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We study the critical properties of the QED3-Gross-Neveu model with 2N flavors of two-component Dirac
fermions coupled to a massless scalar field and a U(1) gauge field. For N = 1, this theory has recently been
suggested to be dual to the SU(2) noncompact CP1 model that describes the deconfined phase transition between
the Néel antiferromagnet and the valence bond solid on the square lattice. For N = 2, the theory has been
proposed as an effective description of a deconfined critical point between chiral and Dirac spin liquid phases,
and may potentially be realizable in spin-1/2 systems on the kagome lattice. We demonstrate the existence
of a stable quantum critical point in the QED3-Gross-Neveu model for all values of N . This quantum critical
point is shown to escape the notorious fixed-point annihilation mechanism that renders plain QED3 (without
scalar-field coupling) unstable at low values of N . The theory exhibits an upper critical space-time dimension
of four, enabling us to access the critical behavior in a controlled expansion in the small parameter ε = 4 − D.
We compute the scalar-field anomalous dimension ηφ , the correlation-length exponent ν, as well as the scaling
dimension of the flavor-symmetry-breaking bilinear ψ̄σ zψ at the critical point, and compare our leading-order
estimates with predictions of the conjectured duality.
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I. INTRODUCTION

At zero temperature, strongly correlated systems exhibit
transitions between different phases of matter upon tuning
nontemperature parameters, such as external pressure or chem-
ical doping. Just as their classical counterparts, these quantum
phase transitions are characterized by only a few universal
properties that are governed by an associated continuum
quantum field theory [1]. Most quantum phase transitions have
a classical analog and can be characterized in terms of a local
order parameter that allows to classify and distinguish different
phases of matter—a property that is commonly referred to as
Landau’s symmetry breaking paradigm.

There exist, however, exotic phase transitions which are
inherently quantum mechanical and for which the Landau
theory is inapplicable. The most familiar example is the puta-
tive deconfined quantum critical point between two different
symmetry-breaking phases of a spin-1/2 system on the square
lattice—the Néel and valence-bond solid (VBS) states [2,3].
The deconfined critical point is characterized by fractionalized
bosonic spinons on the complex projective space CP1 coupled
to an emergent noncompact U(1) gauge field. These degrees
of freedom emerge only directly at the critical point, but
are “confined” in either phase. The appropriate theoretical
description of the criticality is given by a strongly interacting
gauge field theory—the noncompact CP1 (NCCP1) model.
More recently, new types of such non-Landau transitions have
been suggested, which are similarly governed by strongly
interacting gauge theories [4–6]. This includes transitions
between different long-range entangled phases, such as the
Dirac and chiral spin liquid phases [7–9], between short-range
entangled phases, e.g., symmetry-protected topological phases
[10], and between phases with anticommuting fermion mass
terms [11].

The strongly interacting gauge theories that describe the
above deconfined critical points are also of wide fundamental
interest with respect to various duality webs that were proposed

recently. Via these dualities, several seemingly different
theories can be mapped onto each other and themselves. The
easy-plane version of the NCCP1 model, for instance, has
been argued to be self-dual [3,12], which can be understood
as a consequence of the well-known bosonic particle-vortex
duality [13–15]. Specifically, the spinon field content of the
NCCP1 model can be viewed as either two flavors of bosonic
spinons or two flavors of bosonic vortices. Building on the
Dirac theory of the half-filled Landau level [16], several
works suggest a fermionic counterpart of the particle-vortex
duality [17–19]. This has lead to a number of fascinating novel
duality conjectures, including ones that relate purely bosonic
systems to fermionic theories [20–26]. Early proposals of a
duality between the easy-plane NCCP1 model and quantum
electrodynamics in 2+1 dimensions (QED3) [27,28] have
recently undergone various consistency checks, corroborating
the intimate relationship between these seemingly different
theories [22,29,30]. In a similar way, the SU(2) invariant
NCCP1 model has been argued to be self-dual as well as to be
dual to QED3 coupled to a critical real scalar field—a theory
that was coined “QED3-Gross-Neveu” (QED3-GN) model
[29]. An immediate consequence of this conjectured duality
is the emergence of an enlarged SO(5) symmetry, which was
numerically observed earlier [31,32].

While the infrared fate of QED3 has extensively been dis-
cussed in the last three decades [33–45], the infrared structure
of the QED3-GN model has, to the best of our knowledge,
not been studied before. In this work, we demonstrate that
the QED3-GN model exhibits a stable fixed point of the
renormalization group (RG) for all fermion flavor numbers
N . In particular, we demonstrate that the coupling to the
critical scalar field prevents the mechanism of fixed-point
annihilation that is responsible for the instability of plain
QED3 at low values of N [34–37]. The stable fixed point
can be approached by tuning a single parameter, such as the
scalar-field mass, and thus can be associated with a continuous
quantum phase transition. The existence of this quantum
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critical point for two flavors of two-component fermions is
a necessary condition for the NCCP1–QED3-GN duality to
hold. We compute the critical exponents ηφ (order-parameter
anomalous dimension) and ν (correlation-length exponent) as
well as the scaling dimension of the flavor-symmetry-breaking
bilinear ψ̄σ zψ , within an ε expansion around the upper
critical space-time dimension of four. If the duality holds,
the universal exponents at this quantum critical point in the
physical space-time dimension of D = 2 + 1 can be uniquely
mapped onto those of the SU(2) invariant NCCP1 model, and
we compare our leading-order estimates with numerical results
for the bosonic systems [31,46,47]. Our work represents the
first step towards a proper quantification of the critical behavior
of the QED3-GN model. In the plain Gross-Neveu system
(without the coupling to the gauge field), significant progress
was made previously by employing high-order ε expansion
[48,49], the functional renormalization group [50–52], the
conformal bootstrap approach [53,54], and sign-free quantum
Monte Carlo simulations [55–59]. Extending these advances
to the QED3-GN case, and comparing with results for the
NCCP1 model, should allow to prove or disprove the duality
conjecture in future studies.

