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The kagome lattice is a paragon of geometrical frustration, long-studied for its association with novel ground
states including spin liquids. Many recently synthesized kagome materials feature rare-earth ions, which may be
expected to exhibit highly anisotropic exchange interactions. The consequences of this combination of strong
exchange anisotropy and extreme geometrical frustration are yet to be fully understood. Here, we establish a
general picture of the interactions and resulting ground states arising from nearest-neighbor exchange anisotropy
on the kagome lattice. We determine a generic anisotropic exchange Hamiltonian from symmetry arguments.
In the high-symmetry case where reflection in the kagome plane is a symmetry of the system, the generic
nearest-neighbor Hamiltonian can be locally defined as an XYZ model with out-of-plane Dzyaloshinskii-Moriya
interactions. We proceed to study its phase diagram in the classical limit, making use of an exact reformulation of
the Hamiltonian in terms of irreducible representations (irreps) of the lattice symmetry group. This reformulation
in terms of irreps naturally explains the threefold mapping between three families of models supporting spin
liquids, as recently studied by the present authors [Nat. Commun. 7, 10297 (2016)]. In addition, a number of
unusual states are stabilized in the regions where different forms of ground-state order compete, including a
stripy phase with a local Z8 symmetry and a classical analog of a chiral spin liquid. As a peculiar property
of the kagome lattice, the generic model turns out to be a fruitful hunting ground for the coexistence, in the
same ground-state configuration, of multiple forms of long-range magnetic orders. In exotic instances, partial
long-range order may also coexist in the ground state with a finite fraction of disordered spin degrees of freedom.
These results are compared and contrasted with those obtained on the pyrochlore lattice, and connection is made
with recent progress in understanding quantum models with S = 1/2.
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I. INTRODUCTION

When confronted with a new magnetic material, one of
the early questions is often to search for its microscopic
Hamiltonian. Magnetic interactions are governed by a set of
rules. In particular, they have to respect the symmetry of the
lattice. For example, Dzyaloshinskii-Moriya (DM) interaction
is a well-known consequence of the absence of an inversion
center between pairs of spins [1,2]. Hence, for any material,
an analysis of its lattice symmetry provides a useful tool in
determining a microscopic model [3]. Such a symmetry-based
approach has proven remarkably successful for a systematic
parametrization and understanding of rare-earth pyrochlore
materials [4–12], as well as for the Ba3Yb2Zn5O11 breathing
pyrochlore [13–15] and YbMgGaO4 triangular spin-liquid
candidate [16–19]. These successes are due, to some extent,
to the nature of the rare-earth ions. Their 4f valence electrons
give rise to short-range superexchange, which can often be
modeled by nearest-neighbor couplings, and thus require a
limited number of coupling parameters. Additionally, their
strong spin-orbit coupling facilitates anisotropic interactions
[20], providing the microscopic ingredients for exotic mag-
netic orders and textures.
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In kagome materials, while the traditional Heisenberg
antiferromagnet, for both classical [21–23] and quantum
[24–29] spins, has been investigated in great depth, the focus
has lately shifted towards more anisotropic models. The ex-
perimental motivation does not only stem from rare-earth (R)
compounds—e.g., R3Ru4Al12 ternary intermetallic [30–33]
or R3Mg2Sb3O14 tripod kagome [34–37]—but also from
copper- [38–44] and iron-based [45,46] materials. On the
theoretical front, anisotropy also offers a natural setting for
spin-liquid ground states [47–53].

A. Summary

The goal of this paper is to explore the zero-temperature
phase diagram of the generic nearest-neighbor Hamiltonian
allowed by the symmetry of the kagome lattice for classical
Heisenberg spins. We shall first explain in detail how to derive
this Hamiltonian [Eqs. (12)–(14) and (18)–(20)], from the
point group symmetry; see Sec. II and especially Sec. II B
for a nontechnical summary and Sec. II C for comparison of
our Hamiltonian with related generic models. The kagome
symmetry allows for six independent coupling parameters.
This can be reduced to four in the presence of a mirror
symmetry in the plane of the kagome lattice itself. In this
latter case we have a Hamiltonian with four parameters
{Jx,Jy,Jz,D} which are best rationalized as an XYZ model
with Dzyaloshinskii-Moriya, denoted XYZDM.

The XYZDM Hamiltonian is then diagonalized in
Sec. III, making use of the decomposition into irreducible
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representations (irreps). The irrep decomposition provides
the natural order parameters for q = 0 long-range order on
kagome [54], as expressed in Eqs. (38)–(43) and represented
in Fig. 4. In the basis formed by these order parameters, the
XYZDM Hamiltonian becomes quadratic (Sec. III D). This
rewriting is exact and not a mean field approximation, which
allows for a simple and exact determination of the ground
states for most of the phase diagram, as explained in Sec. III E.
Sections II and III closely follow the procedure developed for
pyrochlore lattices in Refs. [3,12,55,56].

A key difference between kagome and pyrochlore though
is that some of the order parameters derived from the irrep
decomposition on kagome correspond to nonphysical states,
in the sense that they describe configurations in which spins
which are not of unit length. In practice, this means that some
regions of the phase diagram in parameters space {Jx,Jy,Jz,D}
support ground states where different kinds of orders coexist,
or that a partial order of the spin degrees of freedom may
co-exist with magnetic disorder. This complexity largely
disappears for a portion of the XYZDM model where O(2)
invariance is imposed in the kagome plane; this is the XXZ
model with Dzyaloshinskii-Moriya [46], noted XXZDM.

Section IV is devoted to the XXZDM model whose zero-
temperature phase diagram is given in Fig. 5. In a previous
work [52], we showed that the XXZDM model supports
a network of spin liquids for classical and quantum spins,
connected by a threefold mapping. Here we will complement
this analysis for classical spins, by describing how this network
and mapping can be explained from the irrep decomposition,
i.e., simply based on the lattice symmetry. Consequences for
quantum models will also be discussed.

In Sec. V, the condition of O(2) invariance is lifted and one
recovers the XYZDM model. After discussing the inherent
invariance and chiral asymmetry of the XYZDM model
(Secs. V A and V B), we will describe a variety of specific
Hamiltonians with ordered and disordered ground states that,
to the best of our knowledge, have not been observed before. In
particular, an extended region of the XYZDM phase diagram
supports ground states with (i) local Z8 degeneracy and
global stripe order (Sec. V E) and (ii) classical chiral spin
liquids that can be mapped onto different tricolour problems
(Sec. V F). In Sec. VI, we explicitly compare the analogies
and differences between the generic models on kagome and
pyrochlore lattices, before concluding in Sec. VII.

B. Highlights

The main results of this paper are (1) a step-by-step determi-
nation of the generic nearest-neighbor Hamiltonian on kagome
in Eqs. (12)–(14) and (18)–(20); (2) the diagonalisation of this
Hamiltonian in terms of irreducible representations (irrep) in
Sec. III D; (3) the ground-state phase diagram of the XXZDM
model in Fig. 5; (4) a discussion on the connection between
our classical irrep decomposition and quantum models in
Sec. IV B 3; (5) extended regions of the phase diagram where
multiple orders co-exist in the ground state (see the Ez and
Emin regions in Figs. 5 and 7); (6) stripe orders with local Z8

degeneracy and global subextensive entropy (see Secs. V E and
V F 2); (7) classical analogues of chiral spin liquids that can
be mapped onto the extensively degenerate tricolour problem

FIG. 1. The up and down triangles of the kagome lattice are
respectively colored in violet (A) and orange (B). The x and y axes
are in plane, while the z axis is out of plane, pointing towards the
reader.

(see Sec. V F); and (8) a comparison between the nearest-
neighbor generic models on the kagome and pyrochlore lattices
in Sec. VI.

II. DERIVATION OF THE GENERIC
NEAREST-NEIGHBOR KAGOME MODEL

A. Which interactions are allowed on kagome?

The kagome lattice being made of corner-sharing triangles,
any nearest-neighbor Hamiltonian can be written as a sum over
triangles X:

H =
∑
X∈A

HA
�[X] +

∑
X∈B

HB
�[X], (1)

where A and B refer to the sets of up and down triangles
respectively (Fig. 1).

Let Ĵ X
ij be the coupling matrix between a pair of classical

Heisenberg spins Si and Sj on a X ∈ {A,B} triangle, where
the spins have unit length |S| = 1, and i,j ∈ {0,1,2} label the
kagome sublattices as defined in Fig. 2. A and B triangles are

FIG. 2. Graphical representations of the σv reflections and C3

rotations in the C3v symmetry group. The sublattices on a triangle,
{S0,S1,S2}, are labeled in the clockwise convention. Because of the
antisymmetric Dzyaloshinskii-Moriya interaction [Eq. (23)], it is
important to conserve the same clockwise convention for all triangles.
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related by lattice inversion Î:

Ĵ B
ij = Î Ĵ A

ij Î. (2)

Using the facts that the spins are axial vectors and thus invariant
under lattice inversion,

Î Si = Si , (3)

one obtains for any pair of spins

Si Ĵ A
ij Sj = Si Î2Ĵ A

ij Î2 Sj

= Si Î Ĵ A
ij Î Sj

= Si Ĵ B
ij Sj

⇒ Ĵ A
ij = Ĵ B

ij . (4)

Hence the Hamiltonian H� is the same for A and B
triangles:

HA
� = HB

� = H� =
∑
〈ij〉

∑
α,β

Sα
i Ĵ

αβ

ij S
β

j , (5)

where the greek and latin indices respectively label the spin
components and the sublattices of a triangle (see Figs. 1 and 2
for the labeling convention). Alternatively, H� can be written

in the form of a 9×9 coupling matrix Ĵ :

H� = 1

2
S̃

⎛
⎝ 0 Ĵ01 Ĵ02

Ĵ10 0 Ĵ12

Ĵ20 Ĵ21 0

⎞
⎠S̃ = 1

2
S̃Ĵ S̃, (6)

where S̃ is a 9-component vector containing the magnetic
degrees of freedom for each triangle:

S̃ = (
Sx

0 ,S
y

0 ,Sz
0,S

x
1 ,S

y

1 ,Sz
1,S

x
2 ,S

y

2 ,Sz
2

)
. (7)

By definition, the coupling matrix Ĵ equals its transpose, Ĵ =
Ĵ t . This leaves 9×3 = 27 parameters a priori undetermined
in the coupling matrix Ĵ . However, since we are interested
in models respecting the symmetry of the kagome lattice,
the coupling matrix Ĵ must be invariant under action of the
reflection and rotation symmetries illustrated in Fig. 2. This
corresponds to the group C3v , which is of order 6 and its group
elements are the neutral element e, two 2nπ/3 rotations around
the out-of-plane axis, and three reflections through the planes
normal to each bond (Fig. 2):

C3v = {
e,C

i=1,2
3 ,σ i=0,1,2

v

}
. (8)

We shall treat the spins as transforming like axial vectors. All
C3v elements can be obtained by successive actions of one of
the C3 rotations and one of the reflections.

Representing these operations as 9×9 matrices in the basis
defined by Eq. (7) it is sufficient to consider, for example,

�
(
σ 2

v

) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 −1 0 0 0
1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9)

�
(
C1

3

) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 − 1
2 −

√
3

2 0 0 0 0

0 0 0
√

3
2 − 1

2 0 0 0 0
0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 − 1
2 −

√
3

2 0

0 0 0 0 0 0
√

3
2 − 1

2 0
0 0 0 0 0 0 0 0 1

− 1
2 −

√
3

2 0 0 0 0 0 0 0√
3

2 − 1
2 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

Invariance under action of the C3v symmetry group imposes

�
(
σ 2

v

)
Ĵ �t

(
σ 2

v

) = Ĵ

�
(
C1

3

)
Ĵ �t

(
C1

3

) = Ĵ . (11)

Out of the initial 27 coupling parameters, only six remain independent after imposing Eq. (11). The remaining coupling parameters
are most elegantly presented in the Ĵ01 coupling matrix

Ĵ01 =
⎛
⎝ Jx Dz Dy

−Dz Jy K

−Dy K Jz

⎞
⎠, (12)
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the other two coupling matrices taking the form

Ĵ12 =

⎛
⎜⎝

1
4 (Jx + 3Jy)

√
3

4 (Jx − Jy) + Dz
1
2 (−Dy + √

3K)√
3

4 (Jx − Jy) − Dz
1
4 (3Jx + Jy) 1

2 (−√
3Dy − K)

1
2 (Dy + √

3K) 1
2 (

√
3Dy − K) Jz

⎞
⎟⎠, (13)

Ĵ20 =

⎛
⎜⎝

1
4 (Jx + 3Jy)

√
3

4 (Jy − Jx) + Dz
1
2 (−Dy − √

3K)√
3

4 (Jy − Jx) − Dz
1
4 (3Jx + Jy) 1

2 (
√

3Dy − K)
1
2 (Dy − √

3K) 1
2 (−√

3Dy − K) Jz

⎞
⎟⎠. (14)

Equations (12)–(14) define the symmetry allowed nearest neighbor couplings respecting the C3v point group symmetries of the
kagome lattice.

