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Majorana spin liquids, topology, and superconductivity in ladders
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We theoretically address spin chain analogs of the Kitaev quantum spin model on the honeycomb lattice. The
emergent quantum spin-liquid phases or Anderson resonating valence-bond (RVB) states can be understood, as
an effective model, in terms of p-wave superconductivity and Majorana fermions. We derive a generalized phase
diagram for the two-leg ladder system with tunable interaction strengths between chains allowing us to vary the
shape of the lattice (from square to honeycomb ribbon or brickwall ladder). We evaluate the winding number
associated with possible emergent (topological) gapless modes at the edges. In the Az phase, as a result of the
emergent Z2 gauge fields and π -flux ground state, one may build spin-1/2 (loop) qubit operators by analogy
to the toric code. In addition, we show how the intermediate gapless B phase evolves in the generalized ladder
model. For the brick-wall ladder, the B phase is reduced to one line, which is analyzed through perturbation
theory in a rung tensor product states representation and bosonization. Finally, we show that doping with a few
holes can result in the formation of hole pairs and leads to a mapping with the Su-Schrieffer-Heeger model in
polyacetylene; a superconducting-insulating quantum phase transition for these hole pairs is accessible, as well
as related topological properties.
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I. INTRODUCTION

The quest for topological phases has attracted some
attention recently in relation with exotic quantum states of
matter related to Chern insulators [1] as well as topological
insulators and superconductors [2–5]. The energy spectrum is
characterized by nontrivial Bloch bands and by a topological
index [6]. At the same time, this index is related to the
occurrence of protected chiral edge modes, by analogy with the
quantum Hall effect [7–9], due to a bulk-edge correspondence.
It is also important to mention related progress in ultracold
atoms and photon systems where one can artificially engineer
similar quantum phases [10–12]. In addition, the topological
invariants, such as Chern number or Zak phase can be
measured with very high accuracy [13–16]. Berry phases
[17] have also been measured in high-Tc superconductors and
graphene [18–20] and in superconducting quantum circuits
[12,21–25]. Quantum materials are also characterized by
intrinsic interactions, and therefore extending the notion
of topological phases to interacting band structures seems
a timely subject of interest. Theoretical progress [26–29]
based on slave-rotor, quantum field theory techniques [30],
and numerical approaches [31–33] have been accomplished
and are also related to the discovery of quantum materials
[34] and to the engineering of Feynman quantum simulators
[35–39]. Increasing interactions also naturally connects these
states of matter to Mott physics and possible quantum spin
liquids, which do not exhibit long-range order and are related
to Anderson resonating valence-bond (RVB) states [40–42].
An important example of quantum spin-liquid ground-state
emerges in the Kitaev model on the honeycomb lattice [43],
which can be solved exactly and bridges between the occur-
rence of Majorana particles in the ground state and the possibil-
ity to realize protected quantum information operations [44,45]
through braiding these Majorana particles. Generalizations in
three dimensions have also been addressed [46,47] as well as

in models with long-range (and disordered) forces [48,49]. We
note the discovery of recent quantum materials related to the
Kitaev model [34,50–52]. This research is also linked to the
search of quantum spin-liquid states and superconductivity on
Kagome materials [53–55]. Majorana fields and particles have
also been predicted in high-energy physics (in the context of
neutrinos), nuclear physics [56], and recently in relation with
the Sachdev-Ye-Kitaev model [48,57–59].

In this paper, we address chain networks of Kitaev quantum
spin models with a Z2 symmetry [60–65] (see Fig. 1). Through
the Jordan-Wigner transformation [60], the Kitaev spin chain
is related to an effective Bardeen-Cooper-Schrieffer (BCS)
model for superconductivity. From a theoretical point of view,
quasi-one-dimensional systems with Heisenberg coupling also
offer analytical solutions to connect quantum spin liquids and
superconducting ground states [66,67] with potential relevance
to the physics of the cuprates [68,69]. These wire constructions
are therefore important to study the link between quantum spin
liquid or spin system with short-range magnetic interactions
and the occurrence of superconductivity [70–72].

More precisely, the Kitaev magnetic chain [60] yields
an emergent BCS Hamiltonian with a p-wave pairing sym-
metry, making an analogy with the physics of helium-3
[73–77], topological superconductors [78,79], and topological
superconducting quantum wires [80–86]. Similar topolog-
ical ferromagnetic chains have already been studied and
engineered by proximity effect with a superconductor with
spin-orbit coupling [87,88]. In two dimensions, emergent
superconductivity has also been predicted theoretically in
(doped) magnetic Kitaev models [89–91]. A Kitaev magnetic
chain can also be seen as a strong-coupling analog of the
Su-Schrieffer-Heeger (SSH) model in polyacetylene [92,93],
which possesses two different tunneling parameters in the
Hamiltonian and can show the emergence of topological edge
excitations, by analogy to the Fibonacci chain [94]. Localized
topological soliton states have been recently observed in
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FIG. 1. Different geometries: honeycomb lattices (a) to brickwall
(b) and square (c) ladders, and chains (d). In the limit of large system
sizes, the figure (b), which constitutes a honeycomb ribbon, is similar
to a brick wall ladder and the figure (c), which is a rectangular ladder,
is similar to a square type ladder. (Bottom) Our generalized phase
diagram for the quantum ladder (which will be discussed in detail in
Sec. III).

ultracold atoms [95]. In the spin chain language, this will
traduce the possible emergence of gapless spin excitations
at the edges by analogy with the spin-1 chain [96–99].
Related Hamiltonians, such as the Rice-Mele model, have
also been engineered in intracold atoms and photon systems
and topological properties have been measured [14,100,101].
The related Jackiw-Rebbi model [102] can also be
realized [103].

Before addressing the main objectives and results of the
paper, it is perhaps important to mention possible realizations
of such Kitaev spin Hamiltonians [43,60]. In principle, these
spin chains can be simulated based on existing proposals and
technology in ultracold atoms [104], such as circuit quantum
electrodynamics and Josephson circuit architectures [105],
where the coupling between qubits (for example, transmon
qubits) can be of X or Y type in principle [106–108]. In
circuit quantum electrodynamics architectures, the Ising X

coupling would correspond to a capacitive coupling and Y

to an inductive coupling between transmon qubits. Realizing
a spin chain with alternating couplings XYXYX . . . seems
achievable [106]. An Ising Z coupling between Kitaev chains
would correspond to an interaction (Kerr) coupling between
chains in the equivalent Bose-Hubbard representation between

transmon qubits [106]. At a general level, these interaction
terms can be simulated by nonlinearities (cross-Kerr effect) of
the Josephson elements in superconducting chains [109,110].
Engineering of other quantum spin chains with Z2 symmetry,
such as the quantum Ising chain, using Josephson junctions and
superconducting elements was proposed in Ref. [111], in rela-
tion with the emergence of topological qubits. The realization
of topological qubits in these superconducting circuits have
also started to attract some attention experimentally [112,113].
Similar progress has been realized in ultracold atoms to
engineer spin chains [114,115] and resonating valence-bond
states [116].

Now, we summarize the main objectives and results of the
paper. We study different geometries, related to Fig. 1, starting
from a single chain [Fig. 1(d)] and then exploring ladder
systems such as the square ladder [Fig. 1(c)] and the brick-wall
ladder [Fig. 1(b)], which can be viewed as a Kitaev honeycomb
ribbon geometry [Fig. 1(a)]. One goal of the paper is to extend
the analysis of Ref. [60] (addressing the square ladder) to
a generalized ladder geometry (between the square and the
brick-wall ladders) by varying the parameters J3 and J4. In
particular, to the best of our knowledge, the brick-wall ladder
has not been addressed previously. Next, we will study doping
effects with a pair of holes and derive an effective SSH model.
Using the Majorana representation, we evaluate rigorously the
phase diagrams. As a reminiscence of the two-dimensional
Kitaev model [43], we identify gapped spin-liquid phases with
possible short-range spin order on strong nearest-neighbor
links along the X direction in the Ax phase, along the Y

direction in the Ay phase, or along the Z direction in the
Az phase. The Ax and Ay phases already occur in single-chain
configurations. Emergent gapped spin-liquid phases can be
characterized by a topological string order parameter [60] by
analogy to spin-1 chains [96–99]. The possible existence of
gapless excitations in the Ax and Ay magnetic phases can also
be described through a quantized winding number by analogy
to the SSH model. We discuss the nature of such edge modes
(spin-1/2 objects, Majorana fermions).

For the brick-wall ladder, following the phase diagram
in Fig. 1 with J3 or J4 = 0, we identify a line of gapless
spin excitations separating two gapped phases with different
spin polarizations on strong bonds. This line of excitations
can be seen as a precursory effect of the B phase in the
two-dimensional Kitaev model on the honeycomb lattice [89]
and it will spread out in the generalized ladder phase diagram
(Fig. 1). In a gapped phase, the spin polarization on these strong
bonds can vary continuously from the X to Z axis or from
the Y to Z axis. Using bosonization and perturbation theory,
along the line of gapless spin excitations, we will show the
occurrence of pre-formed pairs in the system. For large inter-
chain coupling, the magnetic system can be seen as a matrix
product states (or rung tensor product states) representation
[117]. Then, we study the propagation of a hole pair along
this line of gapless excitations. We show that these hole pairs
can be precisely described by a SSH model in the intermediate
regime of interchain coupling, with the occurrence of two
tunneling amplitudes for the brick-wall ladder. We identify
two possible phases; the hole pair can localize at the edges
of the ladder or the hole pair can coherently propagate
along the chains at weaker interchain coupling, forming a
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quasi-one-dimensional superconductor. The localized phase
for the hole pair is characterized by a quantized winding
number by analogy to the SSH model. For the square ladder,
this analysis with two holes suggests that the system in the
dilute hole limit can be seen as a quasi-one-dimensional
superconducting spin liquid starting from the Az phase.

The organization of the paper is as follows. In Sec. II, we
summarize briefly known properties of the single chain system
(to fix the notations that will be useful to study next sections),
and we discuss gapless edge and bulk excitations. In Sec. III,
we study the ladder systems using the Majorana representation
and build our phase diagram of Fig. 1. Then, we study in more
details the brick-wall ladder phase diagram, which has not been
studied before. In addition, we study the possibility to build
Majorana qubit loop operators in these ladders. In Sec. IV, we
study the quantum phase transitions in more detail, in particular
for the brick-wall ladder, where we identify a gapless line in
the phase diagram. First, we apply a perturbation theory along
this gapless line in the phase diagram for the brick-wall ladder
and show the occurrence of preformed pairs in the system by
using a rung tensor product representation. Then, we apply a
bosonization approach to reinforce the notion of pre-formed
pairs in the system along the line of gapless excitations.
We also predict that similar gapless excitations exist in the
square ladder, at the transition lines between the Az phase
and the Ax and Ay phases, respectively. In Sec. V, we study
the propagation of a pair of holes in the brick-wall ladder
system and address the possible emergence of a topological
insulator - superconducting transition for a hole pair. In
Sec. VI, we present a summary of the results and discuss rele-
vance for current experiments. In Appendix A, we give some
details on Fourier transform and winding number calculations
related to the magnetic phases. In Appendix B, we show how
braiding of two nearest-neighbor Majorana fermions could be
implemented in relation with Sec. III D. In Appendix C, we
present a derivation of the Hamiltonian for the ladder system
using different string configurations, to show the “gauge-
invariant form” (or string-invariant form) of the Hamiltonian.
In Appendix D, we present a spin-spin correlation function
analysis related to our ladder phase diagram in Fig. 6. In
Appendix E, we present the renormalization group analysis
related to Sec. IV B.

II. KITAEV SPIN CHAIN

In Sec. II A, we briefly summarize known properties of the
one-dimensional (1D) magnetic Kitaev chain. In Sec. II B, we
analyze the presence of edge excitations in spin and Majorana
representations. The calculation of the winding number in the
the Anderson pseudospin representation [118] is presented
in Appendix A, making an analogy with the SSH model
in the Mott regime. We also relate Majorana excitations in
the spin chain with the degeneracy of the ground state. In
particular, the Kitaev spin chain also reveals a chain of gapless
Majorana excitations, which can be used in network devices
(as illustrated in Sec. III) to encode information inZ2 variables
[119–122]. We also suggest possible implementations of
Majorana braiding, by analogy to topological superconducting
wires [80–85].

In this model, assuming we start with a Mott insulating
phase, spin- 1

2 particles are located on the vertices (sites) of a
chain and interact with nearest neighbors. The interactions
are supposed to be ferromagnetic J1,J2 � 0 (however, we
will notice an invariance of the energy spectrum under the
transformation Ji → −Ji , simultaneously for i = 1 and 2),
and the links or magnetic couplings are of two types: “x links”
(Ising interaction along the X direction) and “y links” (Ising
interaction along the Y direction) alternatively (see Fig. 1).
The corresponding Hamiltonian is [43,60]

H =
∑

j=2m−1

J1σ
x
j σ x

j+1 + J2σ
y

j+1σ
y

j+2. (1)

With this notation, the sum runs over odd sites only, such
that m � 1 is an integer. To compute the winding number
associated with the spin chain in Appendix A, by analogy with
the SSH model, we will use a spin chain which possesses 2M

sites and M unit cells. In that case, the spin chain also finishes
with a J1 link [see Fig. 1(d)].