The critical behavior of the QED3-GN model is of interest
for yet another reason. This model for the case with four
two-component fermion flavors has recently been suggested to
describe the deconfined critical point between the chiral spin
liquid and the U(1) Dirac spin liquid phases [6]. Both phases,
and their transition, are potentially realizable in spin-1/2
systems on the kagome lattice [60–63]. Our finding of a stable
fixed point corroborates this proposal, and the predictions for
the critical behavior may facilitate a numerical test of it in the
future.

The paper is organized as follows. In the following section,
we define the QED3-GN theory and review the proposed du-
alities and the potential applicability to deconfined criticality.
In Sec. III, we compute the RG flow in a fermionic language
that allows to make contact with previous works on the plain
QED3 theory. The 4 − ε expansion of the QED3-GN theory is
performed in Sec. IV. In Sec. V, we summarize our results
and attempt some conclusions in light of the conjectured
NCCP1–QED3-GN duality.

II. MODEL

We are interested in the QED3-GN theory, defined by the
Lagrangian

Lψφ = ψ̄i[γμ(∂μ − iaμ)]ψi + 1

2e2
(εμνρ∂νaρ)2

+ gφψ̄iψi + 1

2
φ(r − ∂μ∂μ)φ + λφ4, (1)

in D = 2 + 1 Euclidean space-time dimensions. The summa-
tion convention over repeated indices is assumed. We consider
an even number 2N of two-component Dirac fermion flavors
ψi and ψ̄i , i = 1, . . . ,2N . The parity symmetry is therefore
explicitly preserved for any integer N and the flavor symmetry
is U(2N ). The 2 × 2 Dirac matrices γμ fulfill the Clifford
algebra {γμ,γν} = 2δμν12, with μ,ν = 0,1,2. The fermions
couple to the U(1) gauge field aμ with charge e2. The explicit
calculations presented below are performed in a general Rξ

gauge with undetermined gauge-fixing parameter ξ , by adding
Lgf = − 1

2ξ
(∂μaμ)2 to the Lagrangian. This enables us to verify

the gauge independence of our results. φ is a real scalar
field that is odd under the time-reversal symmetry (TRS).
It interacts with the fermions through the Yukawa coupling
g, and with itself through the φ4 coupling λ. r is a tuning
parameter for the TRS breaking transition, indicated by the
formation of a finite scalar-field expectation value, 〈φ〉 �= 0.
As mentioned in the introduction, this QED3-GN theory has
interesting applications:

(1) By applying the boson-fermion duality [21,22,64], and
building on earlier observations [28], the case N = 1 has
recently been conjectured to be dual to the bosonic NCCP1

theory [29],

Lz =
∑

α=1,2

|(∂μ − ibμ)zα|2 + κ(εμνρ∂νbρ)2

+ λ0(|z1|2 + |z2|2)2 + λ1|z1|2|z2|2. (2)

Here, z = (z1,z2) are complex bosonic fields and bμ is a U(1)
gauge field. When λ1 = 0, the theory has an explicit SU(2)
symmetry. We will refer to this case as SU(2) NCCP1 model.
This theory is believed to describe the deconfined critical point
between the Néel and VBS phases on the square lattice [2,3].
For λ1 �= 0, the theory has an easy-plane anisotropy with a
residual O(2) symmetry and is relevant for spin models with
an XY symmetry.

The postulated dualities between Eq. (1) and Eq. (2) are
as follows: (i) the plain QED3 theory with the scalar field φ

decoupled (formally corresponding to the limit of large tuning
parameter r) is dual to the easy-plane NCCP1 model with
λ1 �= 0. (ii) The critical QED3-GN theory with r tuned such
that φ becomes gapless is dual to the SU(2) NCCP1 model
with λ1 = 0. While these proposed dualities have passed a
number of consistency checks [29], we should emphasize
that, at present, they lack any formal or numerical proof
and should be considered as conjectural. The conjectures,
however, do predict a number of nontrivial relations between
the universal exponents that describe the critical behaviors
of these theories, allowing in principle to verify or falsify
the conjectures on a quantitative level. For the case (ii),
the scalar field φ is identified with z†σ zz, which is an
element of the Néel-VBS SO(5) order parameter. The scalar
anomalous dimension ηφ in the QED3-GN theory should
therefore coincide with the anomalous dimensions ηNéel and
ηVBS in the spin systems. Furthermore, the dual to the φ2

