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Two-dimensional density-matrix renormalization group method is employed to examine the ground-state phase
diagram of the Hubbard model on the triangular lattice at half-filling. The calculation reveals two discontinuities
in the double occupancy with increasing the repulsive Hubbard interaction U at Uc1 ∼ 7.8t and Uc2 ∼ 9.9t

(t being the hopping integral), indicating that there are three phases separated by first-order transitions. The
absence of any singularity in physical quantities for 0 � U < Uc1 implies a metallic phase in this regime. For
U > Uc2, the local spin density induced by an applied pinning magnetic field exhibits a three sublattice feature,
which is compatible with the 120◦ Néel-ordered state realized in the limit of U → ∞. For Uc1 < U < Uc2, a
response to the applied pinning magnetic field is comparable to that in the metallic phase with a relatively large
spin correlation length, but showing neither valence bond nor chiral magnetic order, which therefore resembles
gapless spin liquid. However, the spin structure factor for the intermediate phase exhibits the maximum at the K
and K′ points in the momentum space, which is not compatible to spin liquid with a large spinon Fermi surface.
The calculation also finds that the pairing correlation function monotonically decreases with increasing U and
thus the superconductivity is unlikely in the intermediate phase.

DOI: 10.1103/PhysRevB.96.205130

I. INTRODUCTION

There has been accumulating experimental evidence that
several organic materials, κ-(BEDT-TTF)2Cu2(CN)3 [1],
EtMe3Sb[Pd(dmit)2]2 [2–4], and κ-H3(Cat-EDT-TTF)2 [5],
form a quasi-two-dimensional (2D) triangular structure and ex-
hibit quantum spin liquid (QSL) [6,7], where any spatial sym-
metry breaking does not occur due to the quantum fluctuation,
even when it is cooled down to zero temperature. The realiza-
tion of QSL against a symmetry-broken ordered state in higher
spatial dimensions more than one dimension is one of the long-
standing issues in condensed matter physics [6] since the first
proposal of resonating valence bonds (RVB) states by Ander-
son [8]. It has been considered that one of the key ingredients
for the emergence of stable QSL is geometrical frustration
[8], which increases quantum fluctuations and thus prevents
symmetry breaking. In this context, the spin-1/2 antiferro-
magnetic Heisenberg model on the triangular lattice had been
considered [9]. However, recent numerical studies, including
two-dimensional density-matrix renormalization group (2D-
DMRG) analysis, have suggested that the ground state of the
spatially isotropic model is 120◦ Néel ordered [10–13].

In addition to the geometrical frustration, other factors for
stabilizing QSL have also been considered, such as (i) the
spatially anisotropic exchange interactions [14], (ii) the higher-
order corrections of exchange interactions [15], and (iii) the
charge degree of freedom [16–19]. The later two are captured
by the triangular lattice Hubbard model at half electron filling
described by the Hamiltonian

H = −t
∑
〈i,j〉

∑
σ=↑,↓

(c†i,σ cj,σ + H.c.) + U
∑

i

ni,↑ni,↓, (1)

where ci,σ (c†i,σ ) represents the annihilation (creation) operator
of an electron with spin σ (= ↑,↓) at site i on the triangular
lattice, ni,σ = c

†
i,σ ci,σ , and the sum 〈i,j 〉 runs over all pairs of

nearest-neighbor sites i and j . Indeed, the QSL phase in the
organic materials appears next to the metallic phase, indicating
that the QSL occurs close to the Mott metal-insulator transition
[20–22] where the above two factors (ii) and (iii) are important.
In fact, it has been extensively argued that the triangular lattice
Hubbard model is the simplest effective model to describe and
understand the metal-insulator transition and the QSL phase
in the organic materials [23].

Elucidating the ground-state phase diagram of the triangular
lattice Hubbard model at half-filling is a challenge for
numerical techniques in strongly correlated electron systems.
Various numerical methods [24–43] have been applied so
far, but the results are, nevertheless, controversial. The exact
diagonalization techniques [24–26], the variational cluster
approximation (VCA) [27,28], the path-integral renormal-
ization group (PIRG) method [29,30], as well as the re-
cently proposed ladder dual-Fermion approach [31] have
suggested that there exist three phases in the ground-state
phase diagram with increasing U/t , i.e., a metallic phase,
a nonmagnetic insulating phase, and the 120◦ Néel-ordered
insulating phase. This is also supported by the numerical
analysis of an effective strong coupling spin model [32].
On the other hand, the variational Monte Carlo methods
[33–36] have suggested the absence of the nonmagnetic
insulating phase. Besides the presence or absence of the
intermediate insulating phase, the critical Uc/t for the
metal-insulator transition significantly varies among different
methods [26].
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Recently, the 2D-DMRG method has been applied to
various 2D strongly correlated quantum systems [44–61],
although the DMRG method is best performed for one-
dimensional gapful systems [62–65]. This is because the
2D-DMRG calculations with keeping large enough number
of adapted density-matrix eigenstates to guarantee the desired
numerical accuracy have become possible within reason-
able computational resources, especially for 2D spin-1/2
Heisenberg models [47].