A. Properties and known results

To make a connection with the BCS model, one can rewrite
the Hamiltonian in the fermionic representation, where the
quantum spin operators are replaced by fermionic operators
(a†,a) using the Jordan-Wigner transformation [123]:

σx
j = (a†

j + aj )eiπ
∑

{i}∈string a
†
i ai

σ
y

j = −i(a†
j − aj )eiπ

∑
{i}∈string a

†
i ai (2)

σ z
j = 2a

†
j aj − 1 =

{
1, if |↑j 〉z
−1, if |↓j 〉z

.

(For simplicity, eigenvalues of the spin-1/2 are normalized
to +1 and −1; this representation introduced in 1928 maps
quantum spin operators obeying the Lie algebra to spinless
fermionic operators with occupancy 0 and 1 at a site.) We
choose a certain path to define the string operator, stopping at
site j − 1. For example, for the single chain, we start the string
on the left of the chain at site m = 1.

In this representation, the Hamiltonian turns into

H =
∑

j=2m−1

J1(a†
j − aj )(a†

j+1 + aj+1)

− J2(a†
j+1 + aj+1)(a†

j+2 − aj+2). (3)

In the absence of applied magnetic field, then 〈σ z
j 〉 = 0, i.e.,

〈a†
j aj 〉 = 1

2 . Equivalently, the effective chemical potential for
the spinless fermions in Eq. (3) is μ = 0.

We impose periodic boundary conditions and perform a
Fourier transform to access the bulk properties of the system:

H =
∑

k

(J1 + J2) cos(kl)(a†
kak − aka

†
k)

+ i(J1 − J2) sin(kl)(a†
−ka

†
k + a−kak), (4)

which is equivalent to the BCS Hamiltonian, with a pairing
term of the form �k ∝ i(J1 − J2) sin(kl). We note the analogy
with one-dimensional p-wave superconductors [80]. Within
our definitions of the Fourier transform and wave vectors,
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we derive the energy spectrum (in Appendix A, we check
this result using the Majorana fermion representation used in
Sec. II B):

ε(k) = ±
√

J 2
1 + J 2

2 + 2J1J2 cos(2kl). (5)

In this formulation, the wave vector is defined in the reduced
Brillouin zone as −π/(2l) � k � π/(2l) implying that the
energy spectrum is invariant under the transformation 2kl →
2kl + 2π . At the quantum phase transition J1 = J2, we note
that this convention is in agreement with cos(2kl) = −1
meaning a gap closure at the Fermi wave vector kF = π/(2l).
The Hamiltonian describes a half-filled band for the ak and
a
†
k fermions, which is imposed by the chemical potential

μ = 0. If we fix the lattice spacing 2l to unity, then this gives
−π � k � π in agreement with Refs. [60,63,64]. One thus
establishes an exact mapping between the 1D magnetic Kitaev
chain and the BCS Hamiltonian. From the expression of ε(k)
above, it is clear that the spectrum is gapped for J1 	= J2 and
gapless for J1 = J2.

The gapped phases associated with a BCS (p-wave like)
pairing term between the Jordan-Wigner fermions are in fact
RVB spin liquids (corresponding to the Ax and Ay phases
described by Kitaev [43]), characterized by exponentially
decreasing correlation functions. Deep in the Ax or Ay phase,
the correlation length converges to the lattice spacing. In Fig. 2,
nearest-neighbor sites j and j + 1 coupled with a strong link
(coupling) can be either |↑j↑j+1〉 = | +j +j+1〉 or |↓j↓j+1〉 =
| −j −j+1〉 following the x (y) axis in the Ax (Ay) phase
and there is no correlation between these bonds when J2 →
0 (J1 → 0). The quantum degeneracy in the chain associated
with these bonds in the Ax phase (or Ay phase) then is 2M

in the thermodynamical limit, and M is the number of bonds
coupled by J1. The right (and left) boundary of the lattice can
produce an extra spin-1/2 excitation (see Fig. 1 and Sec. II B).
Far in a gapped spin-liquid phase, for example, in the Ax phase,
one can check that the J2 coupling cannot induce a long-range
Ising order. However, valence bonds can resonate in principle
by application of the J2 coupling, which produces virtual
excitations described through the cross-term in J1J2 in Eq. (5).
Other descriptions in terms of nonlocal string order parameters
and an emergent dual quantum Ising model [124–127]
are possible to describe the quantum phase transition and the
macroscopic degeneracy (odd or even sites decouple) [60].

At J1 = J2, a phase transition occurs, and in the fermion
representation the ground state corresponds to a Fermi sea

|GS〉 =
∏
k<kF

a
†
k|0〉, (6)

with kF = π/(2l) (such that ε(kF ) = μ = 0) characterized by
the band structure of free electrons ε(k) = 2J1 cos(kl) plotted
in Fig. 3. Essentially, the pairing terms in a

†
ka

†
−k become zero

and the tight-binding Hamiltonian in Eq. (3) is equivalent to
that of a tight-binding model with a single hopping amplitude
−J1 and a lattice spacing l. Since the energy spectrum of
the fermions is linear around the chemical potential μ = 0 in
Fig. 2, this will allow us to apply a bosonization approach
[128,129] in Sec. IV B when switching on a small coupling
between the chains. At the quantum phase transition, spin-spin
correlation functions decay as power laws both at k = 0 and

μ = 0

ε(k)

k0

(J1 + J2)

kF−kF

J1
J2

+∞
0 1

Phase transition

J1 J2 J1 J2 J1

y y y y

J1 J2 J1 J2 J1

x x x x

J1
J2

� 1 : 〈σx
j σx

j+k〉 ∝ e
− |rj−rj+k|

ξ

J1
J2

≈ 0 : 〈σy
j σy

j+k〉 ∝ e
− |rj−rj+k|

ξ

ξ ∝ |J1 − J2|−1

FIG. 2. Simple fermionic dispersion relation for the 1D chain
model at J1 = J2. The gapped phases at J1

J2
> 1 and J1

J2
< 1 are

spin liquids, characterized by a diverging coherence length ξ ∝
|J1 − J2|−1 close to the phase transition (traducing a power-law
behavior of these correlation functions for J1 = J2). In the gapped
phase, there is the formation of valence bonds between nearest
neighbors, which can resonate when approaching the quantum phase
transition. This description then shows some analogy with the spin-1
chain construction [97]. Similar resonating valence-bond descriptions
have been analyzed to connect Néel and dimer phases in two
dimensions [42]. These dimers can also be seen as pre-formed p-wave
superconducting pairs as in helium-3 [73–76].

2kF l = π . We also infer based on the recent Ref. [130], that
bipartite spin fluctuations could detect the quantum phase
transition and associated gapless excitations at the edges.
Similar proposals have been suggested by coupling to a cavity
field; see, for example, Ref. [131]. Such bipartite fluctuations
have been shown to be useful to describe many-body systems
and quantum phase transitions [132–134]. We also note
recent progress to observe such bipartite fluctuations based
on correlation functions [115]. The phase diagram and the
physical properties of the phases are summarized in Fig. 2.

This BCS representation will be very useful to study the
brick-wall ladder system (and also the square ladder) at small
J3 in Sec. IV B, where the bosonization approach will show
an analogy from quantum field theory, between the two-leg
Kitaev spin ladder and an emergent quasi-one dimensional su-
perconductor of charges 2e [135]. This also makes an analogy
with superconductivity in quasi-one-dimensional materials
[69,136] and Anderson resonating valence-bond states [40].
A quantum field theory description was also developed in
two dimensions to connect Kitaev spin liquids and emergent
superconducting Hamiltonians [89].
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cj+1
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1 2

J2

−

J1

+

J3 + J4 +π

FIG. 3. (Top) Majorana fermion configuration in Eq. (7). (Mid-
dle) Alternative representation of Majorana fermions in Eq. (9).
(Bottom) In ladder geometries discussed in Sec. III, one can define
Z2 gauge fields by analogy with the Kitaev spin model [43]; see the
Kitaev Hamiltonian in Eq. (19) and a comparison with our ladder
Hamiltonian in Eq. (17). These gauge fields are represented by + and
− choices of the uj,k variables of a ladder geometry. The gauge fields
that take + and − values satisfy the condition that uj,k (to go from
j to k) is equal to −uk,j ; see the Kitaev Hamiltonian in Eq. (19).
The couplings J3 and J4 in Sec. III correspond to ferromagnetic
couplings along the Z direction. Fixing the gauge configurations for
vertical bonds will also fix the parity operators for the d Majorana
fermions on these vertical bonds, and therefore the loop operator
D1,3D2,4 defined in Sec. III C will be fixed to +1 or −1.

B. Edge and bulk gapless excitations

Here, we study in more detail gapless excitations in the bulk
and at the edges. Our objective is to study gapless excitations
both in the spin and Majorana representations, complementing
the efforts in Refs. [62,64].

In Appendix A, by analogy to the SSH model [92] with 2M

sites, we evaluate the winding number associated with the edge
excitations using the Anderson pseudo-spin representation
[118] of Ref. [61]. The SSH model belongs to the topologically
protected symmetry class BDI [137] (the presence of edge
modes can be inferred from the momentum distribution
function [138] and from bipartite fluctuations [130,132–134]).
Based on the results of Appendix A, the Ax phase has no
gapless excitations (and a winding number zero) whereas
the Ay phase yields edge excitations at both edges and a
winding number 1 (which can be understood as spin-1/2 edge
excitations in the limit J1 → 0 in Fig. 1). In two dimensions,
the gapped phases Ax and Ay do not reveal edge modes (the
Chern number is zero) [80]. Switching on a perturbative J1

coupling one can check that the edge modes only couple to
order ∼(J1/J2)M ∼ exp(M ln(J1/J2)), where J1/J2 → 0.

More precisely, if we start with a spin at an edge in
the state |+〉y and the nearest-neighbor bond is in a state

|++〉y , then the application of the J1 coupling turns the state
of the three spins |+〉y ⊗ |++〉y into |−〉y ⊗ |−+〉y , which
corresponds to an excited state separated by 2|J2| from the
ground state. This argument can be repeated (and generalized
to another preparation state) and the only nonzero order in the
perturbation theory then should couple the two edges, whereas
the bulk states return to the ground state. This argument will
also apply for the ladder system described below in the Ax

and Ay phases, and in Sec. V for the SSH model of the hole
pair. In the ladder system studied below, the edge modes will
occur on a single chain for the two phases Ax and Ay . The
exponential suppression of the coupling between edge modes
for large M also reflects that the chain can be described by a
nonlocal string order parameter [60] by analogy to the spin-1
chain.

It is now useful to rewrite the Kitaev spin chain in a
Majorana fermion language and re-analyze the ground-state
properties. More precisely,

dj = (a†
j + aj ), cj = i(a†

j − aj ), (7)

such that d
†
j = dj and c

†
j = cj (we choose a normalization

such that {cj ,cj } = 2 and similarly for dj ). The Hamiltonian
(1) then becomes

H = −i
∑

j=2m−1

(J1cjdj+1 − J2dj+1cj+2). (8)

Note that, within these definitions the Majorana operators
{c2m,d2m−1} are “free” (see Fig. 3, top). Alternatively, we can
define the Majorana fermions as

cj = i(a†
j − aj ) dj = a

†
j + aj , j = 2m − 1,

cj = a
†
j + aj dj = i(a†

j − aj ), j = 2m. (9)

The Hamiltonian (1) becomes

H = −i
∑

j=2m−1

(J1cj cj+1 − J2cj+1cj+2). (10)

This Hamiltonian leads to the Majorana representation of
Fig. 3 (middle). In the Ax phase, we must satisfy for the
ground state −ic2m−1c2m = +1 in (10) which is equivalent
to −ic2m−1d2m = +1 in (8). Note that formally in the ground
state σx

2m−1σ
x
2m = −ic2m−1c2m = +1 after the transformation

(9). It is also relevant to emphasize the difference of sign
in front of the couplings J1 and J2; this will lead to + and
− Z2 gauge fields discussed below for ladder systems with the
definitions in Fig. 3.

The dj Majorana particles are now decoupled on each site,
as illustrated in Fig. 3 (middle). For the ground state, we note
that [H,idjdj+1] = 0. For two successive sites, idj dj+1 = ±1
(meaning that spin correlation functions along y direction on
a given bond in the Ax phase have equal probabilities to be
+1 or −1). Then, we recover the 2M quantum degeneracy
of the chain due to bond formation in the spin-liquid phase
Ax . In Appendix B, we also analyze the braiding protocole
of two Majorana fermions dj and dj+1 with j = 2m − 1. The
protocol and measurement are done in the spin space. We shall
emphasize that in a single chain architecture, the d-Majorana
fermions are not protected against noisy local magnetic fields.
We note recent proposals in cQED to control the parity operator
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p (between these two sites defined in Appendix B) [139] and
measure Majorana pairs [140]. It is also relevant to mention
recent progress in circuit quantum electrodynamics to measure
spin observables and correlation functions [141] as well as
in ultracold atoms [115]. In particular, Ref. [142] reports the
observation of a π phase due to braiding and anyon statistics in
a loop system of four qubit sites. In Sec. III C, after discussing
the phase diagram of ladder systems, we will discuss in
more details the possibility to build loop qubit operators
in relation with Fig. 3. Several theoretical proposals have
already suggested similar architectures (in higher dimensional
spaces) to engineer Majorana (code) constructions [119–122].
This is also related to experimental progress in topological
superconducting wire systems [143].

