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Extended Falicov-Kimball model: Exact solution for the ground state
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The extended Falicov-Kimball model is analyzed exactly in the ground state at half filling in the limit of
large dimensions. In the model the on-site and the intersite density-density interactions between all particles are
included. We determined the model’s phase diagram and found a discontinuous transition between two different
charge-ordered phases. Our analytical calculations show that the ground state of the system is insulating for any
nonzero values of the interaction couplings. We also show that the dynamical mean-field theory and the static
broken-symmetry Hartree-Fock mean-field approximation give the same results for the model at zero temperature.
In addition, we prove using analytical expressions that at infinitesimally small, but finite, temperatures the system
can be metallic.
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I. INTRODUCTION

In condensed-matter physics, correlations between elec-
trons give rise to many intriguing phenomena ranging from
simple band renormalization to complex phase diagrams with
charge, spin, or orbital ordering as well as superconductivity
[1–11]. The most popular model for the description of
correlation effects in lattice systems is the Hubbard model
(HM) [12], which captures essential physics related to the
competition between electron localization (driven by the on-
site U interaction) and electron itinerancy [13,14]. However,
the tremendous effort of many researchers has resulted in
exact results only for the dimensions D = 1 [15,16] and
D → ∞ [13]. In the latter case, the calculations were made
using the dynamic mean-field theory (DMFT), wherein for
the HM it was usually necessary (except for some special
cases; see, e.g., outcomes obtained for the infinite-dimensional
hyperperovskite lattice [17]) to apply a numerical procedure
to determine (approximately) the Green’s functions. It turns
out, however, that the application of the DMFT formalism to
the Falicov-Kimball model (FKM) results in an exact solution
for all values of the interaction strength [18–21].

The FKM is a simplified version of the HM, where only
electrons with, e.g., spin down are itinerant [22–29]. Initially, it
was introduced for a description of metal-insulator transitions
in various transition-metal and rare-earth compounds, and
since then, it has been intensively studied as a model of many
other physical phenomena (for a review see Refs. [25,26,30,31]
and references therein).

The rigorous result for dimensions D � 2 says that at
low enough temperature the half-filled FKM possesses a
long-range order; that is, the immobile electrons form the
checkerboard pattern, the same as in the ground state [32–35].
This result holds for arbitrary bipartite (alternate) lattices and
for all values of the interaction strength U . For D → ∞ it was
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also shown independently using the DMFT that the ordered
charge-density-wave phase can occur at finite temperature
[36–40]. It is worthwhile to notice here that the Monte Carlo
simulations performed for D = 2 systems also give results
similar to those obtained within the DMFT [41–43].

The basic versions of both the HM and FKM include only
local (on-site) interaction U , but in real systems the Coulomb
repulsion V between electrons located in neighboring lattice
sites can be quite significant [12], as it can lead to a change
in even the nature of the metal-insulator phase transition
[44,45]. Moreover, the direct competition of local and nonlocal
interactions captures both the effects of strong correlations
and the tendency of the system to form inhomogeneous charge
distributions. This is why the effects of intersite Coulomb
interactions have been intensively studied in the extended HM
(EHM) (e.g., Refs. [46–50] and references therein). Some
studies on the subject have also been performed for the
extended version of the FKM (EFKM; e.g., Refs. [51–53]).

However, very few rigorous results have been reported
so far on the effects of intersite interactions studied within
the EFKM. In fact, only Refs. [54,55] reported exact results
for this model when D → ∞, but they referred to only
the limiting cases of U → 0 and U → ∞. In addition,
the method used in Refs. [54,55] of summing up over
Matsubara frequencies did not allow approaching the lowest
temperatures, including T = 0.

Here our goal is to present the exact solution of the EFKM
at T = 0 in the whole range of interaction couplings. The
solution allows us to resolve any doubts concerning, among
other things, the nature of the ordered phase, the width of the
energy gap for a given phase, and the kind of phase transition
between different phases (continuous or discontinuous) when
U or V changes. We actually use formulas for the Green’s
functions derived in Refs. [54,55], but instead of summing over
Matsubara’s frequencies, we determine the total energy of the
system and other quantities directly from the integration of the
density of states multiplied by the corresponding functions.
The results obtained allowed us to verify, refine, and extend
the outcomes obtained in Refs. [54,55]. In particular, we found
exactly that the system is an insulator in the ground state for
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any value of V > 0 and if V = 0 for any U �= 0 (for both
U > 0 and U < 0), including the special case V/U = 1/2,
for which some ambiguities were signalized [55].

