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We consider layered decorated honeycomb lattices at two-thirds filling, as realized in some trinuclear
organometallic complexes. Localized S = 1 moments with a single-spin anisotropy emerge from the interplay of
Coulomb repulsion and spin molecular-orbit coupling (SMOC). Magnetic anisotropies with bond-dependent
exchange couplings occur in the honeycomb layers when the direct intracluster exchange and the spin
molecular-orbital coupling are both present. We find that the effective spin exchange model within the layers is
an XXZ + 120◦ honeycomb quantum compass model. The intrinsic nonspherical symmetry of the multinuclear
complexes leads to very different transverse and longitudinal spin molecular-orbital couplings, which greatly
enhances the single-spin and exchange coupling anisotropies. The interlayer coupling is described by an XXZ
model with anisotropic biquadratic terms. As the correlation strength increases the system becomes increasingly
one-dimensional. Thus, if the ratio of SMOC to the interlayer hopping is small this stabilizes the Haldane phase.
However, as the ratio increases there is a quantum phase transition to the topologically trivial “D phase.” We also
predict a quantum phase transition from a Haldane phase to a magnetically ordered phase at sufficiently strong
external magnetic fields.
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I. INTRODUCTION

The interplay of strong Coulomb interaction and spin-orbit
coupling (SOC) can lead to emergent quantum phases [1]
and new phenomena which remain poorly understood. The
conventional Mott transition can be strongly affected by SOC
leading to a topological Mott insulator with bulk charge gap but
fractionalized surface states carrying spin but no charge [2].
Such states may be realized in Ir-based transition metal oxides
such as Sr2IrO4. In contrast to conventional Mott insulators,
the spin exchange interactions arising in Mott insulators
with SOC are typically anisotropic with quantum compass
[3] instead of the conventional Heisenberg interactions. A
possible realization of a quantum compass model on a
hexagonal lattice, i.e., a Heisenberg-Kitaev model [4–6], may
be found in Na2IrO3 and Li2IrO3 materials in which SOC
removes the orbital degeneracy of the 5d electrons leading to
effective S = 1/2 pseudospins. Interestingly, the Kitaev model
is exactly solvable: It sustains a spin liquid ground state whose
low-energy excitations are Majorana fermions [7]. In other
iridates with strong SOC such as Sr2IrO4, an antisymmetric
Dzyaloshinski-Moriya (DM) interaction arises associated with
the lack of an inversion symmetry center.

There are several strongly correlated molecular materials
in which spin-orbit coupling is relevant including, metal-
organic frameworks [8], layered organic salts [9,10], and
multinuclear coordinated organometallic complexes [11–15].
The elementary building blocks of multinuclear complexes
are molecular clusters containing transition metal ions whose
d orbitals are hybridized with molecular orbitals where each of
the hybrids is typically described by a single Wannier orbital
[16]. The coupling of the spin with the electron currents around

the Wannier orbitals describing each molecule gives rise to a
spin molecular-orbital coupling (SMOC) [12,13].

A typical multinuclear complex is Mo3S7(dmit)3. Here the
honeycomb networks of Mo3S7(dmit)3 molecules are stacked
on top of each other along the c direction of the crystal.
Mo3S7(dmit)3 molecules can be described by three Wannier
orbitals [16], and their packing on a honeycomb lattice within
the layers leads to a decorated honeycomb lattice, as shown in
Fig. 1. The electronic and magnetic properties of the decorated
honeycomb lattice are interesting both in the weakly and
strongly interacting limit. At weak coupling, a tight-binding
model on such a lattice leads to topological insulating phases
when SOC is turned on which displays the quantum spin
hall effect [17] as predicted in graphene [18]. At strong
coupling, the exact ground state of the Kitaev model on
the decorated honeycomb lattice [19], is a chiral spin liquid.
Therefore, it is interesting to find possible realizations of the
decorated honeycomb lattice in actual materials to probe such
rich physics. Furthermore, similar models arise naturally in
a number of other organic [10] and organometallic materials
[11,20–23] and inorganic compounds with decorated lattices
[24–26].

Organometallic complexes have intrinsic structural proper-
ties which make them different to transition metal oxides. A
crucial difference comes from the fact that isolated molecular
clusters break the spherical symmetry present in isolated
transition metal ions. While the total angular momentum of
the ion is conserved, it is only the component perpendicular
to the molecular plane that is conserved in cyclic molecular
clusters. Hence, in these systems, anisotropies are intrinsic to
the molecules constituting the material, whereas in transition
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FIG. 1. The decorated honeycomb lattice realized in the a-b
planes of Mo3S7(dmit)3 crystals. The small triangles represent the
organometallic trinuclear clusters located at sites of the honeycomb
lattice. The intracluster hopping tc, and the intercluster hopping t ,
entering our model (2) are also shown. Note the labeling (color
coding) of both the sites within the trinuclear clusters and the
intracluster t bonds. The full crystal consists of these decorated
honeycomb layers stacked along the c direction; see Fig. 2(b).

metal oxides anisotropies can only be achieved via the
environment surrounding the ions in the crystal. This suggests
that anisotropic spin exchange interactions may be easily
generated in organometallic complexes due to their intrinsic
structure. These anisotropies may be further enhanced by the
anisotropic SMOC typically found in these systems [13,15].
SMOC is an emergent coupling between electron currents
circulating around the cyclic molecules and the electron spin.
Also by tuning the relative orientation between molecules
in the crystal a Dzyaloshinskii-Moriya interaction can be
generated [15]. All the above suggests that these materials
are ideal playgrounds for the realization of quantum compass
models [3].

FIG. 2. The two arrangements of two neighbor trimers relevant
to Mo3S7(dmit)3 crystals. In (a) we show two neighbor trimers in
the a-b plane whereas in (b) the two trimers are stacked along the
c direction. In the dumbbell arrangement (a) the two molecules are
related by inversion symmetry through the midpoint of the bond
while in the tube arrangement (b) they are related by translational
symmetry.

Recently [14,15] we derived an effective superexchange
Hamiltonian that captures the magnetic properties of trinu-
clear coordinated complexes at strong coupling. The onsite
Coulomb repulsion U leads to S = 1 moments localized
at each triangular cluster from which SMOC, λ, induces
a single-spin anisotropy D. The S = 1 moments behave as
weakly coupled chains due to the decorated lattice structure
of trinuclear organometallic complexes [14,15]. The lattice
structure is such that three hopping amplitudes connect two
nearest-neighbor molecules along the c direction while only
one hopping amplitude connects nearest-neighbor molecules
in the a-b planes; cf. Fig. 2. As U is increased exchange of
electrons between nearest-neighbor molecules in the a-b plane
is suppressed as compared to exchange between molecules
along the c direction. This leads to a quasi-one-dimensional
effective spin exchange model of S = 1 localized moments
which is in the Haldane phase [15].

Here we extend our previous work, which focused on
Mo3S7(dmit)3, by studying the more general problem of
trinuclear organometallic complexes with strong correlations
and strong anisotropic SMOC. After introducing our general
combined analytical and numerical approach to extract ex-
change coupling parameters in these systems we show how
anisotropy in SMOC plays a crucial role in determining the
level of anisotropy of the effective spin Hamiltonian. We show
that the effective spin exchange Hamiltonian for two-thirds
filled trinuclear coordination crystals is
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whereSα
r is the αth component (α = x,y,z) of the pseudospin-

one operator at position r , r� is the position of site �, δz =
(0,0,c), c is the interlayer spacing, j = 1,2,3 labels the nearest
neighbor bonds as marked in Fig. 1, φj = 2π (j − 1)/3, δj =
(sin φj , cos φj ,0)ag is the vector, of length ag , connecting one
sublattice to its three nearest neighbors in the plane, and

∑
�∈�

indicates that the sum runs over only the sublattice of triangles
that point down in Fig. 1.

For large U , the magnitude of the antiferromagnetic
exchange coupling between nearest neighbor clusters in the
c direction J c is much larger than the exchange coupling
between nearest-neighbor clusters in the a-b plane J ab, we
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FIG. 3. Critical SMOC coupling for the transition from the
Haldane to the D phase. At strong coupling, our effective spin
exchange model consists of weakly coupled S = 1 antiferromagnetic
chains in the presence of single-spin anisotropy, D∗. When the
transverse SMOC λxy > λcritical

xy the D phase is stabilized whereas
for λxy < λcritical

xy the Haldane phase occurs. The dependence of λcritical
xy

with ferromagnetic intracluster exchange −JF is shown for model
parameters: λz = λxy/2, U = 10tc, and t = 0.785tc for two different
hopping amplitudes along the chain; tz = tDFT

z = 0.683tc and tz =
tDFT
z /2, where tDFT

z is the value obtained from DFT calculations on the
Mo3S7(dmit)3 crystal. The full lines are obtained from the condition
D∗(λxy) ∼ J c assuming a Haldane spin gap opens in our spin
model, while the dashed lines are obtained from D∗(λxy) ∼ 0.066J c

which includes renormalization effects due to charge fluctuations
(not contained in our effective spin model) which strongly suppress
the spin gap. The dotted horizontal line corresponds to the λxy

obtained from DFT calculations on Mo3S7(dmit)3 crystals. This figure
shows that by reducing tz and increasing −JF , Mo3S7(dmit)3 can be
effectively driven close to the D phase. Varying the SMOC anisotropy
also leads to significant changes in this curve; see in particular
Eq. (B2).

conclude that the magnetic properties of two-thirds filled
trinuclear coordination crystals can be effectively described
by S = 1 XXZ chains with a local single-spin anisotropy
D∗ and anisotropic biquadratic terms Pαβ . We explore the
effect of anisotropic SMOC, λxy �= λz, finding that the
largest anisotropic spin exchange couplings and single-spin
anisotropies emerge when λxy/λz < 1, which is the relevant
parameter regime for Mo3S7(dmit)3.

For Mo3S7(dmit)3 ab initio estimates of SMOC [13]
indicate that λxy ≈ 0.042tc, and λxy ≈ λz/2. This, suggests
that single-spin anisotropies are smaller than the exchange
coupling along the c direction, D∗ < Jc, so that Mo3S7(dmit)3

is in the Haldane phase rather than in the topologically trivial
“D phase,” i.e., the tensor product of the j = 0 singlets (where
j is the z component of the total angular momentum) at each
cluster, which is expected for D∗ > Jc. In spite of the small
SMOC values found in Mo3S7(dmit)3 (see Fig. 3), the chemical
flexibility of molecular crystals can significantly enhance λxy

and λz, and suppress tz. Together this could drive other related

systems into the D phase and enhance anisotropies in the
exchange interactions.