The Majorana representation of Fig. 3 (middle) also allows
us to study the spin-1/2 edge excitation in more detail, in
the infinite time limit, when increasing the ratio J1/J2. More
precisely, adding a coupling J1 between the Majorana fermion
c1 and the Majorana fermion c2 (which lives at energy ±|J2|),
this can produce virtual excitations shifting the c1 Majorana
fermion from zero energy. This results in a large but finite
lifetime for the spin-1/2 excitation at the edge, of the order
of |J2|/J 2

1 . In this sense, the spin-1/2 excitation turns into
a zero-energy d1 Majorana fermion in the infinite time limit
(which could also be sensitive to a local magnetic field along X

direction). A study of such Majorana edge modes in inhomo-
geneous systems has been studied in Refs. [62,64]. However, it
is important to stress that in the Ay gapped phase of the single
chain, the spin-1/2 edge excitation is robust on time scales
much longer than excitations in the bulk, which is in agreement
with the spin analysis performed at the beginning of Sec. II B.
In addition, the winding number presented in Appendix A is
evaluated directly on the Hamiltonian (3) in the Jordan-Wigner
fermion basis and can equally reflect the presence of the
spin-1/2 edge mode or of the d1 Majorana fermion.

III. TWO-LEG LADDERS

Now, we proceed with a detailed analysis of our phase
diagram in Fig. 1. The boundary conditions and choice of
parameters are adjusted to make the Ax and Ay phases
symmetric here, i.e., with the same number of spin-1/2 edge
excitations independently of the number of rungs). We note
that the square type ladder has been addressed in several works
[60–62], whereas the brick-wall ladder—which is reminiscent
of the honeycomb ribbon geometry—has not been addressed
so far, to the best of our knowledge. In the brick-wall ladder,
we show that the gapless B phase of Fig. 1 is reduced to a line.
This allows us to formulate an analogy to the occurrence of
pre-formed pairs in the system.

It is also important to mention exact constructions of chiral
spin liquids [65] and spin-liquid states in ladder systems [144].
Other exotic phenomena and Majorana edge modes have been
addressed in Refs. [63,64]. Unusual phases can also appear
in Majorana superconducting wire systems [145,146] and in
related hard-core boson ladders in relation with quantum Hall
physics [134,147,148]. A discussion on symmetry protected
topological phases has also been addressed in Ref. [149].

j

α

2 3 6

1 4 5

J2

−

J1

+

J2

−

J1

+

J2

−

J1

+

J3 + J4 + J3 +

1 2 3

2

1

FIG. 4. Notations (j,α), where j denotes the column and α the
row, for the square ladder. Gauge representation for ui,j and one
string representation 1, 2, 3, 4, . . . used for the Jordan-Wigner
transformation (see Appendix C). Note that the definitions of sites
1, 2, 3, 4 . . . is different than in Fig. 3, and agree with those in
Appendix C.

A. The model

We consider the spin-1/2 system described in Fig. 4, with
spins located on the vertices of two coupled chains of 2M

sites each, with l being the distance between two connected
vertices (lattice spacing). The sites are labeled by two integers,
the site index j ∈ [[1,2M]] and the row index α ∈ {1,2}. The
Hamiltonian of the system reads

H = H1 + H2 + HI , (11)

where

H1 =
∑

j=2m−1

J1σ
x
j,1σ

x
j+1,1 + J2σ

y

j+1,1σ
y

j+2,1,

H2 =
∑

j=2m−1

J1σ
x
j+1,2σ

x
j+2,2 + J2σ

y

j,2σ
y

j+1,2, (12)

HI =
∑

j=2m−1

J3σ
z
j,1σ

z
j,2 + J4σ

z
j+1,1σ

z
j+1,2,

with (J1,J2,J3,J4) < 0 being the coupling constants intro-
duced in Fig. 1. The same formalism will allow us to treat
in a similar manner the brick-wall ladder characterized by
J4 = 0, in Fig. 5. Again, we note some invariance of the energy
spectrum when changing Ji → −Ji simultaneously for all i.

First, we write the Hamiltonian (12) in terms of fermionic
operators, using the Jordan-Wigner transform. The Hamilto-
nian, which is obtained in Eq. (17), can be simply obtained
using a Jordan-Wigner transformation for each chain sep-
arately as done in the previous section. For completeness,
in Appendix B, we show that the emergent Hamiltonian is
independent of the chosen string path (one can choose a distinct
path for the string operator.) For example, one can use the string
(zigzag) path of Fig. 4 [see Figs. 8(b) and 8(c) for different
string configurations]. We follow the notations of Fig. 4 and

J2

−

J1

+

J2

−

J1

+

J2

−

J1

+

J3 + J3 +

FIG. 5. Notations and gauge choice in the case J4 = 0 which
corresponds to our brick-wall or ribbon ladder.
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define

σ−
j,α = aj,αeiπ

∑
{i,α}∈string a

†
i,αai,α

σ+
j,α = a

†
j,αeiπ

∑
{i,α}∈string a

†
i,αai,α

α ∈ {1,2}, (13)

σx
j,α = σ+

j,α + σ−
j,α = (a†

j,α + aj,α)eiπ
∑

i<j a
†
i,αai,α

σ
y

j,α = 1

i
(σ+

j,α − σ−
j,α) = i(a†

j,α − aj,α)eiπ
∑

i<j a
†
i,αai,α . (14)

Furthermore, we introduce the Majorana fermions

cj,α =
{

i(a†
j,α − aj,α), j + α = 2m

a
†
j,α + aj,α, j + α = 2m − 1

; (15)

dj,α =
{

a
†
j,α + aj,α, j + α = 2m

i(a†
j,α − aj,α), j + α = 2m − 1

(16)

In this construction, the Hamiltonian takes the form

H = −i
∑

j=2m−1

[J1cj,1cj+1,1 − J2cj+1,1cj+2,1

+ J1cj+1,2cj+2,2 − J2cj,2cj+1,2

+ J3Dj,1cj,1cj,2 + J4Dj+1,1cj+1,1cj+1,2], (17)

where Dj,α depends only on the dj,α operators on a vertical
bond through Dj,α = (−i)dj,αdj,α+1.

Here, Dj,α commutes with the Hamiltonian and can be
seen as a classical variable in the ladder system which can be
fixed in the ground state. More precisely, we can restrict the
study to the (“physical”) subspace S, defined by |x〉 ∈ S ⇐⇒
Dj,α|x〉 = uj,α|x〉 for all j,α, with uj,α = ±1 an eigenvalue
of Dj,α and where S ⊂ S ′, S ′ being the 4M-dimensional Fock
space in which the Majorana fermions live (“extended space”).
We can then make a precise connection with the approach
by Kitaev in two dimensions, where the spin operators in
the expanded space are decomposed in terms of Majorana
fermions bα and cj :

σ ′α
j = ibα

j cj α ∈ {x,y,z}. (18)

Defining uj,k = ibα
j bα

k such that σ ′α
j σ ′α

k = −iuj,kcj ck , and
relabeling the sites using the string notation in Fig. 4, the
Hamiltonian acquires the general form

H = −i

2

∑
〈j,k〉

Jj,kuj,kcj ck, (19)

where the sum is performed over nearest neighbors 〈j,k〉.
Within this notation, 〈j,k〉 gives a factor 2 when summing
over j and k since uj,k = −uk,j . The eigenvalues of uj,k are
uj,k = ±1; therefore the variables uj,k can be seen as emergent
Z2 gauge fields. (It is also important to mention that the D

operator defined above in terms of the d Majorana fermions is
not directly related to the other D operator in the Kitaev paper
[43].) Now, let us make an explicit connection with Eq. (17).

With the string path chosen in Fig. 4, we extend the results
of Ref. [60] to the case of general values of J3 and J4. It is
important to note that the goal here is not to uniquely connect
the Majorana basis (d,c) introduced earlier with the Kitaev
Majorana basis (bx,by,bz,c) [43]. However, the c fermions can

be taken to be the same in Eqs. (17) and (19). In addition, by
comparing Eqs. (17) and (19) then we can uniquely define the
uj,k variables in the ladder. It is already important to note that
on horizontal links, in the Hamiltonian (19), the uj,k variables
are just considered to be the prefactors of the J1 and J2 terms,
and therefore do not affect the parity operators idj,1dj+1,1.
From Eq. (19), indeed we see that the uj,k are already defined
for the J1 and J2 links.

One needs now to fix the uj,k parameters on the J3 and J4

links. For this, we use Lieb’s theorem [150]: in the case of the
square ladder, the ground state of the system is in the π flux
configuration (and zero net flux if we consider two successive
plaquettes) [60]; to meet this requirement, we fix the uj,k to
+1 for the vertical bonds, i.e., Dj,1 = Dj+1,1 = 1 in (17), as
illustrated in Fig. 4, in agreement with Lieb’s theorem [150].
We infer that the brick-wall lattice model is in the zero flux
ground state as a reminiscence of the two-dimensional model
(see Fig. 6) [43]. This flux choice allows us to bridge between
the ribbon (honeycomb) and square ladders.

The flux configurations alternate from + to − on a short
length scale equal to the lattice spacing l, and must be treated
exactly. The constrained choice on the gauge field uj,k now
results on constraints for the d Majorana fermions in a loop
according to Fig. 4 (bottom). Note that we could have equally
chosen a gauge with Dj,1 = Dj+1,1 = −1 in (17), and we will
show below in Eq. (25) that the energy spectrum is invariant
under the transformation J3 → −J3 and J4 → −J4.

Re-injecting this choice of Z2 gauge fields in the Hamilto-
nian (17), we obtain the exactly solvable Hamiltonian

H = H1 + H2 + HI (20)

with

H1 = −i
∑

j=2m−1

(J1cj,1cj+1,1 − J2cj+1,1cj+2,1), m ∈ [[1,M]],

H2 = −i
∑

j=2m−1

(−J2cj,2cj+1,2 + J1cj+1,2cj+2,2),

HI = −i
∑

j=2m−1

(J3cj,1cj,2 + J4cj+1,1cj+1,2).

B. Energy spectrum

In order to derive the spectrum of the above Hamiltonian,
we note that the latter can be written in the general form

H = −i
∑
sλ,tμ

Jsλ,tμcsλctμ, (21)

where, instead of labeling the sites with two integers, (j,α),
j ∈ [[1,M]], α ∈ {1,2}, we changed the notation to (s,λ), where
s ∈ [[1,M]] denotes the cell index, and λ ∈ [[1,4]] denoting
the position of the site in a cell (see Fig. 4, bottom). Since
Jsλ,tμ depends only on sλ,tμ, the Fourier transform of the
Hamiltonian then gives

H = −i
∑
k,λ,μ

Jλ,μ(k)ck,λc−k,μ, (22)
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Ax Ay

Az

J3 → −∞

J1 → −∞ J2 → −∞ | − −〉2m−1

|0−〉2m−1, | − 0〉2m−1

Δ1

t2

Δ1

t2

Δ2

| − −〉2m

|0−〉2m, | − 0〉2m

Δ2

| + +〉2m−1

| + 0〉2m−1, |0+〉2m−1

Δ1

| + +〉2m

|0+〉2m, | + 0〉2m

Δ2

t2

Δ1

t2

Δ2

FIG. 6. (Left) Our phase diagram in the case J4 = 0. The gapped spin-liquid phase Ax exhibits a polarization on a strong link that
adiabatically passes from x to z direction along one side of the triangle by fixing J2 = 0 and increasing |J3| (see Appendix D). Similarly,
for the other vertical side of the triangle, starting from the Ay phase, the spin polarization progressively passes from y to z direction. The
vertical black line traduces the emergence of gapless spin excitations when cos(kl) = 0 or cos(2kl) = −1, which are studied in Sec. IV from
perturbation theory and from bosonization. (Right) Second-order perturbation theory representation for the propagation of a pair |++〉 and
|−−〉 (or inversely a hole pair) in Sec. V from the rung 2m − 1 to 2m in the intermediate regime of J3 where �1 and �2 are comparable, but
still we can allow a small asymmetry between these two gap parameters. Formally, such a small asymmetry creates a Peierls type instability in
the bulk (opening a gap).

with

ck,λ = 1√
M

M∑
s=1

e−ikslcs,λ

and

Jλ,μ(k) = e−ik·(rs,λ−rt,μ)Jsλ,tμ.