Here we employ the 2D-DMRG method to examine
the ground-state phase diagram of the repulsive Hubbard
model on the triangular lattice at half electron filling. Our
calculation reveals two discontinuities in the double occupancy
of electrons with increasing U/t at Uc1 = 7.55t ∼ 8.05t and
Uc2 = 9.65t ∼ 10.15t for three different clusters up to 48
sites, strongly indicating that there are three phases separated
by first-order transitions at Uc1 and Uc2. The spin oscillation
pattern for U > Uc2 under a pinning magnetic field exhibits a
three sublattice feature, compatible with the 120◦ Néel-ordered
state. Moreover, the spatial distribution of the nearest-neighbor
spin correlation is found to be quite different among the
three phases. The suppression of oscillatory behavior in the
intermediate phase at Uc1 < U < Uc2 suggests this phase in
neither bond order nor valence bond solid. In addition, the
spin correlation length in the intermediate phase is found
to be larger than that for U < Uc1 but smaller than that for
U > Uc2. Furthermore, the response to a pinning magnetic
field in the intermediate phase is rather comparable to that in
the paramagnetic metallic state. These features in the interme-
diate phase resembles gapless spin liquid [23,66]. However, the
spin structure factor in the intermediate phase shows a single
maximum at the K and K′ points in the momentum space,
which is not compatible with the expectation for the spinon
Fermi sea state [15]. Superconductivity is also excluded in the
intermediate phase.

The rest of this paper is organized as follows. First, the shape
of 2D clusters studied here is introduced and the convergence
of the DMRG calculations is discussed in Sec. II. Section III is
devoted to our results for the triangular lattice Hubbard model
at half-filling. We first show the ground-state energy and the
double occupancy to reveal the existence of three phases in
Sec. III A. Next, we explore the properties of the ground state
in each phase by calculating different quantities, including the
response to a pinning magnetic field in Sec. III B, the spin
correlation function in Sec. III C, the spin structure factor in
Sec. III D, the spatial distribution of the nearest-neighbor spin
and bond correlations in Sec. III E and Sec. III F, respectively,
the chiral correlation function in Sec. III G, and the pairing
correlation function in Sec. III H. We then discuss possible
relevance to the experimental observation and provide several
remarks in Sec. IV before summarizing the paper in Sec. V.
In Appendix, we examine the entanglement gap of the ground
state as a function of U/t .

II. METHOD

We consider 32-, 36-, and 48-site clusters depicted in Fig. 1.
Since the results for these different clusters are qualitatively the
same, we shall mainly show the results for the 36-site cluster.
Following the notation in Refs. [58,59], clusters forming the
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FIG. 1. The (a) 36-, (b) 32-, and (c) 48-site clusters. Open
(periodic) boundary conditions are imposed in the x direction (y
direction). The indexing of bonds (l = 1,2,3, . . . ,21) as well as
elementary triangles (�i = 0,1,2, . . . ,9) with their chiral directions
(arrows) are indicated in (a).

triangular lattice can be classified as XCn (YCn), where
the bond direction of a cluster is parallel to the x direction
(y direction), as shown in Fig. 1, and n in XCn (YCn)
represents the number of bonds in zigzag (vertical) y direction.
Accordingly, the 36- and 48-site clusters belong to XC6, and
the 32-site cluster belongs to YC4.

Figure 2 shows the convergence of the ground-state energy
for the 36-site cluster as a function of the discarded weight δm

defined as

δm = 1 −
m∑

n=1

λn, (2)

where λn is the nth largest eigenvalue of the reduced density
matrix of the ground state. As shown in Fig. 2, we find that
the ground-state energies for m � 10 000 scale linearly with
δm, implying that the convergence of our calculations is well
controlled.

Throughout the study, we set the z component of total
spin to be zero. We keep up to m = 10 000 density-matrix
eigenstates for the 32-site cluster, m = 14 000 for the 36-site
cluster, and m = 20 000 for the 48-site cluster. As shown in
Fig. 2, when we use m = 14 000 density-matrix eigenstates
for the 36-site cluster, the typical orders of the discarded
weight are 2.7 × 10−5 for U = 6t , 2.7 × 10−6 for U = 8.5t ,
and 7.6 × 10−7 for U = 11t . On the other hand, when we use
m = 20 000 density-matrix eigenstates for the 48-site cluster,
the typical orders of the discarded weight are 2.6 × 10−5

for U = 6t , 2.3 × 10−6 for U = 8.5t , and 2.8 × 10−7 for
U = 11t , thus obtaining the convergence similar to that for
the 36-site cluster.
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FIG. 2. Ground-state energy per site ε0 as a function of the
discarded weight δm for (a) U = 6t , (b) U = 8.5t , and (c) U = 11t .
The cluster used here is the 36-site cluster shown in Fig. 1(a). The
number m of eigenstates of the reduced density-matrix kept in the
DMRG calculations is indicated beside each data point. A red straight
line shows a linear fit to the three data points with m = 10 000, 12 000,
and 14 000.

