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Coexistence of type-II Dirac point and weak topological phase in Pt3Sn
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Intriguing topological phases may appear in both insulating and semimetallic states. Topological insulators
exhibit topologically nontrivial band inversion, while topological Dirac/Weyl semimetals show “relativistic”
linear band crossings. Here, we report an unusual topological state of Pt3Sn, where the two topological features
appear simultaneously. Based on first-principles calculations, we show that Pt3Sn is a three-dimensional weak
topological semimetal with topologically nontrivial band inversion between the valence and conduction bands,
where the band structure also possesses type-II Dirac points at the boundary of two electron pockets. The
formation of the Dirac points can be understood in terms of the representations of relevant symmetry groups
and the compatibility relations. The topological surface states appear in accordance with the nontrivial bulk band
topology. The unique coexistence of the two distinct topological features in Pt3Sn enlarges the material scope in
topological physics, and is potentially useful for spintronics.
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I. INTRODUCTION

Topological physics has been one of the most intriguing
findings in condensed-matter physics [1–4]. The topological
aspect of electronic structures was first noted in quantum
Hall effects [5,6], and further extended to systems where the
topological nature is protected under time-reversal symmetry
(Z2 topological insulators [7–12]) or point-group symmetry
(topological crystalline insulators [13–15]). In these systems,
the topologically nontrivial character remains robust as long
as the gap is kept finite. Recently, another important class of
the topological material in metallic systems, i.e., Dirac/Weyl
semimetals [3,16–23], was also discovered. In Dirac semimet-
als, the band crossing between two (spin-degenerate) bands
occurs, forming a linear Dirac cone which is reminiscent of a
relativistic massless particle. The Dirac points in topological
Dirac materials can appear on high-symmetry paths of the
Brillouin zone (BZ), and are protected by relevant group
symmetry [17,18,21].

Although the two topological phases in gapped and gapless
systems were discovered and defined separately, in principle
an electronic band structure may possess the two topolog-
ical features simultaneously. The topological character of a
topological insulator can be extended to a semimetallic band
structure since the topological classification is valid as long as
the direct gap at each k point of the BZ is kept finite. In this
case, the band structure has electron and hole pockets while
the nontrivial band inversion remains robust. This enables the
possibility to have an additional topological character in the
same system because a topological band crossing (e.g., Dirac
point) in the electron or hole pockets may appear near the
Fermi level. However, a specific material example with the
coexisting topological features has not been reported yet.

In this study, we show that Pt3Sn has such an unusual
band structure with the dual topological nature. We per-
form first-principles calculations based on density functional
theory (DFT) to show that Pt3Sn is a weak topological
semimetal characterized by nontrivial weak Z2 invariants. The
semimetallic band structure exhibits electron and hole pockets,
and accidental band crossings in the conduction bands give rise
to Dirac points near the Fermi energy. While the conventional

Dirac points occur at the boundary between the valence and
conduction bands, the Dirac points in Pt3Sn appear within
the conduction bands in which the dispersion of the low-lying
conduction bands leads to type-II Dirac points [24] that violate
the Lorentz invariance, and thus are not allowed in high-energy
physics (Fig. 1). Representative Dirac points appear near the
Fermi level at the boundary of two electron pockets. The
Dirac points are protected by relevant point-group symmetry,
and their formation is explained by the group representations
and the compatibility relations. Topological surface states are
confirmed to be consistent with the bulk topological character.
We also discuss the topologically nontrivial band splitting
between the two conduction bands constituting the Dirac
points under anisotropic strain.

II. THEORETICAL METHODS

The electronic structure was calculated using density
functional theory as implemented in the VASP package [25,26].
The projector augmented wave method [27] was used, and the
energy cutoff for the plane-wave basis was set to 383 eV. We
employed the Perdew-Burke-Ernzerhof exchange-correlation
functional [28] and 15 × 15 × 15 k-point sampling. The
effect of the spin-orbit coupling (SOC) was included. An
experimental lattice constant was used [29]. For the surface-
state calculation, a 41-layer slab in (001) direction with a
sufficient vacuum region (≈25 Å) was adopted. The electronic
structure was also checked and the symmetry representation
was analyzed using the WIEN2K package [30].