For the remainder of this manuscript, we will consider the high-symmetry model, with the additional symmetry that the
kagome plane itself is a mirror plane of the system. This symmetry is represented by the action of the matrix

�(σh) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

on Ĵ . Constraining the exchange matrices in Eqs. (12)–(14)
to be invariant under this additional symmetry,

�(σh) Ĵ �t (σh) = Ĵ , (16)

we obtain
Dy = 0

K = 0. (17)

The coupling matrices then become

Ĵ01 =
⎛
⎝ Jx Dz 0

−Dz Jy 0
0 0 Jz

⎞
⎠, (18)

Ĵ12 =

⎛
⎜⎝

1
4 (Jx + 3Jy)

√
3

4 (Jx − Jy) + Dz 0√
3

4 (Jx − Jy) − Dz
1
4 (3Jx + Jy) 0

0 0 Jz

⎞
⎟⎠,

(19)

Ĵ20 =

⎛
⎜⎝

1
4 (Jx + 3Jy)

√
3

4 (Jy − Jx) + Dz 0√
3

4 (Jy − Jx) − Dz
1
4 (3Jx + Jy) 0

0 0 Jz

⎞
⎟⎠.

(20)

B. Local XYZ model with out-of-plane Dzyaloshinskii-Moriya

The generic nearest-neighbor Hamiltonian on kagome can
be written as follows:

H =
∑
�

∑
〈ij〉

∑
α,β

Sα
i Ĵ

αβ

ij S
β

j , (21)

where the sums are made on all triangles �, between nearest
neighbors 〈ij 〉, and over all spin components α,β ∈ {x,y,z}.

For the most general case, respecting the C3v point group sym-
metry, the coupling matrices Ĵij are given in Eqs. (12)–(14).
In presence of an additional mirror symmetry in the kagome
plane, Ĵij takes the form of Eqs. (18)–(20).

A consequence of the mirror symmetry of the kagome plane
is the decoupling between in-plane S⊥

i and out-of-plane Sz
i

spin components [Eq. (17)]. In materials where the kagome
layer is embedded in a three-dimensional structure, this mirror
symmetry can be broken by surrounding ions. This is the
case, for example, in jarosites [45,46,57] and tripod kagome
materials [34–37]. Here, we focus on models respecting the
full kagome symmetry. This means among other things that
in-plane Dzyaloshinskii-Moriya couplings are forbidden [57].
But out-of-plane ones are not. In the coupling matrices Ĵij ,
out-of-plane DM interactions are parametrized by the antisym-
metric term Dz, whose traditional form in a Hamiltonian is

HDM = D · (Si×Sj ) with D = (0,0,Dz). (22)

From now on, we shall simply write D = Dz.
The expression of the coupling matrices in Eqs. (19) and

(20) is not necessarily very insightful. In the appropriate, bond-
dependent, local bases Bk given in Fig. 3, one can take advan-
tage of the kagome symmetry by ±2π/3 rotations to rewrite
the three Ĵij matrices in the same, more convenient, form:

Ĵ B2

01 = Ĵ B0

12 = Ĵ B1

20 =
⎛
⎝ Jx D 0

−D Jy 0
0 0 Jz

⎞
⎠. (23)

As a summary, the generic nearest-neighbor Hamiltonian
respecting the full symmetry of the kagome lattice is a local
XYZ model with out-of-plane Dzyaloshinskii-Moriya (DM)
interactions [Eq. (23)]. We label this model XYZDM. One
should emphasize that it is not a traditional XYZ model, as
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FIG. 3. Local bases Bk used in Eq. (23) where the generic
nearest-neighbor Hamiltonian on kagome takes the form of an XYZ
model with Dzyaloshinskii-Moriya (DM) interactions. All zk axes are
pointing out of plane. All xk (yk) axes are pointing along (orthogonal
to) their local bond.

would be the case if it was expressed in the same global frame
for all bonds. Such a global XYZ Hamiltonian is not allowed
by the symmetry of the kagome lattice, assuming that the spins
transform as axial vectors under the point group operations.

C. Related generic models

Among the related generic systems that have been studied
in the literature, one should mention the generic quantum spin
Hamiltonian on the triangular lattice [16,58–60], quantum
kagome ice [51], the spin-orbital liquids of non-Kramers
magnets [48], and the classical regular-magnetic-order clas-
sification of Messio et al. [61].

The former is the triangular version of the present kagome
Hamiltonian, which has been particularly successful in de-
scribing the spin liquid candidate YbMgGaO4 [16,19]. Besides
the obvious fact that triangular and kagome lattices are differ-
ent, one of the main distinctions between the two microscopic
Hamiltonians is the absence of Dzyaloshinskii-Moriya interac-
tions in triangular systems because of inversion symmetry. The
propensity of the DM coupling to induce an intrinsic magnetic
chirality will be a recurrent feature of our work.

Quantum kagome ice has been studied in the context of
a pyrochlore lattice in a strong [111] magnetic field [51],
where the “spin” degrees of freedom correspond to the states
of a “dipole-octupole” crystal-field doublet [62]. It is thus
inherently different from the generic model studied here, but
remains a motivation for future applications of our work, in
particular the inclusion of quantum fluctuations. Quantum
kagome ice is indeed a promising candidate for a gapped
Z2 spin liquid ground state [51,63–65], where disclination
defects have been proposed to host symmetry-protected vison
zero modes [65].

Furthermore, concerning the inclusion of quantum fluctu-
ations, a projective symmetry group analysis has investigated
possible spin-orbital liquids with fermionic spinons for non-
Kramers pseudospin-1/2 models [48]. The unusual time-
reversal symmetry of non-Kramers ions steps away from our
present study, but is an interesting aspect of generic models
[48,66], that has been shown to support magnetic phases
forbidden for Kramers pseudospin-1/2 kagome models.

As for the classification of Ref. [61], it is a group theoretical
approach, applied to a variety of lattices including kagome,
able to list all regular magnetic orders, which respect the
lattice symmetries modulo global O(3) spin transformations.

It has been used, e.g., in studying the candidate quantum spin
liquid material, kapellasite [67]. Even if the lattice symmetry
plays a key role in both our approaches, the constraint of
global O(3) symmetry prevents the consideration of most
models with anisotropic interactions, which represents the
“bulk” of the XYZDM model. Nevertheless, the regular
magnetic orders will reappear in our work for Hamiltonians
tuned precisely on high-symmetry points, where a global O(3)
invariance reappears.

III. HAMILTONIAN DIAGONALIZATION

Now that our model has been determined, let us explore
the phases it begets. In this section, we will see how the irrep
decomposition provides the eigenbasis of order parameters
necessary to diagonalize the coupling matrix Ĵ . The general
method to determine the ground states is exposed in Sec. III E.
We refer the reader to Ref. [12] to see this method applied to
pyrochlores.

A. Irreducible representations

Any spin configuration on a triangle can be described by
the nine-dimensional vector of Eq. (7). Let �(g) be the 9×9
matrix representing the element g ∈ C3v = {e,Ci=1,2

3 ,σ i=0,1,2
v }

in the global Cartesian basis, as exemplified in Eqs. (9) and
(10). By definition, the � matrices provide a nine-dimensional
representation of the C3v symmetry group.

The � representation is said to be reducible if there is
a unitary transformation Û such that Û �(g) Û−1 is block-
diagonal, with the same block structure, for all g ∈ C3v . If the
blocks cannot be further reduced, i.e., if they are “as small
as possible,” then each block is an irreducible representation
(irrep) of C3v in its own subspace. The interest of such an
irreducible decomposition is that it is valid for any matrix
invariant under action of the C3v symmetry group. Once
rewritten in the basis provided by Û , Ĵ is greatly simplified
as it can only couple basis vectors transforming according to
the same irrep. This method brings us a stone’s throw from the
full diagonalisation of the Hamiltonian.

The decomposition of the � representation can be formally
written as a direct sum of the irreps �I ,

� =
⊕

I

γI�I , (24)

where each irrep �I appears γI times in the decomposition.
For any symmetry operations g ∈ C3v , the trace of �I (g) is
called its character, χI (g). The character of �(g) is χ (g). In
terms of these characters, Eq. (24) translates to

χ (g) =
∑

I

γIχI (g), ∀g ∈ C3v. (25)

The coefficients γI can be found using the formula [68]

γI = 1

n

∑
g∈C3v

χI (g)χ (g), (26)

where n is the order of the group (n = 6). The irreps and
character of the C3v symmetry group are tabulated, and can
be read in Appendix B of Ref. [68] for example. As for χ (g),
it is directly obtained from Eqs. (9) and (10), the trace of the
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TABLE I. Character table of the point group C3v .
e, C3, and σv correspond to the three conjugacy classes
of C3v . We have used the Mulliken symbols for the
notation of the irreducible representations �I . The
last line corresponds to the characters of the reducible
representation �.

C3v e C3 σv

�1 = A1 1 1 1
�2 = A2 1 1 −1
�3 = E 2 −1 0
� 9 0 −1

neutral element e being trivial. All characters are summarized
in Table I.

Using Eq. (26) and Table I, we find

γ1 = 1, γ2 = 2, and γ3 = 3. (27)

In practice, it means that the coupling matrix Ĵ of Eq. (6)
can be block-diagonalized into six blocks: γ1 + γ2 = 3 scalar
blocks (corresponding to A1 and A2) and γ3 = 3 blocks of size
2×2 (corresponding to E).

B. Basis vectors

The basis vectors of this block-diagonalization must obey
the same symmetry properties as the irreps they correspond to
(for more details, see Ref. [69]). But how to calculate these
basis vectors? From the coupling matrices in Eqs. (18)–(20),
the xy components are decoupled from the z component.
Hence an appropriate choice of basis should not mix the
in-plane and out-of-plane components of the spins. This
translates to six (respectively, three) basis vectors with only
in-plane (respectively, out-of-plane) spin components.

For one-dimensional representations, the group elements
are scalars and they reduce to the character itself. In the
trivial one-dimensional irreducible representation A1, all the
elements are equal to one. Hence we are looking for a state
invariant under all C3v symmetries. The only possibility is

S̃(A1) =
(

1

2
,

√
3

2
,0,

1

2
,−

√
3

2
,0,−1,0,0

)
, (28)

illustrated in Fig. 4. Please keep in mind that the spins
transform like axial vectors, i.e., they are invariant under lattice
inversion [Eq. (3)].

The irrep A2 appears twice in � [Eq.(27)]. Thus we need
two basis vectors for this representation. Since an A2 irrep
corresponds again to a one-dimensional representation, it is
easy to see how the elements act on the vectors. According to
the character table (cf. Table I), we are looking for two vectors
Ṽi=1,2 that are invariant under C3 and change from Ṽi to −Ṽi

under σv . The only solutions are

S̃z(A2) = (0,0,1,0,0,1,0,0,1) (29)

and

S̃⊥(A2) =
(

−
√

3

2
,
1

2
,0,

√
3

2
,
1

2
,0,0,−1,0

)
. (30)

FIG. 4. Spin configurations corresponding to different irreducible
representations, as expressed in Eqs. (28)–(32). EFM1, EFM2, and A2z

have saturated magnetization respectively along the x, y, and z axes.
A1 and A2⊥ have maximum negative vector chirality, while EAF

has maximum positive vector chirality [Eq. (79)]. When considered
together, the A1 and A2⊥ irreps are labeled A for convenience.

The last irrep E is of dimension 2 and appears three times
in �. Therefore one needs to find three different pairs of basis
vectors for this representation. Since the group elements do not
reduce to their character anymore, this is less straightforward
than for the A irreps. Also, the choice of basis vectors is not
unique, but can be made physically intuitive. By definition
of the irrep decomposition, each pair of basis vectors shall
generate an invariant subspace under action of the C3v sym-
metry group. All elements of the C3v symmetry group can be
described as a successive permutation of the spin positions and
global rotation of the spin orientations. Such transformations
trivially conserves the norm of the total magnetic moment.
It means that the subspace of saturated configurations, i.e.,
with collinear spins, is invariant under action of the C3v

symmetry group. Magnetisation along the z axis has already
been accounted for by the A2z basis vector [Eq. (29)]. We are
thus left with the subspace of configurations with saturated
in-plane magnetization which, by decoupling of the xy and z

spin components previously mentioned, is also invariant under
action of all C3v elements. This subspace thus corresponds to
an E irrep, labeled EFM. A natural choice of basis for EFM is

S̃1,FM(E) = (1,0,0,1,0,0,1,0,0)

S̃2,FM(E) = (0,1,0,0,1,0,0,1,0), (31)

as depicted in Fig. 4.
Hence, out of the six expected basis vectors with in-plane

spin components for the representation � of Eq. (7), four of
them have now been determined, namely, A1, A2⊥, and EFM.
By imposing the orthogonality of the basis, the remaining two
in-plane basis vectors are given in Eq. (32). The subspace
they generate is invariant under action of the C3v symmetry
group; the corresponding irrep is labeled EAF and represented
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in Fig. 4:

S̃1,AF(E) =
(

1

2
,−

√
3

2
,0,

1

2
,

√
3

2
,0,−1,0,0

)

S̃2,AF(E) =
(

−
√

3

2
,−1

2
,0,

√
3

2
,−1

2
,0,0,1,0

)
. (32)

Within the EFM and EAF subspaces, the basis vectors are
orthogonal for each sublattice i ∈ {0,1,2}:

3∑
α=1

(S̃1,FM(E))3i+α · (S̃2,FM(E))3i+α = 0

3∑
α=1

(S̃1,AF(E))3i+α · (S̃2,AF(E))3i+α = 0. (33)

The last two basis vectors correspond to antiferromagnetic
states with out-of-plane spin components. The corresponding
subspace is invariant under action of the C3v symmetry group
and is labeled Ez. A possible choice of basis for this subspace is

S̃1z(E) =
√

3

2
(0,0,1,0,0,−1,0,0,0)

S̃2z(E) = 1√
2

(0,0,1,0,0,1,0,0,−2), (34)

whose spins are not normalized

3∑
α=1

(S̃1z(E))2
3i+α 	= 1

3∑
α=1

(S̃2z(E))2
3i+α 	= 1. (35)

The inequalities (35) are not a consequence of the particular
choice of basis in Eq. (34). Within the subspace generated
by S̃1z(E) and S̃2z(E), it is impossible to find a configuration
where the three spins are all normalized. The reason is trivially
because it is impossible for three normalized collinear spins to
bear zero magnetization. This is an important property of the
kagome lattice, which will be discussed in detail throughout
the paper.