In this paper we present the exact solution for the ground
state of the half-filled EFKM for any value of the on-site U and
the nearest-neighbor V interaction strengths. We obtain these
results for the Bethe lattice in the limit of high dimensions,
which allows us to obtain exact analytical formulas for the
total energy of the system E(U,V ) and for the difference in
density of itinerant electrons on the neighboring lattice sites
d1(U,V ). In addition, we examine this model with the Hartree-
Fock mean-field approximation (HFA), and we show that the
analytical formulas for E(U,V ) and d1(U,V ) obtained with
these two methods coincide with each other. This result shows
that at T = 0 the DMFT and the standard HFA are equivalent,
which, of course, is not true for finite temperatures.

The rest of the paper is organized as follows. In Sec.
II the model considered is presented (Sec. II A), and the
equations are determined with two different methods (DMFT
in Sec. II B and HFA in Sec. II C). Section III is devoted to
a discussion of analytical and numerical solutions. Finally, in
Sec. IV we summarize the results of this work and provide
some future perspectives.

II. MODEL AND METHODS

A. Model

The conventional simplified HM, also known as the spinless
FKM [22,23,25], describes itinerant electrons and localized
ions, where only local (on-site) interactions between (itinerant)
electrons and ions (localized electrons) occur. On the other
hand, the EFKM also contains the Coulomb interactions V

between all the particles on adjacent sites of the crystal lattice
[55]. In the present work, we use the same Hamiltonian as van
Dongen [55]. It is composed of the following four terms:

H = Ht + HU + HV + Hμ, (1)

where

Ht = t√
Z

∑
〈i,j〉

(c+
i↓cj↓ + c+

j↓ci↓), HU = U
∑

i

ni↑ni↓,

HV = 2V

Z

∑
〈i,j〉,σ,σ ′

niσ njσ ′ , Hμ = −
∑
i,σ

μσniσ ,

with Z being the coordination number. niσ is the occupation
number, and c+

iσ (ciσ ) denotes the creation (annihilation)
operator of an electron with spin σ =↑ , ↓. Electrons with
spin σ =↑ are localized. The prefactors in Ht and HV have
been chosen such that they yield a finite and nonvanishing
contribution to the free energy per site in the limit Z → ∞.
〈i,j 〉 denotes the sum over nearest-neighbor pairs. At half
filling, i.e., n = 1 (n = 1

L

∑
i,σ 〈niσ 〉, where L is the number

of lattice sites), the chemical potential μ for both types of
electrons is given by μ ≡ μσ = 1

2U + 2V [55].

B. Dynamical mean-field theory

The dynamical mean field theory is an exact approach for
interacting fermion systems, including the EFKM, in the limit
of high dimensions [25]. In this limit the nonlocal interaction

term V is treated at the Hartree level because the exchange
(Fock) and the correlation energy due to the intersite term are
negligible [56–59].

The basic quantity calculated within the DMFT is the re-
tarded Green’s function G(U,V,d1; ε) defined for the complex
z with Im(z) > 0. Since we are dealing with a system com-
posed of two sublattices, we need to determine two Green’s
functions, G+ and G−, separately for the + and − sublattices.
Here we use the Green’s functions derived by van Dongen for
the EFKM on the Bethe lattice in the limit of large dimensions
[55]. The formulas have the following form (for t = 1):

G+(z) = z + v + 1
2Ud − G−(z)[

z + v + 1
2U − G−(z)

][
z + v − 1

2U − G−(z)
] ,

G−(z) = z − v − 1
2Ud − G+(z)[

z − v + 1
2U − G+(z)

][
z − v − 1

2U − G+(z)
] ,

(2)

where v = V (d + d1); d stands for the order parameter,
which is equal to the difference of mean values of the ion
occupations on the + and − sublattices (d = 〈n+

i 〉 − 〈n−
i 〉),

whereas d1 is the difference of mean values of electron
occupations of the sublattices (d1 = 〈n+

e 〉 − 〈n−
e 〉). In fact, d

and d1 are not independent quantities because for a given d

the value of d1 can be determined unambiguously (excluding
the case of the coexistence of two phases, which is discussed
further). However, d needs to be found from the condition for
a minimum of the free energy.