In Fig. 3 we show how the critical SMOC, λcritical
xy , at

which the transition from the Haldane to the D phase
occurs, i.e., when D∗(λxy) ∼ J c, is strongly suppressed by
reducing tz and/or by a ferromagnetic intracluster exchange
−JF . Variations in the SMOC anisotropy (not shown) can
also significantly vary D∗ [see Appendix B and particularly,
Eq. (B2)]. On the other hand, increasing U by, say, a factor of
two does not change λcritical

xy since J c is moderately influenced
by U when U → ∞. Intracluster charge fluctuations not
captured by our spin model but present in the original Hubbard
model are found to strongly suppress the spin gap [27]. For the
microscopic parameters found from density functional theory
(DFT) [13,16] for Mo3S7(dmit)3 the transition line is given
by D∗ ∼ 0.066J c. The charge fluctuation effect suppresses
λcritical

xy even further becoming comparable to the SMOC in
Mo3S7(dmit)3 crystals. Hence, even though SMOC is small in
Mo3S7(dmit)3 it may be possible to drive it from the Haldane
to the D phase by modifying crystal parameters, in particular,
by suppressing tz. This may be achieved by applying negative
uniaxial pressure along the c direction of the crystal which
increases the interlayer distance. Alternatively, an expansion
along the c direction can be achieved by applying uniaxial
(positive) pressure on the a-b directions through the Poisson
effect. However, this procedure can lead to changes in the
in-plane arrangement of the molecules distorting the physics
of the honeycomb lattice discussed here.

We analyze the possible magnetic anisotropies arising in the
decorated honeycomb lattice of Fig. 1, which can be realized
by isolating the a-b planes of trinuclear clusters. More specif-
ically, we analyze the role played by the interplay of Coulomb
repulsion, intracluster exchange, and SMOC in producing
anisotropic exchange couplings. We study the role played by
SMOC anisotropy, λxy �= λz, which is generically the case in
these systems and has not been considered previously. We find
that the effective exchange couplings within the a-b planes are
anisotropic only when both SMOC and intracluster exchange
JF are present. These magnetic anisotropies lead to a spin-one
XXZ + 120◦ degree honeycomb quantum compass model with
single spin anisotropy. In the limit of JF → 0, our effective
spin exchange model reduces to the conventional isotropic
S = 1 antiferromagnetic Heisenberg model on a honeycomb
lattice.

We predict that under a sufficiently large external magnetic
field, the Haldane phase can be destroyed giving way to a
three-dimensional ordered magnet. This occurs at a critical
magnetic field, hc ∼ �s , where �s is the zero-field Haldane
gap of the S = 1 chain.

The present paper is organized as follows. In Sec. II we
introduce the minimal strongly correlated model for describing
the electronic properties of isolated triangular molecules in
the presence of SMOC. The physics of a single molecule
described by this model is discussed in Appendix A. In
Sec. III we analyze the electronic structure of two coupled
trimers arranged as two nearest-neighbor molecules in the a-b
plane and also as two nearest-neighbor molecules along the
c direction. The energy level spectra of two coupled trimers
is obtained exactly and compared to second-order perturba-
tion theory. In Sec. IV the combination of the numerical
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perturbative approach with an analytical canonical transfor-
mation (see also Appendix B), used to extract the exchange
interactions between the nearest neighbor pseudospins, is
detailed. In Sec. V, we discuss the qualitative phase diagram
expected for the quasi-one-dimensional spin model arising
from our approach. Finally, in Sec. VI, we conclude providing
an outlook of our work.

II. MODEL OF ISOLATED TRIMERS
IN THE PRESENCE OF SMOC

Here we consider crystals formed of triangular tri-nuclear
molecules. In order to understand the effects of SMOC on the
electronic and magnetic properties of these systems we first
discuss the relevant model for isolated triangular clusters. The
simplest strongly correlated model is a Hubbard model on a
triangle in the presence of SMOC [16,28,29]:

H = H0 + HSMOC + HU−JF
. (2)

In general all operators should also have a molecular label but
this is suppressed throughout the current section as we deal
only with a single complex.

The tight-binding part reads

H0 = −tc
∑
〈ij〉σ

(a†
iσ ajσ + H.c.), (3)

where tc is the hopping between the hybrid metal-ligand
orbitals at nearest-neighbor sites in the cluster and a

†
iσ creates

an electron at the ith Wannier orbital with spin σ .
The general SOC contribution is [12]

HSOC = K · S, (4)

where S is the electron spin and K is a pseudovector operator,

K = h̄

4m2c2
[p × ∇V (r)]. (5)

We project onto a basis of one Wannier orbital per site
of the model illustrated in Fig. 1. The two spin states of
the Wannier orbital are a Kramers pair thus this projection
removes all nontrivial effects of the atomic SOC. For example,
in Mo3S7(dmit)3 the Mo atoms are in a C1 environment.
Consider an atom with L · S atomic SOC in a C1 environment
with time-reversal symmetry. The most general coupling
between two states is B∗ · S + C∗1 (the most general 2 × 2
Hamiltonian). However, we require that these states remain
degenerate to maintain time-reversal symmetry. Thus only the
C∗ term remains, providing a constant energy shift as the only
effect of atomic SOC in the subspace of the Kramers pair.
Note that the B∗ term is an orbital Zeeman splitting term; if
we had projected onto more Wannier orbitals, this term could
be nonzero. It has been argued that this is relevant to some
transition metal oxides [30,31] where this projection induces
an effective anisotropy on the atomic SOC. Thus the only SOC
term possible in our model is the direct coupling of the spin to
currents running around the plane of the molecule (SMOC).

The SMOC contribution can be obtained by projecting the
SOC operator of Eq. (4), using a multiatom potential V (r)
for the molecule [32] (instead of the conventional central
potential of a single atom/ion used in transition metal oxides)
into the molecular Wannier orbital basis [12,13]. Note that

this does not mean that SMOC is just the linear superposition
of atomic SOC since the expectation value of momentum of
electrons in the molecule is, in general, very different from the
expectation value of electrons orbiting a single atom. SMOC
has a similar origin to atomic SOC, since it can be derived from
a multiatomic potential describing the molecule, however, the
orbital currents around the plane of the molecule are intrinsic
to the molecular structure of multinuclear organometallic
complexes and this results in the form of the interaction
described below.

For C3 symmetric molecules it can be shown [12] the
SMOC is

HSMOC = λxy(LxSx + LySy) + λzLzSz

= λxy

(
L+S− + L−S+

2

)
+ λzLzSz, (6)

where L is the molecular-orbital angular momentum of
electrons in the cluster, λxy describes the transverse SMOC,
while λz describes the longitudinal contribution.

Finally, the Hubbard-Heisenberg term reads

HU−JF
= U

∑
i

ni↑ni↓ + JF

∑
〈ij〉

(
Si · Sj − ninj

4

)
, (7)

where U is the onsite Hubbard interaction, JF is an intracluster
exchange interaction, and niσ = a

†
iσ aiσ the number operator.

The direct exchange JF between electrons at nearest-neighbor
sites is generically nonzero and favors ferromagnetic tenden-
cies, i.e., it is expected to be negative, JF < 0. We will see
below that, even if it is much smaller than the direct Coulomb
interaction, JF plays a crucial role in generating magnetic
anisotropies. It plays a similar role as the Hunds coupling
in transition metal oxides [4], which also generates magnetic
exchange anisotropies between spins in the lattice.

The noninteracting part (3) can be readily diagonalized:

H0 =
∑
kσ

εkb
†
kσ bkσ , (8)

using Bloch operators,

b
†
kσ = 1√

3

3∑
j=1

eikφ(j−1)a
†
jσ , (9)

with φ = 2π/3. k = 0, ± 1 correspond to the allowed 0, ± 2π
3

momenta in the first Brillouin zone of the triangular cluster
with energies ε0 = −2tc and ε1 = ε−1 = tc.

The SMOC contribution to H is most naturally described
using “Condon-Shortley” states which are eigenstates of the z

component of the angular momentum Lz of the cluster [12,33],

c
†
kσ = sgnk(−k)

1√
3

3∑
j=1

eikφ(j−1)a
†
jσ . (10)

More explicitly we have

c
†
0,σ = b

†
0σ , c

†
1σ = −b

†
1,σ , c

†
−1σ = b

†
−1,σ . (11)

Note that as Bloch’s theorem applies to the cluster, the z

component of angular momentum is defined up to 3n (in units
of φ) with n an integer, i.e., Bloch states with momentum k′
satisfying k = k′ ± 3n are equivalent to the k = 0,±1 states.
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Hence, the tight-binding part of the Hamiltonian H0 can be expressed either in terms of the Condon-Shortley or Bloch
operators as

H0 = −2tc

1∑
σ,k=−1

cos(φk)c†kσ ckσ = −2tc

1∑
σ,k=−1

cos(φk)b†kσ bkσ . (12)

Similarly, from the expressions of the angular momentum in terms of the Bloch states,

L+ =
√

2
∑

σ

(b†0σ b−1σ − b
†
1σ b0σ ), L− =

√
2

∑
σ

(−b
†
0σ b1σ + b

†
−1σ b0σ ), Lz =

∑
kσ

kb
†
kσ bkσ , (13)

the SMOC contribution to the Hamiltonian of the isolated cluster reads

HSMOC = λxy√
2

(b†0↓b−1↑ − b
†
1↓b0↑ − b

†
0↑b1↓ + b

†
−1↑b0↓) + λz

2
(b†1↑b1↑ − b

†
1↓b1↓ − b

†
−1↑b−1↑ + b

†
−1↓b−1↓). (14)

We may also express H in the site basis |iσ 〉, using the transformation of Eq. (9) which leads to

H =
∑

σ

((−tc + σλzB
∗)a†

1σ a2σ + (−tc + σλzB)a†
1σ a3σ + (−tc + σλzB

∗)a†
2σ a3σ + H.c.)

+ λxy

√
2(Aa

†
1↓a2↑ + A∗a†

1↓a3↑ − Aa
†
2↓a1↑ + B∗a†

2↓a3↑ − A∗a†
3↓a1↑ + Ba

†
3↓a2↑) + H.c.

+U
∑

i

ni↑ni↓ + JF

∑
〈ij〉

(
Si · Sj − ninj

4

)
, (15)

with A = (eiφ−1)
6 , B = i

3 sin(φ), and σ = ±1. It is evident from
the above Hamiltonian that SMOC can be understood as a
spin-dependent hopping between nearest-neighbor sites of the
trimers.

Four-component relativistic ab initio calculations [13] for
Mo3S7(dmit)3 have found anisotropic SMOC: λxy ≈ λz/2 >

0; cf. Table I. Below we will fix tc > 0 as the unit of
energy and explore different values of SMOC and different
λxy/λz ratios. Note that the electronic properties of the
model are invariant under the particle-hole transformation
a
†
i → hi,ai → h

†
i , where h

†
i and hi are hole operators together

with the transformation tc → −tc, λxy → −λxy , λz → −λz.
The onsite Coulomb repulsion within each Wannier orbital
U is comparable to or even larger than the bandwidth of
the relevant Mo3S7(dmit)3 bands crossing the Fermi energy.
We will assume U = 10tc as a reasonable estimate. Since
the Mo3S7(dmit)3 crystal is at 2/3-filling there are N = 4
electrons per triangular cluster in the crystal. In order to fully
characterize the electronic structure of two coupled clusters
through perturbation theory techniques we have analyzed tri-
angular clusters with N = 3,4,5 electrons and the parameters
tc,λxy,λz > 0, relevant to Mo3S7(dmit)3 crystals. Through the
particle-hole transformation we can also obtain the electronic
structure of triangular clusters with N = 1 (N = 2) electrons

TABLE I. List of parameters entering our microscopic model for
Mo3S7(dmit)3. The exchange couplings of our derived effective spin
exchange model (37) using the actual DFT parameters [13] obtained
for the crystal are also tabulated. The exchange couplings are isotropic
so α can be x,y,z. Parameters of the effective model that are smaller
than 10−4 are not included. All energy units are in eV.

tc t tz λxy λz J ab J c

0.06 0.047 0.041 0.0025 0.005 0.0024 0.01296

from the N = 5 (N = 4) solutions by switching the sign of
λxy,λz,tc.