We denote rs,λ the position of the site (s,λ).
It is now straightforward to diagonalize this Hamiltonian

(using the notations of Fig. 4, bottom)

H = −i
∑
k,λ,μ

XT

⎛
⎜⎜⎜⎝

0 α β 0

−α∗ 0 0 γ

−β∗ 0 0 −α∗

0 −γ ∗ α 0

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
M

X (23)

with α = J1e
−ikl + J2e

ikl , β = J3e
−il , γ = J4e

−il , and

X =

⎛
⎜⎜⎜⎝

c−k,1

c−k,2

c−k,3

c−k,4

⎞
⎟⎟⎟⎠. (24)

The notations of the four fermions in a unit cell in k space are
chosen to recover block-diagonal matrices when J3 = J4 = 0
(see Appendix A).

The energy spectrum of the Hamiltonian is given by the
eigenvalues of the matrix

ε(k) = ±
√

A(k)

2
±

√
A(k)2 − 4B(k)

2
, (25)

with

A(k) = 2

(
J 2

1 + J 2
2 + 2J1J2 cos(2kl) + J 2

3 + J 2
4

2

)
and

B(k) = (
J 2

1 + J 2
2 + 2J1J2 cos(2kl)

)2

+ 2J3J4
(
2J1J2 + (

J 2
1 + J 2

2

)
cos(2kl)

) + J 2
3 J 2

4 .

We shall now study the phase diagram of the system. Given
a quadruplet (J1,J2,J3,J4), the spectrum of the corresponding
Hamiltonian is gapless if there exists a mode k such that ε(k) =
0. Thus, we need to find for which set of values of the coupling
parameters the equation ε(k) = 0 has a solution. Note that
ε(k) = 0 is equivalent to B(k) = 0. This equality results in the
location of the gapless phase B in the phase diagram of Fig. 1,
for the generalized ladder with distinct J3 and J4 couplings.
We also insist on the fact that the gapless B phase is reduced to
two transition lines for the square ladder studied in Ref. [60],
as we also reproduce. We give some physical understanding of
the emergence of such gapless excitations in Sec. IV A (along
the gapless line of Fig. 6).

C. Phase diagram of Fig. 1 and known limits

First, let us check known limits in the ladder. Fixing
J3 = J4 = 0, in each chain, first, we check the results of
Sec. II A. For the square ladder with J3 = J4, we recover
the phase diagram of Ref. [60]. The choice of the π flux
configuration for the square ladder can be understood as
follows. First, note that a zero flux configuration would change
the sign in front of the first term in J3J4 in the second line of
the definition of B(k). The two choices of flux configuration
would approximately give the same ground-state energy at
large J3 = J4. Now, if we set J2 = 0, for example, then
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the system will select the flux configuration such that B(k)
is minimum and therefore the ground-state energy will be
minimum. Since single chain systems exhibit excitations at
cos(2kl) = −1 corresponding to flipping a spin-1/2 in the
Ax phase, then the π flux configuration will be favored. Since
J3 = J4, all vertical bonds are then identical. If we would have
chosen a symmetric configuration for the two chains in terms
of J1 and J2, we would obtain instead a zero flux configuration
in agreement with Ref. [63].

In addition to the Kitaev spin-liquid phases Ax and Ay

characterized by an intrachain pairing contribution similar to
Eq. (3), we also note the emergence of an Az phase, where the
fermions now pair between chains favoring |++〉 = | +1 +2〉z
and |−−〉 = | −1 −2〉z states polarized along the z axis; 1 and 2
refer to the two chains and + and − correspond to the two spin
eigenvalues of the spin-1/2 on each site with a polarization
along z axis. This Az spin-liquid phase is also characterized
by very short-range correlation functions (each vertical bond
selects its own ground-state configuration for the two spins)
and a large quantum degeneracy in the ground state 22M (even
for finite J1 and J2 in the spin language). More precisely,
let us set J1 = J2 = 0 in Eq. (17), such that each rung is
formally decoupled from the neighboring rungs. Then, on a
given rung, we must satisfy σ z

j,1σ
z
j,2 = Dj,1(−icj,1cj,2) = +1

in the ground state; therefore formally in Eq. (17), there is
a hidden double degeneracy on each rung reproducing the
two states |++〉 = | +1 +2〉z and |−−〉 = | −1 −2〉z. More
precisely, we can also write σ z

j,1σ
z
j,2 = −(icj,1dj,1)(icj,2dj,2).

Changing σ z
j,1 → −σ z

j,1 formally means changing icj,1dj,1 →
−icj,1dj,1. In Sec. IV A, we will explicitly use the fact that the
ground state at large J3 has a large quantum degeneracy and
that the ground state is a tensor product state.

Based on Fig. 4, we also expect that far in the Ax and Ay

phases, the system still exhibits one Jordan-Wigner fermion
a localized at each edge of the ladder and corresponding
to gapless spin-1/2 excitations. The edge modes turn into
Majorana excitations in the infinite time limit when J2 or J1

become finite, in agreement with Refs. [62,64], see Sec. II B.
In the two phases, the two edge modes appear on the same
chain at the two extremities. In Appendix A, we present the
winding number for this situation following Ref. [61]. In the
Az phase, the Majorana fermions are all paired (gapped). In
this case, we do not expect gapless spin-1/2 excitations at
the edges of the ladder. Similarly, the B phase (or transition
lines) can be described by resonating vertical bonds, as shown
in Sec. IV, and therefore should not support gapless edge
excitations. We check this point in Appendix A at a quantum
critical point where the winding number becomes zero at the
phase transition.

The emergence of the gapless B phase in the generalized
phase diagram of Fig. 1 can also be understood from a dual
mapping, using the notations of Ref. [60]. The Hamiltonian
can be indeed rewritten as [151]

H =
∑

j

J1τ
x
2j−2τ

x
2j − J2τ

y

2j−2τ
y

2j + J3τ
z
4j + J4τ

z
4j+2. (26)

The fact that the odd sites do not enter in the mapping reflects
the macroscopic degeneracies of the different phases. Using
the change of variable 2j − 2 → j − 1 and 2j → j , then we
obtain a spin-1/2 XY chain with alternating transverse fields.

The Hamiltonian is solved exactly using the Jordan-Wigner
transformation of Sec. II A and one recovers a gapless spectrum
when J3J4 = (J1 − J2)2, which corresponds to B(k) = 0.

Now, we discuss in more details our phase diagram of Fig. 6
obtained for the brick-wall or ribbon ladder (J4 = 0). When
fixing the condition J4 = 0 in Eq. (25) corresponding to the
brick-wall ladder or honeycomb ribbon, we find that there is
a transition line characterized by ε(k) = 0 and therefore by
gapless excitations for all J3 when J1 = J2 (when fixing the
condition cos(kl) = 0 or cos(2kl) = −1 in the 4 × 4 matrix).
The system is always gapped for J1 	= J2. In Sec. IV B
and Appendix A, we show that excitations along the gapless
line can be in fact rewritten as superpositions of Majorana
fermions, resulting in a low-energy fixed point which can be
represented as gapless electron and hole excitations and a U (1)
Luttinger theory. In this basis, we note a small shift of the
chemical potential such that excitations are slightly moved
from the condition cos(2kl) = −1. Note that the limit J1 = 0
and J2 = 0 yields four degenerate levels on a rung not coupled
with a J3 coupling.

It is also relevant to note that by fixing J2 = 0 and J1 =
−∞, the energy spectrum remains gapped for all values of J3

and there is no quantum phase transition. We check this point
explicitly in Appendix D computing spin correlation functions.

D. Majorana loop qubit

Before studying in more detail the line of quantum phase
transition found in the brick-wall ladder in Fig. 6 (see Sec. IV),
we address the possibility to realize a qubit loop or plaquette
operators encoded in the Majorana variables and showing some
protection due to the emergent Z2 symmetry. For simplicity,
we consider the generalized ladder system of Fig. 1 in the Az

phase.
Following Kitaev [43] (and the notations of Sec. III A), in a

given loop of four sites, the emergent Z2 gauge fields depicted
in Fig. 3 will be fixed to + or −. The exact configuration
will be fixed in agreement with Lieb’s theorem [150]. For the
square ladder, with the choice of spin couplings in Fig. 4, the
ground state will be in a π flux configuration [60] (meaning
that the product of gauge fields uj,k defined in (19) will be
−). The vertical bonds will exhibit the same gauge flux + (or
equivalently −). This will imply that the operators (on vertical
links) D1,3 = (−i)d1d3 and D2,4 = (−i)d2d4 are fixed to the
same value +1 or −1 in the ground state.

In the loop composing the unit cell of a ladder in Fig. 3,
then one can introduce a four-spin operator σ z

1 σ z
2 σ z

3 σ z
4 . Other

possible plaquette operators have been discussed in Ref. [64].
Suppose now that we focus on the Az phase of the two-leg
ladder system in Fig. 1, such that the fermions ci are all gapped
and the product c1c2c3c4 then is fixed to +1 or −1 in the ground
state. One can then define the reduced Z2 Majorana qubit
definition P = d1d2d3d4, which is fixed to +1 in the ground
state since it is formally equal to D1,3D2,4, and PP† = PP =
1. Based on the discussion of Sec. III A, we note that P =
+1 still allows id1d2 = ±1 and id3d4 = ∓1. Formally, this
conclusion indeed implies that the two chains are entangled
and therefore that one focusses on the Az phase (in the Ax

and Ay phases the Majorana fermions entangle in each chain
separately). Now, let us discuss the braiding operation of d1 and
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d2 by adding a coupling δJ2 (see Appendix B). By braiding the
two Majorana fermions d1 and d2 (by changing δJ2 → −δJ2

on a link coupled with a J1 coupling) then mathematically
P → −P and therefore this loop operator has eigenvalues +1
and −1, by analogy to a qubit. Note that by braiding d1 and
d2, formally D1,3 → D2,3 and D2,4 → D1,4. This exemplifies
how to activate and measure such a qubit in the original spin
language. This P operator can be seen as an analog of the
plaquette excitation operator in the toric code.

In the ladder architecture, this suggests that the operatorP is
also protected against small noisy magnetic fields (smaller than
the energy scale associated to the gap of the Majorana fermions
in the Az phase). As a result of the π flux configuration for
the ground state, both the c and d fermions are paired. One
could measure the correlation function of σ z

1 σ z
2 and σ

y

1 σ
y

2 to
detect the state of the qubit P after braiding of the Majorana
fermions d1 and d2 (see Appendix B). The coupling δJ2 must
be smaller than the energy gap (to protect the structure of the
ground state).

These Majorana spin chains could offer a platform to realize
artificial Z2 gauge fields on a lattice, and produce quantum
gates applied directly on the Majorana basis. In a macroscopic
system composed of several loops (ladders or two-dimensional
lattices), the ground state satisfies conservation laws such as
the conservation of total parity operator (product of all plaque-
tte operators). One can then build multiplaquette excitations.
An example of possible operations for the honeycomb lattice
is given in Ref. [120], by analogy to the toric code [152–154].
It is important to underline the experimental progress in cQED
and Josephson junctions to implement related geometries
[107,112,142,155,156], as well as in ultracold atoms [157],
to test braiding mechanisms and anyon statistics. A prototype
device with Rydberg atoms has been studied in Ref. [158].
The effect of defects have also been addressed, for example, in
Refs. [159,160]. Brick-wall ladders studied below could allow
us to construct similar plaquette operators with six sites as in
Ref. [120].

IV. LINE OF GAPLESS SPIN EXCITATIONS

In this section, we study in more detail the two-leg ladder
of Fig. 5 along the line of gapless spin excitations (identified
for the ribbon Kitaev ladder or brick-wall ladder in Fig. 6). We
assume therefore that J1 ∼ J2.

First, in the regime of large |J3|, we perform a perturbation
theory in J1 and J2 showing how the states | +1 +2〉z = |++〉,
| −1 −2〉z = |−−〉 now can reside in the ground state on each
bond, and resonate along the chains. Again, these states are
defined with a quantization along the Z direction since we
start at the top of the triangle in Fig. 6. Then, we show
that the propagation of such gapless spin excitations will be
reinforced at small |J3| based on a bosonization approach. This
is also consistent with the Majorana description of Appendix A
(ladder section). The bosonization approach also confirms that
such gapless excitations become gapped for J1 	= J2.

A. Perturbation theory

First, we consider Fig. 6 on the gapless line for J1 =
J2 = 0 and J3 → −∞. The spin-spin correlation functions

decay exponentially, 〈σ z
j σ z

j+k〉 ∝ e
− |rj −rj+k |

ξ with ξ ∝ |J3|−1 ∼
l, indicating the emergence of a rung tensor product states
(or matrix product states) representation [117], by analogy
with the Az phase of the square ladder. At site j = 2m − 1,
a possible state | +1 +2〉 or | −1 −2〉 belonging to the ground
state |GS〉 (which is fixed by the J3 coupling) does not affect
the spin polarization at the next rung labeled as j + 1 = 2m.
For J1 = J2 = 0, the ground state involves states of the form

|μμ〉2m−1 ⊗ |νν ′〉2m, (27)

and the variables μ, ν, and ν ′ can take values + or − on a
given cell of two successive rungs. Below, we show that the
ground state remains of the same form after applying a small
perturbation in J1 and J2.