operator corresponds to a rank-2 tensor representation of the
SO(5) critical theory. The latter contains the operator z†z
that tunes through the Néel-VBS transition, and therefore the
correlation-length exponents νQED3-GN and νNéel-VBS in the two
systems should also coincide. Another consequence of the
proposed duality is that z†z can also be identified with the
flavor-symmetry breaking fermion bilinear ψ̄σ zψ . Therefore
the scaling dimension of ψ̄σ zψ should also coincide with
the scaling dimension of φ2. This statement is particularly
interesting, because it allows a nontrivial test of the duality
conjecture fully within the QED3-GN theory—without the
need to compare with a different system. A similar relation
between ηφ and the scaling dimensions of certain monopole
operators also follows [29].
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Obviously, a necessary condition for such a duality to hold
is the existence of a stable interacting RG fixed point. In
fact, for the case of plain QED3, the emergence of conformal
invariance at low energy, and therewith the existence of a
conformal fixed point, can be established when the number of
fermions N is large [33,65]. At low values of N , however,
a generic mechanism that may destabilize the conformal
fixed point is the collision and subsequent annihilation with
another, quantum critical, fixed point [34–37], very much like
in the case of the Abelian Higgs model [32,66] as well as a
number of further examples [67–70]. Such instability is driven
by strong gauge fluctuations and is therefore ubiquitous in
asymptotically safe gauge theories [68]. It leads to an essential
singularity of physical observables at a critical flavor number
Nc, below which the conformal state becomes unstable. The
actual value of Nc in QED3, however, and with it the important
question whether Nc is above [33–35,37,38,40–43] or below
[39,44,45] the physically relevant values, as well as the nature
of the low-N phase [36], has been a matter of intense debate
within the last three decades. Similarly, on the bosonic side
of the duality, the question whether the transition in the
easy-plane NCCP1 model is intrinsically first order, or if a
lattice model that hosts a continuous transition between the XY
antiferromagnetic and VBS states can be constructed, has been
controversially discussed in the past [71–73]. Some very recent
numerical studies suggest a continuous transition [30,74], with
exponents that are potentially in agreement with the conformal
phase of plain QED3 [45].

By contrast, the infrared behavior of the QED3-GN model
has, to the best of our knowledge, not been investigated before
[75]. In the next section, we demonstrate that the coupling to
the critical scalar field φ in fact stabilizes the theory, despite
the presence of strong gauge fluctuations, and it leads to a
stable fixed point that governs a continuous transition into a
state with spontaneously broken TRS.

(2) The case N = 2 is relevant for the physics of spin liquid
states on the kagome lattice. Despite tremendous efforts, the
actual nature of the quantum ground state of the Heisenberg
antiferromagnet on the kagome lattice to date has not been
established beyond doubt. The most promising candidates are
either a gapped Z2 spin liquid [76–78] or a gapless U(1)
Dirac spin liquid [63,79,80]. Longer-range spin interactions
appear to stabilize yet another spin liquid phase, which
is characterized by spontaneous breaking of time reversal
symmetry—a chiral spin liquid with anyonic spinon statistics
[60,61]. The transition into this state appears to be continuous
[62], and if the ground state in the nearest-neighbor model is
a Dirac spin liquid, the effective field theory that describes
this transition would be the QED3-GN model with 2N = 4
flavors of two-component fermion flavors [6]. Determining
the critical behavior of the QED3-GN model may therefore
allow to prove or disprove this scenario if the critical behavior
of the spin-liquid transition on the kagome lattice becomes
possible to be quantified numerically.

III. QED3-GN QUANTUM CRITICAL POINT
IN FERMIONIC RG

The presumed quantum critical point in the theory defined
by Eq. (1) with r tuned to criticality demarcates the ordered

phase in which the TRS is spontaneously broken, 〈φ〉 �= 0,
from the time-reversal-symmetric phase, 〈φ〉 = 0. The infrared
behavior of the latter phase is governed by the conformal fixed
point of plain QED3, which albeit in turn may be destabilized
for low values of N by a collision with another fixed point
[34–37]. In this section, we demonstrate that a critical point
that can be identified with the TRS-breaking transition exists
for all N . In particular, it survives when the conformal fixed
point of plain QED3 collides and annihilates with another fixed
point when lowering N .

In order to make contact with the conformal phase of QED3,
we approach the TRS-breaking transition from the symmetric
side, 〈φ〉 = 0. On this side, we may neglect the quartic coupling
λφ4 for simplicity and integrate out φ. This way, we obtain a
Gross-Neveu-type four-fermion interaction

u(ψ̄iψi)
2, i = 1, . . . ,2N, (3)

with negative four-fermion coupling u < 0. In an RG picture,
the transition towards the TRS-breaking state would in this
formulation be indicated by an instability of the flow towards
divergent u → −∞ at a finite RG scale. Once radiative
corrections are taken into account, further terms that are not
present in the initial action may be generated by the RG.
However, symmetry strongly restricts the number of possible
terms. On the level of four-fermion interactions, the only term
that is compatible with the U(2N ) flavor symmetry is the
Thirring interaction [81],

v(ψ̄iγμψi)
2. (4)

A minimal low-energy effective theory is therefore given by
a U(1) gauge theory with 2N flavors of two-component Dirac
fermions, augmented with Gross-Neveu and Thirring four-
fermion interactions:

Lψ = ψ̄iγμ(∂μ − iaμ)ψi + u(ψ̄iψi)
2 + v(ψ̄iγμψi)

2. (5)

Integrating over the momentum shell from � to �/b with
b > 1, the RG flow of this theory reads, to the one-loop order,

de2

d ln b
= (1 − ηa)e2, (6)

du

d ln b
= −u + 16

3
e2u + 8e2v + 2e4 − 4(2N − 1)u2

+ 8v2 + 12uv, (7)

dv

d ln b
= −v + 8

3
e2u + 4

3
(2N + 1)v2 + 4uv, (8)

with the gauge-field anomalous dimension ηa = 4
3Ne2. In

order to arrive at the above beta functions, we have rescaled
the couplings as e2/(2π2�) �→ e2, �u/(2π2) �→ u, and
�v/(2π2) �→ v. The corresponding diagrams are depicted
in Figs. 1 and 2. The above equations are consistent with
previously published ones in the respective limit [36].