Since Jz = Lz + Sz is a conserved quantity, [Jz,H ] = 0,
it is convenient to use the (k,σ ) representation instead of the
site representation to classify the basis states according to
their quantum number, j = k + σ . We have already expressed
H0 + HSMOC in the (k,σ ) basis through Eqs. (12)–(14). The
Hubbard-Heisenberg contribution is expressed in the (k,σ )
basis as

HU−JF
= 1

3

∑
k

(U − 2JF )nk↑nk↓

+ 1

3

∑
k,k′,k �=k′

(U − JF cos((k − k′)φ) − JF )nk↑nk′↓

+ 1

3

∑
k,k′,q �=0

(U − JF cos((k′ − k − q)φ)

− JF cos(qφ))b†k↑b
†
k′↓bk′−q↓bk+q↑. (16)

For the triangular clusters studied here 1
3

∑
k,k′,k �=k′(U − JF

cos((k − k′)φ) − JF )nk↑nk′↓ = (U/3 − JF /6)
∑

k,k′,k �=k′ nk↑
nk′↓. Note that while for the Hubbard-Heisenberg model the
effective Coulomb repulsion between electrons is different
for electrons in different orbitals, in a pure Hubbard model
(JF = 0), all Coulomb interactions are equal to U/3. This
has been shown to be important for finding spin exchange
anisotropies in the context of transition metal oxides [5,34].

Hence, the full Hamiltonian can be explicitly expressed
in the (k,σ ) basis using the expressions for H0, HSMOC, and
HU−JF

in Eqs. (12), (14), and (16), respectively.
In Appendix A we present results for the electronic structure

of trimers with N = 3,4,5 electrons expressed in this basis.
From this analysis, we conclude that isolated trimers with
N = 4 electrons in the presence of SMOC effectively behave
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as pseudospin-one localized moments. In Fig. 4 we show that
under SMOC the lowest energy triplet splits into a nonde-
generate singlet (j = 0) and a doublet (j = ±1), where j is
the z component of total angular momentum. Higher energy
excitations are doublets or nondegenerate under SMOC. Note
that since we have an even number of electrons in the cluster,
Kramers theorem does not apply and nondegenerate states
are possible. Hence, SMOC induces a single-spin anisotropy
at each cluster so that the effective spin model for N = 4
electrons in the mth Mo3S7(dmit)3 molecule in the crystal
reads

H eff
m = D

(
Sz

rm

)2
. (17)

As shown in Fig. 4 the overall energy level structure of the clus-
ter, i.e., level splittings and degeneracies remain unaffected by
anisotropies in SMOC, λxy �= λz and/or intracluster exchange
JF �= 0. However, the absolute value of D is strongly enhanced
when λxy/λz < 1 as shown in Fig. 5. This is directly relevant
to Mo3S7(dmit)3 crystals in which λxy/λz ≈ 1/2.

III. TWO COUPLED TRIANGULAR CLUSTERS

We now consider two triangular coupled clusters. We ana-
lyze the electronic structure of two nearest neighbor triangular
clusters as arranged in Mo3S7(dmit)3 crystals and shown in
Fig. 2. In Fig. 2(a) we show two nearest-neighbor clusters in
the a-b plane, whereas in 2(b) we show two nearest-neighbor
clusters along the c-direction. The molecules in the “dumbbell”
configuration of Fig. 2(a) are related by inversion symmetry
as in Mo3S7(dmit)3. Molecules in the “tube” configuration of
Fig. 2(b) are related by a rigid translation along the c-axis but
no inversion symmetry is present. We first report exact results
for the energy level structure. This gives key information
about the type of spin exchange acting between the effective
pseudospins localized at each trimer. These exact results
are also used to benchmark perturbation theory calculations
discussed in Sec. III B.

A. Electronic structure

Consider a model of two trimers, � and m coupled by Hkin:

H = H� + Hm + Hkin, (18)

where H� is the Hubbard-Heisenberg model of an isolated
trimer �, in the presence of SMOC as introduced previously,
Eq. (15) in Sec. II B. The hopping between two neighbor
clusters is described through Hkin.

As shown in Fig. 2(a), in the coplanar dumbbell arrange-
ment, there is only one hopping amplitude connecting the
trimers, so Hkin reads

H dumbbell
kin = −t

∑
σ

(a†
�1σ am1σ + a

†
m1σ a�1σ ), (19)

which connects, say, site 1 of the � cluster with site 1 of the m

cluster. Here a
(†)
miσ annihilates (creates) an electron with spin σ

in the ith Wannier orbital on molecule m. The kinetic energy
contains off-diagonal hopping matrix elements in the Bloch
basis:

H dumbbell
kin = − t

3

∑
k1,k2,σ

(
b
†
�k1σ

bmk2σ + b
†
mk2σ

b�k1σ

)
, (20)
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FIG. 4. Dependence of electronic structure of isolated triangular
clusters on the strength and anisotropy of the SMOC. We plot the
eigenvalues of Hamiltonian (15) with N = 4 electrons for U = 10tc
and JF = 0. We compare (a) the isotropic SMOC case, λ = λxy = λz,
with anisotropic SMOC in (b) λxy = λz/2 and in (c) λxy = 2λz.
The eigenstates are classified according to the z component of total
angular momentum j = k + σ . The numbers denote energy level
degeneracies. For JF �= 0 the electronic structure of the isolated
cluster remains very similar, and in particular conserves the energy
level degeneracies shown here.
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FIG. 5. Dependence of the single-spin anisotropy D of isolated
triangular clusters on the strength and anisotropy of the SMOC. The
energy difference between the lowest j = ±1 doublet and the ground
state j = 0 singlet in Fig. 4, which defines D [cf. Eq. (17)], is plotted
as a function of λxy for different λxy/λz ratios. A large enhancement
of D is found when λxy < λz, which is relevant to Mo3S7(dmit)3.
Here, we have used U = 10tc and JF = 0, − 0.3tc.

showing that the orbital momentum is not conserved in this
case due to the breaking of trigonal symmetry.

In the tube arrangement, Fig. 2(b), the three vertices of the
two clusters are connected by a hopping tz, and Hkin reads

H tube
kin = −tz

∑
iσ

(a†
�iσ amiσ + a

†
miσ a�iσ ). (21)

As the tubes respect the trigonal symmetry of the isolated
trimers, the angular momentum about the C3 axis is conserved.
Hence, the kinetic energy between two trimers in the tube
arrangement is diagonal when expressed in the Bloch basis:

H tube
kin = −tz

∑
k,σ

(b†�kσ bmkσ + b
†
mkσ b�kσ ), (22)

where k = 0,±1, are the allowed momenta at each trimer of
isolated trimers.

We have exactly diagonalized model (18) for two coupled
triangular clusters in the presence of SMOC. We consider the
case in which each cluster is filled with N = 4 electrons which
is the relevant case for Mo3S7(dmit)3 crystals. In Figs. 6(a)
and 6(b) we show the dependence of the eigenenergies Ei on
λ = λxy = λz (isotropic SMOC) for U = 10tc, t = 0.785tc,
and JF = 0 in the dumbbell (a) and tube (b) arrangements. For
λ = 0 we find that the eigenspectrum of the coupled trimers
consists of a ground-state nondegenerate singlet, a triplet, and
a pentuplet. This is the eigenspectrum expected for an isotropic
antiferromagnetic exchange interaction between two localized
S = 1 moments [29]. As λ is increased the energy levels are
split partially removing λ = 0 degeneracies. The ground state
of the coupled trimers is found to be nondegenerate for any
value of λ.

In Figs. 6(c) and 6(d) we show the dependence of Ei on
t for fixed SMOC, λ = 0.25t , and λ = t . In both cases the
eigenenergies depend quadratically on t , Ei ∝ t2 up to large
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FIG. 6. Exact energy level spectra of two coupled trimers. The
plots show exact eigenenergies of model (18) for U = 10tc and
isotropic SMOC, λ = λxy = λz, and JF = 0. The dependence of
eigenstates Ei , with λ for t = 0.785tc, are shown for the dumbbell (a)
and tube arrangement (b). These plots show an Ei ∝ λ2 dependence.
In (c) and (d) we fix λ and analyze the dependence of Ei on the
hopping t in the dumbell configuration. A quadratic dependence,
Ei ∝ t2, is found for both weak SMOC, λ = 0.25tc in (a), and
strong SMOC, λ = tc in (d). The numbers denote the energy level
degeneracies.

values of t/tc ∼ 1 indicating that second-order perturbation
theory [O(t2)] is reliable. Below, we will further analyze the
accuracy of the O(t2) calculation for the model parameters
that are relevant to Mo3S7(dmit)3 crystals.

In order to understand these spectra, it is important to
understand the symmetries of the models. This can be a little
subtle when SMOC is included.

In the absence of SMOC the dumbbell model is D2h

symmetric as it also contains three mutually perpendicular
twofold rotation axes [cf. Fig. 2(a)]. If two molecules, � and
m are related to one another by inversion symmetry then
the pseudovectorial nature of angular momenta requires that
the SMOC is equal on both molecules: λ�,xy = λm,xy and
λ�,z = λm,z. On the other hand if two molecules are related
by a π rotation about, say, the z axis this yields λ�,z = λm,z,
but λ�,xy = −λm,xy . This leads to significant changes in the
effective interactions between the molecular spins, which we
have discussed elsewhere [14,15]. Thus the case λ�,xy = λm,xy

and λ�,z = λm,z, which we consider here, lowers the symmetry
to Ci (triclinic).

In the absence of SMOC the tube model is D3h symmetric.
This is lowered to C3v in the presence of SMOC, which can
be understood as follows. In our model λ�,xy = λm,xy and
λ�,z = λm,z. Under a mirror reflection with respect to a plane
perpendicular to the z axis passing through the middle of the
tube, i.e., a σh operation, there is a change in sign of the
transverse SMOC contribution: λ�,xy = −λm,xy , which would
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FIG. 7. Triclinic anisotropies induced by the Heisenberg intracluster exchange JF , and SMOC λxy,λz, for different ratios and strengths of
SMOC. The energy difference between the exact third and second lowest energy levels for the dumbbell configuration is shown as a function of
−JF (ferromagnetic direct exchange). We have fixed U = 10tc, t = 0.785tc in all figures. In (a) we show results for the Hubbard-Heisenberg
model with isotropic SMOC λ = λxy = λz, (b) λz = λxy/2, and in (c) λz = 2λxy . In contrast, in the case of the tube arrangement the energy
splittings are zero: E3 − E2 = 0, for any value of JF and λxy/λz ratio due to the trigonal (C3) symmetry in that case.

be inconsistent with our model, except for λ�,xy = 0. We find
that our model is symmetric under C3 rotations and only has
three σv reflection planes. Hence, we conclude that the point
group symmetry for the tube in the presence of SMOC is C3v .