More precisely, let us start with a state |++〉j at the rung
j and we could consider different initial states of the form
|νν ′〉2m at the next rung. Let us apply a perturbation theory
in J1J2 where the process J1 occurs first, for example (the
order of operations does not affect the result), in analogy
to the Kramers-Anderson magnetic induced coupling. The
intermediate state involves an excited state with energy 2|J3|
from the ground state; this corresponds to flip one spin on a
strong link. We obtain the following final state configurations:

J2
(
σ

y

j,2

)(
σ

y

j+1,2

) 1

2|J3|J1
(
σx

j,1

)(
σx

j+1,1

)|++〉j ⊗

∣∣∣∣∣∣∣∣
|++〉j+1

|−−〉j+1

|+−〉j+1

|−+〉j+1

= J1J2

2|J3| |−−〉j ⊗

∣∣∣∣∣∣∣∣
−|−−〉j+1

|++〉j+1

|−+〉j+1

−|+−〉j+1

.

Similarly, if we now consider an initial state |−−〉j at the
rung j :

J2
(
σ

y

j,2

)(
σ

y

j+1,2

) 1

2|J3|J1
(
σx

j,1

)(
σx

j+1,1

)|−−〉j ⊗

∣∣∣∣∣∣∣∣
|++〉j+1

|−−〉j+1

|+−〉j+1

|−+〉j+1

= J1J2

2|J3| |++〉j ⊗

∣∣∣∣∣∣∣∣
|−−〉j+1

−|++〉j+1

−|−+〉j+1

|+−〉j+1

.

Essentially, the four states |−−〉, |++〉, |−+〉, and |+−〉
could now lie in the ground state if we sum over all possible
choices of rungs and configurations. Thus the ground state
remains of the same general form. This implies that the
correlation function 〈σ z

j σ z
j+k〉 still decays exponentially, with

a characteristic length of the order of the lattice spacing. From
this analysis, we also deduce that a state |++〉 on a rung j can
now propagate (in the Hilbert space of the ground state) to the
successive rungs, and similarly for the state |−−〉 assuming
J1 ∼ J2. In contrast, in the Az phase of the square ladder,
by applying say a J1 coupling on a given chain, then the
system would immediately react through the J3 = J4 vertical
couplings to restore the magnetic ground state (and the system
is gapped).
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We could also include in our discussion fourth order con-
tributions in perturbation theory and discuss the propagation
of these states on successive rungs. More precisely, let us
consider the state |−−〉j=2m−1 ⊗ | − −〉j=2m obtained after
the second-order perturbation theory. Now, let us consider
the coupling between the state | − −〉j=2m and the successive
rung j = 2m + 1, which involves two spins coupled by
the strong-coupling J3. This rung can be preferably in the
state | − −〉j=2m+1 or | + +〉j=2m+1. If we consider the state
| − −〉j=2m+1 and apply the perturbation theory in J1J2 another
time, then the state | − −〉j=2m ⊗ |−−〉j=2m+1 will be changed
into |++〉j=2m ⊗ | + +〉j=2m+1. The ground state of these
3-rungs then will turn into |−−〉j=2m−1 ⊗ |++〉j=2m ⊗ | +
+〉j=2m+1, exemplifying the propagation of gapless excitations
along the chains.

The introduction of one hole will increase the magnetic
energy by �1 ∼ |J3| on a rung j = 2m − 1 and by �2 ∼
J1J2/(2|J3|) in a rung j = 2m, as shown in Fig. 6. For two
holes, then it will be preferable that they pair to minimize the
cost in magnetic energy.

B. Preformed pairs from bosonization

Based on the Majorana approach of Sec. III, we note that
for the brick-wall ladder, there is a novel quantum phase
transition line with gapless excitations for all values of J3. To
describe this point analytically for small values of J3, we now
apply the bosonization approach [128,129]. We also address a
connection with the square ladder.

Below, we keep the choices that Ji < 0, such that J3 <

0 favors an attraction between the effective Jordan-Wigner
fermions in the two chains introduced in Secs. II A and III. This
approach is then useful to see the appearance of pre-formed
pairs of charge 2e in the model. More precisely, the two chains
can be seen as ↑ (+) and ↓ (−) fermionic degrees of freedom of
a Hubbard model coupled with attractive interactions, making
an analogy with a Luther-Emery liquid [135].

We can start from H = (H1 + H2) in Eq. (12) as two
uncoupled chains with J1 = J2. The terms H1 and H2 then
take the same form as in Sec. II A:

H1 = 2J1

∑
k

cos(kl)a†
k,1ak,1

and by symmetry

H2 = 2J1

∑
k

cos(kl)a†
k,2ak,2.

The Jordan-Wigner fermions ak,1 and ak,2 are associated with
the two chains (in each chain, we use the transformation (2)
individually, for J3 = 0).

We now turn on the coupling J3:

HI = J3

∑
j=2m−1

(1 − 2a
†
j,1aj,1)(1 − 2a

†
j,2aj,2)

= 4J3

∑
j=2m−1

a
†
j,1aj,1a

†
j,2aj,2

− δμ
∑

j=2m−1

(
a
†
j,1aj,1 + a

†
j,2aj,2 − 1

2

)
, (28)

where the chemical potential is renormalized to δμ = 2J3.
This perturbative theory in J3 is thus valid as long as δμ �
|J1 + J2|, such that the fermions maintain a linear spectrum
in Fig. 2. [On the lattice, using the Majorana approach
above, this seems to suggest that gapless excitations occur
for cos(2kl) = −1. In Appendix A, we suggest a change of
basis trying to describe this small chemical potential shift and
the fixed point below.] The effect of the small variation of
the chemical potential δμ will not affect the low-energy fixed
point, described below.

Now, we can apply bosonization in each chain α = (1,2)
and use a continuum description where aj,α is replaced by
aα(x). We introduce the left and right-moving electron fields
around each Fermi point (Fig. 2) and relate in a standard way
Fermi operators as exponential functions of bosonic operators
θα(x) and φα(x) in each chain [128,129]. The (particle) density
operator in each chain then takes the form [128,129]

a†
α(x)aα(x) = −∂xφα

π
+ e−2ikF x e−i(θα (x)+φα (x))ei(θα (x)−φα (x))

2πl

+ e2ikF x ei(θα (x)+φα (x))e−i(θα (x)−φα (x))

2πl
. (29)

We have the standard commutation relations: [φα(x),θα′ (x ′)] =
i π

2 δαα′Sign(x − x ′). Then, we obtain the following Hamilto-
nian H = H1 + H2 + HI :

H =
∑

α=1,2

v

2π

∫
dx[(∇φα(x))2 + (∇θα(x))2]

+
∫

dx

[
f12∇φ1(x)∇φ2(x)

− b12

l2
cos(2(φ1(x) − φ2(x))

]
, (30)

with v ∼ −J1l > 0, f12 = J3l

π2 < 0, and b12 = − J3l

2π2 > 0. The
definitions of the bare parameters are adjusted such that we
have an effective lattice spacing equal to 2l → 0. We note that
umklapp scatterings involving 4kF processes are not relevant
here (first, due to the sign of J3 < 0 and second due to the
small shift of the chemical potential δμ).

The term f12∇φ1(x)∇φ2(x) corresponds to forward scat-
tering contributions and can be re-absorbed in the Gaussian
contribution of Eq. (30) by a redefinition of the fields, as
symmetric and antisymmetric modes:

φ± = φ1 ± φ2√
2

, θ± = θ1 ± θ2√
2

. (31)

The Gaussian contribution then takes the form

Hg = v+
2π

∫
dx

1

K+
(∂xφ+(x))2 + K+(∂xθ+(x))2

+ v−
2π

∫
dx

1

K−
(∂xφ−(x))2 + K−(∂xθ−(x))2 (32)

with ⎧⎨
⎩

v+K+ = v
v+

2πK+
= v

2π
+ f12

2

⎧⎨
⎩

v−K− = v
v−

2πK−
= v

2π
− f12

2
,
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and therefore

K± =
√

v

v ± f12/2
.

Note that K+ > 1, K− < 1. In the sense of conformal field
theory, such a theory described by Hg would be described by
a central charge c = 2 [161], referring to two gapless U (1)
theories. However, the scattering term b12 in Eq. (30) can open
a gap in the sense of the renormalization group arguments. In
fact, denoting the Hamiltonian as H = Hg + Hb12 we find that
such a term grows under renormalization group arguments
at large length scales or low energy (see Appendix E), and
therefore the ground state will pin the field φ− to one of the
classical minima of the cosine potential, opening a mass term

m∗ ∼ |J1|
(

J3

J1

) 1
2−2K−

. (33)

Through this continuum description, the gap becomes equal
on each bond since formally we have taken 2l → 0. This
is also in agreement with the strong-coupling approach of
Sec. IV A, which suggests that the gaps on nearest-neighbor
rungs would become equal when decreasing the interchain
coupling. The model (with central charge c = 1) nevertheless
remains gapless because the mode φ+ remains gapless [161].
Note that the antisymmetric mode φ−(x) refers to high-energy
(gapped) excitations associated with states |+−〉 and |−+〉 in
the spin language. The ground state at small J3 allows gapless
spin excitations in the (symmetric) sector |++〉 and |−−〉.
In the fermionic or bosonized representation, we recover that
these gapless spin excitations refer to the propagation of charge
2e (Cooper pairs between chains) in the system, associated
with the symmetric mode φ+(x). We also confirm that here the
sign of J3 matters. The opening of the mass term assumes that
K− < 1 and therefore that J3 < 0, or attractive interactions
between fermionic chains. In addition, K+ > 1 usually refers
to attractive interactions in one dimension. The emergent fixed
point then shows some analogy with a Luther-Emery liquid if
we identify the mode φ−(x) as a spin degree of freedom (or
relative charge density) [135].

From the bosonization theory, we can compute spin-spin
correlation functions and we obtain (see Appendix E)〈

σx,y
α (x)σx,y

α (0)
〉 ∝ e−|x|/ξ , (34)

with ξ ∝ 1
m∗ . In the z direction, we find a power-law decay of

the correlation function (as a reminiscence of the situation at
J3 = 0):

〈
σ z

α(x)σ z
α(0)

〉 ∝ K+
x2

+ (−1)x/l

xK+
. (35)

We thus have an algebraic spin liquid. If we include the
role of a small chemical potential shift δμ in the discussion,
this does not modify the conclusion; indeed, the chemical
potential shift δμ involves the symmetric mode φ+. As long
as the energy spectrum in Fig. 2 remains linear, we infer
that the velocity of the mode φ+ would remain unchanged
and that all the results remain identical. These results can
also be in principle checked using the Majorana approach by
recombining fermions, as discussed at the end of Appendix A.
Increasing the ferromagnetic coupling |J3| we observe that, on

the one hand, the states |+−〉 and |−+〉 acquire a larger gap
and, on the other hand, the Luttinger parameter K+ increases
meaning that the system will converge more and more to
a matrix product states representation (or short-range spin
liquid). The system will exhibit equally strong ferromagnetic
and antiferromagnetic correlation functions along the chain
direction. Formally, we observe that K+ diverges when
v + f12/2 = 0, indicating that the method is not valid anymore
for J1 ∼ J3/(2π2).

In addition, it is important to notice that the mass term
m∗ appears due to a coupling between four fermions, which is
(almost) a marginal coupling at small J3. Therefore we deduce
that as soon as we deviate from the symmetric condition J1 =
J2, then the intrachain BCS terms in Eq. (3) will become more
important, emphasizing the fact that the physics described
in this section is valid at the quantum phase transition only
between the two phases Ax and Ay .

To summarize, related to Fig. 6, we confirm that the system
is fully gapped for J1 	= J2 (spin-liquid phase). For J1 = J2,
the system exhibits gapless excitations, which can be seen
as analogues of preformed charges 2e propagating along the
chains. This approach complements then the efforts at large
|J3| presented above.

C. Square ladders and bosonization

Before addressing the case of doping the system with a
pair of holes, we briefly make an analogy with square ladders.
Based on the Majorana approach of Sec. III B, we observe that
the square ladder is described by two distinct transition lines
characterized by the condition |J1 − J2| = |J3|, in accordance
with Ref. [60]. This is also in agreement with Fig. 1 if one
sets J3 = J4. We identify two transition lines separating the
Az phase from the Ax phase, and the Az phase from the Ay

phase. If |J3| is small enough (compared to |J1| and |J2|),
one can address the physics along these lines in a similar
manner as Eq. (30) by considering a small asymmetry in the
velocities v1 and v2 associated with the two modes φ1 and φ2

(or equivalently associated with the two modes θ1 and θ2). The
rest of the description is unchanged since the bosonization
continuum description assumes a vanishing lattice spacing
and therefore the forms of b12 and f12 remain the same.
Such a small asymmetry in the velocities, gives a coupling
of the form ∇φ+(x)∇φ−(x) at the fixed point and similarly
∇θ+(x)∇θ−(x). As long as |J3| is sufficiently small compared
to the energy gap m∗, then classically one can approximate
∇φ− ≈ 0. In addition, ∇θ− becomes an irrelevant operator in
the sense of the renormalization group and therefore should
not affect (deeply) the fixed point. Nevertheless, proceeding
along the lines of Ref. [162], then one can integrate out the
antisymmetric mode—at the fixed point exactly. This would
only renormalize the Luttinger parameter K+.