III. RESULTS

A. Energy and double occupancy

We first study the U/t dependence of the ground-state
energy and double occupancy. Figures 3(a) and 3(b) show
the ground-state energy per site,

ε0 = 〈ψ0|H|ψ0〉/N, (3)

and the site average of the double occupancy,

nd = 1

N

∑
i

〈ψ0|ni,↑ni,↓|ψ0〉, (4)

where |ψ0〉 is the ground state obtained by the 2D-DMRG
calculation and N is the number of sites. As shown in Fig. 3(b),
there exist two discontinuities in the double occupancy. It
should be noted that ε0 and nd are related via nd = ∂ε0/∂U .
We have numerically verified this relation, supporting the
satisfactory convergence of our results.

As shown in Fig. 3(c), the discontinuities in the double
occupancy are most apparent when ndU

2 is plotted. The first
discontinuity occurs at Uc1/t = 7.55−8.05 and the second
one is located at Uc2/t = 9.65−10.15. We find that these
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FIG. 3. (a) Ground-state energy per site ε0, (b) double occupancy
nd , and (c) ndU

2 for three different clusters. Insets in (b) and (c) show
the results for small values of U calculated in the 36-site cluster. The
ground-state phase diagram is shown schematically in the top panel,
where QSL denotes quantum spin liquid. The phase boundaries are
indicated by gray shades.

discontinuities in ndU
2 become sharper with increasing m,

indicating the nature of the first-order transition. We also find
in the insets of Figs. 3(b) and 3(c) that there is no additional
discontinuity for 0 � U < Uc1. Therefore, we conclude that
there exist two first-order transitions separating three phases.
In the following, we call the three regions phases I, II, and III,
as indicated in Fig. 3.

Let us now compare our results with the previous studies.
Since it includes the noninteracting limit with U = 0, phase
I is regarded as the metallic phase. The exact diagonalization
analysis of a 16-site cluster using a finite-temperature Lanczos
method has found that the metal-insulator transition occurs at
Uc/t = 7.5 ± 0.5 [26]. The metal-insulator transition is also
found at Uc/t ∼ 7.4 ± 0.1 for clusters up to 36 sites by the
PIRG method [30]. These Uc values are rather similar to Uc1

in our calculations. On the other hand, the metal-insulator
transition found by the VCA is at Uc/t ∼ 6.3−6.7 [27,28],
which is slightly smaller than Uc1. This is probably due to
smaller clusters used in these VCA calculations, which tend
to enhance an insulating phase. We calculate in Appendix the
entanglement spectrum of the ground state as a function of
U/t and find an abrupt increase of the entanglement gap in the
charge sector, supporting that the transition between phases I
and II can be regarded as the metal-insulator transition.

The analysis based on the strong coupling expansion of the
triangular lattice Hubbard model for clusters up to 36 sites
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FIG. 4. Local spin density Sz
i for (a) U = 6t , (b) U = 8.5t , and (c)

U = 11t when a pinning magnetic field h = 0.005t is applied along
the z direction at a single site located at the edge of the 36-site cluster
(indicated by a green open circle). For comparison, the results for the
spin-1/2 antiferromagnetic Heisenberg model on the triangular lattice
with the nearest-neighbor exchange interaction J is also shown in (d).
Here, the same 36-site cluster is used as in (a)–(c) and the applied
pinning magnetic field is h = 0.005J . The dashed line in (c) and (d)
indicates a domain wall separating the cluster into two pieces, each
of which exhibits a three sublattice pattern, expected for the 120◦

Néel order. Note that the z component of total spin is kept zero, i.e.,∑N

i=1 Sz
i = 0, in the calculations.

[32] finds that the phase transition from the 120◦ Néel-ordered
phase to an insulating QSL phase occurs at Uc ∼ 10t , which
is close to Uc2 obtained in our calculations. The intermediate
insulating phase with Uc2 = 9.2t ± 0.3t is also reported in the
PIRG calculations [30]. Based on the comparison with these
previous studies, phases II and III found in our calculations
should correspond to a QSL phase and the 120◦ Néel-ordered
phase, respectively. In the following, we shall examine the
nature of these phases.

B. Response to a pinning magnetic field

Let us first explore a possible magnetic order by applying
a pinning magnetic field along the z direction at a single site
located at the edge of the cluster (see Fig. 4). The pinning
magnetic field applied at site iimp is described by the following
Hamiltonian:

H′ = −
∑

i

hiSz
i , (5)

where hi = hδi,iimp , δi,j is the Kronecker delta (i.e., δi,j = 1
only when i = j ), and Sz

i = 1
2 (ni,↑ − ni,↓). The results of the

local spin density

Sz
i = 〈ψ0|Sz

i |ψ0〉 (6)

(a) 

19−

(b) 

pinning magnetic field

(c) 

1− 9
sign(Sz

i ) log |Sz
i |

FIG. 5. Same as Figs. 4(a)–4(c) but in the logarithmic scale. (a)
U = 6t , (b) U = 8.5t , and U = 11t .

are summarized in Fig. 4. Note that the local spin density Sz
i

is zero in the absence of the pinning magnetic field.
As shown in Fig. 4(c), the local spin density for U = 11t

in phase III exhibits a three sublattice pattern, compatible with
the 120◦ Néel order, except that there exists a domain wall at
the center of the cluster running along the y direction. Indeed,
the spatial distribution of the local spin density found here,
including the domain wall structure, is essentially identical
to that for the spin-1/2 antiferromagnetic Heisenberg model
on the triangular lattice with the nearest-neighbor exchange
interaction [see Fig. 4(d)], where the ground state is 120◦ Néel
ordered [10–13]. Therefore, this is strong evidence that the
ground state in phase III is also 120◦ Néel ordered. In contrast,
as shown in Figs. 4(a) and 4(b), the local spin densities for U =
6t in phase I and U = 8.5t in phase II are less affected by the
pinning magnetic field, indicating the absence of long-range
magnetic order.