In both the dumbbell [Fig. 6(a)] and tube [Fig. 6(b)]
configurations the λ = 0 triplet is split into a singlet and a
doublet while the pentuplet is split into two doublets and a
singlet. The energy levels are found to depend quadratically
on λ: Ei ∝ λ2, indicating the absence of the linear DM
antisymmetric exchange. In both cases this is expected on
symmetry grounds. For the dumbbell this is straightforward,
since there is an inversion center at the midpoint between
the two triangular clusters [15,35]. For the tube the C3 rotation
symmetry implies that DDM‖z axis (Moriya’s rule 5; Ref. [35])
and the σv reflection symmetry implies that DDM‖xy plane
(Moriya’s rule 3). Both conditions taken together lead to
DDM = 0, and there is no DM coupling between the two spins
in the tube arrangement.

In Mo3S7(dmit)3 the symmetry of the tube is lowered from
C3v to C3 by small intermolecular interactions neglected in the
current model [13]. This allows for a nonzero DM coupling
parallel to the C3 axis, which points along the crystallographic
c axis [15].

The level degeneracies for both pairs of coupled clusters
(Fig. 6) are those expected for an isotropic antiferromagnetic
Heisenberg model with a trigonal single ion anisotropy
described by Eq. (17), which we have seen arises for nonzero
λ. This is expected for the tube, as in C3v symmetry there are
twofold degenerate states corresponding to the E irreducible
representation.

However, the Ci symmetry of the dumbbell configura-
tion admits only one-dimensional irreducible representations.
Thus, one expects the level degeneracies associated with the
trigonal symmetry to be fully lifted in the presence of SMOC.
We will denote these level splittings as triclinic splittings.
The absence of such triclinic splittings for JF = 0 in the
dumbbell arrangement therefore indicates a hidden symmetry
in the model. This is broken for JF �= 0. To quantify the
degree of hidden symmetry breaking we plot the difference

in energy between the second and third eigenstates, E3 − E2

in Fig. 7. For JF = 0 no level splitting is present for any
λxy/λz ratio. However, a triclinic splitting arises as −JF is
increased, saturating at sufficiently large −JF . The largest
splittings are found when SMOC is anisotropic, particularly
when λxy/λz > 1.

Thus, it is apparent that hidden symmetry is related
to the Coulomb matrix and is present in the absence of
direct exchange interaction. For JF = 0 the symmetric and
antisymmetric spin exchange tensors are proportional, but this
is lifted for JF �= 0. This hidden symmetry plays a similar
role in controlling the anisotropy of effective spin models of
transition metal oxides [36].

We stress that the C3 rotation symmetry of the tube
conformation forbids trigonal level splittings, even for JF �= 0.
Consistent with this expectation, no triclinic level splittings are
observed in our calculations for the tube configuration.

B. Second-order perturbation theory
in the intercluster hopping

In order to derive a low-energy effective Hamiltonian for
the two coupled clusters we now perform perturbation theory
calculations to O(t2

conf), where conf = dumbbell, tube and
tdumbbell = t and ttube = tz. The effective Hamiltonian for two
coupled clusters with N electrons in each cluster is given by

H
(2),conf
eff = E0(N,j�z)|N,j�z〉〈N,j�z|

+E0(N,jmz)|N,jmz〉〈N,jmz|

+
∑
|m0〉

H conf
kin |m0〉〈m0|H conf

kin

2E0(N,0) − 〈m0|H0 + HU + HSMOC|m0〉 ,

(23)

where E0(N,jiz), is the energy of the isolated trimer, i, with
jiz = 0,±1 with N electrons (N = 4 in the case of interest
here), with corresponding eigenstate |N,jiz〉. In the expression
above we are implicitly assuming that the ground state of
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isolated uncoupled trimers is threefold degenerate even for nonzero SMOC. From a comparison to exact results and the canonical
transformation, discussed below, we find that this approximation is very accurate for the parameter regime analyzed. The {|m0〉}
are the complete set of virtual excitations in which an electron is transferred from one cluster to the other and may be written as

|m0〉 = |N − 1,γ�〉|N + 1,γm〉 =
∑

μ�,μm

Aγ�
(N − 1,μ�)Aγm

(N + 1,μm)|N − 1,μ�〉|N + 1,μm〉, (24)

where Aγi
(N ± 1,μi) = 〈N ± 1,μi |N ± 1,γi〉, γi denotes the excitations, and μi runs over the Hilbert state configurations with

N ± 1 electrons on trimer i = �,m.
Introducing these states in Eq. (23) we find for a given configuration of the coupled clusters,

H
(2),conf
eff = E0(N,j�z)|N,j�z〉〈N,j�z| + E0(N,jmz)|N,jmz〉〈N,jmz|

+ t2
conf

∑
γ�,γm

∑
σ,σ ′

∑
μ�,νm,μ′

�,ν
′
m

Aγ�
(N − 1,μ�)Aγm

(N + 1,νm)A∗
γ�

(N − 1,μ′
�)A∗

γm
(N + 1,ν ′

m)

× c
†
�1σ cm1σ |N − 1,μ�〉|N + 1,νm〉〈N + 1,ν ′

m|〈N − 1,μ′
�|c†m1σ ′c�1σ ′

�ε(N − 1,γ�; N + 1,γm)

+ t2
conf

∑
γ�,γm

∑
σ,σ ′

∑
μm,ν�,μ′

m,ν ′
�

Aγ�
(N + 1,ν�)Aγm

(N − 1,μm)A∗
γm

(N − 1,μ′
m)A∗

γ�
(N + 1,ν ′

�)

× c
†
m1σ c�1σ |N − 1,μm〉|N + 1,ν�〉〈N + 1,ν ′

�|〈N − 1,μ′
m|c†�1σ ′cm1σ ′

�ε(N − 1,γm; N + 1,γ�)
, (25)

where the excitation energies are �ε(N − 1,γ�; N + 1,γm) =
2E0(N ) − (Eγ�

(N − 1) + Eγm
(N + 1)).

It is important to test the reliability of the present second-
order perturbative calculation for the values of the intercluster
hopping amplitudes relevant to Mo3S7(dmit)3 crystals. We
have checked the accuracy of the second-order perturbation
theory calculations by comparing the nine lowest energy
eigenstates with the exact eigenspectrum in our previous work
[14]. From Fig. 3 of [14] we concluded that the second-
order O(t2) calculation is very accurate in the dumbbell
arrangement with U = 10tc, even for the large intermolecular
hopping amplitude, t = 0.785tc relevant to Mo3S7(dmit)3

crystals.
In the tube arrangement, comparable accuracies can only be

achieved at larger U . The poorer accuracy at intermediate U in
the tube configuration is due the stronger charge fluctuations
in this configuration [27,28]. In the tube particles can be
exchanged between the two clusters through ∼t2

z /tc processes
without paying energy cost ∼U [15]. In contrast, in the
dumbbell case, since particles can only be exchanged through
the single hopping connecting the two vertices there is always
an energy cost ∼U inherent to the exchange process ∼4t2/U .
In spite of this, at sufficiently large values of U we find that
the second-order perturbation theory is sufficiently accurate
for both the dumbbell and tube arrangements even for the
large values of t = 0.785tc and tz = 0.683tc extracted from
DFT for Mo3S7(dmit)3 [13,16].

IV. EFFECTIVE MAGNETIC SPIN EXCHANGE MODEL

In order to determine the analytical form of the pseudospin
exchange Hamiltonian, we have performed a canonical trans-
formation. Analytical expressions of the pseudospin model
valid to O(λ2) and O(t2), are obtained assuming a t-J
model for the triangular clusters, specified in Appendix B.

By equating the matrix elements of the effective pseudospin
exchange Hamiltonian obtained from the canonical transfor-
mation to the matrix elements of H

(2)
eff evaluated in the low-

energy subspace {|j�,jm〉}, with j�,jm = 0,±1, we are able
to extract the parameters entering the pseudospin exchange
model.

A. Canonical transformation for a nearly degenerate
low-energy subspace

Consider an arbitrary Hamiltonian, H = H0 + H1 where
H0 = ∑

ν PνHPν , H1 = ∑
μ �=ν PνHPμ, and Pν is a projector

onto the νth subspace. Now define H (ε) = H0 + εH1. Let

H (ε) ≡ e−iεSH (ε)eiεS

= H0 + ε(H1 + i[H0,S])

+ ε2

2
(2i[H1,S] − [[H0,S],S]) + · · · (26)

We choose S so that the linear term vanishes, i.e., such that
iH1 = [H0,S]. This implies that

PμHPν(1 − δμν) + iPμHPμ(PμSPν)

− i(PμSPν)PνHPν = 0, (27)

because PμPν = Pμδμν and
∑

μ Pμ = 1. For μ = ν this yields
PμSPμ = γPμ for γ ∈ C. While, for μ �= ν we find

iPμHPν = PμHPμ(PμSPν) − (PμSPν)PνHPν. (28)

If we choose the projectors such that they project onto strictly
degenerate subspaces then

PμSPν = iPμHPν

〈PμHPμ〉 − 〈PνHPν〉 . (29)
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Therefore, keeping only second-order O(ε2) terms, we find
that

H ≡ H (1) = H0 + i

2
[H1,S]

=
∑

μ

PμHPμ − 1

2

∑
μ �=ν

∑
μ′ �=ν

PμHPνHPμ′

×
(

1

〈PνHPν〉 − 〈Pμ′HPμ′ 〉 + 1

〈PνHPν〉 − 〈PμHPμ〉
)

.

(30)

Finally, we find the effective low-energy Hamiltonian by
projecting onto the low-energy subspace, henceforth denoted
L. Here it is convenient to associate all of the subspaces with
the states chosen so that the low-energy subspace is diagonal,
i.e., PμHPν = 0 if μ �= ν and both μ and ν ∈ L. (This is
always possible provided we can solve the problem restricted
purely to L, as in elementary degenerate perturbation theory.)
We then find that

Heff ≡ PLHPL

=
∑
μ∈L

PμHPμ − 1

2

∑
μ,μ′∈L

∑
ν /∈L

(
PμHPνHPμ′

〈PνHPν〉 − 〈Pμ′HPμ′ 〉

+ PμHPνHPμ′

〈PνHPν〉 − 〈PμHPμ〉 , (31)

where PL = ∑
μ∈L Pμ. In the case that L is strictly degenerate

this reduces to the standard result. In the case where there is a
small spread of energies in L and these are treated as a single
subspace, as in the derivation of the t-J model, a similar result
holds but is approximate because the replacement of PμHPμ

by its expectation value in Eq. (29) is no longer exact. We note
that this is precisely the approximation made in Eq. (23) where
we neglected the single-ion splitting of the ground-state triplet
in the denominator.