One can define a staggered magnetization of the system as
mQ = 1

2 (d − d1) and a charge polarization �Q = 1
2 (d + d1).

Notice that due to the equivalence of the two sublattices the
state with order parameters �Q and mQ (d and d1) is equivalent
to the state with parameters of opposite signs [i.e., in which
they are equal to −�Q and −mQ (−d and −d1), respectively].

By solving the set of equations (2) we calculate the density
of states using the standard formulas

ρ±(U,V,d,d1; ε) = − 1

π
ImG±(U,V,d,d1; ε + i0). (3)

It appears that at T = 0, i.e., for d = 1, the expressions for ρ+
and ρ− take the following exact analytical forms:

ρ±(ε) = 1

π

∣∣∣∣∣Im
(√

[4ε2 − A2][4ε2 − A2 − 16]

4[2ε ± A]

)∣∣∣∣∣, (4)

where A = 2V (1 + d1) − U , but still, d1 (“hidden” in the
parameter A) needs to be determined self-consistently from
the equation

d1 = 〈n+
e 〉 − 〈n−

e 〉, (5)

where

〈n±
e 〉 =

∫ εF

−∞
ρ±(U,V,d1,ε)dε (6)

and, in our case, the Fermi level is located at εF = 0. No-
tice that ρ±(ε) is nonzero if ε ∈ (−√

A2 + 16/2, − |A|/2) ∪
(|A|/2,

√
A2 + 16/2). Accordingly, with Eq. (4), the densities

ρ±(ε) depend only on the parameter A. For all A �= 0 their
shapes are qualitatively the same, with the singularities at the
edges of the gap. Exemplary densities of states are presented
in Fig. 1 for both signs of d1.
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FIG. 1. The itinerant electron densities of states ρ+ (dashed line)
and ρ− (dotted line) in each sublattice and total density of states
ρ = (1/2)(ρ+ + ρ−) for U/t = 1.0 and (a) V/t = 0.2 (d1 = −0.52,
A = −0.808) and (b) V/t = 0.8 (d1 = 0.74, A = 1.784). The Fermi
level is located at ε = 0.

The total ground-state energy Etot is given by

Etot =
∫ 0

−∞
ερ(U,V,d1,ε)dε + 1

4

[
U + V

(
3 + d2

1

)]
, (7)

where ρ = (ρ+ + ρ−)/2. The last term in (7) is the sum of
two constants, U/4 + V , minus the expression V (1 − d2

1 )/4,
representing the interaction energy between moving electrons
occupying adjacent lattice sites. We need to subtract this
expression because in the integral formula in the first part
of (7) the interaction is already computed twice. And the sum
U/4 + V is provided in order to normalize the total energy to
the values consistent with those obtained both in Ref. [55] and
by the HFA presented in the next section.

Since the functions ρ+ and ρ− can be expressed only
through a single parameter A, instead of three independent
parameters U , V , and d1, expressions (5) and (7) can be
rewritten in the following form:

d1 = A

2π

∫ 0

−∞
dε

√
16 + A2 − 4ε2

√
4ε2 − A2

, (8)

Etot = 1

4

[
U + V

(
3 + d2

1

)]

− 1

2π

∫ 0

−∞
dε

ε2
√

16 + A2 − 4ε2

√
4ε2 − A2

. (9)

It appears that the integrals (8) and (9) can be expressed in
analytical form using the elliptic integrals as follows:

d1 = A
√

16 + A2

4π

[
EK

(
16

16 + A2

)
− EE

(
16

16 + A2

)]
,

(10)

Etot = 1

4
[U + V (3 + d2

1 )] − |A|
48π

∣∣∣Im{
32EK

(
16+A2

A2

)
− (16 − A2)EE

(
16+A2

A2

)}∣∣∣, (11)

where we used the following abbreviations: EK(x) =
elliptic K(x) denotes the complete elliptic integral of the
first kind and EE(x) = elliptic E(x) is the complete elliptic
integral of the second kind.