Applying the perturbation theory, the leading correction of
the spin density 
Sz

i at site i is


Sz
i ∼ −h

∑
n (�=0)

〈ψ0|Sz
iimp

|ψn〉〈ψn|Sz
i |ψ0〉

E0 − En

, (7)

where |ψn〉 is the nth eigenstate of H (without the pinning
magnetic field) with its eigenvalue En. SinceH commutes with
the total spin operator, the total spin Stot is a good quantum
number. We now assume that the ground state |ψ0〉 is spin
singlet with Stot = 0. Then, the Wigner-Eckert theorem states
that the matrix elements in the numerator of Eq. (7) satisfy

〈ψn|Sz
i |ψ0〉 =

{
0 if |ψn〉 �∈ Stot = 1

finite if |ψn〉 ∈ Stot = 1
, (8)

where |ψn〉 ∈ Stot = 1 (|ψn〉 �∈ Stot = 1) indicates that |ψn〉
belongs (does not belong) to the Stot = 1 subspace. Therefore,
the different behavior of the local spin density under the
applied pinning magnetic field should be attributed to the
amount of the low-lying triplet excitations.

Figure 5 shows the same result as in Fig. 4 but in the
logarithmic scale. It clearly shows that the local spin density
Sz

i for U = 8.5t in phase II exhibits comparable amplitude
with that for U = 6t in phase I where the ground state is
the paramagnetic metal and thus no triplet excitation gap is
expected. On the other hand, the local spin density Sz

i for
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FIG. 6. Spin correlation function Si,j /
√|Si,j | between a reference

site j at the center of the cluster (indicated by a red circle) and
other sites i for (a) U = 6t , (b) U = 8.5t , and (c) U = 11t . Here
max |Si,j |1/2 represents the maximum value of |Si,j |1/2 for each U .
Yellow-green shaded circle indicates the correlation length ξ . A three
sublattice pattern expected for the 120◦ Néel order is indicated in (c)
by “A”, “B”, and “C”, where Si,j > 0 (Si,j < 0) if sites i and j belong
to the same (different) sublattice. The cluster used here is the 36-site
cluster shown in Fig. 1(a).

U = 8.5t is significantly smaller than that for U = 11t in
phase III where the ground state is 120◦ Néel ordered. The
similarity to the U = 6t case thus indicates that there exist
an extensive amount of gapless spin excitations in phase II
expected in the thermodynamic limit.

C. Spin correlation function

Next, we calculate the spin correlation

Si,j = 〈ψ0|Sz
i Sz

j |ψ0〉 (9)

between a reference site j located at the center of the cluster
and other sites i. The representative results for the three
different phases are shown in Fig. 6. Figure 6(c) clearly shows
that Si,j for U = 11t in phase III exhibits a three sublattice
pattern, compatible with the 120◦ Néel order. On the other
hand, Si,j in phases I and II does not show such a three
sublattice pattern [see Figs. 6(a) and 6(b)], strongly suggesting
that these phases are not 120◦ Néel ordered.

We notice, however, in Fig. 6 that the intensity of Si,j

between distant sites for U = 8.5t is comparable to that
for U = 11t , indicating the relatively long spin correlation
in phase II. For a quantitative comparison, we estimate the
correlation length ξ via

ξ = 2

√√√√∑N
i=1 |Si,j ri,j |2∑N

i=1 |Si,j |2
, (10)

where ri,j = ri − rj and ri is the position vector of site i. As
shown in Fig. 6, we find that ξ for U = 8.5t is shorter than
that for U = 11t where ξ diverges in the thermodynamic limit
but is longer than that for U = 6t where the spin correlation
decays algebraically. The rather long-range spin correlation in
phase II should be contrasted with the exponential decay of
spin correlation expected in gapped QSL. Recalling also the
result of the response to the pinning magnetic field, the ground
state in phase II resembles gapless QSL.
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FIG. 7. Intensity plot of spin structure factor S(q) for (a) U = 6t ,
(b) U = 8.5t , and (c) U = 11t calculated in the 36-site cluster and
for (d) U = 3t obtained by the random phase approximation. Notice
that the intensity is doubled in (d) for clarity. The Brillouin zone
boundaries are indicated by yellow-green lines.

