iη − Ek,n

)
. (13)

The Lorentzian broadening η is necessary for the integral to
converge and corresponds to constant lifetime τ = 1

2η
. We

choose η = 0.05. However, a different value with the same
magnitude yields similar results [8].

The derivatives ∂Ek,n

∂kα
are the Fermi velocities in the α = x,y

direction and ∂2Ek,n

∂kα∂kβ
corresponds to the αβ component of the

inverse effective mass tensor. When the above formulas are
used, it is important to use the derivatives of the eigenenergies
Ek,n and not of the bare band ξk to capture the correct behavior
of the Hall effect [3,5,8,15]. For an arbitrary given k point,
it is easy to compute the Ĥk,σ matrix and find its eigenen-
ergies Ek,n. However, it is more complicated to obtain their
derivatives for matrices larger than 2 × 2. Appendix A shows a
systematic approach to calculate exactly these derivatives with
a single diagonalization of the matrix Ĥk,σ at each k point by
a generalization of the Hellmann-Feynman theorem [16,17].

III. RESULTS

In this section, we look at the Hall number nH as a function
of hole doping p relative to half-filling. We choose this con-
vention to match the experimental data and theoretical studies
in hole-doped cuprates [1,3,5,18]. With this convention, the p

axis goes from a completely filled band at p = −1 to an empty
band at p = 1, with p = 0 corresponding to half-filling. We
will study in detail three cases to understand progressively
the complications of the underlying physics and to familiarize
ourselves with the general behavior of nH versus p curves.

A. No SDW

Let us first look at the behavior of nH as a function p

for the bare band without any density wave (M = 0). In
Fig. 2, we present the Hall conductivity for three different
band parameters (t ′,t ′′) and their corresponding Fermi surface

-2
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1

2

101-

−π

π

n H
p

(t , t ) = (0.0, 0.0) (−0.3, 0.0) (−0.3, 0.2)

pvHs = 0 pvHs = 0.27 pvHs = 0.55

k y
FIG. 2. (bottom) Hall conductivity nH as a function hole doping p

for three different band parameters. (top) Fermi surfaces (
∑

n Ak,n(0))
at pvHs of each of the three band parameters. The color in the legend
specifies which curve and Fermi surface correspond to which band
parameter. Yellow corresponds to the particle-hole symmetric case
and black corresponds to an approximation to the band parameters
of YBCO as calculated from density functional theory without
interactions [19,20]. Hence, brown corresponds to an intermediate
case, to show the effect of neglecting t ′′. We define the reference
t = 1, which corresponds to approximately 250 meV in YBCO.
p = 1 corresponds to an empty band (no electron), and p = −1
corresponds a completely full band. The triangles below the Fermi
surface graphs show the doping corresponding to each Fermi surface,
hence to each van Hove singularity. We see on the brown curve that
this doping is not equal to the doping where RH = 0. The three dotted
lines correspond to p − 1, p, and p + 1.

at the van Hove singularity (vHs). This figure allows us to
understand three general facts.

First, for any band parameter, a filled band (at p ∼ −1)
always behaves like a free hole gas (nH is the number of
holes in the band) whereas an empty band (at p ∼ 1) always
behaves like a free electron gas (nH is minus the number
of electrons in the band). Hence, nH changes signs between
p = −1 and p = 1. It implies that at some doping p0, the
number of holelike carriers must be equal to the number of
electronlike carriers, hence RH = 0. When this happens, nH

diverges. RH = 0 can happen for more than one doping, as
we will see in the next sections. Changing the band structure
ξk only changes the value of the doping p0, but the general
behavior found in Fig. 2 is the same.

Second, although the doping p0 is always close to the
doping of the van Hove singularity pvHs, they are not always
the same. The chemical potential corresponding to pvHs can
be determined exactly by analytical calculation (Appendix B).
Both dopings p0 and pvHs are equal only for (t ′,t ′′) = (0,0).
For (t ′,t ′′) = (−0.3,0.0), there is a clear offset between p0
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FIG. 3. The middle two panels show the Hall number nH as a
function of the hole doping p relative to half-filling for different SDW
amplitudes M (δ = 0). The outer panels show the Fermi surface for
five different dopings for M = 0.125 (top blue Fermi surfaces) and
for M = 4.0 (bottom purple Fermi surfaces). The triangles below
and above the Fermi surface graphs show the doping corresponding
to each Fermi surface. The three dotted lines correspond to p − 1, p,
and p + 1. Here, t ′ = −0.3, t ′′ = 0.2.

and pvHs. However, the two dopings are always close because
there are rapid changes in the Fermi surface near the van
Hove singularity, causing rapid changes in the nature of charge
carriers.