We then conclude that the transition lines in the square
ladder at small J3 could also be described by a similar
Luttinger theory. Starting from the Az phase of the square
ladder then the system would yield pre-formed pairs |++〉
and |−−〉 becoming gapless towards the transitions with the
Ax and Ay phases. A connection between bosonized quantum
field theories and Ising transitions has also been noted in
Refs. [145,163] in different models.
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V. A HOLE PAIR IN THE MOTT STATE

Here, we study the effect of a few holes in the system
starting from the gapless line of the brick-wall ladder. This
allows us to start with the rung product state representation
of Sec. IV A. We build a perturbative analysis in Secs. V A
and V B. We show the possibility to observe an insulating-
superconducting transition for hole pairs in the dilute limit.
The insulating phase is topological in the sense that hole
pairs will localize at the boundary. The emergence of the
superconducting phase can be intuited from the bosonization
approach where we have already identified pre-formed pairs.
These preformed pairs also occur in the Az phase of the square
ladder (see Sec. IV C). Therefore the arguments of Sec. V C
below are also applicable to the slightly doped Az phase.

To study the motion of holes in the dilute limit, we proceed
as follows. First, we assume that the magnetic ground state
|GS〉 at large |J3| [related to Eq. (27)] containing pre-formed
pairs is not modified by the addition of a few holes. This
means that the propagation of a few holes will be treated
perturbatively, modifying only weakly the total energy of
the system. Using the properties of Mott phases that spin-
1/2 magnetizations are associated with electron spins, we
introduce the electron creation and annihilation operators:

c
α†
j,μ,cα

j,μ.

These operators respectively create and annihilate a spin in the
state μ = ↑,↓ on the site j of the chain α = 1,2. The hopping
of a hole from a site j + 1 to the site j is thus described by

c
α†
j+1,μcα

j,μ|μ〉j ⊗ |0〉j+1 = |0〉j ⊗ |μ〉j+1. (36)

We assume that double occupancy is suppressed on each site
as a result of a large on-site Hubbard repulsion, which has
produced the Mott phase, with one (localized) electron per
site at half-filling (or one spin-1/2 per site). The Hamiltonian
describing the motion of a hole along each chain then takes
the form

H1h = −t
∑

j ;μ=↑,↓;α=1,2

c
α†
j+1,μcα

j,μ + H.c., (37)

where t is the (effective) hopping amplitude along the chains.
(In the regime studied below, two holes on a given rung will
pair and therefore we do not need to introduce interchain
hopping of single holes [69,164].)

We work in the dilute limit following Ref. [164], and
therefore we neglect the hole correlation functions on different
sites [165]. Formally, in the limit of |J3| → +∞, the hole will
preferably localize on a rung j = 2m in Fig. 7 to minimize
the magnetic exchange. Indeed, the introduction of a hole
is equivalent to suppress a spin-1/2 particle on a rung and
therefore would increase the energy by an amount |J3| on a
rung j = 2m − 1 in Fig. 7. Propagation of single holes have
been addressed theoretically in two dimensions [166,167].
Here, for very large |J3|, single hole motion could also
occur to second-order in perturbation theory in t . To be more
precise, we expect that single-hole physics will be important
when J1/J3 → 0 and J2/J3 → 0 and t > (|J1|,|J2|). To
second-order perturbation theory in t , a single hole could
then preferably tunnel from the rung j = 2m to the rung
j = 2m + 2 or the rung j = 2m − 2.

J3

t1

t2

2m − 1 2m

t1 t2 t1 t2

FIG. 7. (Top) Effective hopping amplitudes when exchanging a
magnetic bond |++〉 and |−−〉 and a hole pair. Here, t1 ∼ t2/�1 and
t2 ∼ t2/�2 denote the effective hopping amplitudes obtained from
second-order perturbation theory in the intermediate region of J3 for
the brick-wall lattice at J1 = J2. We stress that this approach is not
valid at large J3 and holes would occupy rungs with crosses. (Bottom)
Mapping to an effective SSH model; the yellow states denote two
quasi-zero energy states for the hole pair when t1 < t2. For a finite size
system, the overlap between the two edge wave functions will produce
symmetric and antisymmetric combinations of the edge excitations.
The system becomes analogous to a topological insulator with a
charge gap in the bulk and hole-pair excitations prepared at the edges
in an adiabatic manner at time t = 0 [95]. When J1 = J2 ∼ √

2J3, we
predict a phase transition when t1 = t2 at small J3, which corresponds
to a quasi-one-dimensional superconductor: the hole pair does not feel
the effect of the boundary at time t > 0 and coherently propagates in
the system.

Below, we address in contrast the propagation of two holes
(2 spin vacancies) or even number of holes in the dilute limit
where J1 = J2 is not so distinct from J3. This corresponds to
situations with intermediate values of J3.

A. Hole pair propagation

More precisely, we consider situations where the ground-
state (magnetic) energy of a pair |μμ〉 on a rung j = 2m − 1
(which is equal to J3) and that of the same pair on a rung j =
2m (which is equal to −J1J2/(2|J3|)) are not so distinct such
that holes can occupy the two rungs of the ladder; second-order
energy corrections in t found below will compensate for the
energy difference �1 − �2 defined in Sec. IV A.

In this limit, to minimize the magnetic energy (see
Sec. IV A), it is then favorable for two holes to form a pair on a
rung j where one hole localizes on the site j of each chain. This
reduces the number of affected magnetic bonds and connects
with the (coherent) propagation of states |++〉 and |−−〉 in
the system. Let us consider a protocol similar to Fig. 6 right. A
hole pair is at the rung j + 1 = 2m in the initial state (again,
we assume that the system is sufficiently long such that the
rest of the system remains in the same magnetic ground state).
Let us consider the motion of a state |++〉 or |−−〉 from a
rung j = 2m − 1 to j + 1 = 2m. The initial state on this cell
is |μμ〉2m−1 ⊗ |00〉2m. The exchange between the hole pair
and the magnetic bond |++〉 or |−−〉 then is described by the
process

−t1c
2†
j+1,μc

1†
j+1,μc2

j,μc1
j,μ|μμ〉j ⊗ |00〉j+1. (38)
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Here, t1 describes the effective hopping amplitude (for an
illustration, see Fig. 7, top). We find t1 = t2

�1
where �1 is

roughly the energy cost to create a hole at site j (see Fig. 6,
right). Starting from the strong-coupling limit, �1 ∼ |J3|.

Similarly, the hopping of a magnetic bond |++〉 or |−−〉
from j = 2m to j + 1 = 2m + 1 is described by

−t2c
2†
j+1,μc

1†
j+1,μc2

j,μc1
j,μ|μμ〉j ⊗ |00〉j+1, (39)

with t2 = t2

�2
and starting from the strong-coupling regime we

estimate �2 ∼ J1J2
2|J3| (see Figs. 7 top and 6). We also note from

the bosonization study of Sec. IV B, that in the intermediate
regime of J3, the gaps �1 and �2 should not be too different
(at small J3, formally the two gaps are equal to m∗). Note
that the emergence of asymmetric values of �1 and �2 for
the intermediate regime of J3 is not in contradiction with the
bosonization study of Sec. IV B, which stops to be valid at
J1 ∼ J3/(2π2) and therefore cannot reveal a situation where
�1 	= �2 (due to the continuum limit restriction).

It is important to underline that we consider the situation
where t2 � �2 and �1 is close to �2, meaning that t1 and
t2 are not too distinct. Formally, in this perturbation theory,
we neglect the modification of the ground-state energy by
an amount �1 − �2. Therefore this scheme is applicable
when second-order energy corrections in t1 and t2 are larger
than (�1 − �2), or �1(�1 − �2) < t2 � �2

2. We assume that
these conditions are fulfilled below. The case t1 < t2 can be
realized corresponding to intermediate values of J3 and the
case t1 = t2 corresponds to smaller values of J3 in agreement
with the bosonization approach where �1 = �2 = m∗. Using
the strong-coupling forms of �1 and �2 related to Sec. IV A,
the condition t1 = t2 or �1 = �2 occurs for J1 = J2 ∼ √

2J3

in the intermediate regime of J3.

B. SSH model for the hole pair

We can now introduce the bosonic operators corresponding
to the creation/annihilation operator of a hole pair such that

a
†
j = c2

j,μc1
j,μ

aj = (
c2
j,μc1

j,μ

)†, j = 2m − 1 , (40)

and

b
†
j = c2

j,μc1
j,μ

bj = (
c2
j,μc1

j,μ

)†, j = 2m, (41)

where μ = ↑ or ↓. Formally, we introduce a unique hole pair
operator (independent of the flavor μ because the hopping of
a hole pair in one direction is equivalent to the hopping of a
pair |++〉 or |−−〉 in the opposite direction; see Fig. 6).

Since we do not allow more than one electron per site, the
bosons aj and bj are in fact hard core bosons or spins. We can
apply the Jordan-Wigner transformation on these operators and
re-write by analogy to the slightly doped t-J -J⊥ ladder [164]
the Hamiltonian as a one-dimensional tight-binding model of
spinless fermions. Then, the motion of a hole pair is described
by a spinless fermion Hamiltonian with two inequivalent sites
a and b denoted by crosses and circles (and M unit cells

separated from a distance l) in Fig. 7 bottom:

Hh.p. = −t1
∑

j=2m−1

(a†
j bj+1 + h.c.) − t2

∑
j=2m

(b†j aj+1 + H.c.).

(42)

We note again a mapping towards the Su-Schrieffer-Heeger
model introduced in polyacetylene [92]. Going to the Fourier
space, we define aj = 1√

M

∑
k ake

ikxj with xj = j l and k ∈
] − π

l
, π

l
] of the form k = 2πp

Ml
− π

l
, p ∈ [[1,M]]. We use the

notations of the M unit cells with Fig. 7. We derive

Hh.p. =
∑

k

(a†
k,b

†
k)

(
0 h(k)

h(k)∗ 0

)(
ak

bk

)
, (43)

with h(k) = −t1 − t2e
ikl . The energy spectrum satisfies

ε(k) = ±
√

t2
1 + t2

2 + 2t1t2 cos(kl), (44)

by analogy to the case of the magnetic chain in Sec. II. We
check that the energy spectrum has a gap at cos(kl) = −1
for t1 	= t2 meaning at the edges of the Brillouin zone for a
one-dimensional tight-binding model. Formally, the chemical
potential is equal to μ = 0 here and lies between the lowest
and upper bands. Choosing a convention of unit cell where
the gap occurs at k = ±π/l is physical for this analysis: on
each rung, a pre-formed pair contributes to a “double” charge
2e, therefore the occupancy of the effective Jordan-Wigner
band has doubled compared to the spin description in Fig. 2.
The lowest band is then filled. We underline that Mott physics
or infinite on-site repulsion has been taken into account by
changing the statistics of hole pairs or preformed pairs from
bosons to hard-core bosons or spinless fermions.

Now, let us add a pair of holes with an energy equal to
μ = 0 (between the valence and conduction band for t1 <

t2), at the edges at time t = 0 (Fig. 7). To be prepared at
zero energy, formally the coupling t1 near the edges should
be switched on adiabatically from zero. This process could
maintain this additional hole pair (for a long time) at the edges,
as shown experimentally in Ref. [95] in ultracold systems.
For a finite size system, the hole-pair excitations would be
symmetric and antisymmetric combinations of the edge wave-
functions [93,138]. Following the notations of Ref. [93], we
find a connection between the number of edge modes in a finite
chain and the winding number of the bulk Hamiltonian [93],
by analogy to the Ax and Ay magnetic phases of a single chain
(see Appendix A):

ν = 1

2iπ

∫ π/l

−π/l

dk
d ln h(k)

dk
, (45)

with ln h(k) = ln |h(k)| + iarg(h(k)). We expect to have edge
modes in the case t1 < t2, which would correspond to ν = 1,
whereas for t1 = t2 we expect the system to be nontopological,
i.e., ν = 0. For t1 < t2, we have ln h(k) ≈ ln t2 + i(kl + π ),
and we check ν = 1. Therefore this implies that similar to
Fig. 7 (bottom), one could observe a hole pair with a 1/2
probability to be localized on the left or on the right edge,
producing edge excitations at zero energy [138]. A finite size
system results in a small overlap between these two excitations;
excitations become even and odd superpositions of these edge
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excitations. If the hole pair is added in a nonequilibrium
manner (quench), the probability to be at the edges at time
t can still reveal signatures of the boundary [95].

