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Capacity of entanglement and the distribution of density matrix eigenvalues in gapless systems
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We propose that the properties of the capacity of entanglement (COE) in gapless systems can efficiently be
investigated through the use of the distribution of eigenvalues of the reduced density matrix (RDM). The COE is
defined as the fictitious heat capacity calculated from the entanglement spectrum. Its dependence on the fictitious
temperature can reflect the low-temperature behavior of the physical heat capacity and thus provide a useful
probe of gapless bulk or edge excitations of the system. Assuming a power-law scaling of the COE with an
exponent α at low fictitious temperatures, we derive an analytical formula for the distribution function of the
RDM eigenvalues. We numerically test the effectiveness of the formula in a relativistic free scalar boson in two
spatial dimensions and find that the distribution function can detect the expected α = 3 scaling of the COE much
more efficiently than the raw data of the COE. We also calculate the distribution function in the ground state of
the half-filled Landau level with short-range interactions and find better agreement with the α = 2/3 formula
than with the α = 1 one, which indicates a non-Fermi-liquid nature of the system.
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I. INTRODUCTION

Quantum entanglement, which represents nonlocal cor-
relations that cannot be described by classical mechanics,
has played a central role in quantum information science
and has recently become an indispensable tool in studies
of quantum many-body systems. One can extract various
properties of a system by calculating entanglement measures in
the many-body (mostly, ground-state) wave function |�〉 [1,2].
The most celebrated measure among them is the entanglement
entropy (EE). By partitioning the system into a subregion A

and its complement Ā, the EE is defined as the von Neumann
entropy SA := −TrρA ln ρA of the reduced density matrix
(RDM) ρA := TrĀ|�〉〈�|. When the ground state |�〉 contains
only short-range correlations, the EE scales with the boundary
size of A (boundary law) [3,4]. Deviation from a boundary
law signals the presence of certain nontrivial correlations and
can furthermore reveal universal numbers characterizing the
system. In one-dimensional (1D) quantum critical systems, for
example, the EE for an interval of length x shows a logarithmic
scaling SA = c

3 log x
a

, where c and a are the central charge
and the (nonuniversal) short-distance cutoff of underlying
conformal field theory (CFT) [5–8]. In noninteracting fermions
and Fermi liquids in general dimensions, the EE can detect a
Fermi surface through a multiplicative logarithmic correction
to a boundary law [9–14]. Interestingly, the EE can also
detect a hidden Fermi surface of emergent particles (such as
spinons and composite fermions) in a similar manner [15–20],
providing a guiding principle for constructing a holographic
dual of a strongly interacting metal [21,22]. In topologically
ordered systems [23–26] and in some two-dimensional critical
systems [27–29], the EE obeys a boundary law, but there
appears a subleading universal constant that reflects underlying
topological or critical properties. While the EE was initially
featured on the theoretical side, state-of-the-art techniques in
ultracold atomic systems can now measure it experimentally
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[30–32], fostering further growing interest among both theo-
rists and experimentalists.

Since the EE can be calculated from the eigenvalues of the
RDM, the latter can, in principle, contain more information
of the system than the former. This idea has led to the notion
of entanglement spectrum (ES) [33]. By rewriting the RDM
in the thermal form ρA = e−HE , where HE is referred to as
the entanglement Hamiltonian, the ES is defined as the full
eigenvalue spectrum of HE . Although the ES is calculated
from the ground state, a number of studies have demonstrated
that the ES resembles the physical energy spectrum of the
system. In gapped topological phases, in particular, the ES
has been found to exhibit the same low-energy features as the
physical edge-mode spectrum [23,33–39]. Several physical
“proofs” have been given for this remarkable correspondence
[40–45], while some exceptions to it have also been discussed
[46,47].

The correspondence between the ES and the physical
spectrum has also been found in some gapless systems. In
1D critical systems, beautiful numerical evidence has been
presented for the correspondence between the ES and the
energy spectrum of a boundary CFT [48]. In systems with
spontaneous continuous symmetry breaking, the ES has been
found to exhibit a tower structure in a way analogous to the
physical spectrum [49–51]. In gapless phases of spin ladders,
however, the ES between the chains has been found to exhibit
a flat or fractional dispersion relation as opposed to a linear
energy dispersion of a single chain [44,52].