III. RESULTS AND DISCUSSIONS

The crystal structure of Pt3Sn has cubic symmetry with the
space group Pm3m (No. 221) as illustrated in Fig. 2(a). Experi-
mentally, Pt3Sn has been studied regarding the electronic struc-
ture [31], the atomic structure [29], the surface structure [32–
36], the oxygen adsorption [37,38], the catalytic properties
[39], etc. However, the topological features of the electronic
structure have not been noticed. The electronic band structure
has semimetallic character [Fig. 2(c)] where hole pockets
appear along �-X in the BZ that compensate electron pockets
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FIG. 1. Schematic illustrations of different Dirac points and band
topology. (a) Conventional Dirac point (DP). (b) Type-II Dirac point
at the boundary of electron and hole pockets. (c) In Pt3Sn, type-II
Dirac points appear at the boundary of two electron pockets and
the valence band has nontrivial band topology (detailed analysis
for the valence band topology will be presented below by calculating
the parities of the wave functions).

around R in agreement with previous theoretical and experi-
mental studies [31,40]. Here, due to the simultaneous presence
of the spatial inversion and the time-reversal symmetry, all
bands are spin degenerate (in our DFT and DFT+U calcula-
tions we find that Pt3Sn does not have a ferromagnetic ground
state in accordance with experiments). The bands near the
Fermi energy are mostly derived from Pt 5d states. We note that
when the spin-orbit coupling is not included, the band structure
shows a gapless feature. However, upon including the spin-
orbit coupling, the degeneracy at � and R is lifted to have direct
gaps, which results in the semimetallic band structure. The
conduction band minimum lies at the R point of the BZ, and the
symmetry representation of the lowest conduction bands at R is
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FIG. 2. Atomic and electronic structure of Pt3Sn. (a) Atomic
structure of Pt3Sn and (b) the corresponding BZ. (c) Electronic band
structure along high-symmetry paths in the BZ. The solid (dotted)
lines denote the calculations with SOC (without SOC). The Fermi
level is set to 0.

�+
8 of the (double) group Oh, which came from �+

4 by the spin-
orbit splitting via �+

4 ⊗ �+
6 = �+

6 ⊕ �+
8 [Fig. 2(c)], where the

size of the spin-orbit splitting is calculated to be ≈0.72 eV.
Similarly, the low-lying conduction bands at � have the �+

8
representation.

The band crossings in the two (spin-degenerate) lowest
conduction bands occur at several points in the BZ [marked by
the dashed-line circles in Fig. 2(c)], which constitute the type-
II Dirac points. In particular, the energy E�D

of the Dirac points
at �D in the �-R direction lies near the Fermi level EF with
E�D

− EF ≈ 0.14 eV. The Dirac points at �D are protected
by the point-group symmetry C3v . In general, two bands with
different symmetry can cross without hybridization since hy-
bridization is forbidden when they belong to different represen-
tations. Thus, a Dirac point can be developed when such a band
crossing occurs on a high-symmetry line in the BZ [17,18,41].
Along the �-R direction, the two conduction bands belong to
the representations �4 and �5 + �6, respectively [Fig. 3(a)],
as dictated by the compatibility relation Oh : �+

8 → C3v :
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FIG. 3. Electronic band structure near the Dirac point along �-R.
(a) The band structure and representations of the low-lying conduction
bands along �-R. The constant energy lines (E = E�D

) are depicted
near the Dirac point in kx-ky planes with (b) kz = 1√

3
kD − 0.001 ×

2π

a
, (c) kz = 1√

3
kD , and (d) kz = 1√

3
kD + 0.001 × 2π

a
where the Dirac

point is located at 1√
3
(kD,kD,kD) with the energy E�D

. The red
circles denote (projected) positions of the Dirac point. (e) The band
dispersion in the vicinity of the Dirac point.
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�4 + �5 + �6. The two different representations show dif-
ferent behavior under the symmetry operations; for example,
they have different eigenvalues with respect to the threefold
rotation, i.e., e±iπ/3 for �4 and −1 for �5 + �6. The type-II
Dirac points occur at the boundary of two electron pockets
[Figs. 3(b)–3(e)], which is a distinctive feature of Pt3Sn.