C. Order parameters

The vector S̃ can be expressed in terms of the irreps basis:

S̃ = mA1 S̃(A1) + mA2,zS̃z(A2) + mA2,⊥S̃⊥(A2)

+ mx
E,FMS̃1,FM(E) + m

y

E,FMS̃2,FM(E) + mx
E,AFS̃1,AF(E)

+ m
y

E,AFS̃2,AF(E) + mx
E,zS̃1z(E) + m

y

E,zS̃2z(E) (36)

with

mα,i = 1
3 S̃ · S̃i(α) (37)

being the order parameters associated with the irreducible
representations:

mA1 = 1

3

(
1

2
Sx

0 +
√

3

2
S

y

0 + 1

2
Sx

1 −
√

3

2
S

y

1 − Sx
2

)
, (38)

mA2,z = 1

3

(
Sz

0 + Sz
1 + Sz

2

)
, (39)

mA2,⊥ = 1

3

(
−

√
3

2
Sx

0 + 1

2
S

y

0 +
√

3

2
Sx

1 + 1

2
S

y

1 − S
y

2

)
, (40)

mE,FM = 1

3

(
Sx

0 + Sx
1 + Sx

2

S
y

0 + S
y

1 + S
y

2

)
, (41)

mE,AF = 1

3

⎛
⎝ 1

2Sx
0 −

√
3

2 S
y

0 + 1
2Sx

1 +
√

3
2 S

y

1 − Sx
2

−
√

3
2 Sx

0 − 1
2S

y

0 +
√

3
2 Sx

1 − 1
2S

y

1 + S
y

2

⎞
⎠, (42)

mE,z = 1

3

⎛
⎝

√
3
2

(
Sz

0 − Sz
1

)
1√
2

(
Sz

0 + Sz
1 − 2Sz

2

)
⎞
⎠. (43)

By decomposition of Eq. (36), the order parameters obey the
relation

m2
A1

+ m2
A2,z

+ m2
A2,⊥ + m2

E,FM + m2
E,AF + m2

E,z

= 1
3

(
S 2

0 + S 2
1 + S 2

2

) = 1. (44)

Please note that max(|mE,z|2) < 1, which means that order
into the Ez phase necessarily coexists with other phases.

Alternatively, one can write the spin configurations as a
function of the order parameters:

⎧⎪⎪⎨
⎪⎪⎩

Sx
0 = 1

2mA1 −
√

3
2 mA2,⊥ + mx

E,FM + 1
2mx

E,AF −
√

3
2 m

y

E,AF

S
y

0 =
√

3
2 mA1 + 1

2mA2,⊥ + m
y

E,FM −
√

3
2 mx

E,AF − 1
2m

y

E,AF

Sz
0 = mA2,z +

√
3
2mx

E,z + 1√
2
m

y

E,z,

(45)⎧⎪⎪⎨
⎪⎪⎩

Sx
1 = 1

2mA1 +
√

3
2 mA2,⊥ + mx

E,FM + 1
2mx

E,AF +
√

3
2 m

y

E,AF

S
y

1 = −
√

3
2 mA1 + 1

2mA2,⊥ + m
y

E,FM +
√

3
2 mx

E,AF − 1
2m

y

E,AF

Sz
1 = mA2,z −

√
3
2mx

E,z + 1√
2
m

y

E,z,

(46)⎧⎪⎨
⎪⎩

Sx
2 = −mA1 + mx

E,FM − mx
E,AF

S
y

2 = −mA2,⊥ + m
y

E,FM + m
y

E,AF

Sz
2 = mA2,z − √

2m
y

E,z.

(47)

D. Hamiltonian in quadratic form

In terms of the order parameters, the Hamiltonian of
Eq. (21) can be rewritten as

H =
∑
�

3

2

(
λA1m

2
A1

+ λA2,zm
2
A2,z

+ λA2,⊥m2
A2,⊥

+ λE,FM m2
E,FM + λE,AF m2

E,AF + λE,z m2
E,z

+ λE,mix mE,FM · mE,AF
)
, (48)

where the sum is over all triangles � in the kagome lattice,
and the coefficients λi are

λA1 = 1
2 (Jx − 3Jy − 2

√
3D), (49)
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λA2,z = 2Jz, (50)

λA2,⊥ = 1
2 (−3Jx + Jy − 2

√
3D), (51)

λE,FM = Jx + Jy, (52)

λE,AF = 1
2 (−Jx − Jy + 2

√
3D), (53)

λE,mix = Jx − Jy, (54)

λE,z = −Jz. (55)

To avoid any confusion, one should probably insist that the
Hamiltonian of Eq. (48) is not a Landau mean-field expansion,
but an exact rewriting of the original Hamiltonian of Eq. (21).
The present decomposition is the final outcome of the block
diagonalization of Secs. III A and III B. Hence it prevents the
mixing between inequivalent irreps. In the absence of the re-
flection symmetry in the kagome plane [Eq. (16)], there would
be allowed couplings between A2z and A2⊥ on one hand, and
EFM, EAF, and Ez on the other hand. Once this symmetry is
imposed, however, there is no coupling between the xy plane
and the z axis, the only possible coupling term is between EFM

and EAF. This coupling term is coming from our physically
intuitive, but mathematically arbitrary choice of EFM and EAF.
It can be eliminated with a different choice of basis vectors,
whose corresponding order parameters are

mE,α = cos φ mE,FM − sin φ mE,AF,

mE,β = sin φ mE,FM + cos φ mE,AF, (56)

where φ is given by

φ = 1

2
arctan

(
Jy − Jx

3
2 (Jx + Jy) − √

3D

)
. (57)

In this basis, the Hamiltonian is now fully quadratic for each
triangle,

H =
∑
�

3

2

(
λA1m

2
A1

+ λA2,zm
2
A2,z

+ λA2,⊥m2
A2,⊥

+ λE,α m2
E,α + λE,β m2

E,β + λE,z m2
E,z

)
, (58)

with

λE,α = (Jx + Jy) cos2 φ − 1
2 (Jx + Jy − 2

√
3D) sin2 φ

− 1
2 (Jx − Jy) sin(2φ), (59)

λE,β = (Jx + Jy) sin2 φ − 1
2 (Jx + Jy − 2

√
3D) cos2 φ

+ 1
2 (Jx − Jy) sin(2φ). (60)

However, the two new pairs of basis vectors, Eα and Eβ ,
correspond to non-normalized spin configurations, as in the
case of Ez.

E. How to determine the ground states

The choice of any specific model is defined by its coupling
parameters {Jx,Jy,Jz,D}. In the Hamiltonian of Eq. (58), this
choice only appears in the eigenvalues λI , while the spin
variables are entirely embedded in the quadratic terms—each
term corresponding to a different order parameter mI . As
was done on the pyrochlore lattice [12], the energy can a

priori be minimized for each triangle by maximizing the
value of the order parameter mI0 which has the smallest
eigenvalue λI0 = min{λA1,λA2,z,λA2,⊥,λE,α,λE,β,λE,z}. For a
uniform lattice, the eigenvalues λI have the same value for
all triangles. It means that the ground state for a given
set of coupling parameters is obtained by paving the entire
kagome lattice with configurations which saturate the I0 order
parameter on every triangle: m2

I0
= 1 and m2

I 	=I0
= 0.

If there is more than one minimum eigenvalue, say λI0 =
λI ′

0
= min{λA1 ,λA2,z,λA2,⊥,λE,α,λE,β,λE,z}, then both I0 and

I ′
0 configurations are allowed in the ground state. Such

accidental degeneracy occurs for specific values of parameters
at the T = 0 frontier between I0 and I ′

0 phases. These frontiers
are sometimes the birth places of spin liquids [12].

F. Special case: Multiphase ground states

However, there is an important caveat to the above discussion.
The unit-length spin constraint must always be respected,
|Si | = 1. While this constraint is ensured for any of the
A1, A2z, A2⊥, EFM, and EAF configurations (see Fig. 4), it
is not the case for the Eα, Eβ , and Ez configurations. The
corresponding order parameters cannot be saturated for any
physical spin configuration

max(|mE,z|2) < 1, (61)

max(|mI |2|I ∈ {Eα,Eβ}) < 1 when Jx 	= Jy. (62)

If the minimum eigenvalue λI0 corresponds to I0 ∈
{Eα,Eβ,Ez}, then basis vectors associated with other eigen-
values λI 	=I0 � λI0 need to be included in the ground state. In
terms of the irreps decomposition of Eq. (36), it means that the
ground state is most likely described by more than one irrep,
and its determination becomes a tedious task.

This coexistence of multiple phases in the ground state is
an important outcome of the irrep decomposition. Since the
present models are classical, this is of course not a quantum
superposition of states. It is also not a trivial ground-state
degeneracy between different phases. What happens here is
that for a given ground-state spin configuration, several order
parameters, as defined in Eqs. (38)–(43), take a nonzero value.

Exotic scenarios are possible. For example, it may occur
that one, or more, of the order parameters appearing in the
ground state on a triangle enters a long-range ordered phase
on the lattice, while the others remain spatially disordered. In
other words, there is partial long-range order, but an extensive
fraction of the spin degrees of freedom remain disordered, and
magnetic fluctuations persists down to zero temperature. This
is what we shall refer to as coexistence of order and disorder.
Such an example will be discussed in Sec. IV F 2 when λEz

is the lowest eigenvalue, while more complex possibilities
involving the Eα and Eβ irreps will be covered in details in
Secs. V E and V F. These ideas are closely related to the recent
notions of magnetic fragmentation [70–72] and Coulombic
ferromagnet [4,73,74].

IV. XXZ MODEL WITH DZYALOSHINSKII-MORIYA

The diagonalization of Eq. (58) comes at the cost of
introducing two pairs of basis vectors, Eα and Eβ , with
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FIG. 5. Zero-temperature phase diagram of the XXZ model with Dzyaloshinskii-Moriya interactions (XXZDM). The phase dia-
gram can be divided into five continuous regions when represented on a sphere (a), with spherical coordinates (θ,ϕ): (Jx,D,Jz) =
(cos ϕ sin θ,− sin ϕ sin θ, cos θ ). The threefold symmetry of the XXZDM kagome model [52] is transparent in this representation. The left/right
hemispheres correspond to ferromagnetic/antiferromagnetic coupling Jz, which can be projected onto two planar phase diagrams for a
quantitative comparison, respectively, (b) and (c). The Ez region corresponds to the multiphase ground state discussed in Secs. III F and IV F 2.
A2z and Ez regions take the form of triangles centered at the “poles” of each hemisphere. The latter is noticeably smaller because of its
comparatively high antiferromagnetic frustration, making it less energetically stable when competing with the surrounding ordered phases.
The name of specific models with extensive degeneracy are written in white, as defined in Ref. [52] and given in Table II. For convenience, the
corresponding spin configurations are reproduced in (d). The A region corresponds to A1 and A2⊥ (Fig. 4), which have the same energy in the
XXZDM model.

non-normalized spins. To circumvent this problem, we can
restrict our analysis at first to the region of the phase diagram
where the coupling between EFM and EAF vanishes [Eqs. (54)]:

Jx = Jy. (63)

In this region, the coupling matrices of Eqs. (18)–(20) become

Ĵ01 = Ĵ12 = Ĵ20 =

⎛
⎜⎝

Jx D 0

−D Jx 0

0 0 Jz

⎞
⎟⎠, (64)

which corresponds to the XXZ model with Dzyaloshinskii-
Moriya interactions (XXZDM)

H =
∑
〈ij〉

Jx

(
Sx

i Sx
j + S

y

i S
y

j

) + JzS
z
i S

z
j + D · (Si×Sj ). (65)

In terms of the order parameters, the Hamiltonian of Eq. (48)
becomes

H =
∑
�

3

2

(
λA1m

2
A1

+ λA2,zm
2
A2,z

+ λA2,⊥m2
A2,⊥

+ λE,FM m2
E,FM + λE,AF m2

E,AF + λE,z m2
E,z

)
, (66)

with

λA2,z = +2Jz, (67)

λE,FM = +2Jx, (68)

λE,AF = −Jx +
√

3D, (69)

λA1 = λA2,⊥ = −Jx −
√

3D, (70)

λE,z = −Jz. (71)

Except for the Ez irrep, all other basis vectors correspond to
normalized spins. Following the method detailed in Sec. III E,
this allows for the direct determination of the ground state
for all parameters where λE,z is not the minimal eigenvalue.
The resulting phase diagram is given in Fig. 5. Portions of this
phase diagram have been explored in the literature for classical
Heisenberg spins, such as the Heisenberg antiferromagnet
[21–23], the XXZ model [75–77], as well as Dzyaloshinskii-
Moriya interactions [57]. In particular, this phase diagram has
recently been shown to support a network of spin liquids with
threefold symmetry [52]. This is why our goal in this section
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will be to present a comprehensive picture of the competing
phases at play, in the context of the irreducible representations
they are generated from.