D. Spin structure factor

The spin structure factor S(q) is the Fourier transform of
the real-space spin correlation function Si,j and defined as

S(q) =
N∑

i=1

Si,j e
iq·(ri−rj ), (11)

where site j is a representative site chosen at the central site
of the cluster as in Fig. 6. Although the wave number q is not
a good quantum number due to open boundary conditions in
the x direction, here we calculate S(q) for arbitrary q.

The representative results for the three different phases are
shown in Figs. 7(a)–7(c). We find in Fig. 7(c) that S(q) for U =
11t in phase III displays sharp peaks at q = (2π/3,2π/

√
3)

(the K point) and other equivalent q’s including the K′ point
at q = (−2π/3,2π

√
3), which is compatible with the 120◦

Néel-ordered state. The S(q) for U = 8.5t in phase II shown
in Fig. 7(b) also exhibits broad maxima at the K point and other
equivalent q’s, but the peak structure is softened as compared
with S(q) for U = 11t . In contrast, we find in Fig. 7(a) that
S(q) for U = 6t in phase I shows enhanced intensities forming
a ringlike structure around the K point (and other equivalent
q’s), which implies the presence of 2kF scattering, where kF

is the Fermi momentum in the noninteracting limit.
In order to better understand S(q) in phases I and II, we

calculate S(q) within the random phase approximation (RPA).
In the RPA, the spin susceptibility χ (q,z) at zero temperature
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is given as

χ (q,z) = χ0(q,z)

1 − Uχ0(q,z)
, (12)

where z is the complex frequency. The susceptibility χ0(q,z)
in the noninteracting limit is

χ0(q,z) = 1

N

∑
k∈1st BZ

�(−εk) − �(−εk+q)

z − εk + εk+q
, (13)

where the sum is taken over the first Brillouin zone (BZ) of
the triangular lattice, �(x) is the Heaviside step function, and
εk is the noninteracting band dispersion

εk = −2t cos kx − 2t cos

(
kx

2
+

√
3ky

2

)

−2t cos

(
−kx

2
+

√
3ky

2

)
− μ. (14)

The chemical potential μ is tuned such that the electron density
is 0.5 per spin. We set the chemical potential μ ∼ 0.8347t for
the calculation in the thermodynamic limit.

From χ (q,z) obtained above within the RPA, the spin
structure factor S(q) is evaluated as

S(q) = 1

π

∫ ∞

0
dxReχ (q,ix). (15)

In deriving the above equation, we have assumed that the z

component of total spin is zero and the system is invariant
under the global spin flip. Figure 7(d) shows S(q) for U = 3t

within the RPA. Here we choose relatively small U because
χ (q,0) diverges at U = 3.7−3.8t . As shown in Fig. 7(d), S(q)
exhibits a triangular shell-like structure around the K point
(and other equivalent q’s). The ridges of the shells lie exactly
along the 2kF lines and the local minimum in the center of
the shell is located at the K point (and other equivalent q’s).
These features are indeed similar to those found in Fig. 7(a)
for U = 6t .

The spinon Fermi sea state is a kind of gappless spin liquid
state and has been considered as a candidate for the ground
state of triangular lattice systems [15]. Due to the presence
of spinon Fermi surface, S(q) for the spinon Fermi sea state
exhibits singularities along the 2kF lines [67] and is expected
to be similar to those shown in Figs. 7(a) and 7(d). However, as
shown in Fig. 7(b), we find that S(q) for U = 8.5t in phase II
is quite different from those in Figs. 7(a) and 7(d). Therefore,
the spinon Fermi sea state is unlikely to be the ground state in
phase II.

The similarity of S(q) for U = 8.5t and U = 11t in Fig. 7
tempts us to conclude that also the ground state in phase II
shows tendency towards the 120◦ Néel order. However, we
emphasize that the peak structure in S(q) for U = 8.5t in
phase II are much smaller and broader than that for U = 11t

in phase III. Indeed, as shown in Figs. 4 and 6, the response to
the pinning magnetic field and the real-space spin correlation
function are clearly different in phases II and III.

0 2 4 6 8 10 12 14 16 18 20 22-0.15

-0.1

-0.05

0

0.05

U=6t U=8.5t U=11t

l

(a) (b) (c) 

(d)

max S i,j−max S i,j 0

S
(l

)

FIG. 8. Nearest-neighbor spin correlation S〈i,j 〉 for (a) U = 6t ,
(b) U = 8.5t , and (c) U = 11t . Here max |S〈i,j 〉| represents the
maximum value of |S〈i,j 〉| for each U . (d) S(l) = S〈i,j 〉 along x

direction, where the bond index l connecting neighboring sites i

and j is shown in Fig. 1(a). The 36-site cluster is used for all figures.