At large N , the fixed-point structure can be elucidated
analytically. At zero charge e2 = 0, there are two critical fixed
points: the Gross-Neveu fixed point (GN), located at

GN : (e2
∗,u∗,v∗) =

(
0,− 1

8N
,0

)
+ O(1/N2), (9)
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FIG. 1. One-loop diagrams determining the flows of the four-fermion couplings u and v. Solid (wiggly) lines correspond to fermion (gauge)
fields.

and the Thrirring fixed point (T) at

T : (e2
∗,u∗,v∗) =

(
0,0,

3

8N

)
+ O(1/N2). (10)

They are believed to be of relevance in the context of
interacting fermions on the honeycomb lattice [50,55,82,83],
and have been extensively studied in the past [48,49,81,84–88].
The charge e2, however, is RG relevant towards the infrared
and flows to a finite fixed-point value e2

∗ = 3
4N

+ O(1/N2).
In this “charged” plane, there are two quantum critical points
when N is large. We find

QED3-GN : (e2
∗,u∗,v∗) =

(
3

4N
,− 1

8N
,0

)
+ O(1/N2),

(11)

and

g-T : (e2
∗,u∗,v∗) =

(
3

4N
,0,

3

8N

)
+ O(1/N2), (12)

and both have precisely one RG relevant direction in the
(e2,u,v) space of couplings. The relevant direction of the
former fixed point (“QED3-GN”) is aligned along

(e2,u,v) = (0,−1,0) + O(1/N), (13)

and therefore describes a transition into a state with u → −∞.
This corresponds to the spontaneous breaking of TRS, and the
fixed point should therefore be understood as the projection
of the critical point in the full QED3-GN theory onto the
four-fermion coupling space. The fixed point in Eq. (12)
(“g-T”) represents a gauged version of the Thirring fixed
point. Moreover, we also rediscover [34–38] the fully infrared
attractive fixed point that describes the conformal phase of
QED3, which in the limit of large N is located at

c-QED3 : (e2
∗,u∗,v∗) =

(
3

4N
,0,0

)
+ O(1/N2). (14)

By evaluating the fixed-point equations at finite N numerically,
we find that it is the g-T fixed point (and not the QED3-GN fixed

FIG. 2. Diagrams that determine the gauge-field anomalous
dimension ηa (left) and the fermion selfenergy (middle). In the flow
equation for e2, the contributions from the fermion self-energy and
explicit vertex correction (right) cancel due to the Ward identity
associated with the U(1) gauge symmetry.

point) that approaches c-QED3 and eventually collides and
annihilates with the latter at a critical flavor number Nc. This
is in agreement with the previous RG studies [34–37]. In our
simple approximation, this fixed-point annihilation happens
at Nc ≈ 6, a number which should be expected to receive
corrections when going beyond the present one-loop order. In
any case, the point we would like to emphasize here is that
the QED3-GN fixed point, in contrast to the c-QED3 and g-T
fixed points, survives across the transition at Nc and continuous
to exist for all values of N . For the case of N = 1, relevant
to the duality conjecture, the RG flow in the coupling space
spanned by e2, u, and v is illustrated in Fig. 3, showing the
fixed points GN and T in the uncharged sector e2 = 0 and the
quantum critical QED3-GN fixed point in the RG attractive
plane e2 = e2

∗.
From the flow of the relevant direction [Eq. (13)], we

obtain the correlation-length exponent at the QED3-GN fixed
point as

1/ν = 1 + O(1/N). (15)

In the above equation, we have displayed only the leading-
order value within the 1/N expansion, for which our one-
loop flow equations are sufficient [89]. The computation of
the 1/N correction requires the knowledge of the two-loop
flow. This is left for future work. The scaling dimension of
the TRS-breaking fermion bilinear ψ̄ψ can be determined by
computing the flow of a small symmetry-breaking perturbation
of the form �ψ̄ψ . At the one-loop order [36],

d�

d ln b
=

(
1 − 2(4N − 1)u + 6v + 8

3
e2

)
� + O(�2). (16)

Therewith, we find

[ψ̄ψ]QED3-GN = 3 − [�] = 1 + O(1/N ) (17)

at the QED3-GN fixed point, corresponding to an anomalous
dimension

ηφ = 1 + O(1/N) (18)

of the TRS order parameter 〈φ〉 ∝ 〈ψ̄ψ〉. Note that the scaling
dimensions at the other critical fixed points, such as g-T and
T, would be [ψ̄ψ]g-T = [ψ̄ψ]T = 2 + O(1/N), and thus these
fixed points are, pictorially speaking, “less unstable” towards
the TRS-breaking perturbation. Along the same line, we can
obtain the scaling dimension of the flavor-symmetry breaking
bilinear ψ̄σ zψ ≡ ψ̄i(σ z ⊗ 1N )ijψj . At the QED3-GN fixed
point, it becomes

[ψ̄σ zψ]QED3- GN = 2 + O(1/N ). (19)