A. Long-range order

The various ordered phases presented below are categorized
as a function of their global degeneracy and illustrated in Fig. 5.
Their region of existence is easily calculated by ensuring that
the corresponding eigenvalue(s) is (are) smaller than all the
other ones [Eqs. (67)–(71)].

1. Z2 degeneracy

The only ground state with Z2 degeneracy—generated by
time-reversal symmetry—is the out-of-plane ferromagnetic
phase A2z.

2. O(2) degeneracy

The XXZDM model is invariant by continuous global spin
rotations around the z axis. In other words, any ground state
with finite in-plane spin components possesses (at least) a
global O(2) degeneracy. This is the case for the EFM, EAF,
and A = A1 ⊕ A2⊥ phases, which are respectively stabilized
by in-plane ferromagnetic, negative DM and positive DM
interactions.

The O(2) degeneracy persists at the frontiers between the
Ez region and one of these ordered phases (EFM, EAF, or
A), such as for example for 2|D|/√3 < Jz = −2Jx [see the
borders of the Ez triangle in Fig. 5(c)]. The reason why there
is no enhancement of degeneracy at these frontiers is because
Ez order cannot co-exist with only one of the EFM, EAF or
A phases. On the other hand, in presence of two other irreps,
the coexistence with Ez is possible; this corresponds to the
Heisenberg antiferromagnet and equivalent models, which will
be discussed in Sec. IV B.

3. O(3) degeneracy

At the frontier between the EFM and A2z phases, Jx =
Jz < −|D|/√3, the ground state is ferromagnetic with O(3)
degeneracy. Using the threefold symmetry in parameter space
of the XXZDM model [52], the same O(3) degeneracy
holds for the three borders of the A2z triangle in Fig. 5(b),
albeit with different spin configurations. These different spin
configurations correspond to the umbrella states—or variants
thereof—of the regular magnetic orders of Ref. [61]. It
is noticeable to find these regular magnetic orders in the
highly anisotropic XXZ model with Dzyaloshinskii-Moriya
considered here, thanks to an accidental O(3) degeneracy of
the Hamiltonian.

All spin configurations are obtained from Eq. (36), while
imposing

m2
A2z

+ m2
I = 1 with I ∈ {A,EFM,EAF}. (72)

At the A2z ⊕ A and A2z ⊕ EAF frontiers, the out-of-plane
ferromagnetism of the umbrella states conveys a finite scalar
chirality

κ = S0 · (S1 × S2) (73)

to the ground-state manifold.

We should conclude this discussion with a few words
about the finite-temperature physics. The Mermin-Wagner-
Hohenberg theorem prevents any symmetry breaking phase
transition at finite temperature in the Heisenberg ferromagnet
(HFM) (Jx = Jz < 0, D = 0). By symmetry of our phase
diagram, the models equivalent to the HFM with parameters

Jx = −1

2
Jz > 0, D = ±

√
3

2
Jz (74)

have the same energy excitations than the HFM, and are thus
also protected by the Mermin-Wagner-Hohenberg theorem
from ordering, despite their apparent anisotropy.

B. XXZDM: Classical spin liquids

1. Threefold mapping

The phases discussed in Sec. IV A are long-range ordered
with wave vector q = 0. Once the orientation of one spin is
known, the spin configuration of the entire lattice is fixed. This
is not the case anymore when the ground state is generated
by combinations of EFM, EAF, and A basis vectors. Such
combinations give rise to a network of extensively degenerate
phases [52]. This network is robust for both classical and
quantum spins, and its branches are related to each other via a
threefold symmetry [52], which is also valid for triangular
lattices [78]. This mapping follows a similar motivation
than for XXZ chains, where DM couplings can be “erased”
by a local rotation and twisted boundary conditions [79].
On kagome, twisted boundary conditions are not necessary
because of specific choices of rotations. Here we shall clarify
how these classical spin liquids can be understood from the
point of view of their irreps, as summarized in Table II.

Let us consider the (A,EAF) pair as a working exam-
ple. These irreps generate the ground-state manifold of the
antiferromagnetic XXZ model, which can be extended to
ferromagnetic Jz < 0 (Fig. 5). It is well-known that this
ground-state manifold can be mapped onto the three-coloring
problem, whose mapping is unique up to a global O(2) rotation
of the spins [76]. Indeed, all spins lie in the xy plane and
make a 120◦ angle with their neighbors [Figs. 5(d) and 6]. By
symmetry, the same mapping also holds for the two other pairs
of irreps

(A,EAF) ↔ (EAF,EFM) ↔ (EFM,A). (75)

The correspondence between a configuration with ferromag-
netic EFM states and the three-coloring model is given in Fig. 6.

The pairs of irreps in Eq. (75) generates the ground states
on three lines of parameter space, which end in contact either
with the A2z phase, or with the Ez phase. In the former case,
the global O(2) degeneracy is enhanced to O(3). At zero
temperature and in presence of Dzyaloshinskii-Moriya inter-
actions, this symmetry enhancement confers a scalar chirality
to the classical spin liquid [52]. In the irrep language, this
corresponds to ground states described by the (EAF,EFM,A2z)
or (EFM,A,A2z) irreps (Table II). Remarkably, the classical
degeneracy of these models has recently been shown to persist
for quantum spins in every nontrivial Sz sector [80].

When the pair of irreps of Eq. (75) are coupled to
the Ez phase, the zero-temperature ground-state manifold
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TABLE II. Summary of the network of extensively degenerate ground states found in Ref. [52], presented in light of the irreps from
which they are generated. These classical spin liquids sit at the frontier between ordered phases (Sec. IV A); their domain of existence at zero
temperature is given in each case. There are three different branches in the network, with positive, negative and zero Dzyaloshinskii-Moriya
(DM) couplings, corresponding to the three columns of the table. Going from one branch to the other is done by local transformations [52].
These transformations can be rationalized here as a permutation of the bidimensional irreps with in-plane spin components: EFM, EAF, and A

[Eq. (75)]. Each pair of these irreps generates an extensive manifold of configurations that can be mapped onto the three-coloring problem,
with additional O(2) global symmetry (third row). If the out-of-plane ferromagnetic irrep A2z is added, then the global degeneracy becomes
O(3) (fourth row). If on the other hand the antiferromagnetic irrep Ez is added, then one obtains a Coulomb phase defined by an emergent
divergence-free field B (second row). The zero-temperature ground state of the Heisenberg antiferromagnet (HAF) is described by the Ez, A,
and EAF irreps (0 < Jx = Jz,D = 0). The names of the models are given in brackets, as defined in Ref. [52].

Common features Positive DM Zero DM Negative DM
of the ground states 0 < D = −√

3 Jx D = 0 and 0 < Jx D = √
3 Jx < 0

Coulomb phase Ez,EFM,A [X−] Ez,A,EAF [HAF] Ez,EAF,EFM [X+]
H� = Jz

2 (B2 − 3) 0 < Jz = −2Jx 0 < Jz = Jx 0 < Jz = −2Jx

The conserved flux B is given by

⎛
⎜⎜⎝

−
√

3
2 Sx

0 − 1
2 S

y

0 +
√

3
2 Sx

1 − 1
2 S

y

1 + S
y

2

1
2 Sx

0 −
√

3
2 S

y

0 + 1
2 Sx

1 +
√

3
2 S

y

1 − Sx
2

Sz
0 + Sz

1 + Sz
2
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three coloring EFM,A [XXZ−] A,EAF [XXZ] EAF,EFM [XXZ+]
× global O(2) −|Jx | < Jz < 2|Jx | −Jx/2 < Jz < Jx −|Jx | < Jz < 2|Jx |
three-coloring EFM,A,A2z [FDM−] A,EAF,A2z [XXZ0] EAF,EFM,A2z [FDM+]
× global O(3) Jx = Jz < 0 −Jx/2 = Jz < 0 Jx = Jz < 0

supports an emergent classical Coulomb phase, characterized
by either antiferromagnetic or ferromagnetic pinch points
in the structure factor [52]. The trio of irreps, (A,EAF,Ez),
corresponds to the emergent Coulomb phase of the canonical
Heisenberg antiferromagnet (HAF).

FIG. 6. All spin configurations generated by the (A,EAF),
(EAF,EFM), or (EFM,A) pair of irreps correspond to a three-color
mapping on the kagome sites, or equivalently on the honeycomb
bonds. While this coloring is straightforward in the former case
[76] (top right), it is less so if the ferromagnetic EFM states are
involved (top left). The mapping is given by the matrix at the bottom.
For example for a spin on sublattice 1 (respectively, 0 or 2) in a
ferromagnetic triangle of violet color, the corresponding color is
orange (respectively, violet, or cyan).

2. Along the XXZ line inside the Ez region

If one continues along the XXZ line towards the Ising
antiferromagnet (0 < Jx < Jz and D = 0), the minimal eigen-
value corresponds to the Ez phase. Since the Ez eigenstates
are made of non-normalized spins, it means that irreps
with higher eigenvalues are also populated (see Sec. III F).
In increasing order, the excited eigenvalues are EAF ⊕ A

(degenerate), then EFM and finally A2z [Eqs. (67)–(71)].
The ground states in this region are known to bear a finite
magnetization [75,77], which can be (1) either in plane due
to the EFM component. A typical ground state configuration
is [75] S0 = (1,0,0),S1 = (−c,0,s),S2 = (−c,0,−s) where
c = Jx/(Jz + Jx) and s = √

1 − c2; or (2) or out of plane due
to the A2z component. A typical ground state configuration
is [75] S0 = (0,0,1),S1 = (s ′,0,−c′),S2 = (−s ′,0,−c′) where
c′ = Jz/(Jz + Jx) and s = √

1 − c′2.
This means that all eigenstates can be populated in the

ground state. In particular, the EAF and A order parameters,
which correspond to the second lowest eigenvalue, always
take a finite value. These are the same irreps responsible for
the tricolouring spin liquid along the XXZ line for Jz < Jx ,
away from the Ising limit.

3. Connection to the quantum models

Here an interesting similarity appears with the quantum
model. There are indeed strong indications [27,49,50,80–83]
that the ground state of the XXZ model for quantum spins
S = 1/2 supports a quantum spin liquid, and that this quantum
spin liquid remains in the same phase for the entire range of
positive values of Jx and Jz (D = 0) [50,81]. Our present
work cannot explain this quantum phenomenon, but it brings
a classical intuition. Along the XXZ line with Jx,Jz > 0, the
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FIG. 7. Regions of the XYZDM parameter space (Jx,Jy) where the lowest eigenvalue λI0 corresponds to a given irrep I0 ∈ {A1 (blue),
A2⊥ (red), A2z (green), Emin (beige), Ez (white)}. The top and bottom panels correspond to Jz = 1 and −0.5, respectively. The values of D are
given at the top of the figure. For these values of Jz, the Ez and A2z regions appear as ground states of the XYZDM model for |D| <

√
3/2.

The Jx = Jy line acts as a mirror in parameter space (Sec. V A).

two lowest eigenvalues are always λE,z and λE,AF = λA. They
cross at the Heisenberg antiferromagnetic point (Jx = Jz), but
the EAF ⊕ A irreps are responsible for a (tricolouring) classical
extensive degeneracy over the entire range of parameters. This
is because they correspond to the lowest eigenvalue for Jz <

Jx (towards the XY limit), and they coexist with the non-
normalized Ez irrep for Jx < Jz (towards the Ising limit).

This classical intuition is also consistent with the fact
that for quantum spin-1/2, the energy spectrum of the HAF
(Jx = Jz > 0) and the Ising limit (Jx = 0,Jz > 0) are very
similar [27], with a large number of low-lying singlets [84].
Classically, among the nine-dimensional phase space of the
irrep decomposition, six dimensions are included in the ground
state of the HAF. For the Ising limit, the two dimensions of
the Ez irrep are forcibly combined with the six dimensions of
the first excited degenerate eigenstates EAF, A, and EFM. It
would be interesting to see if some of the differences between
the quantum energy spectrum of the HAF and the Ising limit
are linked to in-plane ferromagnetic (aka EFM) states?

On the other side of the Ising point, for −1/2 < Jx < 0
(D = 0 and Jz > 0), while λE,z remains the lowest eigenvalue,
the first excited eigenstate is not degenerate anymore and
corresponds to the EFM irrep alone. This qualitative change
in the classical model takes the form of superfluid order for
the quantum spin-1/2 model [85].