The effective Hamiltonian derived from this canonical
transformation describing the coupling between two isolated
nearest-neighbor trimers, � and m, in the tube arrangement of
Fig. 2(b) is

Hc
�m = Dc

[(
Sz

r�

)2 + (
Sz

rm

)2] +
∑
αβ

J c
αβSα

r�
Sβ

rm

+
∑
αβ

PαβSα
r�
Sβ

r�
Sα

rm
Sβ

rm
, (32)

where J c
αβ is diagonal and J c

xx = J c
yy �= J c

zz, and the anisotropic
biquadratic couplings, Pαβ = Pβα , obey Pxx = Pyy = Pxy and

Pzx = Pzy = (Pzz + Pxx)/2. Both numerically and analyti-
cally we find Pxx � Pzz, indeed we find numerically that
Pxx is negligibly small and thus do not discuss it further
below. Dc = D + �Dc is the single-spin anisotropy including
corrections, �Dc, due to hopping processes between the
clusters. The perturbative expressions for these parameters are
given in Appendix B. Thus, one can recast the bilinear terms
of Hc

�m in the familiar XXZ form. Doing so, one finds that the
Hamiltonian for a single chain is

Hc =
∑

�

Dc
(
Sz

r�

)2 +
∑
�αβ

PαβSα
r�
Sβ

r�
Sα

r�+δz
Sβ

r�+δz

+ J c
∑

�

(
Sx

r�
Sx

r�+δz
+ Sy

r�
Sy

r�+δz
+ �cSz

r�
Sz

r�+δz

)
, (33)

where J c = J c
xx and �c = J c

zz/J
c
xx .

For two isolated nearest-neighbor trimers in the dumbbell
arrangement with the t bond connecting the two sites labeled
“1” [cf. Figs. 1 and 2(a)], the exchange Hamiltonian is

Hab
1 = Dab

[(
Sz

r�

)2 + (
Sz

r�+δ1

)2]
+K±±

[
S+

r�
S+

r�
+ S+

r�+δ1
S+

r�+δ1
+ H.c.

]
+Kz±

[
Sz

r�
Sx

r�
+ Sz

r�+δ1
Sx

r�+δ1
+ H.c.

]
+

∑
αβ

J ab
αβSα

r�
Sβ

r�+δ1
. (34)

Dab = D + �Dab is the single-spin anisotropy including
corrections �Dab, due to hopping processes between the
clusters and is plotted in Figs. 8 and 9. We find that �Dab

is very small so that Dab ∼ D.
To derive the effective Hamiltonian for the full crystal we

now need to note that we have, so far, only considered the t

bonds between Wannier orbitals labeled “1”; cf. Figs. 1 and
2, and Eq. (19). Rather than repeating the derivation for “2”
and “3” bonds we can simply use the C3 symmetry of the
molecules and note that the S rm

operators transform as vectors
under rotation. Hence we can replace

Sx
rm

→ Sx
rm

cos φj − Sy
rm

sin φj , (35a)

Sy
rm

→ Sy
rm

cos φj + Sx
rm

sin φj , (35b)

in Eq. (34), where j labels the bond, as shown in Fig. 1.
First, one finds that the K±± and Kz± terms vanish in the full

crystal due to cancellation among the contributions from the
three nearest-neighbor bonds. Transforming the other terms,
one can rewrite that Hamiltonian as

Hab =
∑

�

Dab
(
Sz

r�

)2 + J ab
∑
�∈�

3∑
j=1

(
Sx

r�
Sx

r�+δj
+ Sy

r�
Sy

r�+δj
+ �abSz

r�
Sz

r�+δj

)

+Q
∑
�∈�

3∑
j=1

(
Sy

r�
Sy

r�+δj
cos2 φj + Sx

r�
Sx

r�+δj
sin2 φj

) + J ab
xz

∑
�∈�

3∑
j=1

[(
Sx

r�
cos φj − Sy

r�
sin φj

)
Sz

r�+δj

+Sz
r�

(
Sx

r�+δj
cos φj − Sy

r�+δj
sin φj

)]
, (36)
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FIG. 8. Anisotropic exchange couplings and single-spin anisotropy in the a-b plane of trinuclear complexes. The dependence of the
parameters entering model (34) on SMOC are shown for U = 10tc. The hopping between the trimers is t = 0.785tc. In the upper row panels
we show the dependence on SMOC of the exchange couplings Jαα , and the single-spin anisotropy Dab = D + �Dab for different λxy/λz ratios
in the presence of an intracluster ferromagnetic coupling, JF = −0.3tc: (a) λxy/λz = 1, (b) λxy/λz = 1/2, and (c) λxy/λz = 2. In the lower
row panels [(d)–(f)] we show the same cases but with an intracluster antiferromagnetic exchange: JF = 0.3tc. The only nonzero off-diagonal
exchange coupling, J ab

xz , is at most ∼ − 4.4 × 10−4; too small to be appreciable in the scale of the figure.

where J ab = (J ab
xx + J ab

yy )/2, �ab = J ab
zz /J ab, and Q = (J ab

xx − J ab
yy )/2. The perturbative expressions for these parameters are

given in Appendix B. Thus, we see that the second term (proportional to J ab) is simply the XXZ model and the third term
(proportional to Q) is the honeycomb 120◦ compass model [3].

Finally, combining the results obtained above we obtain the full effective spin exchange model for the crystal, which reads

Heff = D∗ ∑
�

(
Sz

r�

)2 + J c
∑

�

(
Sx

r�
Sx

r�+δz
+ Sy

r�
Sy

r�+δz
+ �cSz

r�
Sz

r�+δz

) +
∑
�αβ

PαβSα
r�
Sβ

r�
Sα

r�+δz
Sβ

r�+δz

+ J ab
∑
�∈�

3∑
j=1

(
Sx

r�
Sx

r�+δj
+ Sy

r�
Sy

r�+δj
+ �abSz

r�
Sz

r�+δj

) + Q
∑
�∈�

3∑
j=1

(
Sy

r�
Sy

r�+δj
cos2 φj + Sx

r�
Sx

r�+δj
sin2 φj

)

+ J ab
xz

∑
�∈�

3∑
j=1

[(
Sx

r�
cos φj − Sy

r�
sin φj

)
Sz

r�+δj
+ Sz

r�

(
Sx

r�+δj
cos φj − Sy

r�+δj
sin φj

)]
, (37)

where D∗ = D + �Dc + �Dab. This expression neglects
“three molecule” terms analogous to the “three site” terms
neglected in the usual formulation of the t-J model [37,38].
We will see below that J ab

xz is extremely small. On neglecting
this term one finds that the effective Hamiltonian is given by
Eq. (1).

The parameters governing the spin exchange between
molecules � and m in our spin exchange Hamiltonian Heff

are obtained by comparing the canonical transformation with

our numerical second-order perturbation theory,

〈j�,jm|Hab
lm |j�,jm〉 = 〈j�,jm|H (2),dumbbell

eff |j�,jm〉,
〈j�,jm|Hc

lm|j�,jm〉 = 〈j�,jm|H (2),tube
eff |j�,jm〉, (38)

recall H
(2),conf
eff is defined in Eq. (25). The above equations are

solved for a given set of parameters: U , JF , tc, t , tz, λxy , and
λz entering our original microscopic model (2).
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FIG. 9. Anisotropic exchange couplings in the a-b plane of
trinuclear complexes in the limit of extreme SMOC anisotropies.
The dependence on SMOC of the parameters entering model (34)
are shown for U = 10tc and JF = −0.3tc. The hopping between the
trimers is t = 0.785tc. We compare different ratios of the SMOC: (a)
λxy = 0 and (b) λz = 0.

B. Anisotropic exchange in the a-b plane

We have explored anisotropies arising in the exchange
couplings of the effective exchange model, Eq. (34), for
the two clusters coupled as in Fig. 2(a). Since the non-
pseudospin-conserving Kαβ terms exactly cancel in the crystal
they will not be discussed any further. We find that when
JF = 0 the exchange coupling tensor is diagonal and isotropic,
J ab

αβ = J abδαβ . This is consistent with our previous results
[see Fig. 4(a) of Ref. [14]] and the lack of triclinic splittings
observed in the energy level spectrum for two clusters in the
dumbbell configuration shown in Fig. 7.

As shown in Fig. 8 anisotropic exchange couplings J ab
xx �=

J ab
yy �= J ab

zz arise when JF �= 0, which are consistent with the
triclinic splittings found in the exact level spectrum of Fig. 7.
Also we find off-diagonal exchange couplings: J ab

xz �= 0 to all
orders of SMOC consistent with the analytical expression for
J ab

xz derived in our previous work [14] valid to O(λ2
xy,λ

2
z).

However, we typically find small values of J ab
xz ∼ −0.00044tc

(λxy = λz/2) and J ab
xz ∼ −0.0003tc (λxy = λz) and so this

parameter is not displayed in Fig. 8. Therefore, to an excellent
approximation, the in-plane Hamiltonian is an XXZ + 120◦
honeycomb model with single ion anisotropy.

Comparing the results shown in Fig. 8 for different λxy/λz

ratios, we observe that the anisotropies in the exchange cou-
plings are enhanced for λxy/λz �= 1. In fact, larger anisotropies
are found to occur for λxy = λz/2, which is the parameter
regime relevant to Mo3S7(dmit)3 crystals [13]. Also note
from Fig. 8 the strong dependence of the magnitude of
Dab on the SMOC anisotropy. The single-spin anisotropy
increases rapidly with SMOC, becoming equal to the exchange
couplings, Dab ∼ J ab at λ ≈ 0.45tc (λ = λxy = λz), at λxy ≈
0.22tc (λxy = λz/2), and at λxy ≈ 1.045tc (λxy = 2λz). At
sufficiently large Dab � J ab we expect the D phase, i.e., a
tensor product of j = 0 states located at each cluster of the
crystal. Hence, a D phase is favored by anisotropic SMOC
with λxy < λz.

In Fig. 8 we also show results for an antiferromagnetic
exchange coupling inside the cluster, JF > 0. This could arise
in, say, Mo3S7(dmit)3 due to superexchange via the sulfur
atoms in the core. We find similar spin exchange anisotropies
for both ferromagnetic and antiferromagnetic JF . In the

antiferromagnetic case we find that Dab becomes negative for
sufficiently large SMOC and λxy = 2λz, consistent with our
perturbative results for the t-J model [cf. Eqs. (B2), (B4a), and
(B6a)]. This signifies a switch of the ground state of the isolated
cluster from the j = 0 singlet to the j = ±1 doublet. In
contrast, in the ferromagnetic cases, JF < 0, we have explored
a large parameter set and we always find Dab > 0.

In order to understand the effect of exchange couplings with
SMOC anisotropy, we show in Fig. 9 exchange couplings J ab

αα

and Dab in two extreme cases: λxy = 0 and λz = 0 with JF =
−0.3tc. The J ab

αα are suppressed (enhanced) with SMOC for
λxy = 0 (λz = 0), consistent with the results shown in Fig. 8.
Only when λxy is turned on does one find that the transverse
couplings become different, i.e., Jxx �= Jyy . Furthermore, the
single-spin anisotropy is much more strongly enhanced by
λxy than by λz (by more than an order of magnitude), con-
sistent with the analytical expressions [see Eqs. (B2), (B4a),
and (B6a)].