E. Nearest-neighbor spin correlation

We calculate the nearest-neighbor spin correlation
S〈i,j〉 (= Si,j ) for all nearest-neighbor sites i and j , and the
representative results for the three different phases are shown
in Fig. 8. We first notice in Figs. 8(a)–8(c) that the results
are invariant under the translation along the y direction, the
reflection about mirror planes perpendicular to the y direction,
and the 180◦ rotation around the center of the cluster, thus
implying that the convergence of our results is satisfactory.
For better quantitative comparison, we show in Fig. 8(d)
S(l) = S〈i,j〉 along the x direction, where the bond index l

connecting sites i and j is denoted in Fig. 1(a).
It is clearly observed in Fig. 8(d) that S(l) for U = 11t in

phase III is rather enhanced at l = 4n − 3 and suppressed
at l = 4n − 1 for n = 1,2,3, . . . . More interestingly, the
oscillations in S(l) for U = 8.5t in phase II are smallest,
especially around the center of the cluster. Note that spatial
variation of S(l) is an indication of spatial symmetry breaking,
e.g., valence bond solid, or a tendency for it, and that in our case
the spatial variation is induced by open boundary conditions
in the x direction. The strong suppression of oscillations in
phase II is therefore a strong indication of the absence of
valence bond solid and also other possible spatial symmetry
breakings.

Let us now compare the nature of the ground state in
phase II with the Z2 spin liquid ground state of the spin-1/2
antiferromagnetic Heisenberg model on the triangular lattice
with the next nearest-neighbor exchange interaction, recently
reported in Refs. [58,59]. The cluster used here (Fig. 1)
is an odd cylinder [58,59] with odd number of sites in
the one-dimensional unit cell. Therefore, according to the
Lieb-Schultz-Mattis theorem [68], the ground state for this
cluster is degenerate if the excitation gap is finite as in the case
for the Z2 spin liquid. Reflecting this degeneracy, the spatial
distribution of the nearest-neighbor spin correlation S〈i,j〉
exhibits the strong alternating oscillation, induced by open
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l
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)

0
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0.1
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0.3
0.4
0.5

U=6t U=8.5t U=11t

(a) (b) (c) 

(d)

max B i,j

FIG. 9. Nearest-neighbor hopping amplitude B〈i,j 〉 for (a) U =
6t , (b) U = 8.5t , and (c) U = 11t . Here max[B〈i,j 〉] is the maximum
value of B〈i,j 〉 for each U . (d) B(l) = B〈i,j 〉 along the x direction,
where the bond index l connecting neighboring sites i and j is denoted
in Fig. 1(a). Notice that the increase of kinetic energy, proportional
to −t

∑
l B(l), is nicely observed with increasing U/t . The 36-site

cluster is used for all figures.

boundary conditions along the x direction [58,59]. Although
the similar oscillation pattern is found in phase III and around
the edge of the cluster in phase II, the central region of the
cluster in phase II does not show such feature (see Fig. 8).

F. Nearest-neighbor bond correlation

We also calculate the hopping amplitude B〈i,j〉 between
nearest-neighbor sites i and j defined as

B〈i,j〉 = 1
2 〈ψ0|(c†i,σ cj,σ + c

†
j,σ ci,σ )|ψ0〉. (16)

The representative results for the three different phases are
shown in Fig. 9. Similarly to S〈i,j〉, we find that B〈i,j〉
is invariant under the translation, reflection, and rotation
operations [see Figs. 9(a)–9(c)], suggesting that our results are
well converged. For better quantitative comparison, Fig. 9(d)
shows B(l) = B〈i,j〉 along the x direction for the lth bond
connecting sites i and j [for the indexing of bonds, see
Fig. 1(a)].

We find that B〈i,j〉 exhibits the similar oscillation patterns
to those observed in S〈i,j〉 (see Fig. 8). The similarity between
B〈i,j〉 and S〈i,j〉 is expected for large U/t since the kinetic
energy, proportional to B〈i,j〉, can be in a strong coupling
regime transferred to the Heisenberg exchange interaction,
which is related to S〈i,j〉. However, it is surprising that this
similarity is present also in the coupling regimes shown in
Fig. 9, where there is in general no direct connection between
B〈i,j〉 and S〈i,j〉. As shown in Fig. 9(d), we find that the
oscillations of B(l) around the center of the cluster are most
strongly reduced for U = 8.5t in phase II as compared with
those in phases I and III. This implies that the ground state in
phase II is not compatible with the nearest-neighbor valence
bond solid.

-1
0
1

Si
gn

[C
(l)

]

0 2 4 6 8 10
l

10-4

10-3

10-2

10-1

100

|C
(l)

 |

U=8.5t
U=11t

(a)

(b)

FIG. 10. (a) Sign and (b) amplitude of chiral correlation function
C(l) for U = 8.5t and 11t . The cluster used here is the 36-site cluster
shown in Fig. 1(a).

G. Chiral correlation function

Next, we calculate the chiral correlation function C(�i ,�j )
defined as

C(�i ,�j ) = 〈ψ0|C�i
C�j

|ψ0〉 (17)

with

C�i
= �Si1 · ( �Si2 × �Si3 ), (18)

where �i indicates the ith elementary triangle formed by three
neighboring sites i1, i2, and i3 in clockwise or counterclock-
wise order, and the indexing of elementary triangles as well as
their chiral directions is indicated in Fig. 1(a). �Si is the spin
operator at site i defined as

�Si = 1

2

∑
σ1=↑,↓

∑
σ2=↑,↓

c
†
i,σ1

�σσ1,σ2ci,σ2 , (19)

where �σ = (σx,σy,σz) are Pauli matrices. Figure 10 shows
the chiral correlation function C(�i ,�i + l) = C(l) with
�i = 0 along the x direction [see Fig. 1(a)]. We find that
the sign of C(l) exhibits nontrivial oscillation [Fig. 10(a)]
and the amplitude of C(l) decays exponentially [Fig. 10(b)].
Therefore, we conclude that the chiral spin liquid is most
unlikely to be the ground state in phase II [53].