For negative Jz < 0 and quantum spin-1/2, the XXZ spin
liquid persists above a finite value of Jx [80]. Upon decreasing
Jx , the energy gap of many different states decrease, and
collapse to zero at the XXZ0 point (Jx = 2|Jz|), resulting
in a macroscopic quantum ground-state degeneracy in every
nontrivial Sz sector [80]. At the classical level, this corresponds

to the degeneracy between the A ⊕ EAF irreps (responsible for
the tricolour spin liquid in the XY plane) and the additional A2z

irrep (responsible for the out-of-plane magnetization) [52].
Away from the XXZ line, it has been well established that

the quantum ground state remains disordered up to a small
but finite value of D for Jx = Jz [40,47,86–90], with the
possibility of a chiral spin liquid as suggested by Schwinger-
boson mean-field theory [53]. Based on the present classical
approach, one can also expect an extended region of quantum
disorder, especially in the vicinity of the XXZ0 model and
of the XXZ line for 0 < Jx < Jz. Indeed, it has already been
shown that the Ez region is disordered at linear order in spin-
wave theory [52]. And in the vicinity of the XXZ0 point, the
presence of quantum ground states with finite magnetization
due to the presence of the A2z irrep makes it an ideal place
to look for chiral spin liquids, especially since quantum
fluctuations tend to further stabilize such phases [50,91–95].

Based on threefold mapping for quantum spins [52],
discussed in Sec. IV F 2 and Table II, the above discussion
along the XXZ line is also valid along the XXZ± lines depicted
in Fig. 5, where vector chirality will be intrinsically broken
thanks to Dzyaloshinskii-Moriya coupling.

V. THE GENERIC XYZDM MODEL

In this section, the constraint (63) is relaxed, giving rise to
the XYZDM Hamiltonian (23), which has been diagonalized in
Eq. (58). This model is described by four independent coupling
parameters {Jx,Jy,Jz,D}.

As opposed to the XXZDM model studied in Sec. IV,
there is no in-plane O(2) invariance anymore. The main
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consequences of this broken symmetry are double. (1) The
eigenvalues of the A1 and A2⊥ irreps are not degenerate
[Eqs. (49) and (51)]. (2) The EFM and EAF basis vectors are not
eigenvectors of the coupling matrix Ĵ . The new eigenvectors
correspond to Eα and Eβ , as defined in Eq. (56), whose
spins are not normalized. Furthermore, Eα and Eβ cannot
be degenerate.

Properties (1) and (2) are linked; it is not possible to have
one without the other

λA1 	= λA2,⊥ ⇔ λE,mix 	= 0 ⇔ λEα
	= λEβ

. (76)

For convenience let us define the eigenvalues

λEmin = min[λE,α,λE,β]

= 1
2

(
λE,FM + λE,AF −

√
(λE,FM − λE,AF)2 + λ2

E,mix

)
,

λEmax = max[λE,α,λE,β]

= 1
2

(
λE,FM + λE,AF +

√
(λE,FM − λE,AF)2 + λ2

E,mix

)
(77)

of the corresponding Emin and Emax irreps.
The additional ground states permitted by the extra degree

of freedom, Jx 	= Jy , comes from the newly possible com-
binations of irreps that were absent in the XXZDM model.
One should be cautious though that not all combinations
of irreps represent a possible ground state of the XYZDM
model. A given combination of irrep means degeneracy
between their eigenvalues, which implies constraint(s) on the
parameters {Jx,Jy,Jz,D}. Within this constrained parameter
region, one needs to check if the degenerate combination of
irreps possesses the lowest eigenvalue λ [Eqs. (49)–(51), (55),
(59), and (60)]. As illustrated in Fig. 7, and discussed in detail
in the present section, this is true for a broad diversity of
unexplored phases.

A. Symmetry between A1 and A2⊥

In the three-dimensional parameter space ( Jx

D
,
Jy

D
,
Jz

D
), the

two-dimensional subspace defined by Jx = Jy is a mirror
symmetry in the thermodynamic properties of the XYZDM
model. Indeed, Eqs. (49)–(55) and (57) respect the following
invariance:

A1 ↔ A2⊥,

Jx ↔ Jy,

φ ↔ −φ.

(78)

It means that all results obtained for the A1 irrep are directly
applicable to A2⊥ and vice versa.

B. Intrinsic chiral asymmetry

The vector chirality for a triangle is given by [96,97]

κ = 2

3
√

3
(S0 × S1 + S1 × S2 + S2 × S0). (79)

The z component of the vector chirality, κz, is the conju-
gate variable of the Dzyaloshinskii-Moriya parameter D of
Eq. (22). Hence κz takes a saturated value for the ground states

induced by Dzyaloshinskii-Moriya interactions [57], namely,
the A1, A2⊥ (κz = −1), and EAF (κz = +1) states (Fig. 4).

The XXZDM model (Jx = Jy) is symmetric under sign
reversal of D; it means that the contributions of the EAF

and A = A1 ⊕ A2⊥ are exchanged in the spin configurations
of Eq. (36) when D → −D. In the XYZDM model on the
other hand (Jx 	= Jy), the DM-reversal symmetry is broken.
For large positive D, the A1 and A2⊥ states are, respectively,
favored by positive Jx and Jy , with global Z2 degeneracy.
This means that the two basis vectors with negative chirality
(κz = −1) can be differentiated energetically. On the other
hand, the EAF irrep with positive chirality (κz = +1) becomes
mixed with the nonchiral EFM irrep into states which are not
normalized anymore [Eq. (56)]. The fate of the XYZDM model
is thus particularly asymmetric between positive and negative
values of DM interactions.

This intrinsic asymmetry between positive and negative
chirality comes from the fact that any transformation of the C3v

group given in Eq. (8) is at the same time a permutation of the
sites within a triangle, and a rotation of the spin orientations.
Let us consider Fig. 4.

(1) For the A1 and A2⊥ states, a clockwise permutation
of the sites comes with a clockwise rotation of the spin
orientations. Any state with negative chirality κz = −1 is left
invariant under a C3 transformation, and a unidimensional
irrep is sufficient to ensure invariance. (2) For the EAF states, a
clockwise permutation of the sites comes with a counterclock-
wise rotation of the spin orientations; any state with positive
chirality κz = +1 is modified under a C3 transformation, and
a two-dimensional subspace becomes necessary to recover
invariance.

This chiral asymmetry is not unique to kagome though.
The physics of direct (D > 0) and indirect (D < 0)
Dzyaloshinskii-Moriya interactions on the pyrochlore anti-
ferromagnet are known to be qualitatively different, both at
zero and finite temperatures [12,98–100] (Fig. 15). In analogy
with kagome, direct DM interactions on pyrochlore are known
to favor the all-in all-out ordered phase, which transforms
according to the A2 unidimensional irrep. As for indirect
DM interactions, they favor the so-called �5 configurations,
which transforms according to the E two-dimensional irrep.
A specificity of the kagome lattice is actually that this
chiral asymmetry disappears for a large portion of coupling
parameters, namely the XXZDM model when Jx = Jy .

C. Long-range orders with only trivial time-reversal symmetry

1. Ferromagnetism: A2z ⊕ Emin

The A2z states are incompatible with the Eα or Eβ states.
This is because the ferromagnetic A2z contribution provides
the same Sz

i=0,1,2 = Sz component to the three spins in the
triangle. Since spin normalization imposes

|S⊥
i | =

√
1 − (Sz)2, ∀i = 0,1,2 , (80)

the three in-plane spin components S⊥
i=1,3 have to be of the

same norm. This is not possible for the non-normalized Emin

basis vectors (Sec. III D). The only solution is Sz = ±1. At the
frontiers in the phase diagram where λA2z

= λEmin , out-of-plane
ferromagnetism (A2z order) is energetically favored.
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2. Vector chirality: A1 or A2⊥ (⊕Ez)

In addition to the out-of-plane ferromagnetic A2z order,
new ordered phases with global Z2 degeneracy appear in
the XYZDM model. They correspond to either A1 or A2⊥
order and carry a saturated vector chirality κ . These phases
are ground states of a large portion of the phase diagram, as
illustrated in Fig. 7.

Furthermore, the A1 or A2⊥ states are incompatible with the
Ez states. If a spin configuration is a linear combination of the
Ez and either the A1 or the A2⊥ basis vectors [Eq. (36)], then
imposing normalization of all spins makes the Ez contribution
null. It means that the A1 or A2⊥ orders persist up to, and
including, the frontiers with Ez.

D. Scalar-chiral order with global O(2) invariance:
(A1 or A2⊥) ⊕ A2z

At the frontiers between the ferromagnetic A2z states and
one of the other unidimensional irreps, A1 or A2⊥, the ground
states are obtained by erasing all the other order parameters,
resulting in

m2
A2z

+ m2
I = 1, (81)

with I = {A1,A2⊥}. Such ground-state manifold has a O(2)
degeneracy, parametrized by υ

mA2z
= cos υ

mI = sin υ. (82)

Injecting these solutions into Eq.(36) leads to the following
normalized spin configurations with long-range q = 0 order
and finite scalar chirality:

A1 ⊕ A2z

⎧⎪⎪⎨
⎪⎪⎩

S0 = (
1
2 sin υ,

√
3

2 sin υ, cos υ
)

S1 = (
1
2 sin υ,−

√
3

2 sin υ, cos υ
)
,

S2 = (− sin υ,0, cos υ
) (83)

A2⊥ ⊕ A2z

⎧⎪⎪⎨
⎪⎪⎩

S0 = (−√
3

2 sin υ, 1
2 sin υ, cos υ

)
S1 = (√

3
2 sin υ, 1

2 sin υ, cos υ
)
.

S2 = (
0,− sin υ, cos υ

) (84)

E. Stripe order with local Z8 degeneracy:(A1 or A2⊥) ⊕ Emin

The Emin irrep corresponds to non-normalized spin config-
urations [Eqs. (56) and (77)]. However, when combined with
another irrep, it is a priori possible for a linear combinations
of the two to respect the condition |Si |2 = 1 for all spins i. The
goal of this section is to prove this possibility for the A1 and
A2⊥ irreps. While we will use A2⊥ as an example, all arguments
also directly apply to A1 (Sec. V A). In Sec. V F 2, we will
briefly discuss what happens at the frontier with out-of-plane
ferromagnetism (A2z irrep).

1. Spin configurations

In this section, we consider Hamiltonians where the ground
states are linear combinations of the A2⊥ and Emin spin
configurations, i.e.,

λA2⊥ = λEmin < λI∈{A1,A2z,Ez,Emax} (85)

⇒ mI∈{A1,A2z,Ez,Emax} = 0. (86)

According to Eq. (56),

mE,max = 0 ⇒ mE,AF = η mE,FM, (87)

with η =
{− tan φ if Emin = Eα

+ cot φ if Emin = Eβ

,

where η is function of φ and thus depends on the coupling
parameters {Jx,Jy,Jz,D} of the Hamiltonian. In practice, the
values of these parameters are constrained by Eq. (85). But
since φ ∈ [−π

4 : π
4 ] [Eq. (57)], η can a priori take any real

values. This is why we will first consider the general case,
−∞ < η < ∞. Then we will analyze the range of possible
ground states as a function of η, and calculate what are
the corresponding parameters {Jx,Jy,Jz,D} that respect the
condition (85).

Using Eqs. (86) and (87), we are left with three variables
mA2⊥ , mx

E,FM, and m
y

E,FM, which completely determine the
spin configurations, as given in Eqs. (45)–(47). Imposing the
unit-length constraint gives a set of three nonlinear equations
with three unknown variables. Solving this set of equations
gives the values of mA2⊥ , mx

E,FM, and m
y

E,FM, and thus the
ensemble of ground states. Since mA2z

= 0 = |mEz
|, we know

that Sz
i = 0, and can restrict the spin configurations to in-plane

components:

ϒ = {
Sx

0 ,S
y

0 ,Sx
1 ,S

y

1 ,Sx
2 ,S

y

2

}
. (88)

At the level of a triangle, the ground state between A2⊥ and
Emin is eightfold degenerate:

ϒ±
1 = ±

(
−

√
3 η (2 + η)

2(1 + η + η2)
,

2 + 2η − η2

2(1 + η + η2)
,+

√
3 η (2 + η)

2(1 + η + η2)
,

2 + 2η − η2

2(1 + η + η2)
,0,1

)
, (89)

ϒ±
2 = ±

(
+

√
3 (1 + 2η)

2(1 + η + η2)
,

1 − 2η − 2η2

2(1 + η + η2)
,

√
3

2
,
1

2
,+

√
3 (1 − η2)

2(1 + η + η2)
,

1 + 4η + η2

2(1 + η + η2)

)
, (90)

ϒ±
3 = ±

(
−

√
3

2
,
1

2
,−

√
3 (1 + 2η)

2(1 + η + η2)
,

1 − 2η − 2η2

2(1 + η + η2)
,−

√
3 (1 − η2)

2(1 + η + η2)
,

1 + 4η + η2

2(1 + η + η2)

)
, (91)

ϒ±
4 = ±

(
−

√
3

2
,
1

2
,

√
3

2
,
1

2
,0,−1

)
. (92)
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Equivalently, the ground-state degeneracy is also eightfold at the frontier between A1 and Emin.