C. Anisotropies in the exchange interactions
along the c direction

The exchange couplings between two neighboring clusters
in the c direction are shown in Fig. 10. We find a diagonal
exchange tensor: J c

αβ = J c
ααδαβ , with J c

xx = J c
yy �= J c

zz for any
JF �= 0 and λxy/λz ratio. The higher symmetry than for a
pair of molecules in the a-b plane is due to the C3 rotational
symmetry of the tube dimer, as discussed above.

The largest anisotropies with J c
xx = J c

yy > J c
zz are seen in

the case of anisotropic SMOC with λxy = λz/2 as shown
in Fig. 10(b). The only non-negligible biquadratic exchange
terms, Pzz > Pzx , increase rapidly with λxy starting to saturate
around λ/tc ∼ 1 − 1.5. The single-spin anisotropy equals the
exchange coupling, Dc = J c, at λxy = 0.65tc for λxy/λz =
1/2 and at λxy = 1.457tc for λxy/λz = 1, while for λxy/λz = 2
there is no critical λxy at which Dc ∼ J c within the parameter
range explored. Hence, anisotropic SMOC with λxy < λz

again favors the D phase as in the dumbbell arrangement.
Finally, in Fig. 11 we compare the dependence of the

exchange couplings on JF for λxy = λz = 1. The couplings
in the a-b plane, J ab

αα are suppressed and become gradually
anisotropic, J ab

xx �= J ab
yy �= J ab

zz , as JF increases. This is in
contrast to the exchange couplings in the c direction which
do not display larger anisotropies but rather J c

xx = J c
yy �= J c

zz

for any JF .

V. DISCUSSION OF PROPERTIES OF THE
QUASI-ONE-DIMENSIONAL PSEUDOSPIN-ONE MODEL

Our analysis shows that the magnetic properties of layered
decorated honeycomb lattice model at strong coupling, U �
tc,t,tz,λxy,λz, are captured by model (37) with the exchange
couplings obtained from our combined approach described
above. On comparing J ab in Fig. 8 with J c in Fig. 10 we
find that J c ∼ 5J ab for U = 10tc. This is related to the fact
that two clusters in the tube arrangement are connected by
three hoppings so that they can exchange electrons without
paying an energy cost [14,15] ∼U . This mechanism is generic
to decorated lattices and not specific to the model considered
here [10]. In contrast, neighboring clusters in the dumbbell
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FIG. 10. Anisotropic exchange couplings in the c direction of trinuclear complexes. The dependence of the parameters entering model
(34) on SMOC are shown for U = 10tc and JF = −0.3tc. The hopping between the trimers is tz = 0.683tc. We compare different SMOC
anisotropies (a) λxy/λz = 1, (b) λxy/λz = 1/2, and (c) λxy/λz = 2. Note the large enhancement of the single-spin anisotropy, Dc = D + �Dc,
for anisotropic SMOC becoming the largest for λxy < λz. For λxy = λz/2, relevant to Mo3S7(dmit)3 crystals [13], we have that Dc ∼ J c

xx = J c
yy

at about λxy = 0.65tc.

arrangement pay energy U , since they can only exchange
particles through a single hopping connecting them. Hence,
J ab is strongly suppressed by U in contrast to J c, leading to
an increase of the J c/J ab ratio. Hence, at large U the system
becomes quasi-one-dimensional consisting on a set of weakly
coupled pseudo-spin-one antiferromagnetic chains.

An isotropic version of the model (33), i.e., J c
αβ =

J cδαβ Pαβ = Pδαβ and Dc = 0 is just the bilinear-
biquadratic model: H = J c

∑
� S r�

· S r�+δz
+ P

∑
�(S r�

·
S r�+δz

)2, which becomes the Affleck-Kennedy-Lieb-Tasaki
(AKLT) model for P/J c = 1/3. The AKLT model can be
solved exactly and has the valence bond solid ground state and
is in the Haldane phase [39].

We finally note that the next-nearest-neighbor exchange
couplings between clusters in the c direction can be neglected
since recent estimates [14] suggest that they are about 20 times
smaller than the nearest-neighbor exchange coupling. This is
because the small parameter in the perturbation theory is tz/3
so fourth-order terms (such as next-nearest-neighbor exchange
couplings) must be at least an order of magnitude smaller
than second-order terms (such as nearest-neighbor exchange
coupling).
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FIG. 11. Effect of the intracluster exchange JF on the exchange
couplings between trimers. In (a) we show the dependence of the
exchange couplings in the a-b plane J ab on −JF while in (b) we show
the dependence of exchange couplings in the c direction J c on −JF .
We have used U = 10tc, t = 0.785, tz = 0.683, and λxy = λz = 1.

A. One-dimensional antiferromagnetic S = 1 Heisenberg chains

When no interchain coupling is present, J ab = 0 and D∗ <

Jc, the system consists on a set of uncoupled one-dimensional
S = 1 antiferromagnetic chains that are in the Haldane phase.
The Haldane phase is characterized by exponentially decaying
spin correlations associated with [40] the Haldane spin gap
�s = 0.4107(3)J c to the lowest triplet state and string order. It
is a symmetry-protected topological phase with nonlocal string
order and fractionalized edge states [41–43]. Topological
protection can arise from either (i) the dihedral group of π

rotations around the x and y axis, (ii) time-reversal symmetry,
or (iii) reflection through a plane perpendicular to the chain (or
bond-center inversion symmetry, which is equivalent in one
dimension) [44]. In the underlying fermionic model, charge
fluctuations imply that topological protection can only come
from reflection symmetry with respect to a plane perpendicular
to the c axis at the midpoint of a bond [27].

On the other hand, when D∗ � J c, the ground state is
adiabatically connected to a trivial state consisting on the
tensor product of the Sz

r�
= 0 at each cluster. The lowest

energy excitations of the D phase which reside in the Sz
r�

=
±1 sector, are gapped and consist of pairs of excitons and
antiexcitons which can be bound. Numerical studies [45–48]
have established that in the pure spin model the quantum
critical point separating the D phase and Haldane phase occurs
at D∗/J c ∼ 0.96 − 0.971. It has been found that in a pure
spin model such as the one discussed here, a quantum phase
transition between the Haldane phase and the topologically
trivial D phase is signaled by the change in sign of an
inversion-symmetry-based order parameter [47] which is a
nonlocal topological order parameter. Hence, a transition from
a Haldane phase to a D phase occurs when increasing SMOC
until D∗ ∼ J c.

From our analysis of Fig. 10(b), which is the relevant SMOC
ratio to Mo3S7(dmit)3, (assuming JF = −0.3tc), we predict a
transition from the Haldane to the D phase at λxy ∼ 0.65tc.
Ab initio estimates of SMOC [13] in Mo3S7(dmit)3 find that
λxy = λz/2 = 0.042tc, which would naively mean that the
single-spin anisotropy is too small, D∗ � J c, to induce a D
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phase in the crystal. By moving to suitable materials containing
heavier elements [12], SMOC can be increased by, at most, a
factor of 4–5 leading to λxy ≈ 0.2tc � λcritical

xy which means
that the system is still in the Haldane phase. However, the
critical λxy for the transition can be reduced by suppressing
tz and increasing −JF as shown in Fig. 3. Also in the
underlying fermionic model (neglecting SMOC), the Haldane
gap is suppressed by more than an order of magnitude by
charge fluctuations [27]. More specifically, charge fluctuations
renormalize the critical condition D∗ ∼ J c to D∗ ∼ 0.066J c

for the parameters relevant to Mo3S7(dmit)3. This leads to
a smaller λcritical

xy as shown in Fig. 3. The above discussion
indicates that a series of materials related to Mo3S7(dmit)3 with
slight variations in model parameters could easily effectively
span the phase Haldane–to–D-phase transition. Furthermore,
a material on the D-phase side of the transition could be driven
into the Haldane phase by uniaxial pressure along the c axis.
In particular, our results above suggest that the critical ratio
D∗/J c could be exceeded by moving to suitable materials
containing heavier elements [12]. Furthermore, one expects
that the interlayer hopping tz will be extremely sensitive
to chemical details. As J c ∼ t2

z structures with increased
interlayer separation will strongly favor the D phase.

B. Effect of the interchain couplings

When the quantum pseudospin-one chains are coupled
through a sufficiently strong interchain coupling J ab, the
Haldane phase becomes unstable to 3D magnetic order.
In previous numerical studies of weakly coupled S = 1
antiferromagnetic Heisenberg chains (with D∗ = 0), it was
estimated [49] that the critical value for the transition from the
Haldane to the ordered 3D magnet occurs around J ab/J c �
(0.08 − 0.11)z ∼ 0.3, where the coordination number z = 3
for the honeycomb lattice. Since we find that J ab/J c � 0.2,
we expect that the ground state of our model is in the Haldane
phase when D∗ = 0. This critical ratio, J ab/J c, for the onset
of 3D magnetic order is suppressed by D∗ as shown [50] by
mean-field treatments of the interchain coupling J ab.

C. Effect of an external magnetic field

An external magnetic field suppresses the 1D quantum
fluctuations and the Haldane gap �s closes [51] at hc ∼
�s , when a transition to a 3D ordered magnet occurs. A
quantum critical region with a V shape emerges around hc

in the temperature versus magnetic field, T -h, phase diagram
[50,52,53]. The temperature, T ∼ J ab, sets the energy scale
at which 3D quantum criticality for T < Jab crosses over
to 1D behavior for T > Jab. Similarly the three-dimensional
magnetically ordered phase found for h > hc and T = 0
crosses over to a gapless Tomonaga-Luttinger liquid (TLL) at
temperatures T > Jab. We note that, strictly speaking, the TLL
behavior should only occur [54] in the range J ab < T < J c,
since at too large temperatures, T � J c, classical behavior sets
in. In the presence of a nonzero and small D∗, with D∗ � J c,
the lowest triplet state is split into a j = ±1 doublet with
energy �± above the ground state and a j = 0 singlet at energy
�0 with �± < �0. Hence, under an applied magnetic field
�± is suppressed and the transition from the Haldane phase

to the 3D ordered phase occurs around hc = �± < �s . Apart
from the downward shift of hc, we can expect, qualitatively, a
similar T -h phase diagram as in the case with no single-spin
anisotropy, D∗ = 0.