This corroborates our conclusion that the fixed point in Eq. (11)
should be associated with the spontaneous breaking of TRS,
and therewith represents the four-fermion version of the critical
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FIG. 3. RG flow for N = 1. The panels in (b)–(d) display the RG flow within different subspaces of the full theory space spanned by
u, v, and e2, as schematically depicted in (a). (b) u-v plane for e2 = 0. (c) u-v plane for e2 = e2

∗ = 3/4. (d) u-e2 plane for v = 0. Besides
the Gaussian fixed point (G), the only quantum critical point with just one relevant direction is the QED3-GN fixed point. It describes the
TRS-breaking transition. There are furthermore two critical points in the uncharged sector e2 = 0, which, however, receive a second relevant
direction along the e2 axis: the Gross-Neveu fixed point (GN) and the Thirring fixed point (T).

point in the original QED3-GN theory, Eq. (1). At the c-QED3
fixed point, we find at large N ,

[ψ̄ψ]c-QED3
= 2 + O(1/N) = [ψ̄σ zψ]c-QED3

, (20)

consistent with known results [39]. We remark that theO(1/N )
corrections for the two operators are different [90].

IV. QED3-GN QUANTUM CRITICAL POINT
IN 4 − ε EXPANSION

The above one-loop calculation in the four-fermion theory
space spanned by u and v allows us to obtain a qualitative
picture of the structure of the RG flow, and to make contact
with the situation in plain QED3, when the order-parameter
field φ is decoupled. However, in the physically interesting
low-N limit, the fixed points are located at strong coupling
in 2 + 1 dimensions, and the approximation ceases to be
under perturbative control. One may therefore wonder whether
it is possible to establish the existence and investigate the
nature of the QED3-GN fixed point within a complementary
approach. This is the subject of the present section. To this
end, we turn back to our initial formulation of the theory in
terms of Lψφ , Eq. (1). The Lagrangian can be generalized
to arbitrary space-time dimension 2 < D < 4 by trading the
2N flavors of two-component spinors for N flavors of four-
component spinors, and employing a 4 × 4 representation of
the Dirac matrices. There are different possibilities on how
to dimensionally continue the Dirac structure to noninteger D

[38]. Here, we use the common prescription that fixes the form
of the TRS-breaking fermion bilinear ψ̄ψ in all 2 < D < 4,

as commonly done in the plain Gross-Neveu-Yukawa models
[49,83,91,92]. In general D, the couplings have engineering
dimensions

[e2] = 4 − D, [g] = 4 − D

2
, [λ] = 4 − D. (21)

Hence all three couplings simultaneously become marginal
when D ↗ 4. This observation suggests that the QED3-GN
fixed point may be accessible perturbatively within an ε

expansion near four space-time dimensions.
In this limit, we find the flow equations for the couplings

e2, g, and λ to the one-loop order as

de2

d ln b
= (ε − ηa)e2, (22)

dg2

d ln b
= (ε − ηφ)g2 + 6e2g2 − 3g4, (23)

dλ

d ln b
= (ε − 2ηφ)λ − 36λ2 + Ng4, (24)

with the anomalous dimensions

ηa = 4
3Ne2, ηφ = 2Ng2, (25)

where N is the number of four-component fermions and
ε = 4 − D. Here, we have tuned the system to criticality with
r ≡ 0, and have rescaled e2/(8π2) �→ e2, g2/(8π2) �→ g2,
and λ/(8π2) �→ λ. The corresponding diagrams are shown in
Figs. 2, 4, and 5. Note that any dependence on the gauge-fixing
parameter ξ in the beta functions has canceled out, as it should
be. For e2 = 0, the flow equations for g2 and λ coincide with
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FIG. 4. One-loop diagrams determining the flows of the Yukawa coupling g2 and the φ4 coupling λ, as well as the scalar-field anomalous
dimension ηφ . Dashed lines correspond to the scalar field.

those for the ungauged Gross-Neveu-Yukawa model [50]. For
g2 = λ = 0, on the other hand, the flow equation for the charge
agrees with the one for QED4−ε [38].

In the full theory space spanned by e2, g, and λ, the above
equations exhibit a unique infrared-stable fixed point at

QED3- GN : (e2
∗,g

2
∗,λ∗)

=
(

3

4N
,

2N + 9

2N (2N+3)
,
−2N2−15N+f (N )

72N (2N+3)

)
ε + O(ε2),

where f (N ) ≡ √
4N4 + 204N3 + 1521N2 + 2916N . The

fixed-point structure in the plane spanned by λ and g2 is
illustrated for N = 1 in Fig. 6. For visualization purposes,
there we have set the charge e2 to its infrared fixed-point
value e2

∗. The QED3-GN fixed point governs the continuous
transition into the TRS-broken state with 〈φ〉 �= 0, and should
be understood as the Hubbard-Stratonovich-transformed ver-
sion of the QED3-GN fixed point we have found in the
fermionic language, Eq. (11). This is in full analogy to the
equivalence of the critical points in the Gross-Neveu and
Gross-Neveu-Yukawa theories [93].