Third, t ′′ has an impact as important as t ′ on the values of
p0 and pvHs, so we must not neglect it.

B. Commensurate SDW (δ = 0)

Let us now look at the antiferromagnetic case. In Fig. 3, we
show the Hall number nH for different values of M along with
typical Fermi surfaces.

We separate the low and high SDW field M on two different
panels to not overload the plot. For low enough values of
M , the nH curves deviate gradually from M = 0 (black).
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FIG. 4. Same as Fig. 3 but with δ = 1/6.

The Fermi surface is almost equivalent to the bare Fermi
surface, with additional anticrossing at the antiferromagnetic
zone boundary.

For high field (M � 1), the system reaches another regime
where nH is precisely proportional to p near half-filling. This
regime corresponds to an antiferromagnetic field M so strong
that it separates the original band into two new bands. Indeed,
the curves are plotted as a function of the doping p, but if they
were plotted as a function of the chemical potential, we would
observe a gap at half-filling p = 0; there would be a range
of chemical potential with nH = 0. In fact, if we compare to
the bare band behavior, we see that the pattern displayed in
Fig. 2 is repeated twice: hence the equivalence to two separated
bands.

From these results we can reproduce what was already
published by Storey [3], simply by varying M as a function
of p. This corresponds to picking points from different curves
depending on the value of M(p) in the model. If we zoom on
the portion p = 0 to p = 0.3 and vary the field M linearly as a
function of p, we also obtain that nH goes from p to 1 + p. It is,
however, not realistic to consider an antiferromagnetic regime
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for p > 0.05 in hole-doped cuprates [21]. For this reason, we
consider SDWs that are incommensurate and collinear in the
next section.

C. Incommensurate SDW (δ = 1/6)

In Fig. 4, we show precisely the same quantities as in Fig. 3,
but for incommensurate SDW with δ = 1/6.

For M < 1.0, the behavior is similar to the antiferro-
magnetic case. For M � 1.0, the behavior is much more
complicated but reaches a stable regime for M � 4.0. We then
recognize something similar to the M = 4.0 curve of Fig. 3:
the strong field M causes multiple band splittings. In fact,
we have precisely 2L = 6 bands when δ = 1/6. Indeed, the
original band (for M = 0) in the original Brillouin zone is split
into six different portions, one for each rBz. Every rBz contains
the same number of k points, hence the same number of states.
In fact, nH vanishes precisely when p is a multiple of 1/3, in
other words, 1/6 of the total band electron. As M increases,
these six bands separate completely from each other. The Hall
number nH thus presents signatures of these six independent
bands. Note that if we chose δ = 1/8 we would have eight
different bands, and so on.

From this observation, we can conclude that, for the
incommensurate case, the regime M � t is unlikely to be
the cause of the p behavior near half-filling, contrary to the
commensurate case. Indeed, even if we find that nH ∼ p in
Fig. 4 around half-filling, the region over which we find this
behavior decreases with 2Ly . As the fractions δ considered
are more and more incommensurate, in other words, as 2Ly

increases, nH is more and more constrained to zero when M is
large. Thus we lose this nH ∼ p behavior for incommensurate
SDW at large M .

One could argue that, even if the nH ∼ p behavior around
half-filling is not obtained at high M , it could somehow appear
at intermediate M , like the curve M ∼ 0.5 of Fig. 4 seems to
suggest. We study this case in the next section.

D. Constant M, different δ

Figure 5 shows how the parameter δ influences nH . We
choose M = 1.0 because it is not too large but still sufficient
to find the nH ∼ p behavior around half-filling for the
commensurate antiferromagnetic case (δ = 0) (see Fig. 3).
In Fig. 5, we see that, for small δ, the result is close to the
commensurate case. In other words, we find a behavior close
to nH ∼ p near half-filling. However, the more we increase δ,
the more it deviates from nH ∼ p.

In the experiments, δ is a function of p [4,13,14]. Therefore,
a natural question arises: is it possible to observe nH ∼ p at
low doping if we vary δ as a function of p?