VI. CONCLUSIONS

We have analyzed the magnetic properties of the trinuclear
organometallic materials, such as Mo3S7(dmit)3. These mate-
rials are potential candidates for realizing compass interactions
in their layers. In order to explore such possibilities we have
derived an effective magnetic model describing the magnetic
interactions between the pseudospin-one at each molecular
cluster arising from strong Coulomb repulsion, lattice struc-
ture, and SMOC. In spite of the crystals being nearly isotropic,
we find that the exchange coupling between nearest-neighbor
pseudospins along the c direction is much larger than between
pseudospins within the hexagonal a-b planes. Hence, the spin
exchange model for these crystals is effectively quasi-one-
dimensional. Magnetic anisotropies are found to arise under
the simultaneous effect of spin orbit coupling and intracluster
exchange interaction. These anisotropies are further enhanced
by SMOC anisotropy, particularly when λxy < λz, which is
naturally present in organometallics. Our analysis suggests
that Mo3S7(dmit)3 is most probably in the Haldane phase
since the effective model consists of weakly coupled S = 1
antiferromagnetic chains in the presence of small single-spin
anisotropy induced by SMOC. However, by increasing the
interlayer distances through changes in the chemistry of the
material, increasing the anisotropy of magnitude of the SMOC
it should be possible to effectively drive it into the D phase.
A larger SMOC should be realized in complexes containing
heavier metals [12].

The Haldane phase is strongly sensitive to an external
magnetic field. Under applied magnetic fields larger than the
Haldane gap, h > hc ∼ �s , the Haldane phase is destroyed
and a three-dimensional magnet may be stabilized. We have
estimated this critical field hc, based on our present analysis
using DFT parameters [13] for Mo3S7(dmit)3 (Table I) with
an onsite U = 10tc and JF = −0.3tc. Using these parameters
we extract J c = 0.0126 eV from our Fig. 10(b) which leads
to a critical magnetic field hc ∼ �s ∼ 41.4 T assuming
the Haldane spin gap, �s = 0.414J c ≈ 0.09tc, in the pure
Haldane chain. However, recent DMRG calculations on Hub-
bard tubes [27] have shown that charge fluctuations strongly
suppress the spin gap when decreasing U . For the parameter
range considered here, we would find �s ∼ 0.006tc, implying
experimentally accessible critical fields: hc ∼ 3 T. A V-shaped
quantum critical region in the T -h phase diagram separating
the Haldane phase from the three-dimensional magnetically
ordered phase should then emerge as observed in inorganic
Haldane chain materials [53].

Exfoliation or growth of a monolayer of trinuclear com-
plexes arranged as in the a-b planes of Mo3S7(dmit)3, would
lead to the realization of a decorated hexagonal lattice
which is known to contain rich physics. We have found
that at large U and no SMOC, the magnetic interactions
between the pseudospin-one would be that of a conventional
nearest-neighbor antiferromagnetic Heisenberg model on an
hexagonal lattice [55]. The ground state of this model is a
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pure Néel antiferromagnet. However, if crystal parameters are
tuned so that magnetic exchange anisotropies are enhanced,
disordered spin liquid phases [56] may be achieved. For
instance, if the relative orientation between the molecules in
the crystal is modified so that inversion symmetry within the
planes is broken, a DM interaction arises [15] which competes
with the magnetic order [57], which can lead to interesting spin
liquid phases [58]. All this illustrates how isolated layers of
trinuclear organometallic complexes are ideal playgrounds to
explore the quantum many-body phases realized in a decorated
honeycomb lattice.
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APPENDIX A: ELECTRONIC STRUCTURE OF ISOLATED
TRIANGULAR CLUSTERS

Here, we provide the details of the electronic structure of
isolated clusters with different numbers of electrons.

1. Isolated triangular cluster with five electrons

We start studying isolated trimers with N = 1 electrons.
This is due to its intrinsic importance and due to the fact that
the electronic structure of trimers with N = 5 electrons and
tc,λxy,λz > 0, relevant to Mo3S7(dmit)3 can be obtained from
the N = 1 case by a particle-hole transformation switching
the sign of the parameters: tc → −tc,λxy → −λxy,λz → −λz

apart from a rigid energy shift.
For only one electron in the cluster, N = 1, the Hamiltonian

is just H = H0 + HSMOC. Since [H,Jz] = 0, where Jz = Lz +
Sz, then the projection of the total momentum along the z axis
is a good quantum number. In the following we denote the
basis states for a fixed number of particles N as |N ; j,n〉 where
j = k + σ and n numbers the different possible configurations
for each j sector. Hence, in this case the possible basis states
are

|1; 1/2,1〉 = b
†
0↑|0〉, |1; 1/2,2〉 = b

†
1↓|0〉,

|1; −1/2,1〉 = b
†
0↓|0〉, |1; −1/2,2〉 = b

†
−1↑|0〉,

|1; 3/2,1〉 = b
†
1↑|0〉, |1; −3/2,1〉 = b

†
−1↓|0〉. (A1)

The eigenenergies, En(N ; j ) of the Hamiltonian, are

E2(1; j = ±3/2) = tc + λz

2
,

E1(1; j = ±1/2) = −λz

4
− tc

2
+

√(
λz − 6tc

4

)2

+ λ2
xy

2
,

E0(1; j = ±1/2) = −λz

4
− tc

2
−

√(
λz − 6tc

4

)2

+ λ2
xy

2
.

(A2)

Hence the level spectra for N = 1 consists of three doublets
with the energies given above. The ground state of the
system with one electron, N = 1, is a doublet with energy
E0. Time-reversal invariance of the Hamiltonian, [T ,H ] = 0,
and Kramers theorem ensures that all states should have
a minimum degeneracy of two since the cluster has an
odd number of electrons. Note that the level spectra of the
triangular cluster with N = 5 electrons (one hole) would
be the same as (A2) but with the signs reversed: tc → −tc,
λxy → −λxy,λz → −λz, and with an upward rigid shift of all
energies by +2U .

To make contact with previous work on transition metal
oxides it is illustrative to consider our model Hamiltonian:
H = H0 + HSMOC + HU−JF

, with H0, HSMOC and HU−JF

expressed in the (k,σ ) basis as given by Eqs. (12), (14), and
(16), respectively. For U,JF = 0, this model is reminiscent of
a model previously considered [4–6] for Ir4+ ions in A2IrO3

(A = Na,Li) compounds. In these systems, five electrons
occupy the lowest t2g manifold of the Ir ions which is well
separated from the high energy eg doublet. The low energy
effective model for the hole in the t2g manifold of the isolated
Ir ions includes a trigonal crystal field resulting from the
surrounding oxygen octahedra and a large SOC contribution
[6]: H = �(Lz)2 + λL · S, with � > 0. Note that in contrast
to the molecular case, the SOC is isotropic, λ = λxy = λz, in
the case of ions and atoms.

Through the particle-hole transformation discussed above,
the threefold degenerate t2g manifold of the isolated Ir ion with
one hole is equivalent to our model of the isolated molecule
with one electron, N = 1, with the signs of λ = λxy = λz

and tc reversed. Full rotational symmetry is only recovered
for tc → 0 in our model when U,JF = 0. In that case, [H0 +
HSMOC,L] = 0, so that the total angular momentum L is a good
quantum number, as it should. In this situation, we find that
isotropic SOC (λxy = λz = λ) splits the (2L + 1)(2S + 1) = 6
manifold (L = 1,S = 1/2) into a j = 1/2 doublet with energy
E0(1; j = 1/2) = −λ and a j = 3/2 quadruplet with energy
E1(1; j = 3/2) = λ

2 . This situation corresponds to removing
the crystal field acting on the d-orbital manifold in transition
metal oxides.

2. Isolated triangular clusters with four electrons

The basis states with N = N↑ + N↓ = 4 electrons includes
states with total spin Sz = 0, (N↑ = 2,N↓ = 2), Sz = 1 (N↑ =
3,N↓ = 1), and Sz = −1 (N↑ = 1,N↓ = 3). Noting that basis
states with total momentum k′ are equivalent to k if they satisfy
k = k′ ± 3n, we find that the basis states can be classified
according to three possible values: j = 0,±1. Since the
Hamiltonian does not mix sates with different j , the original
15 × 15 matrix can be expressed in block diagonal form
consisting of 5 × 5 matrices corresponding to j = 0,±1. We
now explicitly show the classification of the (k,σ ) basis states
according to j = 0,±1 and the analytical diagonalization of
the matrices corresponding to each of the j sectors. We keep
the |N ; j,n〉 classification of the basis states.
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a. j = 0 sector

The three possible configurations with k = σ = 0 are

|4; 0,1〉 = b
†
0↑b

†
−1↑b

†
0↓b

†
1↓|0〉, |4; 0,2〉 = b

†
0↑b

†
1↑b

†
0↓b

†
−1↓|0〉, |4; 0,3〉 = b

†
−1↑b

†
1↑b

†
−1↓b

†
1↓|0〉. (A3)

There is only one configuration for either k = −1,σ = 1,

|4; 0,4〉 = b
†
0↑b

†
−1↑b

†
1↑b

†
−1↓|0〉, (A4)

or k = 1,σ = −1,

|4; 0,5〉 = b
†
1↑b

†
0↓b

†
−1↓b

†
1↓|0〉. (A5)

Hence, the j = 0 Hamiltonian reduces to a 5 × 5 matrix:

H (4; j = 0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2tc + 4U
3 − 7JF

6 − λz
U−JF /2

3 −U+JF

3 0 0
U−JF /2

3 −2tc + 4U
3 − 7JF

6 + λz −U+JF

3 − λxy√
2

λxy√
2

−U+JF

3 −U+JF

3 4tc + 4U
3 − 5JF

3
λxy√

2
− λxy√

2

0 − λxy√
2

λxy√
2

U + tc − JF + λz

2 0

0 λxy√
2

− λxy√
2

0 U + tc − JF + λz

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

b. j = −1 sector

We work in the basis,

|4; −1,1〉 = b
†
0↑b

†
−1↑b

†
−1↓b

†
1↓|0〉, |4; −1,2〉 = b

†
−1↑b

†
1↑b0↓b−1↓|0〉, |4; −1,3〉 = b

†
0↑b

†
1↑b

†
0↓b

†
1↓|0〉,

|4; −1,4〉 = b
†
0↑b

†
0↓b

†
−1↓b

†
1↓|0〉, |4; −1,5〉 = b

†
0↑b

†
−1↑b

†
1↑b

†
1↓|0〉. (A6)

The first three states have k = −1 = 2, σ = 0, the fourth has k = 0, σ = −1, and the fifth has k = 1 = −2, σ = 1. The j = −1
Hamiltonian is

H (4; j = −1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

tc + 4U
3 − 7JF

6 − λz

2
U−JF /2

3
U+JF

3 − λxy√
2

0
U−JF /2

3 tc + 4U
3 − 7JF

6 + λz

2
U+JF

3 0 0
U+JF

3
U+JF

3 −2tc + 4U
3 − 5JF

3 0 − λxy√
2

− λxy√
2

0 0 −2tc + U − JF 0

0 0 − λxy√
2

0 U + tc − JF − λz

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A7)

c. j = +1 sector

It is convenient to take the basis states as the time-reversed analogs of the j = −1 sector:

|4; +1,1〉 = b
†
0↑b

†
1↑b

†
−1↓b

†
1↓|0〉, |4; +1,2〉 = b

†
−1↑b

†
1↑b

†
0↓b

†
1↓|0〉, |4; +1,3〉 = b

†
0↑b

†
−1↑b

†
0↓b

†
−1↓|0〉,

|4; +1,4〉 = b
†
0↑b

†
−1↑b

†
1↑b

†
0↓|0〉, |4; +1,5〉 = b

†
−1↑b

†
0↓b

†
−1↓b

†
1↓|0〉. (A8)

Thus one immediately sees that H (4; j = +1) = H (4; j = −1). Hence, there is a double degeneracy of the eigenvalues Ei(4; j =
+1) = Ei(4; j = −1).