In D = 2 + 1 dimensions, the QED3-GN fixed point
is characterized by Lorentz invariance and U(2N ) flavor
symmetry. In order to be relevant for real materials, these
symmetries must be emergent in the low-energy limit. Flavor-
symmetry-breaking perturbations have previously been shown
to be indeed RG irrelevant, at least near the ungauged version
of the fixed point (GN) [94]. Here, we demonstrate that the
Lorentz symmetry also emerges in the critical region. As
long as the spatial spherical symmetry remains intact, the
only potentially relevant symmetry-breaking perturbations are
terms quadratic in the fields. Adding these perturbations is
equivalent to allowing different fermion and boson velocities,
vF and vB. Thus, we replace the kinetic terms in Eq. (1) by

γμDμ �→ γ0D0 + vF �γ · �D, ∂μ∂μ �→ ∂2
0 + v2

B
�∇2, (26)

FIG. 5. Diagrams that cancel in the flow equation for the charge
e2 due to the Ward identity. In the flow equation for the Yukawa
coupling g2, the contribution from the fermion self-energy (right)
cancels with the gauge-dependent part of the vertex correction (first
diagram in Fig. 4).

where (Dμ) ≡ (D0, �D) ≡ (∂μ − iaμ), μ = 0, . . . ,D − 1, is
the gauge-covariant derivative. vF and vB are measured in
units of the speed of light c ≡ 1. Lorentz invariance is
emergent when both flow to unity in the infrared, vF,B → 1.
The Lorentz-invariant subspace itself is invariant under the
RG for symmetry reason. Allowing small symmetry-breaking
perturbations out of this subspace as vF = 1 + δvF and vB =
1 + δvB with δvF,B � 1, we find the flow equations

dδvF

d ln b
= −8e2 + g2

3
δvF + g2

3
δvB, (27)

dδvB

d ln b
= 2Ng2δvF − 2Ng2δvB. (28)

The corresponding stability matrix ∂(dδvF,B/d ln b)
∂δvF,B

has the eigen-
values

θ± = −α ±
√

α2 − β2, (29)

with α ≡ (N + 1
6 )g2 + 4

3e2 > 0 and β2 ≡ 16
3 Ne2g2 > 0.

Consequently, we have Re θ± < 0 everywhere and δvF and
δvB are always irrelevant perturbations. The Lorentz symmetry
is therefore emergent at low energy. This result is analogous

0.0-0.1-0.2-0.3 0.1 0.2 0.3

λ/

0.0

0.5

1.0

1.5

g
2

e2 = 3 4

QED3-GN

WFG

FIG. 6. RG flow for N = 1 in (λ,g2) plane to leading order in
ε = 4 − D. For visualization purposes, here we have put the charge to
its infrared fixed-point value e2 = e2

∗ = 3ε/4, and we tune the system
to criticality with r ≡ 0. The infrared stable fixed point at g2

∗ > 0
and λ∗ > 0 is the QED3-GN quantum critical point and governs the
transition into the TRS-broken state with 〈φ〉 �= 0. G and WF at g = 0
describe the Gaussian and Wilson-Fisher fixed points.
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to previous findings in related models with different order-
parameter fields [95].

At the stable QED3-GN fixed point, the anomalous dimen-
sions read, to the leading order in ε = 4 − D,

ηa = ε, (30)

ηφ = 2N + 9

2N + 3
ε + O(ε2). (31)

We mention in passing that Eq. (30) is expected to not receive
higher-order corrections due to the Ward identity associated
with the U(1) gauge symmetry [36,96]. The correlation-
length exponent is related to the scaling dimension of
φ2 via 1/ν = D − [φ2]. We obtain

ν = 1

2
+ 10N2 + 39N + f (N )

24N (2N + 3)
ε + O(ε2). (32)

From the viewpoint of the duality conjecture, it is inter-
esting to also compute the scaling dimension of the flavor-
symmetry breaking bilinear ψ̄σ zψ at the QED3-GN fixed
point. To the leading order, we find

[ψ̄σ zψ] = 3 − 2N + 6

2N + 3
ε + O(ε2). (33)

Now, if we simply extrapolated Eqs. (30)–(33) towards
large values of ε, the leading-order corrections become sizable,
e.g., ηφ � 2.2ε, ν � 0.5 + 0.98ε, and [ψ̄σ zψ] � 3 − 1.6ε for
N = 1. This obviously compromises the validity of the plain
extrapolation. The qualitative behavior of the exponents at
large ε can, however, be inferred from the behavior near the
lower critical space-time dimension of two. From a calculation
analogous to that leading to Eqs. (15)–(18), we find, to the
lowest order,

1/ν = (D − 2) + O(1/N,(D − 2)2), (34)

ηφ = 2 − (D − 2) + O(1/N,(D − 2)2), (35)

and

[ψ̄σ zψ] = 1 + (D − 2) + O(1/N,(D − 2)2). (36)

This leading-order result coincides with the behavior of the
plain Gross-Neveu model near the lower critical dimension
[48,50], which can be attributed to the fact that the charge
contribution to the flow of � is subleading in 1/N , cf. Eq. (16).

In order to gain a reasonable estimate for the exponents in
the physical situation in D = 3 and small N , we can thus
search for a smooth interpolation between the boundary values
near the upper and lower critical dimensions. We use a simple
polynomial form as in Ref. [50], and therewith find, for D = 3,

ηφ ≈ 4N + 9

2(2N + 3)
,

1

ν
≈ 50N2 + 51N − f (N )

24N (2N + 3)
, (37)

and

[ψ̄σ zψ] ≈ 16N + 21

8N + 12
. (38)

The interpolating polynomials together with the naive extrap-
olations are depicted for N = 1 as function of space-time
dimension 2 < D < 4 in Fig. 7. In the large-N limit, Eqs. (37)
and (38) agree with the corresponding values calculated in
Sec. III. For small N , the differences between Eqs. (37) and
(38) and the naive extrapolations [Eqs. (31)–(33) for ε = 1]
can be viewed as a rough estimate on the accuracy of our
results. For N = 1, this gives ηφ ≈ 1.3(9), 1/ν ≈ 0.3(4), and
[ψ̄σ zψ] ≈ 1.8(5).