E. Variable δ as a function of p

In Fig. 6, we look at the nH curve when the experimentally
observed δ(p) is used. We see that for these choices of δ as
a function of p, nH has a tendency to follow p, but is not
locked to p. Note that we chose δ ∼ p − 0.03 as reported by
experiments on YBCO [4], but choosing a slightly different δ

dependency leads to the same conclusion. Also, as discussed
before, increasing or decreasing M would make nH deviate
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FIG. 5. Hall number nH as a function of the hole doping p relative
to half-filling for different SDW incommensurability δ with the same
M = 1.0. We separate small and big δ on two panels to lighten the
plot. The δ used are 0, 1

20 = 0.050, 1
16 = 0.063, 1

14 = 0.071, 1
12 =

0.083, 1
10 = 0.100, and 1

8 = 0.125. t ′ = −0.3 and t ′′ = 0.2.

even more from the p behavior around half-filling. We claim
here that, for the model used, the parameters used in Fig. 6 are
close to the best set of parameters to reproduce the nH ∼
p behavior, yet it still lacks agreements with experiments
[1,22,23].

On the same figure, we see that the Fermi surfaces
corresponding to the best-case scenario are different from the
ARPES results on YBCO [21,24]. In the experiments, if we
ignore the effects of bilayer splitting and copper oxide chains,
the Fermi surface only consists of four Fermi arcs. It is often
speculated that those arcs are in fact four small pockets with
their back spectral weight too faint to be measured. By contrast,
in our computed Fermi surfaces, spectral weight remains in the
y antinodes, and many copies of the nodal pocket appear along
the y direction. These features are absent in experiments.

IV. DISCUSSION

Our analysis indicates that the incommensurate collinear
SDW, as represented by our model, cannot explain the nH ∼ p

behavior of the underdoped YBCO measurements [1,22].
Even the best-case scenario (M = 1 and δ ∼ p − 0.03, as
in Fig. 6) predicts important deviations from the nH ∼ p

behavior. Those deviations were not seen in experiments on
YBCO [1,22]. However, Hall measurements in LSCO and
BLSCO [18] report a sharp feature in nH around p = 0.16,
reminiscent of the deviation from nH ∼ p we predict here, but
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FIG. 6. The top panel shows the chosen distribution of δ values as
function of p. Each symbol of a given color corresponds to the same
incommensurability δ: 0, 1

38 = 0.026, 1
26 = 0.038, 1

20 = 0.050, 1
16 =

0.063, 1
14 = 0.071, 1

12 = 0.083, 1
10 = 0.100, and 1

8 = 0.125. The
dotted line corresponds to the experimental reference δ ∼ p − 0.03
[4]. In the middle panel, Hall number nH as a function of hole doping
p relative to half-filling for different SDW incommensurability δ.
We use M = 1.0 below p = 0.2 and M = 0.0 above. Each curve
corresponds to a different δ. The symbols on the middle panel
correspond to the symbols on the top panel. We only draw symbols on
the portion of the curve that corresponds to the experimental reference
δ ∼ p − 0.03. We also show the corresponding curve for the whole p

range for each δ to highlight the deviations from nH ∼ p close to the
data points selected. In the bottom panels, we show Fermi surfaces for
five different p and δ. The triangles above the Fermi surface graphs
show the doping corresponding to each Fermi surface.

the authors argue this feature is linked to the high temperature
superconducting mechanism. It could be worth investigating
if this feature is not rather linked to density waves similar to
those studied here.

Note also that we chose the values of M that provided
the desired qualitative behavior of nH ∼ p. It does not imply
any quantitative prediction. What we called the “best case
scenario” (Fig. 6) is not a proof that M should have a value
around 1, which is t in our units. In fact, the M corresponding
to the real SDW found in YBCO should be much smaller than
M ∼ 1, since, for such large values of M , there are strong ir-
regularities in the calculated Fermi surfaces, as shown in Fig. 6.

The results for the commensurate antiferromagnetic case
shown in Fig. 3 can, however, explain the Hall effect measure-
ments in electron-doped Pr2xCexCuO4 [25] and La2xCexCuO4

[26], where x, the doping in electrons, corresponds to x = −p

on the electron doped side. Indeed, starting from p = 0, if
we decrease M as we decrease p (increase x), at some point
there will be a sign change in nH , as observed experimentally
in Refs. [25,26]. This is one possible explanation of the p

to 1 + p (or −x to 1 − x) transition in the electron-doped
cuprates. Note, however, as argued in Refs. [25,26], that the
proximity of the vHs to p = 0 remains a plausible alternative
explanation.

We must stress that the conclusions reached here, with
the incommensurate collinear SDW, do not extend to the
incommensurate spiral SDW, as both orders are fairly different
[they are only the same for Q = (π,π )]. Indeed, this explains
the significant difference between the results of our model and
the results of Eberlein et al. [5]. The local moment in a spiral
SDW is constant in magnitude but its direction rotates, whereas
the local moment in a collinear SDW has a fixed direction
but its amplitude is modulated. It is also possible to model a
truly incommensurate Q spiral with a 2 × 2 matrix (two-band
model), without any approximation [5]. The value of Q can
be as incommensurate as needed. With the method presented
in this article, a truly incommensurate collinear SDW would
necessitate a matrix of infinite size.