H. Pairing correlation function

Finally, let us discuss the possibility of superconductivity by
calculating the pairing correlation function Pν(i,j,k,l) defined
as

Pν(i,j,k,l) = 〈ψ0|
ν(i,j )
†
ν(k,l)|ψ0〉 (20)

with the nearest-neighbor singlet channel (ν = s)


s(i,j ) = 1√
2

(ci,↑cj,↓ − ci,↓cj,↑) (21)

and the nearest-neighbor triplet channel (ν = t)


t(i,j ) = 1√
2

(ci,↑cj,↓ + ci,↓cj,↑). (22)
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FIG. 11. (a) Singlet (ν = s) and (b) triplet (ν = t) pairing correla-
tion function Pν(r) = Pν(i,j,k,l) for U = 6t , 8.5t , and 11t calculated
in the 36-site cluster. A pair of integer numbers (l1,l2) beside each
data point for U = 6t denotes a pair of bond indexes l1 and l2 [for
the definition, see Fig. 1(a)], representing nearest-neighbor sites (i,j )
and (k,l), respectively, for which the pairing operators 
ν(i,j ) and

†

ν(k,l) are chosen in Eq. (20). r is the distance between the centers
of bonds l1 and l2.

Figure 11 shows the representative results of the pairing
correlation function Pν(r) = Pν(i,j,k,l) for both singlet and
triplet channels, where r is the distance between the centers
of two pairs of nearest-neighbor sites (i,j ) and (k,l). We find
that the pairing correlations in both channels are significantly
suppressed for U = 8.5t in phase II and U = 11t in phase III
as compared with those for U = 6t in phase I. Therefore,
we conclude that the ground state in phase II is unlikely
to be superconducting. It should also be noted that the
short-range superconducting correlations in the spin-triplet
channel is stronger than those in the spin-singlet channel for
the three representative cases, although the superconducting
correlations in the spin-singlet channel dominates in the long
distance.

It is also interesting to notice that the pairing correlations
at long distances seem to be saturated for U = 6t in phase I.
However, since the longest distances are calculated from sites
close to the cluster edges, the upturn of the pairing correlations
might be a finite-size effect. Therefore, our calculations alone
cannot support the presence of the superconducting phase.
Larger systems with U closer to Uc1 might show stronger
pairing correlations. This issue is left for the future study.

IV. DISCUSSION

Let us briefly discuss implications of our results for the
experiments. Our results show a rather small discontinuity 
nd

(∼0.007) in the double occupancy found at the metal-insulator
transition Uc1, which is in sharp contrast to the previous
studies using other approaches [30], where 
nd is typically
much larger (from 0.02 to 0.06) and is even qualitatively
different from the continuous transition discussed in Refs. [69]
and [70]. Smallness of the jump might be the origin of the
controversy about the order of the transition. We note, however,
that the discontinuity 
nd corresponds to the interaction (or

equivalently kinetic) energy jump of Uc1
nd ∼ 0.05t , giving
∼25 K for the organic materials with t∼50 meV [26], which
nicely compares with the temperature where the first-order
transition line ends in the phase diagram of the organic
materials [22].

Next, let us discuss the ground state in phase II in terms of
RVB states described by Gutzwiller projected fermionic wave
functions. For this purpose, it is important to recall that the
structure factor S(q) in phase II exhibits the maximum at the
K and K′ points. This feature is not consistent with a projected
Fermi sea with a large Fermi surface because the 2kF structure
is not found in S(q). Instead, this feature is rather comparable
to a projected Fermi sea with gapless nodal points such as a
projected Dirac fermion [71,72].

Another interesting feature is that the superconducting
fluctuations for the spin-triplet (singlet) channel dominates
in the short (long) distance, although the superconducting
correlation functions for both channels decay exponentially in
the insulating phases. This suggests that the long wavelength
behavior of the ground state in phase II might be captured by
a projected BCS wave function with a singlet pairing, but the
strong modification of the wave function would be required
to describe the short-range properties such as the ground-state
energy.

V. SUMMARY

In summary, we have performed large scale 2D-DRMG cal-
culations, using up to m = 20 000 density-matrix eigenstates,
to examine the ground-state phase diagram of the Hubbard
model on the triangular lattice at half-filling. We have shown
that the convergence of our results is well controlled and,
therefore, our results can be regarded as the most accurate and
unbiased results available at a moment, apart from the small
cluster shape and size dependence.