To gain further insights into the properties of the ES, it is
useful to look into the “thermodynamics” of the entanglement
Hamiltonian HE . The capacity of entanglement (COE) has
been introduced for such a purpose [35,53–56]. The COE
CE(TE) is defined as the fictitious heat capacity of HE ,
where TE is the fictitious temperature (see Sec. II for a
precise definition of the COE). The correspondence between
the ES and the physical spectrum can then be revealed
by the correspondence between the COE and the physical
heat capacity. In 1D critical systems, the CFT prediction
Trρn

A ∼ (x/a)
c
6 (n−1/n) [5,7,8] leads to a linear scaling CE ∼ TE
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[56,57], which coincides with the low-temperature behavior
of the physical heat capacity [58]. Noninteracting fermions
and Fermi liquids with a Fermi surface can be described as
a collection of CFTs [11–13], and thus, the COE of these
systems is also expected to show a linear scaling CE ∼ TE

at low TE as the physical heat capacity does. In more general
gapless systems, the correspondence between the COE and the
physical heat capacity is unclear, and some counterexamples
to the correspondence are known [56]. However, one can still
use the COE to probe unusual low-energy properties of the
system. For example, based on the above consideration, a
non-Fermi-liquid behavior can be signaled by the violation
of the linear scaling of the COE (see also Ref. [17] for a
related discussion). This indicates an advantage of the COE
over the EE as the latter does not seem to distinguish Fermi
and non-Fermi liquids in a qualitative manner [15,16,18,19].
Furthermore, the COE has an advantage over the physical
heat capacity in that the former requires only the ground-
state wave function and can be applied to a trial wave
function.

In this paper, we investigate the behaviors of the COE and
the distribution of the ES (more precisely, the distribution
of the RDM eigenvalues) in some gapless systems. We find
that a nontrivial low-TE behavior of the COE can efficiently
be detected through the use of the distribution of the ES.
Specifically, by assuming a power-law behavior CE ∼ T α

E at
low TE , we derive an analytic formula for the cumulative
distribution function n(λ) of the RDM eigenvalues [see Eq. (8)
below]. This is based on a generalization of the work by
Calabrese and Lefevre for 1D critical systems [59]. We
numerically test the effectiveness of the formula in a relativistic
free scalar boson in two spatial dimensions and find that n(λ)
can detect the expected α = 3 scaling of the COE much more
efficiently than the raw data of the COE. This advantage of n(λ)
results from a sensitive dependence of the analytic formula
(8) on α. As a more nontrivial application, we then study
the half-filled Landau level with short-range interactions. For
this system, Halperin, Lee, and Read (HLR) [60] formulated
a theory of a Fermi sea of composite fermions (see also
Refs. [61–68] for recent interesting theoretical developments
on this system). Gauge fluctuations in the HLR theory were
shown to make a singular contribution to heat capacity, which
scales as T 2/3 if the bare interaction between fermions is short
range [60,69]. We have calculated n(λ) of this system by using
the ground state obtained by exact diagonalization and have
found better agreement with the α = 2/3 formula than with
the α = 1 one, which indicates a non-Fermi-liquid nature.
While our data obtained for maximally N = 14 particles
do not allow precise determination of α, relatively good
agreement with the α = 2/3 formula suggests an intriguing
possibility that the correspondence between the ES and the
physical spectrum still holds in a strongly interacting metallic
state.

The rest of this paper is organized as follows. In Sec. II, we
derive the analytical formula for the distribution of the RDM
eigenvalues by assuming a power-law behavior of the COE.
In Sec. III, we present numerical results in a free scalar boson
and the half-filled Landau level. In Sec. IV, we conclude the
paper and discuss the implications of our study.

II. CAPACITY OF ENTANGLEMENT AND DISTRIBUTION
OF DENSITY MATRIX EIGENVALUES

In this section, we first describe the definitions of the COE
and the distribution of the RDM eigenvalues. We then derive an
analytic formula for the distribution of the RDM eigenvalues
by assuming a power-law behavior of the COE, CE ∼ T α

E , at
low TE .