ϒ ′±
1 = ±

(
−2 + 2η + η2

2(1 − η + η2)
,
−√

3 η (−2 + η)

2(1 − η + η2)
,
−2 + 2η + η2

2(1 − η + η2)
,

√
3 η (−2 + η)

2(1 − η + η2)
,−1,0

)
, (93)

ϒ ′±
2 = ±

(
−(1 + 2η − 2η2)

2(1 − η + η2)
,

√
3 (1 − 2η)

2(1 − η + η2)
,−1

2
,

√
3

2
,
−(1 − 4η + η2)

2(1 − η + η2)
,

√
3 (1 − η2)

2(1 − η + η2)

)
, (94)

ϒ ′±
3 = ±

(
−1

2
,−

√
3

2
,
−(1 + 2η − 2η2)

2(1 − η + η2)
,

√
3 (−1 + 2η)

2(1 − η + η2)
,
−(1 − 4η + η2)

2(1 − η + η2)
,
−√

3 (1 − η2)

2(1 − η + η2)

)
, (95)

ϒ ′±
4 = ±

(
1

2
,

√
3

2
,
1

2
,−

√
3

2
,−1,0

)
. (96)

This is by itself a noticeable result. Indeed, we have here
an extended region of parameters, at the frontier between
the Emin and A2⊥ (or equiv. A1) irreps (Fig. 7), with a
local eightfold degeneracy. This discreteness is neither due
to single-ion anisotropy, nor a symmetry-breaking magnetic
field, nor the quantization of spins. It emerges naturally
from a time-reversal invariant Hamiltonian with classical O(3)
spins. For such models, a twofold degeneracy is commonly
induced by time-reversal symmetry. The degeneracy can be
enhanced by the lattice symmetry: for example fourfold or
sixfold for square or cubic lattices respectively. On kagome,
the natural expectation would have been Z6 = Z3 ⊗ Z2. And
for higher symmetry ground states, linear combinations of
multiple classical orders usually allow for a continuous degree
of freedom connecting the various ordered phases.

This is not the case here. The reason comes from the
non-normalized irrep Emin ∈ {Eα,Eβ}, which (i) prevents
the continuous connection between multiple orders, on the
basis that some of the orders are not physical while (ii)
nonetheless allowing for a discrete number of physical linear
combinations, i.e., with normalized spins. These additional
states respect the “natural” Z6 kagome symmetry. Once added
to the pre-existing A1 states, we get the Z8 degeneracy.

FIG. 8. Ground states for an arbitrary value of coupling param-
eters sitting at the frontier between A2⊥ and Emin; 0 < Jx = − Jy

3 ,

D = 0, Jy/2 < Jz < −Jy , which corresponds to η = −0.5. See
Eqs. (89)–(92) for the spin configurations. The two states on the
bottom right correspond to A2⊥. Each of the A2⊥ states can be
“paired” with three other states, having one spin in common with the
same orientation; see, for example, the violet spin of the two colored
triangles. On the other hand, none of the six other states can be paired
together. Hence the Z8 degeneracy is divisible between two exclusive
groups of four states, centered around each of the A2⊥ states.

2. Stripe order

Figure 8 provides a visual representation of the Z8 ground
states for an arbitrary value of coupling parameters at the fron-
tier between A2⊥ and Emin. Even if the ground state is eightfold
degenerate, each sublattice (red, blue or violet spins) only has
six possible spin orientations. Each of the spin orientations of a
A2⊥ state is also present in one of the other six states, creating
pairs of states (Fig. 8). The consequence of this pairing is a
subextensive ground-state entropy, as explained below.

Imagine a horizontal line of A2⊥ states on the kagome
lattice, such as the bottom line of magenta triangles of Fig. 9.
The pairing allows for the line of triangles just above to be
one of two kinds: either the same A2⊥ state, or the paired state
sharing the same spin; see, e.g., the two coloured triangles in
Fig. 8. Repeating the procedure gives rise to a stripe order,
where each stripe can be of arbitrary width (Fig. 9). By
choosing another pair of states in Fig. 8, the stripes can be
made diagonal. It is not possible to terminate a stripe in the
bulk, because the non-A2⊥ states are paired with one, and only

FIG. 9. Example of a stripe order emerging on the frontier
between Emin and A2⊥ irreps. The magenta and cyan triangles
correspond, for example, to the two coloured states of Fig. 8. Spins
on the “B” lines are long-range ordered all over the lattice. As for
spins on the “A” lines, they are long-range ordered in one direction
(horizontal) but disordered in the other direction (vertical) where they
can randomly take one out of two possible orientations. By symmetry,
the stripes can also be diagonal.
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FIG. 10. In the XYZDM model, when the Emin ∈ {Eα,Eβ} irrep meets one of the one-dimensional antiferromagnetic irreps, A1 or A2⊥,
there is a local Z8 degeneracy for each triangle [Fig. 8]. For special values of parameters on this frontier, there is an enhancement of the
symmetry, where every ground state shares a common spin orientation with three other ground states. The four different sets of high-symmetry
ground states are displayed here, together with their parameter region. Injecting the corresponding value of η in Eqs. (89)–(92) and (93)–(96)
gives the expression of the spin configurations. The values of η are uniquely determined by the coupling parameters {Jx,Jy,Jz,D} [Eqs.(57)
and (87)]. The two states on the right correspond to either A1 or A2⊥.

one, other state. The resulting degeneracy of this ground state
is ∼2L for a system of open boundaries and linear size L.
Since the ground-state configurations are not linked by an
exact symmetry of the Hamiltonian, thermal fluctuations may
lift the degeneracy between them at finite temperature, via an
order-by-disorder mechanism.

3. Crossing stripes for high-symmetry Hamiltonians

Along the frontier between Emin and (A1 or A2⊥), η varies
continuously [Eq. (87)], allowing for a smooth deformation
of the ground-state configurations given in Eqs. (89)–(92) and
(93)–(96). For example, in the cyan triangle of Fig. 8, the
orientation of the red and blue spins rotates in the kagome plane
when varying η, while the violet spin remains fixed. It means
that for specific values of η, these rotating spins can overlap
with each other. This overlap provides more possibilities to

connect the triangles next to each other on the kagome lattice,
and thus a higher entropy. There are four specific values of
η with such high symmetry, two at the frontier with A1, and
another two at the frontier with A2⊥:

η∗ = ±(2 −
√

3)±1. (97)

The opposite values of η come from the symmetry between A1

and A2⊥ (see Sec. V A). When combined with the symmetry
between Eα and Eβ [Eq. (87)], one gets the reciprocal values
of η∗ in Eq. (97). A word of caution, though. Considering
the spin configurations of Eqs. (89)–(92) and (93)–(96),
one can find other ensemble of states of high symmetry,
corresponding to other values of η. The corresponding values
of {Jx,Jy,Jz,D}, however, do not satisfy the constraint of
Eq. (85) and the spin configurations do not correspond to
ground-state configurations.
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FIG. 11. Example of a configuration with crossing stripes, a
possible ground state for the parameters given in Eqs. (98) and (99).
Each color corresponds to one of the eight degenerate ground states
of Fig. 10. The grey lines are a guide to the eye for the position of the
stripes. For each of the eight colors, the three edges of the triangle
are covered by stripes in a different way.

The spin configurations for the different values of η∗ are
given in Fig. 10. These configurations are ground states of the
XYZDM model for the following range of parameters:⎧⎪⎪⎨

⎪⎪⎩
Jx = − 2−√

3
2+√

3
Jy

D = −(2 − √
3)Jy

− 2|Jy |
2+√

3
< Jz <

4|Jy |
2+√

3
,

(98)

⎧⎪⎪⎨
⎪⎪⎩

Jy = − 2−√
3

2+√
3
Jx

D = −(2 − √
3)Jx

− 2|Jx |
2+√

3
< Jz <

4|Jx |
2+√

3
.

(99)

For any given sublattice, there are only four possible spin
orientations, connected between each other by a π/2 rotation.
Any of these four orientations are shared between two different
states. In this regard, the A1 and A2⊥ states are not particular
anymore. Every ground state shares a common spin orientation
with three other ground states. Hence the stripe order of Fig. 9
remains a possible paving of the lattice. However, in addition,
diagonal stripes can now coexist, because crossing triangles
between two or three stripes do not cost any energy (Fig. 11);
they can be introduced while keeping all triangles within the
eightfold degenerate set of ground states.

Even if it is not as straightforward as for the simple stripe
order of Fig. 9, the number of configurations �cs in the
crossing-stripe ground state remains exactly countable. Let
us consider a kagome lattice whose borders have a tetragonal
shape (as represented in Figs. 9 and 11, for example) and
open-boundary conditions. There are Lx triangles in the
horizontal direction and Ly lines of triangles in the vertical
direction (Fig. 12). Please note that our choice to consider a
tetragonal shape of the kagome lattice differentiates Lx from
Ly . The counting argument goes as follows (Fig. 12).

Step 1. Once the first triangle is chosen among the eight
possible ground states, there are two possible choices for

FIG. 12. Five-step illustration on how to calculate the entropy of
the ensemble of crossing-stripe configurations. For the sake of clarity,
the size of the lattice on step (5) is Lx = 16 and Ly = 2, which gives
N� = LxLy = 32 triangles.

each of the remaining triangles on the line: ω1 = 8×2Lx−1 =
4×2Lx . Step 2. For any spin configuration of the bottom
line of triangles, a simple exhaustive counting of possibilities
shows that there are always two possible choices to add the
above three triangles. This can be understood as follows. With
the orientation of the bottom spins fixed, there are 2×2 = 4
possibilities for the two triangles just above the bottom line;
to connect these two triangles via the top central triangle
eliminates two choices, which leaves ω2 = 2. Step 3. The
addition of the next two triangles is uniquely determined:
ω3 = 1. Step 4. By repeating step 3 until (almost) the end of
the line, one gets ω4 = 1. Step 5. The last remaining triangle
is only constrained by one spin, which always leads to two
possible choices: ω5 = 2.

Repeating steps 2–5 for each additional line of triangles in
the vertical direction gives the overall number of configura-
tions

�cs = (4 × 2Lx ) 4Ly−1 = 2Lx+2Ly , (100)

with a subextensive ground-state entropy. The same result can
be obtained by counting how many stripes can be made on the
lattice (see the grey lines in Fig. 11). This is because for a given
triangle, there are eight possible ways to place stripes (or not)
around its three edges; it corresponds to the Z8 degeneracy
of the ground states. This proves that any configuration can
be obtained from any other configuration by adding a finite
number of stripes on the lattice.

4. At the frontier with out-of-plane ferromagnetism:
Addition of the A2z irrep

As can be deduced from Eqs. (98) and (99), when Jz =
− 2|Jy |

2+√
3

or Jz = − 2|Jx |
2+√

3
, we reach models whose ground

states are described by the Emin ⊕ A2z ⊕ (A1 or A2⊥) irreps.
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Since the A2z irrep carries out-of-plane ferromagnetism, the
consequences are relatively straightforward.

In the ground state, the in-plane spin components are de-
scribed by the Z8 degeneracy of Eqs. (89)–(92) and (93)–(96),
while the out-of-plane components take the same value
Sz

i=1,3 = Sz ∈ [−1 : +1], the ratio between the two being
given by normalization |S⊥

i |2 + (Sz
i )2 = 1,∀i = 0,1,2.

F. Tricolour spin liquid with local O(2)×Z2 invariance:
Emin ⊕ Ez

1. Spin configurations

Let us turn our attention to what happens when the Emin and
Ez regions meet. Both irreps correspond to states whose spins
are not normalized in length. However, luckily, linear combi-
nations of the two provide a manifold of physical states with
normalized spins. The procedure is the same as what has been
done so far. Using the general expressions of the spins given in
Eqs. (45)–(47), one imposes that mI∈{A1,A2z,A2⊥,Emax} = 0 and
|Si=0,1,2|2 = 1. The spin configurations respecting these con-
ditions are as follows [where η has been defined in Eq. (87)]:

η > 0 : S0 =

⎛
⎜⎜⎜⎝

(η+2) cos(s)−√
3η sin(s)

2(1+η)

−
√

3η cos(s)+(η−2) sin(s)
2(1+η)

± 2
√

η

1+η
sin

(
s + π

6

)

⎞
⎟⎟⎟⎠,

S1 =

⎛
⎜⎜⎜⎝

(η+2) cos(s)+√
3η sin(s)

2(1+η)√
3η cos(s)−(η−2) sin(s)

2(1+η)

∓ 2
√

η

1+η
sin

(
s − π

6

)

⎞
⎟⎟⎟⎠, (101)

S2 =

⎛
⎜⎜⎝

1−η

1+η
cos(s)

sin(s)

±−2
√

η

1+η
cos(s)

⎞
⎟⎟⎠;

η < 0 : S0 =

⎛
⎜⎜⎜⎝

(η+2) cos(s)−√
3η sin(s)

2(1−η)

−
√

3η cos(s)+(η−2) sin(s)
2(1−η)

± 2
√−η

1−η
cos

(
s + π

6

)

⎞
⎟⎟⎟⎠,

S1 =

⎛
⎜⎜⎜⎝

(η+2) cos(s)+√
3η sin(s)

2(1−η)√
3η cos(s)−(η−2) sin(s)

2(1−η)

∓ 2
√−η

1−η
cos

(
s − π

6

)

⎞
⎟⎟⎟⎠, (102)

S2 =

⎛
⎜⎜⎝

cos(s)
1+η

1−η
sin(s)

± 2
√−η

1−η
sin(s)

⎞
⎟⎟⎠;

where s ∈ [0 : 2π ] is a O(2) degree of freedom. For a single
triangle, the ground-state symmetry is O(2)×Z2. While the

original O(2) invariance of the XXZDM model remains
intrinsically broken, a “deformed” in-plane O(2) invariance is
recovered in the ground state by allowing variations of the Sz

components. It is deformed because the Sx and Sy components
are equivalent only up to a prefactor which is function of η;
Sx and Sy form an ellipsoid upon varying s. Since there is
no coupling between in-plane and out-of-plane components,
the time-reversal symmetry can be further applied to the Sz

components alone [see the ± terms in Eqs. (101) and (102)],
giving rise to the additional Z2 degeneracy.