V. CONCLUSIONS

In this paper, we have studied the critical behavior of the
QED3-GN model in three space-time dimensions. Just as in the
corresponding plain Gross-Neveu universality class without
a gauge field, there is a unique stable fixed point, which
can be understood either as an ultraviolet fixed point of the
four-fermion (“Gross-Neveu”) theory, or as an infrared fixed
point of the partially bosonized (“Gross-Neveu-Yukawa”)
theory [93].

We have employed the four-fermion language to clarify
the correspondence of the QED3-GN fixed point with the
previously studied conformal fixed point of plain QED3
[34–38]. Using this formulation, we have verified that the
fixed-point annihilation mechanism that destabilizes the con-
formal phase of plain QED3 at a critical flavor number Nc,
does not intrude upon the stability of the QED3-GN fixed
point. In fact, the latter turned out to continue to exist across
the transition at Nc all the way down to N = 1, at least within
the present one-loop approximation.

The equivalent partially bosonized QED3-GN theory, with a
Yukawa interaction instead of the four-fermion term, can be di-
mensionally continued to noninteger space-time dimension D.

2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

η
φ

D

(a)

2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

1
/
ν

D

(b)

2.0 2.5 3.0 3.5 4.0
1.0

1.5

2.0

2.5

3.0

[ψ̄
σ

z
ψ

]

D

(c)

FIG. 7. Critical exponents ηφ (a) and 1/ν (b), and scaling dimension [ψ̄σ zψ] (c) as function of space-time dimension D in the critical
QED3-GN theory for N = 1. Solid curves: polynomial interpolation between lowest-order 2 + ε expansion result and 4 − ε expansion result.
Dashed curves near lower and upper critical dimensions, respectively: plain extrapolation of ε expansion for comparison. For 1/ν (b), the two
dashed curves near D = 4 correspond to the inverse of Eq. (32) (upper curve) and the expansion of 1/ν itself (lower curve), cf. Ref. [50].

205113-7



LUKAS JANSSEN AND YIN-CHEN HE PHYSICAL REVIEW B 96, 205113 (2017)

We have used the fact that all three couplings present in
the theory become simultaneously marginal when D ↗ 4 to
set up an ε expansion around four space-time dimensions.
This allows to establish the existence of the QED3-GN fixed
point and to access the critical behavior in a controlled way.
We have computed the critical exponents ηφ and ν, the
scaling dimension of the flavor-symmetry-breaking bilinear
ψ̄σ zψ , as well as the gauge anomalous dimension ηa to
the leading order in ε = 4 − D. For the latter, we predict
ηa = 4 − D for all N and 2 < D < 4 exactly, which follows
as a consequence of the Ward identity associated with the U(1)
gauge symmetry. For the other exponents, our best estimates
for D = 3 are ηφ ≈ 1.3(9) and 1/ν ≈ 0.3(4) in the case of
N = 1. Here, we have taken the difference between the plain
extrapolation and the polynomial interpolation, which makes
use of additional information of the behavior of the exponents
near the lower critical dimension, as a rough error estimate.
The uncertainty becomes smaller for larger N , but for N = 1
it is significantly larger than the error of the corresponding
leading-order estimates in the plain Gross-Neveu universality
class [50]. It would therefore be desirable to extend our work
to higher loop order, e.g., along the lines carried out recently
for the ungauged Gross-Neveu-Yukawa model [49]. As a
complementary approach, the QED3-GN fixed point should be
accessible within the four-fermion formulation in an expansion
around the lower critical space-time dimension of two. The
analogous computation in the plain Gross-Neveu model has
now been accomplished, in a technological tour de force, up
to the four-loop order [48]. This necessitates to deal with
the notorious evanescent operators, which render the theory
nonunitary in dimensional regularization and are generically
generated at high order in the ε expansion or when operators
of high scaling dimension are analyzed [97].

The comparatively large uncertainty of our results notwith-
standing, we consider our finding of a large order-parameter
anomalous dimension of order unity or larger to be reliable.
In fact, a large value of ηφ appears to be characteristic to all
known chiral universality classes that are driven by massless
fermionic degrees of freedom [55–59]. Theoretically, this
property can be traced back to the observation that in all critical
fermion systems the order-parameter anomalous dimension
has to approach unity in the limit of large flavor number.
Furthermore, near the lower critical dimension, its boundary
value is ηφ = 2 + O(D − 2).

These findings are striking in the light of the recently
conjectured duality of the N = 1 QED3-GN theory with the
SU(2) NCCP1 model [29], which in turn is believed to describe
the deconfined critical point between the Néel and VBS phases
of spin-1/2 systems on the square lattice [2,3,31,32]. While
the existence of a stable QED3-GN fixed point is a prerequisite
for the duality scenario to hold, our leading-order results for
its critical behavior is not entirely compatible with the critical
(or pseudocritical) behavior measured in the spin systems. The
largest discrepancy occurs in the case of the order-parameter
anomalous dimensions, which in the spin systems have been
determined as ηNéel ≈ ηVBS ≈ 0.25 . . . 0.35 [31,46,47]. This is
about an order of magnitude larger than in the standard bosonic
O(5) universality class [98], but still significantly smaller than
our estimate of ηφ ≈ 1.3(9) in the QED3-GN theory. Direct

TABLE I. Scaling dimensions of operators at the N = 1 QED3-
GN fixed point in comparison with literature values for scaling
dimensions of the corresponding dual operators at the Néel-VBS de-
confined critical point [31,46,47]. The latter is presumably described
by the SU(2) NCCP1 model, for which we also quote the results of a
field-theoretical approach [104].