A. Definitions

Let us first clarify the definitions of the COE and the
distribution of the RDM eigenvalues. Using the RDM ρA =
e−HE on a subregion A, we introduce the entanglement
partition function as

ZE(TE) := Tre−HE/TE = Trρ1/TE

A . (1)

The COE is then defined as [35,53,56]

CE(TE) := TE

∂2

∂T 2
E

[TE ln ZE(TE)]. (2)

In the above expressions, we dropped the dependence on A

as it is not considered throughout our analysis. We are instead
interested in the dependence on the fictitious temperature TE .
As the entanglement Hamiltonian HE is dimensionless, TE is
too. We note that studying the dependence of the COE on TE

is equivalent to studying the Rényi EE

Sn := −1

n − 1
ln Rn, Rn := Trρn

A = ZE(1/n)

as a function of the Rényi parameter n.
Next we introduce the distribution of the RDM eigenvalues.

We denote the eigenvalues of the RDM ρA by {λi}. Since ρA

is positive semidefinite and has unit trace, these eigenvalues
satisfy 0 � λi � 1 and

∑
i λi = 1. The distribution function

P (λ) and the cumulative distribution function n(λ) of {λi} are
defined as [59]

P (λ) :=
∑

i

δ(λ − λi), n(λ) :=
∫ λmax

λ

P (λ)dλ, (3)

where λmax is the largest eigenvalue. Here, n(λ) counts the
number of eigenvalues in the range [λ,λmax]. If {λi} is sorted
in descending order (λ1 = λmax � λ2 � λ3 � . . .), n(λ) can
also be viewed as the inverse function of λi .

B. Derivation of an analytic formula

By assuming CE ∼ T α
E with α > 0 at low TE , we now

derive an analytic formula for the cumulative distribution
function n(λ). Our derivation is based on a generalization of
the argument by Calabrese and Lefevre for 1D critical systems
[59] where CE ∼ TE at low TE (see also Refs. [70,71] for
related works on the “negativity spectrum”).

Since ZE(TE) is related to the COE via Eq. (2), our
assumption about the COE immediately leads to

ln ZE(TE) = bT α
E + b′ + b′′/TE,

where b, b′, and b′′ are constants. One can determine
these constants by using some properties of ZE(TE). In the
limit TE → 0, the definition of ZE(TE) in Eq. (1) yields
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ZE(TE) → λ
1/TE
max , which indicates b′ = 0 and b′′ = ln λmax. By

further using ZE(TE = 1) = TrρA = 1, we find b = −b′′ =
− ln λmax. We thus obtain a simple form,

ln ZE(TE) = b(T α
E − 1/TE), b = − ln λmax. (4)

Following Ref. [59], we introduce the function

f (z) := 1

π

∞∑
n=1

Rnz
−n = 1

π

∫
dλ′ λ

′P (λ′)
z − λ′ . (5)

Here, the middle expression converges only for |z| > λmax,
while the rightmost expression is analytic except in the
interval 0 � z � λmax on the real axis. Adopting the rightmost
expression as the analytic continuation of the middle one,
the distribution function P (λ) can be obtained as λP (λ) =
limε→+0 Imf (λ − iε). By using Eq. (4), we can calculate f (z)
as

f (z) = 1

π

∞∑
n=1

eb(1/nα−n)z−n

= 1

π

∞∑
n=1

(
λmax

z

)n ∞∑
k=0

1

k!

(
b

nα

)k

= 1

π

∞∑
k=0

bk

k!
Liαk(λmax/z), (6)

where Lim(y) = ∑∞
n=1 yn/nm is the polylogarithm function.