Since at the Fermi level εF = 0 the densities of states ρ+
and ρ− expressed by (4) are both equal to zero, the system is in
the insulating state at T = 0 for any nonzero U or V . However,
that is not always the case for T > 0, when the order parameter
d < 1 (see, e.g., Ref. [40]).

C. Hartree-Fock approach

The standard broken-symmetry HFA employing Bogoli-
ubov transformation (including the long-range commensurate
magnetic and charge orders, in agreement with the approach
presented in Sec. II B) also gives, at T = 0, that |d| = 1. In
this approach one gets the dispersion relation for itinerant
quasiparticles Equasi = ± 1

2

√
4ε + A2, and energies for local-

ized quasiparticles are Eloc = ± 1
2 [2V (1 + d1) − Ud1], where

A = [2V (1 + d1) − U ], as defined previously. Notice that the
spectrum of the itinerant quasiparticles has a gap �(εF ) = |A|,
with the Fermi level located at the center of the gap (εF = 0).

The equation for the parameter d1 (we have assumed that
d > 0 and t = 1) has the form

d1 = A

π

∫ 0

−∞

dε
√

4 − ε2

√
4ε2 + A2

. (12)

The energy of the system per site is derived as

Etot = 1

4

[
U + V

(
3 + d2

1

)]
− 1

4π

∫ 0

−∞
dε

√
4 − ε2

√
4ε2 + A2. (13)

On the other hand, the expressions for d1 and Etot derived
within the HFA and given in (12) and (13) are as follows:

d1 = A

4π |A| [(16 + A2)EK(y) − A2EE(y)], (14)

Etot = 1

4

[
U + V

(
3 + d2

1

)]
− |A|

48π
|(A2 + 16)EK(y) − (A2 − 16)EE(y)|, (15)

where y = −16/A2 (y < 0).
In the case of the Bethe lattice the noninteracting density

of states is a semielliptic one, and it is expressed as ρ0(ε) =
1/(2πt)

√
4t2 − ε2. This expression with t = 1 was used to

derive Eqs. (12) and (13).
Before we analyze the ground state of model (1) we would

like to comment on the equations for d1 and Etot derived within
the DMFT and the HFA. Although Eqs. (10) and (14) for d1 as
well as Eqs. (11) and (15) for Etot are not in the same analytical
form, we have checked numerically that the functions d1(A)
and Etot(A) obtained within both methods are the same (with
a relative accuracy error of the order of 10−50). Thus, the
solutions found at T = 0 for d1 and Etot are the same for both
approaches (for any U �= 0 and V � 0).

This result is quite surprising because it is a well-known
fact that the static mean-field theory is usually not an adequate
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FIG. 2. Ground-state phase diagram of the model at half filling.
Solid and dotted lines denote lines of quantum-critical points and
quasi-quantum-critical points, respectively. The quantum-critical
points are associated with first-order transition between insulating
phases with dd1 > 0 (for 2V > U ) and dd1 < 0 (for 2V < U ).
The shaded area denotes a coexistence region, where these two
phases can coexist. The dashed lines at |U |/t = 2 denote the Mott
metal-insulation transition with increasing |U |/t in an absence of
charge order (nonordered solution of the model).

tool for describing correlated electron systems. According to
the results of Ref. [56], both approaches used in this work
(the DMFT and the HFA) for U = 0 obviously give the same
results (at any T � 0) because the mean-field decoupling of the
intersite terms is an exact one in the limit of high dimensions
(notice that model (1) for U = 0 is equivalent to the spinless
fermion model; see, e.g., Refs. [60,61]). In the general case of
U �= 0 the on-site correlations are often not properly captured
by the HFA, and the DMFT approach should be used for
proper description of the correlated system, even at T = 0,
particularly in the case of the HM and the EHM [13,59]. As
we show in this work, the essential physics of the ground state
of the half-filled EFKM is captured by the HFA, which gives
a valid description for the long-range order of the itinerant as
well as immobile particles. For the half-filled FKM (V = 0)
the equivalence between the HFA and the DMFT was shown,
e.g., in Ref. [62].