2. Long range order with stripes (η �= ±1)

For any set of coupling parameters {Jx,Jy,Jz,D} there
corresponds a given value of η [Eqs. (57) and (87)], which gives
the spin configurations of Eqs. (101) and (102) for positive and
negative η, respectively. Let us consider the spin S2 without
loss of generality. Following the same argument as in the
previous sections, in order to have two neighboring triangles in
a different ground state—i.e., something different from trivial
q = 0 order—one needs to find different ground states sharing
at least one spin in common. As mentioned above, the in-plane
spin components form an ellipsoid Eη when varying s. Since
the function

ℵη : [0 : 2π ] −→ Eη

s �−→
{( 1−η

1+η
cos(s), sin(s)

)
if η > 0(

cos(s), 1+η

1−η
sin(s)

)
if η < 0

(103)

is bijective for η 	= ±1, it means it is not possible to use the
O(2) degeneracy to find two different states with at least one
spin in common. Before turning our attention to the special
cases η = ±1, we shall first consider the other,Z2, degeneracy.

If all Sz
i=0,1,2 components are finite, then the ground state

is uniquely defined. However, if one of them is zero—e.g.,
Sz

2 = 0 for s = ±π/2 and η > 0—then the Z2 degeneracy
ensures two different states with one spin in common, namely
S2 = (0,1,0). It is not possible to have two spins in common
between different states in this context.

What kind of degeneracy do we obtain? Since s is fixed, it
means the in-plane spin components are long-range ordered,
described by a q = 0 wave vector. The S2 spin is actually fully
ordered since its Sz component is nil. As for Sz

0 and Sz
1, they

have Z2 degeneracy but as soon as, say, a Sz
0 component is

chosen, its Sz
1 neighbor is fixed, and so on along a line of 0,

1, 0, 1,... nearest neighbors. Since the neighboring line 0, 1,
0, 1,... is separated by a row of S2 spins, one gets the same
kind of stripe order as depicted in Fig. 9 but where the one-
dimensional disordered degree of freedom is the Sz component
of the 0 and 1 sublattices. By choosing different values of s,
e.g., {−π

6 , 5π
6 } or {π

6 , 7π
6 } for η > 0, the stripes can be made

diagonal.
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3. Tricolour spin liquids (η = ±1)

For η = ±1, the function ℵη of Eq. (103) is not bijective anymore, but remains surjective. The O(2) degeneracy can now be
exploited to allow more nontrivial tilings of the lattice. The spin configurations become

�±
η=+1(s) =

⎧⎪⎨
⎪⎩S0 =

⎛
⎜⎝

cos
(−π

6

)
cos

(
s + π

6

)
sin

(−π
6

)
cos

(
s + π

6

)
± sin

(
s + π

6

)
⎞
⎟⎠, S1 =

⎛
⎜⎝

cos
(

π
6

)
cos

(
s − π

6

)
sin

(
π
6

)
cos

(
s − π

6

)
∓ sin

(
s − π

6

)
⎞
⎟⎠, S2 =

⎛
⎜⎝

0

sin(s)

∓ cos(s)

⎞
⎟⎠

⎫⎪⎬
⎪⎭, (104)

�±
η=−1(s) =

⎧⎪⎨
⎪⎩S0 =

⎛
⎜⎝

sin
(

π
6

)
sin

(
s + π

6

)
cos

(
π
6

)
sin

(
s + π

6

)
± cos

(
s + π

6

)
⎞
⎟⎠, S1 =

⎛
⎜⎝

sin
(−π

6

)
sin

(
s − π

6

)
cos

(−π
6

)
sin

(
s − π

6

)
∓ cos

(
s − π

6

)
⎞
⎟⎠, S2 =

⎛
⎜⎝

cos(s)

0

± sin(s)

⎞
⎟⎠

⎫⎪⎬
⎪⎭, (105)

as illustrated in Fig. 13. In order to determine how to connect
ground-state configurations next to each other (via at least one
spin in common), the idea is to (i) randomly choose a ground
state labeled � and a sublattice k = {0,1,2}; (ii) flip the sign of
the Sz components thanks to the Z2 degeneracy: (iii) use the
O(2) degeneracy parametrized by s to recover the same spin
on sublattice k as in the ground state �; this transformation is
unique and gives a new ground state � + 1. Let us randomly
choose a new sublattice k′ 	= k and (iv) repeat steps (ii) and
(iii) until a closed set is obtained, i.e., that further iterations
reproduce only ground states of the set.

The above procedure gives the following sextets of
spin configurations [�±

± (s) has been defined in Eqs. (104)
and (105)]:

η = +1 :

⎧⎪⎨
⎪⎩

�±
+1(s), �∓

+1(π − s)

�±
+1

(
2π
3 + s

)
, �∓

+1

(
5π
3 − s

)
�±

+1

(
4π
3 + s

)
, �∓

+1

(
7π
3 − s

)
⎫⎪⎬
⎪⎭, (106)

η = −1 :

⎧⎪⎨
⎪⎩

�±
−1(s), �∓

−1(−s)

�±
−1

(
2π
3 + s

)
, �∓

−1

(
2π
3 − s

)
�±

−1

(
4π
3 + s

)
, �∓

−1

(
4π
3 − s

)
⎫⎪⎬
⎪⎭ (107)

for any value of s ∈ [0 : 2π/3[. There is no need to consider
further values of s since there is a 2π/3 periodicity in the
sextets. Remarkably, for each sextet, when the spins on each
sublattice k are expressed in the local bases Bk=0,1,2 (Fig. 3),
they correspond to only three different orientations. This
means that each sextet can be mapped onto a tricolouring of the
triangle, as illustrated in Fig. 14 for s = π . Such tricolouring

FIG. 13. Projection (in green) of the ground-state configurations
in the kagome plane, at the frontier between Emin and Ez, for η = ±1
[Eqs. (104) and (105)]. When expressed in the local bases Bk=0,1,2 of
Fig. 3, the O(2) invariance takes the form of a circle in spin space
which lies entirely in the local (y,z)k=0,1,2 (η = +1, left) or (x,z)k=0,1,2

(η = −1, right) planes.

paving is possible on the kagome lattice and bears a countable
and extensive entropy [101]. It is known to describe the ground
state of the XXZ [76], and equivalent XXZ± [52] Hamiltonians
(Sec. IV B).

However, the tricolouring paving of the present ground state
carries an additional property. Since the spins are not coplanar,
it means that the ground states may carry a finite scalar
chirality. Following the definition of Eq. (73), one obtains

κ[�±
+1(s)] = ∓3

√
3

8
cos(3s), (108)

κ[�±
−1(s)] = ∓3

√
3

8
sin(3s). (109)

One can easily check that all ground states belonging to a
given sextet carry the same scalar chirality. This means that
the models at the frontier between the Ez and Emin irreps for
η = ±1 possess an extensively degenerate ground state with a
uniform scalar chirality; this is the classical analog of a chiral
spin liquid.

Please note that in general, for a given tricolour problem
on kagome, if each color were to correspond to the same
spin orientation expressed in a global frame, then it is not
possible to get a finite scalar chirality after statistical average.
The intrinsic property of a tricolouring problem is that, for
each triangle, permuting any pair of spins remains a valid
configuration. Since this permutation reverses the sign of the
scalar chirality, averaging over the ensemble of tricolour states
necessarily gives zero scalar chirality. Hence a necessary, but
not sufficient, condition for chiral tricolour spin liquids is for
the colouring to correspond to the same spin orientations in
different local frames.

To conclude this section, one needs to provide the
Hamiltonians—i.e., the values of {Jx,Jy,Jz,D}—supporting
such classical chiral spin liquids as their ground states. Using
Eqs. (57) and (87) for η = ±1, one obtains

D =
√

3

2
(Jx + Jy)

Jz = 1

2
(−3Jx − Jy) (110)

Jx < Jy < −5

7
Jx,
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FIG. 14. Sextets of ground states at the frontier between Emin and Ez for η = +1 (top) and η = −1 (bottom) [Eqs. (104)–(107)]. Each spin
orientation appears in two different ground states. The paving of the kagome lattice by these six states is equivalent to a tricolouring problem,
and the spins have been coloured accordingly. Here s has been arbitrarily fixed to a value of π .

D =
√

3

2
(Jx + Jy)

Jz = 1

2
(−3Jy − Jx) (111)

Jy < Jx < −5

7
Jy.

When Jx = Jy < 0, one recovers a special point of the
XXZDM model, equivalent of the Heisenberg antiferromag-
net, where the EFM, EAF, and Ez states are all degenerate
in the ground state (see Table II). On the other hand, when
Jy = − 5

7Jx > 0 or Jx = − 5
7Jy > 0, the Emin and Ez irreps

meet, respectively, the A1 and A2⊥ irreps in the ground state.
Such models are expected to possess a very high degeneracy at
zero temperature, but the exact, and complete, determination
of their ground-state manifolds becomes challenging.

VI. COMPARISON BETWEEN KAGOME
AND PYROCHLORE

When compared to pyrochlores, the emergence of states
with non-normalized spins is rather remarkable. When the
lowest eigenvalue

λmin = min
{
λA1,λA2,z,λA2,⊥,λE,α,λE,β,λE,z

}
(112)

is not degenerate and corresponds to Eα, Eβ , or Ez, the ground
state necessarily includes different kinds of magnetic order. In
other words, more than one order parameter, as defined in
Eqs. (38)–(43), is nonzero.

A similar irrep decomposition to the one done in this paper
has been made on the pyrochlore lattice [12] for the generic
nearest-neighbor Hamiltonian [3] (see Fig. 15). In pyrochlores,
all irreps correspond to configurations with normalized spins.
Unless the lowest eigenvalue λmin is degenerate, there is no
coexistence of magnetic order in the classical ground state.
This is a strong qualitative difference between two of the most
studied lattices in frustrated magnetism.

One should understand that the presence of the Eα,β,z

irreps on kagome is not an artefact of the method. For
both kagome and pyrochlore, the Hamiltonians have been
derived solely based on the symmetries of the lattice, and
then diagonalized for the minimal unit cell. The resulting

eigenbasis corresponds to physical spin configurations on
pyrochlore, while on kagome it does not. This can be intuitively
rationalized as follows, where the irreps and basis vectors will
be labeled by “pyro” or “kag” for clarity.

The pyrochlore lattice possesses a cubic symmetry which
means that the x, y, and z axes are equivalent. However, for
each sublattice, there is a given easy axis, which defines a
local Sz components (Fig. 15 and Appendix A). This easy
axis on pyrochlore plays a role similar to the global z axis
on kagome. For example, the “ferromagnetic” state where
Sz = 1 for all spins transforms like the A2 irrep on both lattices
[12]. It corresponds to the “all in all out” state on pyrochlore
[Fig. 15(d)]. One needs to keep in mind that for pyrochlore,
Sz is defined in a local frame; a ferromagnetic state expressed
in the local frame is actually antiferromagnetic in the global
one. On kagome (respectively, pyrochlore), the only other
basis vector with Sz components is E

kag
z [respectively, T

pyro
1,ice ,

see Fig. 15(h)]. These basis vectors are “antiferromagnetic”
in the sense that

∑
i S

z
i = 0. This is a necessity because the

“ferromagnetic” contribution has already been accounted for
in the A2 basis vectors. Hence the non-normalized spins of
E

kag
z come from the trivial fact that the sum of three Ising

degrees of freedom cannot be zero. This is, of course, possible
for four spins on a tetrahedron, which is why all spins in the
T

pyro
1,ice basis vector are normalized.

Here we have an interesting analogy between the E
kag
z phase

on kagome and the spin-ice physics supported by the T
pyro

1,ice
irrep. The analogy can be made quantitative when applied to
a special case of the generic nearest-neighbor Hamiltonian on
pyrochlore [3,4,66,103,104,107]:

HQSI =
∑
〈ij〉

Jzz Sz
i S

z
j − J±(S+

i S−
j + S−

i S+
j )

+ J±±[γijS
+
i S+

j + γ ∗
ij S

−
i S−

j ], (113)

where the classical Heisenberg spins are expressed in their
local frames, with S± = Sx ± ıSy , and γij are complex phase
factors; see Appendix A for the definitions of the local frames
and γij . The classical ground states of Hamiltonian (113)
are known [12,56,66,102,103] and reproduced in Figs. 15(b)
and 15(c). This phase diagram on pyrochlore displays the
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FIG. 15. (a) Pyrochlore lattice whose minimal unit cell is a tetrahedron, made of four sublattices. Each sublattice possesses an easy axis
connecting the center of the two neighboring tetrahedra. The spin component along this easy axis is noted Sz. [(b) and (c)] Ground states
of Hamiltonian (113) for classical Heisenberg spins assuming a negative (b) and positive (c) value of Jzz. (b) is derived from the results of
Ref. [12], together with the irrep decomposition illustrated in (d)–(h). (c) has been obtained in Ref. [102], while semiclassical and quantum
mean field versions thereof were derived in Refs. [66,103] and Ref. [104], respectively. (d) “all in all out” states transforming like the A

pyro
2 irrep.