While the power series expression of Lim(y)(m � 0) converges
only for |y| < 1, it has an analytic continuation for |y| � 1;
it then has a branch cut on the real axis for y � 1 with the
discontinuity

lim
ε→+0

Lim(y + iε) − Lim(y) =
{

iπ
(ln y)m−1


(m) (m > 0),
iπδ(1 − y) (m = 0),

(7)

as noted in Ref. [59]. Therefore, by taking the limit z → λ − i0
in Eq. (6), we obtain

λP (λ) = λmaxδ(λ − λmax) + �(λmax − λ)
∞∑

k=1

bk�αk−1

k! 
(αk)
,

where � = ln(λmax/λ) and �(x) is the Heaviside step function.
By integrating P (λ), we arrive at the formula

n(λ) = 1 +
∞∑

k=1

{b[ln(λmax/λ)]α}k
k!
(αk + 1)

, (8)

which plays a central role in this paper. Although this
formula is expressed as an infinite series, it can be evaluated
numerically for a given α > 0 as it converges rapidly. When
α = 1, the infinite series can be rewritten as the modified
Bessel function, resulting in the formula of Calabrese and
Lefevre [59]. We note that when α is a rational number, nα(λ)
can be written as a sum of the generalized hypergeometric
functions (see Appendix A).

III. NUMERICAL RESULTS

In this section, we present numerical results of the COE
CE(TE) and the cumulative distribution function n(λ) of the

FIG. 1. Cumulative distribution function n(λ) of the RDM eigen-
values in a relativistic free scalar boson in two spatial dimensions.
In numerical calculations, we discretized the field theory and took
as the subregion A a circle with a radius of 10 discretized units.
Lines indicate the analytic formula (8) for three different values of
the exponent α. We find good agreement of the numerical data with
the α = 3 formula. The inset shows the COE CE(TE) (solid line) in
comparison with the expected low-TE scaling CE ∝ T 3

E [56] (dashed
line).

RDM eigenvalues in some gapless systems. We first test the
effectiveness of formula (8) in a relativistic free scalar boson in
two spatial dimensions. Then, as a more nontrivial application,
we present an exact diagonalization result in the half-filled
Landau level with short-range interactions. By comparing the
numerical data with formula (8), we find a signature of the
non-Fermi-liquid nature of this system.

A. Relativistic free scalar boson in two spatial dimensions

Building on the analytic expression of the Rényi EE
obtained by Klebanov et al. [72], Nakaguchi and Nishioka
[56] calculated the COE of a relativistic massless free scalar
boson. In two spatial dimensions, in particular, the COE has
been shown to scale as CE ∼ T 3

E at low TE . Interestingly, this is
different from the low-T behavior of the physical heat capacity
C ∼ T 2, providing a counterexample to the correspondence
between the two quantities.

An advantage of this system for testing formula (8) is the
availability of an efficient numerical technique for computing
the RDM eigenvalues. Following Ref. [73], we discretize the
field theory of the scaler boson φ with the action

S =
∫

d2xdt[(∂tφ)2 − (∇φ)2] (9)

and calculate the RDM eigenvalues by taking as a subregion
A a circle centered at the origin. Further technical details of
the numerical calculation are described in Appendix B.

Figure 1 presents the cumulative distribution function n(λ)
and the COE CE(TE) (inset) calculated numerically. It is clear
that the data for n(λ) agree well with the analytic formula
(8) with α = 3, as expected. In contrast, the data for CE(TE)
plotted in logarithmic scales show a significant variation of
slope; estimation of α through the fitting with the form CE ∼
T α

E would crucially depend on the range of TE used for the
fitting. These results indicate an advantage of n(λ) over the
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FIG. 2. Cumulative distribution function n(λ) of the RDM
eigenvalues for the ground state of the half-filled Landau level
(dots) in comparison with the analytic formula (8) for α = 2/3
and α = 1 (lines). The top and bottom panels correspond to the
Fermi sea case (Nφ = 2N − 2) and the particle-hole symmetric case
(Nφ = 2N − 1), respectively, where N is set to 14. In plotting the
analytical formula, the numerically obtained value of λmax is used.
The insets show the COE CE(TE) (solid line) in comparison with the
power-law behavior CE ∝ T

2/3
E (dashed line).

COE CE(TE) in determining the exponent α. This advantage
results from a sensitive dependence of formula (8) on α.