For λ = 0, the ground state is threefold degenerate corresponding to the S = 1 triplet combination of the two unpaired spins
in the cluster. These lowest three degenerate states correspond to j = 0,±1. From the above analysis we conclude that isolated
clusters with four electrons can be described through the effective Hamiltonian given in Eq. (17) where D is an increasing
function of SMOC as discussed in the main text.

3. Isolated triangular clusters with three electrons

The basis for N = 3 electrons consists of 20 configurations: 18 configurations with Sz = 1/2 (N↑ = 2,N↓ = 1) or Sz = −1/2
(N↑ = 1,N↓ = 2) and two configurations with Sz = 3/2 (N↑ = 3,N↓ = 0) or Sz = −3/2 (N↑ = 0,N↓ = 3). The only allowed
j values for the cluster with N = 3 electrons are j = ± 1

2 ,+ 3
2 with the largest (8 × 8) matrix corresponding to j = + 3

2 . The
j = − 3

2 sector is not given here since the configurations are just the same as the ones in the j = + 3
2 sector.
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a. j = +3/2

The configurations with j = 3/2 are

|3; +3/2,1〉 = b
†
0↑b

†
1↑b

†
0↓|0〉, |3; +3/2,2〉 = b

†
0↑b

†
−1↑b

†
−1↓|0〉, |3; +3/2,3〉 = b

†
−1↑b

†
1↑b

†
1↓|0〉, |3; +3/2,4〉 = b

†
1↑b

†
0↓b

†
1↓|0〉,

|3; +3/2,5〉 = b
†
0↑b

†
−1↑b

†
1↑|0〉, |3; +3/2,6〉= b

†
0↑b

†
0↓b

†
−1↓|0〉, |3; +3/2,7〉= b

†
−1↑b

†
−1↓b

†
1↓|0〉, |3; +3/2,8〉 = b

†
0↓b

†
−1↓b

†
1↓|0〉.
(A9)

Yielding the 8 × 8 Hamiltonian matrix,

H (3; 3/2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3tc+ 2U−5JF /2
3 + λz

2
U+JF

3
U+JF

3 − λxy√
2

− λxy√
2

0 0 0

U+JF

3
2U−5JF /2

3 −U+JF

3 0 0 λxy√
2

− λxy√
2

0

U+JF

3 −U+JF

3 3tc+ 2U−5JF /2
3 − λz

2 − λxy√
2

− λxy√
2

0 0 0

− λxy√
2

0 − λxy√
2

2U−5JF /2
3 0 U+JF

3
U+JF

3 0

− λxy√
2

0 − λxy√
2

0 0 0 0 0

0 λxy√
2

0 U+JF

3 0 −3tc+ 2U−5JF /2
3 + λz

2 −U+JF

3 − λxy√
2

0 − λxy√
2

0 U+JF

3 0 −U+JF

3 3tc+ 2U−5JF /2
3 − λz

2
λxy√

2

0 0 0 0 0 − λxy√
2

λxy√
2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A10)

b. j = ±1/2

We take the basis,

|3; +1/2,1〉 = b
†
0↑b

†
0↓b

†
1↓|0〉, |3; +1/2,2〉 = b

†
1↑b

†
−1↓b

†
1↓|0〉, |3; +1/2,3〉 = b

†
−1↑b

†
0↓b

†
−1↓|0〉,

|3; +1/2,4〉 = b
†
−1↑b

†
1↑b

†
0↓|0〉, |3; +1/2,5〉 = b

†
0↑b

†
1↑b

†
−1↓|0〉, |3; +1/2,6〉 = b

†
0↑b

†
−1↑b

†
1↓|0〉, (A11)

and analogously for j = −1/2. The 6 × 6 Hamiltonian matrix reads

H (3; j = +1/2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3tc + 2U

3 − 5JF

6 − λz

2
U+JF

3
U+JF

3 0 0 λxy√
2

U+JF

3 3tc + 2U

3 − 5JF

6 + λz

2 −U+JF

3 0 − λxy√
2

0
U+JF

3 −U+JF

3
2U

3 − 5JF

6 0 0 0

0 0 0 2U

3 − JF

3
U−JF /2

3 −U−JF /2
3

0 − λxy√
2

0 U−JF /2
3

2U

3 − JF /3 + λz
U−JF /2

3

λxy√
2

0 0 −U−JF /2
3

U−JF /2
3

2U

3 − JF

3 − λz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Due to Kramers theorem the eigenstates, En(3; j = 1/2) = En(3; j = −1/2) and the energy levels for En(3; j = 3/2) are at
least doubly degenerate. With no SMOC present, En(3; j = ±1/2) = En(3; j = 3/2) and the eigenstates are fourfold degenerate.
However, when SMOC is present En(3; j = ±1/2) �= En(3; j = 3/2) and the fourfold degeneracy is broken leading to twofold
degenerate levels.

APPENDIX B: EXPRESSION FOR EFFECTIVE SPIN MODELS FROM THE CANONICAL
TRANSFORMATION OF THE t- J MODEL

In this Appendix we model the �th trinuclear complex by the three site t-J model, i.e.,

H
(�)
t−J ≡ P0

⎡
⎣ 3∑

σ,j=1

tc(h†
�jσ h�(j+1)σ + h

†
�jσ h�(j−1)σ ) − Jc

4

3∑
i �=j �=k=1

∑
σ,σ ′

h�iσ h
†
�jσ (1 − n�j↑)(1 − n�j↓)a�jσ ′a

†
�kσ ′

⎤
⎦P0, (B1)

where h
†
�iσ = a�iσ creates a hole with spin σ in the ith Wannier orbital and P0 projects out states that contain empty sites. Note

that it is important to retain the “three site” terms here, as we will need to consider states far from half-filling. For a single
molecule the effective low-energy model, retaining only the three lowest energy states is given by Eq. (17) with

D = λ2
z − λ2

xy

6(2tc − Jc)
. (B2)
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The t-J model of the interlayer coupling between neighboring molecules � and m is

Hc
t−J = P0

⎡
⎣−tz

∑
σ

3∑
j=1

(h†
�jσ hmjσ + h

†
mjσh�jσ ) + Jz

3∑
j=1

(
Ŝ�j · Ŝmj − n̂�j n̂mj

4

)⎤
⎦P0, (B3)

where now there are no three site terms because of the topology of the underlying tight-binding model [cf. Eq. (21) and Fig. 2(b)].
Performing the canonical transformation described in Sec. IV A and retaining quadratic terms in tz, linear terms in Jz (as Jz is
already quadratic in tz) and quadratic terms in the SMOC (i.e., up to order λ2

z , λ2
xy , or λxyλz) yields an effective Hamiltonian

described by Eq. (33) with

�Dc = − t2
z

81

[
28tc + Jc

(2tc − Jc)3tc
λ2

z − 24Jct
3
c + 29J 2

c t2
c − 17J 3

c tc + 2J 4
c

2(4tc − Jc)(2tc − Jc)3t3
c

λ2
xy

]
, (B4a)

J c = Jz

3

[
1 − 1

12(2tc − Jc)2
λ2

z − J 2
c

48(2tc − Jc)2t2
c

λ2
xy

]

+ t2
z

81

36

2tc − Jc

[
1 + 2

9(2tc − Jc)2
λ2

z − 160t4
c − 48Jct

3
c − 52J 2

c t2
c + 26J 3

c tc − 3J 4
c

72(4tc − Jc)(2tc − Jc)2t3
c

λ2
xy

]
, (B4b)

�c = 1 + Jz

48(2tc − Jc)t2
z

(
7λ2

z + 48Jct
3
c − 12J 2

c t2
c − 9J 3

c tc + 2J 4
c

4(4tc − Jc)t3
c

λ2
xy

)

− 1

9(2tc − Jc)2

[
λ2

z + 24Jct
3
c − 6J 3

c tc + J 4
c

8(4tc − Jc)t3
c

λ2
xy

]
, (B4c)

Pzz = 4t2
z

9(2tc − Jc)3
λ2

z, (B4d)

Pxx = t2
z

81

J 2
c (5tc − Jc)

(2tc − Jc)3t3
c

λ2
xy, (B4e)

Pzx = Pxx + Pzz

2
. (B4f)

The t-J model of the in-plane coupling between molecules � and m along a “1-bond” (cf. Fig. 1) is

Hab
t−J = −tg

∑
σ

P0(â†
�1σ âm1σ + â

†
m1σ â�1σ )P0 + JcP0

(
S�1 · Sm1 − n̂�1n̂m1

4

)
P0, (B5)

again the three site terms vanish because of the underlying tight-binding model [Eq. (19)]. Performing the canonical
transformation, adding in the 2- and 3-bonds, as described in Sec. IV A, and retaining quadratic terms in tg , linear terms in
Jg , and quadratic terms in the SMOC yields an effective Hamiltonian described by Eq. (36) with

�Dab = − t2
g

81

[
30t2

c − 16Jctc + 2J 2
c

9(4tc − Jc)(2tc − Jc)2t2
c

λ2
z − 96Jct

3
c − 212J 2

c t2
c + 90J 3

c tc − 11J 4
c

36(4tc − Jc)(2tc − Jc)3t3
c

λ2
xy

]
, (B6a)

J ab = Jg

9

[
1 − λ2

z

12(2tc − Jc)2
− J 2

c λ2
xy

48(2tc − Jc)2t2
c

]

+ t2
g

81

4Jc

tc(2tc − Jc)

[
1 +

(
5t2

c − 5tcJc + J 2
c

)
36(2tc − Jc)2

λ2
z

t2
c

− 240t3
c − 190Jct

2
c + 53J 2

c tc − 5J 3
c

36(4tc − Jc)(2tc − Jc)2

λ2
xy

t2
c

]
, (B6b)

Q =
[

Jg

9

Jc(8tc + 5Jc)

144(2tc − Jc)2
− t2

g

81

48t2
c Jc − 26tcJ

2
c + 3J 3

c

18tc(2tc − Jc)2(4tc − Jc)

]
λ2

xy

t2
c

, (B6c)

�ab = 1 − Jg

16Jc(2tc − Jc)t2
g

[
(4tc − Jc)λ2

z − 384t3
c − 152Jct

2
c + 3J 3

c

4(4tc − Jc)tc
λ2

xy

]

+ 1

36(Jc − 2tc)2tc

[
(7tc − Jc)λ2

z − 96t2
c − 38Jctc + 3J 2

c

4tc − Jc

λ2
xy

]
, (B6d)

J ab
xz = 1√

2

[
−Jg

9

(
Jc

36(2tc − Jc)2tc

)
+ t2

g

81

(
Jc(12t2

c − 6Jct
2
c + J 2

c )

9(4tc − Jc)(2tc − Jc)3t2
c

)]
λxyλz. (B6e)
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