III. GROUND-STATE RESULTS

A. Ground-state phase diagram

1. Charge-ordered and magnetic solution

The ground state of the model (1) at half filling is insulating,
and it is ordered with |d| = 1 for any U/t and V/t (but, of
course, the singular point U = V = 0 when d = d1 = 0 and
the system is metallic). The phase diagram of the model at T =
0 is shown in Fig. 2. For 2V > U one gets dd1 > 0, and the
charge order dominates (i.e., |�Q| > |mQ|); for 2V < U one
gets dd1 < 0, and antiferromagnetic order dominates (|�Q| <

|mQ|). At 2V = U (for any V > 0) there is a discontinuous
transition between these two phases (the line 2V = U is a line
of quantum-critical points; see Sec. III B). In the neighborhood

FIG. 3. The overall behavior of the parameter d1 as a function of
U/t and V/t in the ground state (d = 1) and in the stable phases. The
discontinuity at U = 2V is clearly visible. The color scale is included
for better readability.

of the transition line the coexistence region is also shown. For
small V the region is narrower than the thickness of the line, but
it is always finite for any V > 0. We also determine a location
of the so-called quasicritical points, which are discussed later
in Sec. III C.

Figure 3 presents the overall behavior of the parameter d1 in
the stable phases. Notice that |d1| → 1 if |U | → ±∞ or V →
+∞ due to the fact that in these limits the model is equivalent
to the extended Hubbard model in the zero-bandwidth limit
(see, e.g., Refs. [63–65] and references therein).

It appears from Eq. (4) that the energy gap �(εF ) at the
Fermi level (at T = 0) is equal to the absolute value of the
parameter A, so we have

�(εF ) = |A| = |2V − U + 2V d1|. (16)

Notice that this expression coincides with the result for the
gap in the quasiparticle spectrum obtained within the HFA.
Figure 4 shows the evolution of �(εF ) as a function of U for
a few values of V/t . The minimum value of �(εF ) is attained
at 2V = U , and it is equal to 2V |d1|. Since the value of d1 at
U = 2V is very small for V < 0.2, then �(εF ) also has a very
small (but nonzero) value at the boundary line, and it can be
hardly noticed in Fig. 4 (dash-dotted line). In the limit of large
interactions where |d1| → 1 the gap �(εF ) can be expressed
as �(εF ) = 4V − U if U < 2V and �(εF ) = U if U > 2V .

The observation that both the DMFT and the HFA give
the same results for ordered solutions at T = 0 leads to the
conclusion that the insulating behavior of the ground-state or-
dered phases originates from the long-range order. Obviously,
the order is due to the interactions, but the interactions are not
the direct reason for the emergence of the gap at the Fermi
level, which they are in the case of the nonordered phase (see
below).

Note that such a situation does not always occur in the
ordered states. For example, in the extended Hubbard model
the insulating behavior at quarter filling originates from
both correlations and long-range order [46,48]. Insulating
properties of that phase result from the Mott localization in one
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FIG. 4. The energy gap �(εF ) at the Fermi level for itinerant
electrons at T = 0 (in the stable phases) as a function of U for a few
values of V (V/t from a range from 0.0 to 1.0 with a step of 0.2,
from bottom to top; solid and dashed lines alternate). The dash-dotted
line indicates a line of minimal �(εF ) for fixed V [�(εF ) = 2V |d1|
at U = 2V ]. The dotted line presents the gap for the paramagnetic
solution (d = d1 = 0), which is independent of V .

of the sublattices. The other charge-ordered insulating solution
of the EHM, which is the half-filled one, has a mean-field
nature with respect to the symmetry-breaking transition, and
the DMFT description of that charge-ordered state closely
resembles the (static) mean-field solution of the problem [48].