B. Half-filled Landau level

As a more nontrivial application of our formula (8), we
consider a quantum Hall system at the filling factor ν = 1/2
(half-filled Landau level). For this system, HLR formulated
an effective field theory in which composite fermions form
a Fermi sea and interact via a Chern-Simons gauge field
[60]. Gauge fluctuations in this theory were shown to make
a singular contribution to heat capacity [60,69]. In particular,
when the bare interaction between fermions is short range, the
heat capacity is predicted to scale as C ∼ T 2/3, indicating a

non-Fermi-liquid behavior. However, this prediction has not
been verified numerically as a large number of low-lying
eigenenergies are required to obtain low-temperature behavior
of the heat capacity. Recently, there have been very active
studies on the role of particle-hole symmetry in this system.
The HLR theory does not satisfy this symmetry, and an
alternative description in terms of Dirac composite fermions
consistent with this symmetry has been developed [63–67].
In this description, Dirac composite fermions have a Fermi
surface and interact via a gauge field without a Chern-Simons
term. While the heat capacity has not been calculated in the
Dirac scenario, the gauge field coupled with a Fermi surface
is still expected to make a significant contribution.

Concerning entanglement properties, the n = 2 Rényi EE
has recently been calculated for trial wave functions of the
half-filled Landau level, and a multiplicative logarithmic
correction to the boundary law, which indicates a hidden Fermi
surface, has been verified [18,19] (see also Refs. [53,74] for
entanglement in related systems). However, the Rényi EE for
fixed n could not reveal a non-Fermi-liquid nature of the
system. This motivates us to investigate the COE and the
distribution of RDM eigenvalues in this system.

We performed an exact diagonalization calculation for
interacting N spinless fermions in the lowest Landau level
in a spherical geometry [75]. In this geometry, a magnetic
monopole of charge Nφ in units of the flux quantum h/e is
placed at the center. We assume a repulsive short-range in-
teraction V (r) = −∇2δ(r) between fermions; this interaction
is equivalent to Haldane’s pseudopotential for the ν = 1/3
Laughlin state [75,76], while we here focus on the filling
ν = 1/2. A Fermi sea of composite fermions corresponds to
a set of (N,Nφ) satisfying Nφ = 2N − 2 [77], whereas the
particle-hole symmetric state (with a possible Dirac nature)
is consistent with those satisfying Nφ = 2N − 1 [63]. We
investigate both types of states in numerical calculations; in
the thermodynamic limit, they both correspond to the filling
factor ν = 1/2. The ground state is (2L + 1)-fold degenerate if
it has a total angular momentum of magnitude L > 0; in such
a case, we took the ground state in the Lz = 0 or 1/2 sector
for the computation of the RDM, where Lz is the z component
of the total angular momentum. From such a ground state, we
calculated the eigenvalues of the RDM associated with the real
space cut into two hemispheres [38,39].

Figures 2 and 3 present the cumulative distribution function
n(λ) and the COE CE(TE) (inset of Fig. 2) obtained in this way.
In Fig. 2, we compare the numerical data of n(λ) for N = 14
with the analytic formulas with α = 2/3 and α = 1. The
numerical data clearly show better agreement with the α = 2/3
formula than with the α = 1 one, in both the Fermi sea case
(Nφ = 2N − 2) and the particle-hole symmetric case (Nφ =
2N − 1). The data for CE(TE) plotted in logarithmic scale
again show a variation of slope, although a rough agreement
with α = 2/3 is found for 10−1 � TE � 100. We furthermore
compare the results for different N in Fig. 3. One can see that
the data for n(λ) tend to approach the analytic formula with
α = 2/3 with increasing N , although a marked deviation from
the formula is found for (N,Nφ) = (12,22). We infer that this
deviation originates primarily from the spatial inhomogeneity
of the fermion density around the boundary of the subregion A.
When the ground state has a nonzero magnitude of the angular
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FIG. 3. Cumulative distribution function n(λ) for the ground state
of the half-filled Landau level for different N . Numerical results
(colored dots) are compared with the analytic formula (8) with α =
2/3 (dashed line). The top and bottom panels correspond to the Fermi
sea case (Nφ = 2N − 2) and the particle-hole symmetric case (Nφ =
2N − 1), respectively.