QED3-GN SU(2) NCCP1

[φ] ≈ (1 + 1.3(9))/2 [z†σ zz] ≈ (1 + 0.26(3))/2 [46]
≈ (1 + 0.35(3))/2 [47]
≈ (1 + 0.25(3))/2 [31]
≈ (1 + 0.22)/2 [104]

[ψ̄σ zψ] ≈ 3 − 1.2(5) [z†z] ≈ 3 − 1.28(5) [46]
≈ 3 − 1.47(9) [47]
≈ 3 − 1.99(4) [31]
≈ 3 − 1.79 [104]

[φ2] ≈ 3 − 0.3(4) [z†z] ≈ —see above—

simulations of the NCCP1 model remain inconclusive as to
whether the transition is continuous [12,99,100] or weakly
first order [101]. In any case, as far as we are aware, at present
no numerical data in the purely bosonic models appear to
suggest an anomalous dimension of order unity or larger.
Field-theoretical approaches to the critical behavior of the
NCCP1 model appear to be difficult, since the loop corrections
are sizable [102,103]. Nevertheless, a functional RG approach
finds values that are remarkably close to the most recent
numerical results in the spin systems [104].

We have also computed the scaling dimension of the
flavor-symmetry-breaking fermion bilinear ψ̄σ zψ , which is
identified with z†z in the bosonic NCCP1 theory. The latter cor-
responds to the tuning parameter for the Néel-VBS transition.
Therefore the duality predicts 1/νNéel-VBS = 3 − [ψ̄σ zψ]. Our
calculation gives 3 − [ψ̄σ zψ] ≈ 1.2(5), while the numerical
simulations of the Néel-VBS transition find 1/νNéel-VBS ≈
1.3 . . . 2.0 [31,46,47]. These values are not inconsistent with
the duality prediction. The duality also predicts that the scaling
dimension [ψ̄σ zψ] should coincide with [φ2]. Our result for ν

gives [φ2] = 3 − 1/ν ≈ 2.7(4) which is only somewhat larger
than [ψ̄σ zψ] ≈ 1.8(5), but incompatible with the numerical
ranges quoted for 3 − 1/νNéel-VBS.

In conclusion, our estimate for [ψ̄σ zψ] seems to be not
inconsistent with the duality proposal, but [φ] and [φ2]
show large discrepancies when comparing them with the
corresponding measurements in the bosonic systems. This
is summarized in Table I. We note, however, that if the
transition in the spin systems is indeed continuous with
an emergent SO(5) symmetry [32], then this unavoidably
necessitates anomalous dimensions that are significantly above
the ones currently observed [105]. We therefore believe that
the possibility that higher-order computations in the QED3-GN
model and forthcoming numerical calculations in the spin
systems converge to common values in future works is as
yet not excluded.
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[83] I. F. Herbut, V. Juričić, and O. Vafek, Relativistic Mott
criticality in graphene, Phys. Rev. B 80, 075432 (2009).

[84] J. Braun, H. Gies, and D. D. Scherer, Asymptotic safety: A
simple example, Phys. Rev. D 83, 085012 (2011).

[85] L. Janssen and H. Gies, Critical behavior of the (2+1)-
dimensional Thirring model, Phys. Rev. D 86, 105007
(2012).

[86] S. Christofi, S. Hands, and C. Strouthos, Critical flavor number
in the three dimensional Thirring model, Phys. Rev. D 75,
101701(R) (2007).

[87] S. Hands, Towards critical physics in 2 + 1d with U(2N )-
invariant fermions, J. High Energy Phys. 11 (2016) 015.

[88] B. H. Wellegehausen, D. Schmidt, and A. Wipf, Critical
flavour number of the Thirring model in three dimensions,
arXiv:1708.01160.

[89] K. Kaveh and I. F. Herbut, Chiral symmetry breaking in
three-dimensional quantum electrodynamics in the presence of
irrelevant interactions: A renormalization group study, Phys.
Rev. B 71, 184519 (2005).

[90] M. Hermele, T. Senthil, and M. P. A. Fisher, Algebraic spin
liquid as the mother of many competing orders, Phys. Rev. B
72, 104404 (2005); 76, 149906(E) (2007).

[91] B. Rosenstein, H.-L. Yu, and A. Kovner, Critical exponents of
new universality classes, Phys. Lett. B 314, 381 (1993).

[92] L. Kärkkäinen, R. Lacaze, P. Lacock, and B. Petersson, Critical
behavior of the three-dimensional Gross-Neveu and Higgs-
Yukawa models, Nucl. Phys. B 415, 781 (1994).

[93] J. Zinn-Justin, Four-fermion interaction near four dimensions,
Nucl. Phys. B 367, 105 (1991).

[94] F. Gehring, H. Gies, and L. Janssen, Fixed-point structure of
low-dimensional relativistic fermion field theories: Universal-
ity classes and emergent symmetry, Phys. Rev. D 92, 085046
(2015).
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