We check that ν = 0 for t1 = t2, implying a quantum phase
transition in the system by decreasing |J3| until J1 = J2 ∼√

2J3 based on results of Sec. IV A (the bulk gap closes).
The system will become similar to a quasi-one-dimensional
superconductor (the pre-formed pairs discussed in Sec. IV B
through φ+ can now leak in the system and are described
by a Gaussian model); see Sec. V C. The case t1 = t2 can
also be realized in principle for J3 = J4 in the square ladder.
This transition could be observed by decreasing J3 along the
line of gapless excitations in the brick wall lattice. Similar
insulating-superconducting quantum phase transitions have
been observed in Josephson junction arrays [168,169].

We also underline that, in principle, we can still deviate
slightly from the gapless line in the intermediate J3 limit such
that |J3| or the gap m∗ is larger than the energy scale |J1 − J2|,
which controls the occurrence of intrachain pairing interaction
of the Jordan-Wigner fermions in the spin-liquid phases Ax

and Ay . It is also important to underline that Thouless pump
experiments in ultracold atoms have recently measured similar
topological invariants [100]. Such topological invariants in
relation with quantum random walks have also attracted some
attention recently [101,170].

C. Superconducting Transition

Let us now consider the situation where t1 = t2. This can
be realized for the brick-wall ladder when J1 = J2 �

√
2J3 or

in the Az phase of the square ladder where �1 = �2 = |J3|.
The hole pairs can now coherently propagate in the system
by analogy to a free fermion model (hard-core boson model)
[164]. The system then could be seen as a superconducting
spin liquid

|�〉 = |GS〉 ⊗ |quasi-SC〉, (46)

where the spin-liquid part is described by the appropriate
magnetic ground state |GS〉 (related to Sec. IV B at small
J3 or to the Az phase in Sec. IV C) and the hole pairs can
propagate coherently forming a one-dimensional analog of a
superconductor (these hole pairs are described by a Luttinger
theory with a Luttinger exponent equal to one in agreement
with hard-core bosons and free spinless fermions [69,164]).
This form of wave-function reproduces the emergent “spin-
charge” separation (environmental magnetic RVB state and
propagating hole pair) of ladder systems with a few hole
pairs [164]. Using the analogy between hard-core bosons and
free electrons in the Hamiltonian, we predict that the Green’s
function for the hole pairs then is given by

〈a†
j ak〉 ∼ 1

|j − k| . (47)

The hole pairs formed on a rung, defined in Eq. (41),
have also p-wave symmetry. We note some analogy to the
slightly-doped SU(2) invariant spin ladder [69,164]. Coupling
weakly identical spin ladders could result in long-range
(superconducting) order at zero temperature, by analogy to
magnon excitations in weakly coupled spin ladders [171].

On related models, superconductivity was also predicted in
two-dimensional doped Kitaev models [90,91] and t-J or re-
lated Hamiltonians [172–177]. A relation between resonating
valence-bond states, polyacetylene, and superconductivity has
been addressed in Ref. [70].

VI. CONCLUSION

To summarize, in this paper, we have studied networks of
Kitaev magnetic chains and ladders. These systems can be
engineered in superconducting quantum circuits and ultracold
atoms [104,106] and are related to the discovery of quantum
spin-liquid materials [34,50].

Through the Jordan-Wigner transformation, this allows us
to map Z2 quantum spin-liquid states with short-range inter-
actions onto BCS quadratic superconducting Hamiltonians.
The emergent p-wave symmetry associated with the pairing
order parameter leads to the occurrence of Majorana particles
in the system, then referring to Majorana RVB states. More
precisely, the Kitaev spin chain in the bulk can be mapped
onto a gapped p-wave superconductor plus a gapless chain
of Majorana fermions. In ladder systems, the ground state
selects a particular flux configuration allowing us to gap all
the Majorana fermions by pairs. This loop device could be a
first step to realize a Majorana code. This system could also
bridge with implementations of the toric code to test anyon
braiding statistics [142], in the context of cQED. Some efforts
have also been realized in ultracold atoms [157]. We have also
underlined a connection between the Kitaev magnetic chain
and the SSH model, from the emergence of gapless excitations
at the edges (both in the spin and Majorana representations).

In the square ladder, based on a Majorana fermion rep-
resentation, we have recovered an identical phase diagram
as Ref. [60], with the three gapped spin-liquid phases Ax ,
Ay , and Az by analogy with the two-dimensional Kitaev
model. In the brick-wall ladder system, which corresponds to
a ribbon geometry of the two-dimensional Kitaev honeycomb
model, we have predicted a line of gapless (bulk) excitations
in the phase diagram, connecting two spin-gapped phases.
In a gapped phase, the spin polarization on a strong bond
adiabatically bridges from X to Z or from Y to Z. Along
this line, based on perturbation theory and bosonization,
we have identified gapless preformed pairs and excitations
corresponding to the propagation of | +1 +2〉z and | −1 −2〉z
(magnetic) states along the chains. We have revealed a
magnetic analog of a Luther-Emery liquid theory [135] with
central charge c = 1 in the limit of small |J3|. The two chains
can be identified as a (pseudo) spin-up and spin-down degree
of freedom in the Hubbard model, and are coupled through an
attractive interaction since J3 < 0. We have also shown how
the gapless line spreads out in a B phase for the generalized
ladder system.

By doping the brick-wall ladder with a pair of holes,
we have made another analogy with the symmetry protected
topological SSH model, where a hole pair could localize at
the edges with (almost) zero energy for intermediate values of
J3. At small values of J3, as a result of |J1| = |J2| � |J3|, the
preformed pairs on the strong vertical bonds propagate equally
on all rungs. By doping with a pair of holes, the preformed
pairs can propagate coherently along the chains producing
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a quasi-one-dimensional superconducting spin liquid. For the
square ladder, doping the Az phase could also produce a similar
superconducting spin-liquid state with quasi-long-range order.
This analysis reinforces the idea that the occurrence of
superconductivity in ladder systems (and potentially in high-Tc

superconductors) requires the formation of resonating valence-
bond states.
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APPENDIX A: FOURIER TRANSFORM,
WINDING NUMBER

1. Fourier transform

Here, it is instructive to focus on the spin chain and
Fourier transform, to evaluate the winding numbers of the
Ax , Ay magnetic phases in relation with the SSH model. These
winding numbers encode the presence of additional excitations
at the edges.

First, let us start from Eq. (3) in the main text. We observe
that in a given chain J1 couples the combination (aj − a

†
j ) with

the other combination (aj+1 + a
†
j+1) and similarly the coupling

J2 involves (aj+1 − a
†
j+1) with the other combination (aj+2 +

a
†
j+2). In Sec. II B, we introduce a Majorana representation cj

and dj to describe these distinct combinations at different sites.
Formally, one can Fourier transform the Majorana operators cj

and dj , and introduce ck and dk such that c−k = c
†
k and d−k =

d
†
k . Then, for a single chain, we can write the Hamiltonian as

H = −i
∑

k

Y T

(
0 α

−α∗ 0

)
︸ ︷︷ ︸

M

Y (A1)

with α = (J1e
−ikl + J2e

ikl) and

Y =
(

c−k,1

d−k,1

)
. (A2)

(The subscript 1 refers to chain 1 in the ladder formulation.)
Remember that in Eq. (10), the d fermion is relabeled c

to simply the notations in the ladder models. The energy
eigenvalues are then equal to

ε(k) = ±
√

|α(k)|2 = ±
√

J 2
1 + J 2

2 + 2J1J2 cos(2kl). (A3)

The spectrum is invariant under the replacement 2kl → 2kl +
2π with a reduced Brillouin zone −π/(2l) � k � π/(2l).
For the two chain systems, when J3 = J4 = 0, the energy is

additive and we check using the 4 × 4 matrix representation of
Sec. III B. We also use the fermionic basis (ak,a

†
−k) to check

this result. For J1 = J2, the gap closes and the low-energy
spectrum close to 2kF l = π takes the form ε(k) = 2J1 cos(kl)
with J1 < 0.

2. Gapless edge excitations

We can introduce the Anderson pseudospin 1/2 represen-
tation or Pauli matrix representation related to Eq. (A1) [118]:
the effective field reads α1 = α = (J1e

−ikl + J2e
ikl), and can

also be inferred from the 4 × 4 matrix in the main text. Within
this formulation, the Brillouin zone is reduced −π/(2l) � k �
π/(2l). The pseudospin encodes the information regarding the
orientation of a strong bond, X versus Y . To define the winding
number from −π/l to π/l, we can reset the convention with
two inequivalent sites per unit cell where the cells are separated
from l, and we find α1(k) = (J1 + J2e

ilk) in a similar manner
as the SSH model in Sec. V; the relative phase difference
between the two terms is in agreement with the convention of
the SSH model (which will be discussed in Sec. V) [93]. For
a single chain model, the winding number

ν = 1

2iπ

∫ π/l

−π/l

dk

(
d ln α1

dk

)
, (A4)

where ln(α1) = ln |α1| + i arg(α1(k)) is one or zero, similarly
to the SSH model of Sec. V (reflecting the presence of edge
Jordan-Wigner fermions by analogy to Fig. 7 when exchanging
ti ↔ Ji). More precisely, ν is one for J2 > J1 and a even
number of sites (or equivalently an integer number of unit
cells) and zero when J1 > J2. For J2 > J1, we expect gapless
excitations at the edges (as a reminiscence of the case J1 = 0).
In the single chain problem, the situation J2 > J1 corresponds
to the Ay magnetic phase and J1 > J2 corresponds to the Ax

magnetic phase. Note, however, that this calculation cannot
distinguish between a spin-1/2 (or Jordan-Wigner fermion a,
mixture of c and d) and a Majorana edge excitation; for a
discussion, see Sec. II B.

3. Ladder systems

In the ladder systems, based on Fig. 4, we also expect one
localized excitation at each edge of the ladder in the Ax and
Ay phase, and no edge mode in the Az phase since the parity
operators D2j and D2j+1 are fixed in the ground state. The
fact that the winding number in the Az phase is zero can be
checked by plugging J1 = J2 = 0 in Eq. (25) and we observe
that the matrix elements do not depend on the wave vector k.

Below, we check in a simple manner the nonzero winding
numbers for the Ax and Ay phases. The term J3 (and or J4) is
assumed to be small. For the second chain, we should reverse
the role of J1 and J2 based on our convention of Fig. 5, and we
get the related pseudospin α2(k) = (J2 + J1e

ikl). The related
ket for the chain 2 is written as

Z =
(

c−k,2

d−k,2

)
. (A5)

(The subscript 2 now refers to chain 2.) By analogy with the
SSH model [93], in the ladder system, we can then define the
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winding number as two additive contributions:

ν = 1

2iπ

∫ π/l

−π/l

dk

(
d ln α1

dk
+ d ln α2

dk

)
, (A6)

where ln(αi) = ln |αi | + i arg(αi(k)). Formally, for J3 = J4 =
0, we get two separate 2 × 2 matrices. When J1 → 0 or
J2 → 0, then this reduces to arg(α1)(k) + arg(α2)(k) = ikl.
This implies ν = 1 when J1 	= J2. Essentially, this supports
the idea that the phases Ax and Ay have one a Jordan-Wigner
fermion localized at each edge of the ladder, independently
of the number of cells in the system. At the quantum critical
point J1 = J2, the spectrum of a given chain takes the form
2J1 cos(kl) and therefore we obtain ν = 0.

Now, let us describe the effect of J3 in the brick wall
ladder at the quantum phase transition. It is then instructive
to define linear combinations of the Majorana fermions ck,1

and ck,2 in this 2 × 2 matrix representation. We use that the d

fermions are gapped through the Dj operators. Let us introduce
c∗
k,1 = 1√

2
(ck,1 + ick,2) such that (c∗

k,1)† = 1√
2
(c−k,1 − ic−k,2).

We observe that the J3 coupling can be re-written in a diagonal
manner as

(−i)J3c−k,1ck,2 + H.c. = −2J3(c∗
k,1)†c∗

k,1. (A7)

For the brick-wall ladder, this argument tends to confirm that
excitations for J1 = J2 become described by electron and hole
excitations in agreement with Sec. IV B.

APPENDIX B: BRAIDING MAJORANA FERMIONS

Here, we discuss the possibility to engineer braiding of
Majorana fermions, using the description of Sec. II. This is
an example of quantum operation described in the Majorana
basis that can be activated and measured in the spin language.

Let us imagine that in Eqs. (1) and (10), we switch on a small
coupling δJ2σ

y

2m−1σ
y

2m on a link already coupled by a Ising
coupling along X direction. The perturbation is smaller than
the gap such that the c fermions in the bulk are paired at higher
energy. Then, this will induce a coupling +iδJ2d2m−1d2m. If
δJ2 > 0 then, the ground state will select id2m−1d2m = −1
and if δJ2 < 0, the ground state will select id2m−1d2m = +1.
Changing the sign of this coupling in time thus would
correspond to a braiding of these two Majorana fermions in
time. More precisely, the two ground states associated with
this local exchange coupling δJ2 are related by exchanging
d2m−1 ↔ d2m if we perform an operation δJ2 ↔ −δJ2. Doing
such an operation is equivalent to control the parity operator
for these two sites defined as p = exp(iπf †f ) = (1 − 2f †f ),
with f †f = id2md2m−1/2 + 1/2 = 0 or 1.