momentum L > 0, the Lz = 0 state used in our calculations
can exhibit an inhomogeneous density that depends on the
azimuthal angle θ (but not on the polar angle ϕ because of
the axial symmetry), as displayed in Fig. 4. The ground states
for (N,Nφ) = (12,22) and (13,24) in the Fermi sea case have
comparatively large L, and as seen in Fig. 4, show appreciable
deviations of the density from the average value at the
boundary of A (θ = π/2, the equator of the sphere). Therefore,
these states can exhibit large finite-size effects; owing to
their nonuniversal nature, such effects are prominent only for
(N,Nφ) = (12,22) in Fig. 3. In the particle-hole symmetric
case (Fig. 4, bottom), because of a unique antisymmetric
behavior, the deviation of the density from the average value
vanishes at the boundary of A, which may explain smaller
finite-size effects than in the Fermi sea case, as seen in Fig. 3.

Despite the tendency of the numerical data to approach the
α = 2/3 formula in Fig. 3, it is worth checking further whether
our data obtained for maximally N = 14 particles really cap-

FIG. 4. Density of fermions in the ground state of the half-filled
Landau level in the cases examined in Fig. 3. The density ρ(θ,ϕ) is
normalized by the average density ρ0 = N/S, where S is the area
of the sphere. The dashed line in the top panel indicates the case of
homogeneous density as a guide for the eye. In the bottom panel, the
data for N = 12 and 14 are overlapping.

ture the behavior of the distribution function n(λ) in the ther-
modynamic limit. This can be done by, e.g., examining the ro-
bustness of the results for different geometries (such as a torus)
and different interactions. It would also be interesting if the
distribution function n(λ) could be calculated in larger systems
by using a density matrix renormalization group [66] or by
developing an efficient method based on trial wave functions.

IV. CONCLUSIONS

In this paper, we have studied the COE CE(TE) and the
cumulative distribution function n(λ) of RDM eigenvalues in
gapless systems. Assuming a power-law behavior CE ∼ T α

E

at low TE , we have derived an analytic formula of n(λ) as
in Eq. (8). We have numerically tested the effectiveness of
the formula in relativistic free scalar bosons in two spatial
dimensions and have found that the distribution of RDM
eigenvalues can detect the expected α = 3 scaling of the COE
much more efficiently than the raw data of the COE. We have
also calculated the distribution of RDM eigenvalues in the
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ground state of the half-filled Landau level with short-range
interactions and have found better agreement with the α = 2/3
formula than with the α = 1 one, which indicates a non-Fermi-
liquid nature of the system. We have also found that our data
tend to approach the α = 2/3 formula with increasing N .
This suggests an intriguing possibility that the COE and the
physical heat capacity show the same power-law behavior in
this strongly interacting metallic state.

The correspondence between the ES and the physical
energy spectrum has been known in gapped topological
phases [23,33–45] and in some gapless systems [48–51].
Our numerical result on the half-filled Landau level suggests
that this correspondence also holds in a strongly interacting
metallic state. It would be interesting to investigate whether
this correspondence holds in other gapless systems with
strong interactions. A calculation of the distribution of RDM
eigenvalues would be useful for this purpose as the comparison
with the analytical formula (8) allows us to efficiently probe
the low-energy properties of the ES, as demonstrated in this
paper. This contrasts with the strategies of Refs. [48–51],
where the ES was compared with the known tower structure of
the bulk energy spectrum; the use of the distribution of RDM
eigenvalues does not require such prior knowledge. While the
general condition for the correspondence between the ES and
the physical spectrum is not known, the deviation of the COE or
the distribution function from the α = 1 behavior can already
signal a non-Fermi-liquid nature, as explained in Sec. I. A
particularly interesting class of systems to apply this idea are
critical spin liquids with a spinon Fermi surface, as studied in
Refs. [15,16], which are also considered to show heat capacity
scaling as T 2/3 [78,79], similar to the half-filled Landau level.
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APPENDIX A: nα(λ) AS A SUM OF THE
HYPERGEOMETRIC FUNCTION

When the exponent α of the COE is a rational number,
the formula nα(λ) for the cumulative distribution function in
Eq. (8) can be written as a sum of the hypergeometric functions.
In this appendix, we present explicit forms of such expressions.