A natural extension of this study would be to average over
a spread in Q vector to simulate shorter range correlations.
Indeed, in the large M limit, as shown in Fig. 4, there
are precisely 2L + 1 peaks (at values of p where RH = 0),
which is an artifact of commensurability in our approach.
So, averaging over a spread in Q vector would smear out
the fine details of the Fermi surface and possibly smear the
peaks in nH (Fig. 6), resulting in nH ∼ p behavior. Adding
disorder to the model would probably result in a similar effect.
This is outside the scope of the model presented here, but it
would be interesting to verify this point in future work. In
any case, there are multiple refinements needed to reproduce
the nH ∼ p behavior with incommensurate collinear SDW,
whereas two-band effective models [3,5,7,8] do not need any
impurities, Q averaging, or fine-tuned value of the effective
mean field M to obtain the nH ∼ p. From previous studies
of these models [3,5,7,8], we know that two-band effective
models are sufficient to obtain the nH ∼ p behavior because
they open a gap at half-filling. By contrast, the incommensurate
SDW studied here splits the dispersion in more than two bands,
which causes deviations from the seeked nH ∼ p behavior.
We can infer that the opening of a gap at half-filling might
be an important necessary feature of any adequate theory of
the zero-temperature normal state in the pseudogap regime.
Nonetheless, the actual physics behind the pseudogap at zero
temperature is probably more subtle, being deeply rooted in
strongly correlated physics as indicated by methods like cluster
perturbation theory [27,28] or generalizations of dynamical
mean-field theory to clusters, like cellular dynamical mean-
field theory CDMFT or the dynamical cluster approximation
DCA [29–41]. It would be interesting to calculate the value of
nH for the pseudogap regime with these techniques in future
work.
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APPENDIX A: DERIVATIVES OF EIGENENERGIES

Expressions for the conductivities σxx and σxy contain the
derivative of the eigenenergies of the Hamiltonians ∂Ek,n

∂kα
and

∂2Ek,n

∂kα∂kβ
. For a two-band model like the antiferromagnet, the

calculation is straightforward. However, for larger matrices
(size 3 or more), the analytic expression of the eigenvalues
is much more complicated and one must rely on a numerical
approach. We could find the derivatives with finite differences
but there is imprecision around degeneracies due to the
arbitrary ordering of the eigenenergies Ek,n (for some specific
k points). It is important to optimize this diagonalization since
it is the bottleneck of the calculation for large Ly . In this
appendix, we present a general and straightforward approach
to calculate exactly these derivatives for any k.

1. First derivative

The first derivative ∂Ek,n

∂kα
is obtained from the Hellmann-

Feynman theorem. Here we recall the proof. Starting from the
eigenequation (ignoring the spin index here):

Ĥk|ψk,n〉 = Ek,n|ψk,n〉, (A1)

where k is the wave vector, Ĥk is the Hamiltonian operator,
and Ek,n are the eigenenergies corresponding to the eigenstates
|ψk,n〉. Let us drop the explicit k in the notation from here. The
eigenbasis is orthonormal:

〈ψn|ψm〉 = δn,m (A2)

∂

∂kα

〈ψn|ψn〉 = ∂〈ψn|
∂kα

|ψn〉 + 〈ψn|∂|ψn〉
∂kα

= 0. (A3)

Multiplying (A1) by 〈ψn| and taking the derivative, we obtain

∂

∂kα

〈ψn|Ĥ |ψn〉

= 〈ψn| ∂Ĥ

∂kα

|ψn〉 + ∂〈ψn|
∂kα

En|ψn〉 + 〈ψn|En

∂|ψn〉
∂kα︸ ︷︷ ︸

=0

. (A4)

The last two terms vanish because of Eq. (A3). Using the
eigenequation on the left-hand term, we find:

∂En

∂kα

= 〈ψn| ∂Ĥ

∂kα

|ψn〉, (A5)

which is known as the Hellmann-Feynman theorem [16,17].