2. Paramagnetic solution

Within the DMFT formalism, we also derived a diagram
containing only paramagnetic (nonordered) solutions of model
(1), i.e., assuming that d = 0 and d1 = 0 (it can also be treated
as a high-temperature solution of the model (1) [40,44,66,67]).
Within this assumption interaction V is irrelevant (it only
shifts a value of the chemical potential for n = 1 and changes
the total energy), and the model (1) can be reduced to the
standard FKM. In such a case the ground state of the model is
metallic for |U |/t < 2 and insulating for |U |/t > 2 [23,40].
At |U |/t = 2 the system exhibits a metal-insulator transition,
which is independent of V . The energy gap �(εF ) in the
paramagnetic insulating phase does not depend on V , and
it is expressed as follows [40]:

�(εF )

t
=

√
10 +

(
U

t

)2

− 2
1 +

√
[1 + 2(U/t)2]3

(U/t)2
. (17)

For |U |/t < 2 one gets �(εF ) = 0. The U dependence of
�(εF ) in the paramagnetic solutions is also shown in Fig. 4
(dash-dotted line). In the limit |U | → +∞ one gets that
�(εF ) → |U − 2|. For any U at T = 0 the gap in the
paramagnetic solutions is lower than that corresponding to
the ordered phases.

The metal-insulator transition between paramagnetic
phases is driven by strong correlations between electrons. In
such a case the HFA fails and does not catch the essential
physics due to the fact that the itinerant electrons interact with

FIG. 5. The energy Etot as a function of d1 for different values
of U/t (ranging from 1.1 to 1.3 with a step of 0.02, from bottom to
top). The dependence of Etot as a function of d1 in stable, metastable,
and unstable phases (S-shaped line; stable, metastable, and unstable
solutions correspond to solid, dashed, and dotted lines, respectively)
is also shown. The plot is derived for d = 1.

the dynamical effective field originating from ions and other
electrons.

We need to stress that at T = 0 the paramagnetic phases
have higher energies than the charge-ordered ones mentioned
before and they are not true ground-state phases (even for
V = 0) [36,37,40,68]. However, the analysis of the nonordered
state provides an insightful picture of the Mott’s physics.

B. The discontinuous transition at U = 2V

In this section we investigate in detail the behavior of the
system in the vicinity of the transition boundary at U = 2V

and show that the transition is indeed discontinuous.
If for a given V we insert expression (4) into (5), it turns

out that for U = 2V and in the vicinity of that value there
exist three solutions for d1. Minimization of the ground-state
energy specified in (9) shows that the intermediate d1 solution
corresponds to the entirely unstable state, while one of two
extreme solutions corresponds to the stable state, and the other
corresponds to the metastable state. Exactly at U = 2V the two
minima of total energy have the same depth, and in the system a
phase transition of the first kind occurs, which is accompanied
by a jump of d1 from a negative to a positive value when U

passes from U > 2V to U < 2V . Here, as an example, we
illustrate in Fig. 5 the situation for the case of V/t = 0.60.
In Fig. 5 the total ground-state energy Etot as a function of d1

is shown for fixed values of U/t (we consider only solutions
with d = 1). Etot as a function of d1, which is a solution of
the set of equations (4) and (5) [or, equivalently, Eq. (8)], is
also shown. It is clearly visible that for 1.139 < U/t < 1.261
the set has three solutions: two corresponding to the local
minima of Etot(d1) (stable and metastable solutions), and one
associated with local maxima of Etot(d1) (unstable solution).
In this range of U/t the two insulating phases (stable and
metastable) can coexist (the coexistence region is denoted
in Fig. 2). At U = 2V = 1.2 we notice the discontinuous
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FIG. 6. The dependence of (a) the parameter d1, (b) energy Etot, and (c) energy gap �(εF ) at the Fermi level as a function of U/t in stable,
metastable, and unstable phases (denoted by solid, dashed, and dotted lines, respectively) for V/t = 0.60 at the ground state. The plots are
derived for d = 1.

transition between the states with d1 > 0 and d1 < 0. In
Figs. 6(a) and 6(b) d1 and Etot are presented as a function
of U/t in stable, metastable, and unstable phases. In the
proximity of the transition point at U = 2V the dependencies
of d1 and Etot exhibit the characteristic behavior expected in
the neighborhood of the discontinuous transition. Figure 6(c)
presents the gap �(εF ) at the Fermi level in all solutions found.
Notice that |d1| and, consequently, �(εF ) in the unstable phase
are smaller than those quantities in the stable and metastable
phases.