The hypergeometric function is defined as

pFq({a1, . . . ,ap}; {b1, . . . ,bq}; x) =
∞∑

k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

xk

k!
,

(A1)

where rising factorial (ai)k is defined as (ai)k := ai(ai +
1) · · · (ai + k − 1) = 
(ai + k)/
(ai). When α equals an in-
teger m ∈ N+ = {1,2, . . . }, one can show that Eq. (8) reduces
to

nm(λ) = 0Fm

(
{ };

{
1

m
, . . . ,

m − 1

m
,1

}
;

x

mm

)
, (A2)

where x = b[ln(λmax/λ)]m. When α is not an integer but a
rational number, α = p/q (p and q are coprime integers), we
observe that Eq. (8) can be written as the sum of the hyperge-
ometric functions 0FM (gxq), with x = b[ln(λmax/λ)]α , where
a rational number g and an integer M are determined from p

and q. For example, when α = 2/3, we obtain

n2/3(λ) = 0F4

(
{ };

{
1

3
,
1

2
,
2

3
,1

}
;

x3

108

)

+ x



(

5
3

)
0

F4

(
{ };

{
2

3
,
5

6
,
4

3
,
4

3

}
;

x3

108

)

+ 3x2

8

(

4
3

)
0

F4

(
{ };

{
7

6
,
4

3
,
5

3
,
5

3

}
;

x3

108

)
,

where x = b[ln(λmax/λ)]2/3.

APPENDIX B: TECHNICAL DETAILS OF NUMERICAL
CALCULATIONS IN RELATIVISTIC

FREE SCALAR BOSONS

In Sec. III A, we calculated the eigenvalues of a RDM
for the ground state of relativistic free scaler bosons in two
spatial dimensions. This calculation was based on the method
of Ref. [73], and we here describe some technical details for
completeness.

The field-theory action in a continuum is given by S =∫
d2xdt[(∂tφ)2 − (∇φ)2]. We decompose this action in terms

of the angular momentum n and then discretize the radial
direction into N points labeled by i ∈ {1, . . . ,N}. Setting the
lattice constant to unity, the resulting Hamiltonian is given by

H = 1

2

∞∑
n=−∞

⎛
⎝ N∑

i=1

π2
n,i +

N∑
i,j=1

φn,iK
i,j
n φn,j

⎞
⎠,

where φn,i and πn,i are the discretized scaler field and
its conjugate field, respectively, for the angular momen-
tum n and “site” i. The coefficients K

i,j
n are given

by K1,1
n = 3/2 + n2, Ki,i

n = 2 + n2/i2 (i � 2), Ki,i+1
n =

Ki+1,i
n = −(i + 1/2)/

√
i(i + 1), and K

i,j
n = 0 (otherwise).

We take as a subregion A a circle of radius R centered at
the origin (0 < R < N ). Since the theory is free (quadratic),
the RDM of the ground state for subregion A can be written
as a Gibbs state ρA ∝ exp (−∑

k εkb
†
kbk), where b

†
k and bk

are some bosonic creation and annihilation operators. The
single-particle “entanglement energy” εk can be calculated
from eigenvalues of the correlation matrix C in the subregion A

[80–82]. The correlation matrix C is defined through the
correlation functions in the ground state as C = √

XP , where
Xi,j := ⊗n〈φn,iφn,j 〉GS and Pi,j := ⊗n〈πn,iπn,j 〉GS (i,j =
1, . . . ,R). The eigenvalues of C, which we denote by ξk ,
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are related to εk as 1
2 coth(εk/2) = ξk . From εk , the many-

body spectrum of ρA and the distribution function n(λ) are
calculated.

For the data presented in Fig. 1, we set N = 40 and R = 10.
Since the correlation matrix C is block diagonalized in terms

of the angular momentum n, εk can be calculated separately
for different n. Since εk for large |n| is generally small, we
introduce a cutoff nmax for n in numerical calculations. We
checked that the results do not change when we increase N or
nmax while R/N is fixed.
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