2. Second derivative

For the second derivative, the approach is similar. Taking
the derivative of Eq. (A5), we obtain three terms:

∂2En

∂kβ∂kα

=〈ψn| ∂2Ĥ

∂kβ∂kα

|ψn〉

+ ∂〈ψn|
∂kβ

∂Ĥ

∂kα

|ψn〉 + 〈ψn| ∂Ĥ

∂kα

∂|ψn〉
∂kβ

. (A6)

The first term is straightforward to calculate but the last two
terms must be further simplified. The derivative with respect
to kα of the eigenequation (A1) can be reordered as

∂Ĥ

∂kα

|ψn〉 = ∂En

∂kα

|ψn〉 − (Ĥ − En)
∂|ψn〉
∂kα

, (A7)

which can be substituted twice in Eq. (A6). We obtain multiple
terms, two of which cancel due to Eq. (A3):

∂2En

∂kβ∂kα

= 〈ψn| ∂2Ĥ

∂kβ∂kα

|ψn〉 − 2
∂〈ψn|
∂kβ

(Ĥ − En)
∂|ψn〉
∂kα

.

(A8)

Note that we could not isolate ∂|ψn〉
∂kα

directly in Eq. (A7)
because, by definition of the eigenvalues En, the determinant
of (Ĥ − En) is zero, thus (Ĥ − En) cannot be inverted.

Form Eq. (A8) is simpler, but we still need to determine
correctly the derivative of the eigenstate ∂|ψn〉

∂kα
. This can be

calculated exactly using perturbation theory. Starting with the
definition of the derivative (in one dimension k for simplicity):

∂|ψn(k)〉
∂k

= lim
δk→0

|ψn(k + δk)〉 − |ψn(k)〉
δk

. (A9)

The Hamiltonian Ĥ (k + δk) has |ψn(k + δk)〉 as eigen-
states. Since δk is small by definition and the eigenenergies
vary smoothly as a function of k, the Hamiltonian at k + δk

can be expressed by a small perturbation from Ĥ (k):

Ĥ (k + δk) = Ĥ (k) + [Ĥ (k + δk) − Ĥ (k)]︸ ︷︷ ︸
perturbation

. (A10)

Since δk → 0 in Eq. (A9), the first order perturbation term of
|ψn(k + δk)〉 is exact:

|ψn(k + δk)〉 − |ψn(k)〉

=
∑
m�=n

〈ψm(k)|(Ĥ (k + δk) − Ĥ (k))|ψn(k)〉
En(k) − Em(k)

|ψm(k)〉.

(A11)

Substituting Eq. (A11) into Eq. (A9), we obtain

∂|ψn〉
∂kα

=
∑
m�=n

〈ψm| ∂Ĥ
∂kα

|ψn〉
En − Em

|ψm〉, (A12)

which holds for any dimension of k space. This formula is
commonly used in the calculation of the Berry connection
[42,43].
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Substituting in Eq. (A8), we find the band version of the
f -sum rule [44,45]

∂2En

∂kβ∂kα

=〈ψn| ∂2Ĥ

∂kβ∂kα

|ψn〉

+ 2
∑
m�=n

〈ψn| ∂Ĥ
∂kβ

|ψm〉〈ψm| ∂Ĥ
∂kα

|ψn〉
En − Em

. (A13)

Since the derivatives of the Hamiltonian matrix are easy to
obtain analytically, the only numerical part of the calculation
that must be performed at any k point is the diagonalization of
the Hamiltonian to obtain the eigenvalues.

APPENDIX B: VAN HOVE SINGULARITY ENERGY

Here, we derive a simple equation to find the energy
corresponding to the van Hove singularity in a tight-binding
model with the dispersion in Eq. (2).

The van Hove singularities occur at ∂ξk
∂kx

= ∂ξk
∂ky

= 0, where

∂ξk

∂kx

= 2t sin(kx) + 4t ′′ sin(2kx)

+ 2t ′(sin(kx + ky) + sin(kx − ky)) (B1)

and similar for ∂ξk
∂ky

. If we focus on the singularities that can be
found on the axis ky = 0, we obtain kx where the saddle point
in the energy is

k̃x =
{

arccos(r) if |r| � 1
π otherwise , (B2)

where r ≡ − t + t ′

4t ′′
. (B3)

Using some trigonometric identities in Eq. (2) together with
Eq. (B2), we can calculate that the energy corresponding to
this saddle point is

ξk=(k̃x ,0) =
{−2t(1 + r) − 4t ′r − 4t ′′r2 if |r| � 1

−4t ′ − 4t ′′ otherwise
.

(B4)

This reduces to the result of Ref. [46] when t ′′ = 0. Note that,
to be general, we would need to search for singularities that
cannot be found on the axis kx = 0 or ky = 0, but when t ′ and
t ′′ are small compared to t , as in every cuprate material, the
saddle points can only be found on the axis kx = 0 or ky = 0.
This can be seen on the Fermi surfaces of Fig. 2: the van Hove
singularities are only found on the axis kx = 0 and ky = 0.
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