Similarly, the band crossings also occur along R-M and
�-X to give rise to Dirac points. The relevant point-group
symmetry in these cases is C4v , where the low-lying con-
duction bands constituting the Dirac points belong to two
different representations �6 and �7 (since the compatibility
relation is Oh : �+

8 → C4v : �6 + �7). In contrast, along R-X
the symmetry is not sufficiently high to give rise to a Dirac
band crossing. Here, the relevant point-group symmetry is
C2v . Since the low-lying conduction bands belong to the same

representation �5 (Oh : �+
8 → C2v : 2�5), which is the only

two-dimensional representation of C2v , they do not cross, but
develop a small hybridization gap. Note that whether a band
crossing along a high-symmetry path is allowed can be directly
read off from the compatibility relation.

The effective Hamiltonian for the type-II Dirac points
can be constructed by considering the invariant terms under
the relevant symmetry [42]. For the Dirac points at �D

along �-R, the symmetry to be considered is C3v and the
combination of the spatial inversion I and the time-reversal
T . The basis functions of the �4 and �5 + �6 representations
can be represented by |j = 1

2 ,m = ± 1
2 〉 and |j = 3

2 ,m = ± 3
2 〉,

respectively. By considering the transformation rules under the
symmetry operations of C3v and IT , the effective Hamiltonian
near the Dirac point at �D can be written as

H�D
= ε�D

+ vtkz + v3kzσ3 ⊗ I2×2 + v1{kxσ1 ⊗ I2×2 − kyσ2 ⊗ σ3} + v2{kxσ2 ⊗ σ2 + kyσ2 ⊗ σ1} (1)

= ε�D
+

⎛
⎜⎝

(vt + v3)kz 0 v1k+ −v2k+
0 (vt + v3)kz v2k− v1k−

v1k− v2k+ (vt − v3)kz 0
−v2k− v1k+ 0 (vt − v3)kz

⎞
⎟⎠, (2)

where σi are Pauli matrices, I2×2 is the 2 × 2 identity matrix,
k+ = kx + iky , k− = kx − iky , the local kz axis at the Dirac
point is set along the (111) direction, and h̄ is suppressed for
notational simplicity. The corresponding eigenvalues are given
by

E± = ε�D
+ vtkz ±

√
v2

⊥
(
k2
x + k2

y

) + v2
3k

2
z , (3)

where ε�D
is the energy of the Dirac point, vt describes the

“tilting” of the Dirac cone, and v2
⊥ ≡ v2

1 + v2
2. Note that each

eigenvalue appears twice due to the spin degeneracy from the I
andT symmetry. From the first-principles calculations, we find
that |vt | ≈ 5.3 × 104 m/s, |v3| ≈ 5.6 × 103 m/s, and |v⊥| ≈
1.9 × 104 m/s. In particular, since |vt | > |v3| and |v⊥| 
= |v3|,
we have an anisotropic type-II Dirac cone at �D . The effective
Hamiltonian at the Dirac point �D may look mathematically
analogous to that of silicene [43,44] since the symmetry group
D3 of silicene at the K point of the BZ is isomorphic to
C3v . However, there are important differences that should be
noted: (i) the Dirac cones of silicene are gapped by intrinsic
SOC, whereas the Dirac cones in Pt3Sn are not. When SOC
is considered, silicene is known to be a two-dimensional (2D)
topological insulator [45]. (ii) The Dirac points of silicene are
2D type-I as opposed to the 3D type-II Dirac points in Pt3Sn.

Now we discuss the band topology of the valence bands
in Pt3Sn. Due to the time-reversal symmetry and direct gap
at each k point, the band topology of the valence bands can
be defined and characterized by conventional Z2 topological
invariants [10]. Since the inversion symmetry is present, theZ2

topological invariants can be calculated by the parity products
of the wave functions at time-reversal invariant momenta [46].
According to our first-principles calculations, the topological
indices are (ν0; ν1ν2ν3) = (0; 111), where ν0 is the strong
topological index and ν1, ν2, and ν3 are weak ones [Fig. 4(a)].
Thus, Pt3Sn has a weak topological phase in (111) direction

which can be interpreted as stacked layers of 2D topological
phases [10].

The topological surface states appear in accordance with
the bulk topological invariants (Fig. 4). The projected parity
products in the surface BZ dictate the number (mod 2) of
crossings of the surface bands with a line connecting two
time-reversal invariant momenta in the bulk direct gap. For
instance, along �-X, � and X have different parities, hence
we have an odd number of crossings (i.e., a single crossing)
of the surface states [Figs. 4(b) and 4(c)]. In contrast, along
�-M , we have the same parities, resulting in an even number
of crossings. This confirms the bulk-boundary correspondence
between the bulk topological numbers and the surface-state
configurations. Also, the spin projection of the topological
surface states is presented in Figs. 4(d) and 4(e), in which they
show typical helical spin texture.