We have found two first-order transitions separating the
three different phases, which include the metallic phase in
weak coupling region, the 120◦ Néel-ordered phase in strong
coupling region, and the QSL like phase in the intermediate
couplin region. The weak and intermediate coupling phases
are less affected by the pinning magnetic fields, suggesting
the absence of magnetic order in these two phases. The spin
correlations in the intermediate phase is weaker than those in
the 120◦ Néel-ordered phase and stronger than those in the
metallic phase. The spin structure factor in the intermediate
phase shows a maximum at the K and K′ points, which is
not compatible with the spinon Fermi sea state [15]. The
spatial distribution of the nearest-neighbor spin correlation in
the intermediate phase is not comparable with the Z2 spin
liquid found in the spin-1/2 antiferromagnetic Heisenberg
model on the triangular lattice with the next-nearest-neighbor
exchange interaction [58,59]. We have also calculated the
chiral correlation function and found that the chiral spin
liquid [53] is unlikely in the intermediate phase. The pairing
correlation function decreases monotonically with increasing
U/t , suggesting that the superconductivity is also unlikely in
the intermediate phase.

The clusters used here are much smaller than those
employed for the 2D-DMRG studies of spin-1/2 antiferro-
magnetic Heisenberg models on the triangular lattice reported
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in Refs. [58,59]. This is simply because the local degrees of
freedom in the Hubbard model is two times larger than those
in the spin-1/2 Heisenberg models. Therefore, the more detail
analysis using larger clusters is highly desirable in order to
determine the nature of the ground state in the intermediate
phase and, in particular, to address the size of the spin gap
in the thermodynamic limit and the experimental observation
in EtMe3Sb[Pd(dmit)2]2 where gapless QSL is suggested [3].
Further properties of the intermediate phase, including the
nature of excitations, remain to be firmly examined since that
would greatly improve our understanding of spin liquid in
general as well as of the organic materials in particular.
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APPENDIX: ENTANGLEMENT GAP

In this Appendix, we examine the charge and spin gaps in
the low-lying entanglement spectrum of the ground state [73]
to support our results in the main text. In the DMRG method,
the system is divided into two regions, blocks A and B, and
thus the ground state |ψ〉 is represented as

|ψ〉 =
∑
i,j

ψij |i〉A|j 〉B, (A1)

where |i〉A (|j 〉B) denotes a basis in block A (B). The reduced
density matrix ρA for block A is obtained by tracing out the
degrees of freedom in block B,

ρA = TrB |ψ〉〈ψ |, (A2)

where TrB indicates the trace over all bases in block B. The
entanglement spectrum ξn (where n = 1,2,3, . . . ) is defined
as

ξn = − ln λn, (A3)

where λn is the nth largest eigenvalue of the reduced density
matrix ρA. Since 0 < λn < 1 in general, ξ1 � ξ2 � ξ3 � · · · .

Equation (A3) implies that ξn can be considered as the
eigenvalues of the entanglement Hamiltonian HE defined as

HE = − ln ρA. (A4)

This in turn suggests that HE can be regarded as an effective
Hamiltonian to represent the density matrix ρA with the
Boltzmann distribution e−HE . Since the density matrix can

7 8 9 10 11
U/t

0

1

2

3

4

Δξ
C
,Δ

ξ S

ΔξC
ΔξS

Phase I Phase II Phase III

FIG. 12. Entanglement gaps 
ξC and 
ξS for the charge and spin
sectors, respectively. A shaded region indicates phase II determined
from the discontinuities of the double occupancy in the 48-site cluster.

be block diagonalized with respect to the number of electrons
Ne and the z component Sz of the total spin in block A, the
entanglement spectrum ξn is also labelled with these quantum
numbers, i.e., ξn = ξ (k,Ne,S

z), where k (= 0,1,2, . . . ) is
an index to distinguish the entanglement spectrum in the
same quantum number sector: ξ (0,Ne,S

z) � ξ (1,Ne,S
z) �

ξ (2,Ne,S
z) � · · · . We can now define the entanglement gaps

for the charge sector as


ξC = min[ξ (0,N/2 + 1,1/2) − ξ (0,N/2,0),

ξ (0,N/2 − 1,1/2) − ξ (0,N/2,0)] (A5)

and for the spin sector as


ξS = min[ξ (0,N/2,1) − ξ (0,N/2,0),

ξ (0,N/2, − 1) − ξ (0,N/2,0)], (A6)

where the size of block A is half of the cluster size N .
Figure 12 shows the entanglement gaps 
ξC and 
ξS as a

function of U/t . We indeed find that 
ξC increases abruptly
at the phase boundaries. Since the value of 
ξC is related
inversely to the global charge fluctuations between blocks A
and B, the abrupt increase of 
ξC in the phase boundary
between phases I and II suggests that this transition involves
the opining of charge gap. Therefore, one would regard the
transition between phases I and II as the Mott transition.

We also find that the entanglement gap 
ξS for the spin
sector increases abruptly at the phase boundary between phases
II and III. Moreover, we find that the 
ξS ∼ 0 in the phase
II. This tempts us to conclude that the ground state is spin
gapless in phase II. However, this is not appropriate because a
topologically nontrivial gapped state can induce characteristic
low-lying edge states with the gapless entanglement spectrum
for the spin sector. Therefore, we can only argue from Fig. 12
that the spin structure of phase II is distinguishable from
phase III.
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