The next question then is how to measure such a braiding
process in the spin language? It is important to note that
on the two site model (2m − 1,2m), when acting with the
coupling δJ2, the state | +2m−1 +2m〉x becomes transformed
into (i)2| −2m−1 −2m〉x , similarly to the double well. This
reveals that in the spin language σx

2m−1 does not commute
strictly with the Hamiltonian anymore and the ground state
is a Einstein-Podolsky-Rosen composed of a superposition
of states | +2m−1 +2m〉x and | −2m−1 −2m〉x . In average, one
finds 〈σx

2m−1σ
x
2m〉 = 1 since x〈−2m−1 −2m |σx

2m−1σ
x
2m| −2m−1

−2m〉x = 1; this correlation function is therefore not changed

when changing the sign of δJ2. This will be taken into account
below through −ic2m−1c2m = +1 by analogy with Eq. (10).
Now, let us measure the correlations for these two sites along
the Z axis (the rest of the chain is assumed to be in the ground
state of the Ax phase). Since [H,σ z

2m−1σ
z
2m] = 0, σ z

2m−1σ
z
2m can

be equal to +1 or −1. More precisely, we can rewrite σ z
2m−1σ

z
2m

in terms of −c2m−1d2m−1d2mc2m [after the transformation (9)].
Now, let us look at the evolution of this correlation function
during the protocole where we change δJ2 into −δJ2. We
suppose that |δJ2| is changed adiabatically (and that |δJ2|
remains smaller than the gap of the c fermions). We can
then use the fact that −ic2m−1c2m = +1. Therefore, changing
the sign of δJ2 or braiding d2m−1 and d2m would change
the sign of the measured correlation function of σ z

2m−1σ
z
2m =

−id2m−1d2m. In addition, this correlation function should
remain quantized and equal to +1 or −1. One could also
choose to measure correlation functions along the Y direction,
since we also have σ

y

2m−1σ
y

2m = id2m−1d2m. By braiding d2m−1

and d2m, one would then observe a change of signs of
these two correlation functions. This protocole (braiding and
measurement with spins) will be applied in Sec. III D for the
ladder system.

APPENDIX C: JORDAN-WIGNER STRING
FOR THE LADDER

Here, we provide a simple derivation of the Hamiltonian
(17) for two (other) distinct paths of the string operator as-
sociated with the Jordan-Wigner transformation. In particular,
within such a choice, the coupling J1 becomes highly nonlocal.

The site 5 is chosen as the reference site, and we derive the
Hamiltonian coupling site 5 with its neighbors. For string 1 in
Fig. 8(b), the interaction from the x direction on the 5th site
reads

J1σ
x
5 σx

8 = J1(a†
5 − a5)(a†

8 + a8)eiπ(a†
6a6+a

†
7a7). (C1)

As [a†
6a6,J1σ

x
5 σx

8 ] = [a†
7a7,J1σ

x
5 σx

8 ] = 0, there exists a com-

mon eigenspace in which the eigenvalues of a
†
6a6 and a

†
7a7 are

c numbers. We can choose a local gauge such that it minimizes
total ground-state energy of the string. So there should be no
excited particle at sites 6 and 7, a†

6a6 = a
†
7a7 = 0. Now we turn

to Fig. 8(a) and define a set of Majorana operators, similarly

FIG. 8. (a) Indices (j,l) denote j th column and lth row. (b) and
(c) are two deformed string representations.
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as in the main text:

cj,l =
{

i(a†
j,l − aj,l), j + l = 2m;

a
†
j,l + aj,l, j + l = 2m − 1.

dj,l =
{

a
†
j,l + aj,l, j + l = 2m;

i(a†
j,l − aj,l), j + l = 2m − 1.

The Hamiltonian (C1) then can be transformed into

J1σ
x
5 σx

8 = (−i)J1c3,1c4,1. (C2)

Similarly, the other two interaction terms on 5th site become:

J2σ
y

4 σ
y

5 = −J2(a†
4 + a4)(a†

5 − a5) = iJ2c2,1c3,1,

J3σ
z
5 σ z

6 = J3(a†
5 − a5)(a†

5 + a5)(a†
6 − a6)(a†

6 + a6)

= (−i)J3D3,1c3,1c3,2, (C3)

where we introduce the Dj,l operators on vertical bonds:
Dj,l = (−i)dj,ldj,l+1. Then, we get the Hamiltonian on the
5-th site for the choice of string 1:

H(5), String 1 = H(3,1), String 1

= (−i)(J1c3,1c4,1 − J2c2,1c3,1 + J3D3,1c3,1c3,2).

(C4)

For string 2 in Fig. 8(c), the interaction term on the 5th site
involving J3 remains the same. The J1 and J2 couplings then
turn into

J1σ
x
5 σx

7 = J1(a†
5 + a5)(1 − 2a

†
5a5)(a†

7 + a7)eiπa
†
6a6

= (−i)J1c3,1c4,1,

J2σ
y

3 σ
y

5 = −J2(a†
3 − a3)(1 − 2a

†
3a3)(a†

5 − a5)eiπa
†
4a4

= iJ2c2,1c3,1,

where a
†
6a6 = a

†
4a4 = 0; sites 4 and 6 are in the ground state

of the string and there are no particle excitations. We confirm
that the interaction Hamiltonian including the 5th site is the
same for different routes of string: H(5), String 2 = H(5), String 1.
We can generalize this approach to the full ladder and check
Eq. (17).

APPENDIX D: CORRELATION FUNCTIONS IN THE
HONEYCOMB RIBBON

Here, we check the absence of quantum phase transition on
the vertical sides of the triangle, for the ribbon phase diagram
in Fig. 6. We check this fact explicitly by evaluating the spin
correlation function(s) in a given unit cell, between nearest
sites. For instance, when fixing J2 = J4 = 0, we get the cluster
ladder of Fig. 9.

FIG. 9. Cluster honeycomb ladder.

The corresponding Hamiltonian matrix becomes

H ′ = 2H = −i
∑

k

XT WX,

XT = (ck,1 ck,2 ck,3 ck,4),

W =

⎛
⎜⎜⎜⎝

0 α β 0

−α∗ 0 0 0

−β∗ 0 0 −α∗

0 0 α 0

⎞
⎟⎟⎟⎠,

α = J1e
−ikl , β = J3e

−il , (D1)

with the eigenvalues for the spectrum

ε(k) = ±

√√√√
J 2

1 + J 2
3

2
±

√
4J 2

1 J 2
3 + J 4

3

2
. (D2)

We solve the eigenfunction for the ground state

H ′|GS〉 = ε0|GS〉,

ε0 = −

√√√√
J 2

1 + J 2
3

2
+

√
4J 2

1 J 2
3 + J 4

3

2
,

|GS〉 =
∑

k

1

N (x1c−k,1 + x2c−k,2 + x3c−k,3 + x4c−k,4)|0〉,

x1 = e, x2 = −iα∗, x3 = e2 − |α|2
iβ

,

x4 = α(e2 − |α|2)

eβ
. (D3)

We introduce the variables

t = J1

J3
,

e

|J3| =
(

t2 + 1

2

√
4t2 + 1 + 1

2

)1/2

= g. (D4)

Taking into account that the original Hamiltonian is doubled
in our case, we get

N 2 = 1

2

4∑
i=1

|xi |2

= 1

2

(
e2 + |α|2 + 1

|β|2e2
(e4 − |α|4)(e2 − |α|2)

)
. (D5)

We select two sites in sth unit cell (see Fig. 9) and calculate
the spin correlation in the x direction:

〈
σx

s,1σ
x
s,2

〉 = −i〈cs,1cs,2〉 = −i

M

∑
q,q ′

eiqrs,1+iq ′rs,2〈cq,1cq ′,2〉.

We find

{ck,λ,ck′,λ′ } = 2δk,−k′δλ,λ′ ,

〈cq,1cq ′,2〉 = 1

N 2

∑
k,k′

(−x1x
∗
2δq ′,−k′δq,k + x∗

1x2δq,−k′δq ′,k).

(D6)
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FIG. 10. Spin polarization between two nearest sites when J2 =
J4 = 0.

In the rs,1 → ∞ limit,

〈
σx

s,1σ
x
s,2

〉 = 2e|J1|
MN 2

∑
k,k′

e(k−k′)·rs,1

= 2e|J1|
MN 2

∑
k,k′

δk,k′ = 2e|J1|
N 2

. (D7)

Then, we get an analytical expression for the spin correlation:

〈
σx

s,1σ
x
s,2

〉 = 4

[
g

t
+ t

g
+

(
g

t
−

(
t

g

)3)
(g2 − t2)

]−1

. (D8)

From Fig. 10, we check that the spin polarization along the x

direction changes continuously from 0 to 1 when we increase
the value of |J1|.

APPENDIX E: RENORMALIZATION GROUP ANALYSIS

In this Appendix, for completeness, we present the results
of the renormalization group (RG) analysis of the b12 Sine-
Gordon term [129] in Eq. (30). We will use the following
result, which holds for primary (charge) fields of Gaussian
models described by a Luttinger theory [and the Hamiltonian
Hg in Eq. (32)],

〈φ(x)φ(0)〉 − 〈φ2(0)〉 = K

4
ln

(
l2

l2 + x2

)
, (E1)

where l is the lattice spacing, and can be understood as a
short-distance cutoff parameter. We have rescaled φ as

√
Kφ,

to make an analogy with free fermion models.
We will use this property for the φ−(x) field defined in

the main text in Sec. IV B. The idea is to study the RG flow
of the parameter b12 by changing the lattice spacing l and
imposing that the participation function of the system remains
unchanged. The partition function is

Z = T r(e−βH ) = T r(e−β(Hg+Hb12 )). (E2)

We suppose Hb12 � Hg (which is true at short distances
or in the ultraviolet limit for energies ∼|J1|). Thus we can
factorize the partition function : Z = Z0〈Tr(e−βHb12 )〉0, with
Z0 = T r(e−βHg ) the partition function of the massless free
field.

Now, we expand the exponential in the partition function.
The first order term is equal to zero, since at high energy
the phase φ−(x) fluctuates randomly in [0,2π ] and thus
〈cos(φ−)〉0 = 0. To second order, we find

Z (2) = Z0

∫ β

0
dτ

∫ β

0
dτ ′

∫
dx

∫
dx ′

× b12(l)2

l4
〈cos(

√
8φ−(x,τ )) cos(

√
8φ−(x ′,τ ′))〉0,

(E3)

with

〈cos(
√

8φ−(x,τ )) cos(
√

8φ−(x ′,τ ′))〉0

≈
(

l2

|x − x ′|2 + v2|τ − τ ′|2
)2K−

, (E4)

and l � (|x − x ′|,v|τ − τ ′|) by hypothesis. Now, we increase
the scaling parameter l → l′ = le

dl
l = ledλ, with dλ = dl

l
, and

impose that the partition function should stay constant :Z(l) =
Z(l′). This condition yields

ln(b12(l′) − ln(b12)(l) = (2 − 2K−) ln

(
l′

l

)
. (E5)

We observe that for K− < 1, the dimensionless parameter b12

will grow under RG. The Sine-Gordon term will become as
important as the Gaussian theory characterized by the velocity
v = |J1l| ∼ 1, roughly when b12(lc) ∼ 1, which corresponds
to the limit of validity of the Gaussian model. This implies

lc = 1
|J1| (

J1
J3

)
1

2−2K− . This allows us to define the mass (or gap)
associated with the mode φ−:

m∗ ∼ 1

lc
∼ |J1|

(
J3

J1

) 1
2−2K−

. (E6)

In the low-energy regime, lc � l, the massive mode φ− is
locked in the ground state, in order to minimize the energy.
Note that, as soon as J1 	= J2, a gap � ∼ |J1 − J2| opens and
dominates in front of m∗.

We can now deduce the spin-spin correlation functions
〈σ z

α(x)σ z
α(0)〉 = 〈a†

α(x)aα(x)a†
α(0)aα(0)〉. For example, let us

consider the chain α = 1. Then

a
†
1(x)a1(x) = 1√

2
∂x(φ+ + φ−) + ei2xkF ei

√
2(φ++φ−). (E7)

Since φ− is locked, we have ∂xφ−(x) = 0, and then

〈∂xφ+(x)∂xφ+(0)〉 = −K+∂2
xx

[
1

4
ln

(
l2

l2 + x2

)]

≈ K+
x2

. (E8)

In a similar way, we find

〈ei2xkF ei
√

2φ+(x)e−i
√

2φ+(0)〉 =
(

l2

l2 + x2

)K+/2

(−1)x/l

∼ (−1)x/l

xK+
. (E9)
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Finally, we find Eq. (35):

〈
σ z

1 (x)σ z
1 (0)

〉 ∼ K+
x2

+ (−1)x/l

xK+
. (E10)

For the single chain, the z component of spin correlation functions decays as 1/x2.
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