The topological band splitting between the low-lying con-
duction bands constituting the Dirac points can be investigated
by applying anisotropic strain to the system. A Dirac material
can be a neighboring phase to other topological phases
[17,18,21], and perturbation can make the Dirac cone massive
by breaking the related symmetry to induce a topological phase
transition. Here, we consider anisotropic strain in which we
apply 0%, 1%, and 2% of compressive strain along the x, y, and
z directions, respectively (i.e., the lattice constants are changed
to be a, 0.99a, and 0.98a in the x, y, z directions, respectively,
where the three lattice vectors remain orthogonal), while the
internal (fractional) coordinates of the constituent atoms are
kept fixed. This separates the two lowest conduction bands
at all k points; the anisotropic strain beaks the threefold
and fourfold symmetry of the system and opens small gaps
in the Dirac cones, and the degeneracy at � and R is also
lifted due to the lowered symmetry [Fig. 5(a)]. Then the band
topology of the lowest conduction band can be defined. Since
the inversion symmetry is preserved under the anisotropic
strain, the topological invariants can still be calculated from
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FIG. 4. Topological surface states of Pt3Sn. (a) The parity
products at the time-reversal invariant momenta in the bulk BZ and (b)
the projected values in the surface BZ are presented. (c) The electronic
band structure of the (001) surface. The (d) x and (e) y components
of the spin projection of surface states near �, where the red and
blue colors mean the positive and negative values, respectively. Here,
X/10 = (π/10a,0) and M/10 = (π/10a,π/10a).

the parities, which is (ν0; ν1ν2ν3) = (1; 000) according to our
calculation [Fig. 5(b)]. Thus, the anisotropic strain opens
gaps at Dirac points to induce the topologically nontrivial
band splitting between the two low-lying conduction bands.
[Note that the topological indices (1;000) are those of the
lowest conduction band under the anisotropic strain, and
the topological indices of the valence band are still (0;111)
since the direct gap at each k point between the valence and
conduction bands remains finite under the anisotropic strain.]

In general, a Dirac point is composed of Weyl points with
opposite chirality [17]. If the inversion symmetry or the time-
reversal symmetry is broken, a Dirac point will split into Weyl
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FIG. 5. Topological band splitting of the low-lying conduction
bands under the anisotropic strain. (a) Band dispersion along �-R.
(c) Parities at the time-reversal invariant momenta.

points. In our system, breaking of the time-reversal symmetry
via magnetic doping could be feasible experimentally, which
would induce type-II Weyl points.

Experimentally, the topological electronic structure could
be checked by angle-resolved photoemission spectroscopy
(ARPES). Since the Dirac point lies above the Fermi level,
electron doping would be needed to access the Dirac point
using ARPES. According to our density of states calculation,
doping of 0.12 electrons per formula unit is needed for the
shift of the Fermi level by 0.14 eV assuming rigid band shift,
which could be feasible in experiments. We note that the energy
separation of the Dirac bands along � to X is relatively small,
which would make it difficult to confirm experimentally. Also,
in view of surface transport, a bulk-insulating phase could be
more desirable than a bulk-semimetallic phase. While Pt3Sn
has a weak topological phase, a strong topological phase would
be advantageous in that they have robust topological surface
states regardless of the surface direction. In these regards,
further investigation in the Pt-Sn family would be interesting
for future studies.

IV. CONCLUSION

In summary, we presented and theoretically analyzed a
hitherto unnoticed topological electronic structure of Pt3Sn
which has unusual coexistence of the two distinct topological
characters. The lowest conduction bands develop type-II Dirac
points along high-symmetry paths in the BZ, and the valence
bands have nontrivial band topology. The group representa-
tions and the compatibility relations explain the formation of
Dirac points. The valence bands are in a weak topological
phase, and the configuration of the topological surface state
is consistent with the bulk band topology. Recently, Dirac
node arcs in another intermetallic compound PtSn4 have been
studied using ARPES [47]. Our results show a distinctive
example of a topological material which could be useful for
future spintronic applications.
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