(e) �5 states [105] transforming like the Epyro irrep. (f) Palmer-Chalker states [106] transforming like the T
pyro

2 irrep. (g) Canted, easy plane,
ferromagnetic states transforming like the T

pyro
1 irrep. We label the basis vector corresponding to this state as T

pyro
1,pl . (h) Spin-ice state, with two

spins pointing inside and two pointing outside the tetrahedron, which transforms like the T
pyro

1 irrep. We label the basis vector corresponding to
this state as T

pyro
1,ice . Spins configurations in panels (d,h) and (e,g,h) lie respectively along their local easy axes and within their local easy planes.

All results in this figure can be found in Refs. [12,56,66,102,103].

same form as the XXZDM model on kagome [Fig. 5(c)],
by replacing J±± with the Dzyaloshinskii-Moriya coupling
D. On their respective models, the T

pyro
1,ice and E

kag
z irreps

have minimal eigenvalue over a triangular region, surrounded
by three long-range ordered phases whose spins lie in their
easy or kagome planes. For Jzz negative, the same description
holds with the A2 irreps sitting in the middle. One difference
though is that on kagome, the three surrounding “in-plane”
irreps are two dimensional, while on pyrochlore they are
either two-dimensional (Epyro) or three-dimensional (T pyro

2
and T

pyro
1,pl ). It means that the threefold symmetry of the phase

diagram on kagome (see Eq. (75) and Ref. [52]) is only twofold
on pyrochlore:

J±± ←→ −J±± and T
pyro

2 ←→ T
pyro

1,pl . (114)

with an isosceles, rather than equilateral, triangular region in
the middle of the phase diagrams of Figs. 15(b) and 15(c).

From this point of view, the Ising antiferromagnet, residing
at the center of the E

kag
z white triangle of Fig. 5(c), is the

kagome analog of spin ice. The reason why the physics of
these two models is qualitatively different largely stems from
the non-normalized spins in the E

kag
z irrep. The analogies,

and differences, between the E
kag
z and T

pyro
1,ice irreps are a

vivid illustration of what happens between the kagome and
pyrochlore lattices on a broader scale.

Indeed, our kagome/pyrochlore comparison has so far been
restricted to the XXZDM model and the Hamiltonian of
Eq. (113). As discussed in this paper, the kagome symmetry
allows for the XXZDM model to lose its in-plane O(2)

invariance and to become the XYZDM model. An important
consequence is that the Hamiltonian diagonalization then
requires the mixing of the E

kag
FM and E

kag
AF irreps into the non-

normalized E
kag
α and E

kag
β eigenstates [Eq. (56)]. Similarly, the

pyrochlore symmetry allows for a more generic Hamiltonian
than the one of Eq. (113) [3]. In pyrochlore, the additional
interaction takes the form of a coupling between the easy-plane
and easy-axis spin components, Jz± [4]. This coupling also
induces a mixing between the states transforming according to
the T

pyro
1 irrep, namely, T pyro

1,ice and T
pyro

1,pl . However, the resulting
eigenvectors remain physical in the sense that all spins are
normalized [12].

On pyrochlore, the even and larger number of spins in
the minimal unit cell makes it easier (i) to accommodate
frustration and (ii) to support a variety of classical spin liquids
[12,102,108–111] thanks to linear combination of ground-state
irreps. This propensity of the pyrochlore lattice for spin liquids
is consistent with the Moessner-Chalker criterion for O(n)
antiferromagnets [109] (see Appendix B).

On kagome, the odd and smaller number of spins in
the minimal unit cell is responsible for extended regions of
parameter space where multiple types of order have to co-exist
in the ground state. Disorder is not necessarily less favored
on kagome, since the Mermin-Wagner-Hohenberg theorem
prevents finite-temperature symmetry breaking for a variety
of high-symmetry models with Goldstone modes. However,
the presence of the Eα, Eβ , and Ez irreps induces exotic
ordered and disordered phases, as exemplified at the frontier
of these regions in Sec. V. Colloquially speaking, frustration
on kagome is more “pathological” than on pyrochlore.
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VII. CONCLUSION

The generic nearest-neighbor Hamiltonian allowed by the
symmetry of the kagome lattice, where the kagome plane
is a mirror plane, is the XYZ model with Dzyaloshinskii-
Moriya interactions [Eqs. (21) and (23)], described by four
coupling parameters (Jx,Jy,Jz,D). The XYZ interactions are
properly defined in a set of local bases (Fig. 3); a simple
XYZ Hamiltonian, where the spins would be expressed in
the same global basis, is forbidden by kagome symmetry
[Eqs. (18)–(20)]. As for the Dzyaloshinskii-Moriya vector D,
it points out of plane [57].

Using a decomposition in irreducible representations, the
XYZDM Hamiltonian for classical Heisenberg spins can be
diagonalized for each triangle. It is quadratic in terms of the
order parameters [Eq. (58)], which allows for a systematic
determination of the ground state for a broad region of
parameter space (Jx,Jy,Jz,D). The picture that emerges is
a connected map of ordered phases and classical spin liquids
(Fig. 5 and Table II). In particular, in the XXZ model with
Dzyaloshinskii-Moriya, the irrep decomposition sheds a new
light on the mapping between three different spin liquids
observed in Ref. [52]; the spin-liquids ground states are
equivalent up to a permutation of their irreps (Table II). The
EAF and A irreps responsible for the tricolouring spin liquids
persist in the ground state of the Ez region (Sec. IV F 2). This
coexistence of phases at the classical level might play a role
in the stability of the quantum spin liquid along the XXZ line
for quantum sins S = 1/2 [49,50,81].

The XYZDM model is “asymmetric” with respect to spin
chirality (Sec. V B). This enables to energetically differentiate
the two states with negative chirality (κz = −1), namely, A1

and A2⊥. At finite temperature, this is expected to change
the universality class of the phase transition into these ordered
states to Ising. This chiral asymmetry also mixes the EAF states
with positive chirality (κz = +1) together with the in-plane
ferromagnetic states, EFM. This mixing produces new forms
of order and spin liquids. It is possible to stabilize an eightfold
degenerate ground state at the level of each triangle [see
Eqs. (89)–(96), Figs. 8 and 10]. This local Z8 degeneracy
leads to a global subextensive entropy and paves the lattice to
form stripe orders, with or without crossings (Figs. 9 and 11).
In addition to subextensive stripe order, there exists a range
of coupling parameters [Eqs. (110) and (111)] whose ground
state corresponds to a tricolouring of the kagome lattice
(Fig. 14). The colouring corresponds to a different spin
orientation depending on the sublattice, which allows for
this extensively degenerate ensemble of ground states to
bear a global finite scalar chirality. In other words, this
family of models supports a classical (tricolour) chiral spin
liquid.

To conclude, in Sec. VI, we have compared the generic
models on two of the most studied frustrated lattices: kagome
and pyrochlore. Despite striking analogies on their phase
diagrams [see Figs. 5 and 15], the two models differ on
the qualitative nature of their irreps, since eigenstates of the
generic model always have normalized spins on pyrochlore,
but not on kagome—Eα, Eβ , and Ez irreps. As a consequence,
kagome materials can naturally support low-temperature
phases with multiple kinds of orders, even without quantum

superposition of states or formations of domains. Disordered
magnetic textures can also coexist with long-range order,
and be responsible for persistent dynamics below ordering
transitions.

In this paper, we have provided a detailed exploration of
exact results for the generic kagome model with classical
Heisenberg spins. We believe this opens several directions
of investigation. For example, we have not looked in detail
inside the pathological Eα, Eβ , and Ez irreps, nor have we
studied the more generic Hamiltonian where kagome plane
symmetry is broken [Eqs. (12)–(14)]. These regions and
Hamiltonians very probably hide a richness of exotic phases
and unconventional dynamics, where coexistence between
partial order and disorder might be the norm rather than the
exception.

Such coexistence is reminiscent of the partial order ob-
served in Vesignieite [112] and purified Edwardsite [113] com-
pounds. While lattice distortion has been suggested to be the
source of partial order in the latter material, nearest-neighbor
anisotropic coupling—via in-plane Dy Dzyaloshinskii-Moriya
interactions—might be responsible for the observed competi-
tion between order and disorder in Vesignieite [43,112,114].
The two-step ordering observed in Vesignieite [114] would
also be consistent with the coexistence of different kinds
of order. More generally, rare-earth-based materials such as
tripod kagome [34–37] offer the strong spin-orbit coupling
necessary for highly anisotropic interactions. For comparison
to experiments, a study of the finite-temperature proper-
ties of the generic XYZDM model would be helpful. The
melting of three-sublattice order is for example a famously
complex mechanism [115]. In light of the diverse regions
of (sub-)extensive degeneracy, order-by-disorder, multistep
ordering and Berezinsky-Kosterlitz-Thouless transitions are
to be expected.

And of course, a large portion of the parameter space
forming the XYZDM model is an unexplored territory with
quantum spins. The anisotropy of the XYZDM model is also a
perfect ingredient for the emergence of chiral phases, and the
known results for the XXZ quantum spin liquids penetrating
the Ez region [27,49,50,81–83] makes it exciting to study
how quantum fluctuations will mix states that are already
coexisting at the classical level [80]. More generally, we hope
that the present work will serve as a classical foundation to
further connect the network of quantum spin liquids residing
in higher parameter spaces, with, e.g., second and third nearest
neighbors.

On a more academic level, the comparison between
the kagome and pyrochlore lattices raises the question of
what happens for the equivalent lattice in four dimensions,
made of corner-sharing pentachorons—the four-dimensional
analogues of tetrahedra in 3D and triangles in 2D. In this
case, the odd number of spins in the minimal unit cell (q = 5)
comes together with a high number of degrees of freedom
to support the stability of disordered phases in the ground
states.

Note added: After submission of this paper, the authors
were made aware of an independent work by Maksymenko
et al. [116] where the four-parameter Hamiltonian of
Eqs. (18)–(20) is also given, albeit with a different notation.
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APPENDIX A: DEFINITIONS OF LOCAL COORDINATE
FRAMES FOR THE PYROCHLORE LATTICE

With respect to the global cubic coordinate frame, the
positions of the four spins in a tetrahedron S0, S1, S2, S3

are

r0 = (1,1,1), r1 = (1,−1,−1),

r2 = (−1,1,−1), r3 = (−1,−1,1). (A1)

For each sublattice, the local easy axes are

zlocal
0 = 1√

3
(1,1,1), zlocal

1 = 1√
3

(1,−1,−1),

zlocal
2 = 1√

3
(−1,1,−1), zlocal

3 = 1√
3

(−1,−1,1), (A2)

while the easy planes are defined by the local x and y axes:

xlocal
0 = 1√

6
(−2,1,1), xlocal

1 = 1√
6

(−2,−1,−1),

xlocal
2 = 1√

6
(2,1,−1), xlocal

3 = 1√
6

(2,−1,1), (A3)

ylocal
0 = 1√

2
(0,−1,1), ylocal

1 = 1√
2

(0,1,−1),

ylocal
2 = 1√

2
(0,−1,−1), ylocal

3 = 1√
2

(0,1,1). (A4)

These local coordinate frames are responsible for complex
phase factors in the Hamiltonian of Eq. (113) [4,73], defined
by a 4×4 matrix:

γ =

⎛
⎜⎜⎝

0 1 w w2

1 0 w2 w

w w2 0 1
w2 w 1 0

⎞
⎟⎟⎠, (A5)

where w = eı2π/3.

APPENDIX B: MOESSNER-CHALKER CRITERION

The Moessner-Chalker criterion provides a measure of
frustration strength for a family of antiferromagnetic O(n)
models, using a Maxwell counting argument [109]. For a
corner-sharing lattice, made of N units (here triangles or
tetrahedra) containing q spins each, the number of ground-state
degrees of freedom is DM = N [q(n − 1)/2 − n].

This criterion reproduces the extensive degeneracy of the
Heisenberg pyrochlore (q = 4,n = 3) and brings the XY
pyrochlore (q = 4,n = 2), Heisenberg hyperkagome (q = 3,

n = 3) and Heisenberg kagome (q = 3,n = 3) to a marginal
value, DM = 0 [109]. This marginal value accounts for the
fact that, despite an extensively degenerate ground state,
order-by-disorder induces a finite-temperature transition in
the two former three-dimensional models [22,117], while
Mermin-Wagner-Hohenberg theorem pushes this transition to
zero temperature in the two-dimensional Heisenberg kagome
antiferromagnet [21–23].
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