When V becomes small (V < 0.2), the jump of d1 at the
phase-transition point U = 2V is extremely small (see Figs. 3
and 7), and it is unclear whether it disappears. However, the
precise calculations showed that there is a finite jump of d1 for
any positive V , so the phase transition is always discontinuous
for any V > 0, and it changes into a continuous one only
for V = 0 [40]. With decreasing V the coexistence region is

FIG. 7. The dependence of d1 as a function of V/t at the quantum-
critical point line (for U = 2V ). The solid and dashed lines denote the
solutions for both stable coexisting phases (with d1 > 0 and d1 < 0,
respectively), whereas the dotted line denotes the unstable solution
(d1 = 0). The inset presents |d1| in both stable phases for larger V/t .

also reduced gradually, but it is always finite. At U = V = 0
only one stable solution with d1 = 0 exists, but this is a special
singular point, as the condition d = 1 cannot be achieved, only
d = 0 (with d1 = 0).

We should underline the fact that at T = 0 the solution of
the model with d1 = 0 is found only for U = 2V ; however, as
we already mentioned, it is entirely unstable for any V > 0.
The solution was also found in Ref. [55], but its nature was
not investigated carefully. The conclusion of that paper that
the transition at T = 0 and U = 2V is always continuous has
been refuted convincingly by the analysis performed above.
Notice also that this (unstable for V > 0, stable for V = 0)
solution is the only one where there is no gap in the system at
T = 0, i.e., �(εF ) = 0.

C. Quasi-quantum-critical points (T → 0+ limit)

Since the DMFT also allows us to study rigorously the
system at finite temperatures, we find it useful to determine
the quasi-quantum-critical points in the phase diagram. We
use this name with respect to points where the density of states
at the Fermi level ρ(εF ) is positive at arbitrarily low positive
temperature, although at T = 0 we have ρ(εF ) = 0. In the case
of V = 0 such points are found to be U = ±√

2 [38,40].
It is quite fortunate that also for V > 0 we can derive from

Eqs. (2) and (3) the exact analytical formula for ρ+(εF = 0) =
ρ−(εF = 0) as a function of U , V , d, and d1 (it is not possible
to do so in the general case of any value of ε), which takes the
following form:

ρ±(U,V,d,d1; εF ) = 1

2π

∣∣∣∣ Im[
√

w(U,V,d,d1)]

U 2 − 4(d + d1)2V 2

∣∣∣∣, (18)

where w(U,V,d,d1) is the polynomial function:

w(U,V,d,d1) = U 6 − 4U 4 + 4d2U 2

+ 8dU (U 2 − 2)(d + d1)V

− 8(U 4 − 2U 2 − 2)(d + d1)2V 2

− 32dU (d + d1)3V 3 + 16U 2(d + d1)4V 4.

(19)
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For the ground state, i.e., when d = 1, the function
w(U,V,d = 1,d1) factorizes and takes the following form:

w(U,V,d = 1,d1) = [U − 2(1 + d1)V ]2[U 2

+2U (1 + d1)V − 2]2. (20)

Consequently, w(U,V,d = 1,d1) = 0 and Im[w(U,V,d =
1,d1)] = 0 for any U , V , and d1. Thus, we get ρ±(U,V,d =
1,d1; εF ) = 0 (i.e., at T = 0), as mentioned earlier.

Now we would like to find the values of Uqqcr (V ) for which
the condition w(U,V,d,d1) < 0 is fulfilled for any d < 1. In
other words, for a given V we want to determine values of
U = Uqqcr for which ρ±(Uqqcr ,V ,d,d1; εF ) becomes positive
for all d < 1.

The simplest situation occurs for V = 0 because the
polynomial w(U,V,d,d1) reduces to the form w(U,d) =
U 2(U 4 − 4U 2 + 4d); hence, we get Uqqcr (V = 0) = ±√

2.
This case was already considered in Ref. [40].

When V > 0, finding Uqqcr becomes more complicated
because we have to determine first the value of the parameter
d1. But from (20) we see that w(U,V,d = 1,d1) attains its
minimum value equal to zero when d1 = (2 − U 2)/2UV − 1
or d1 = U/2V − 1. If we now insert the first of these
two expressions into (5) (the latter expression leads to an
unphysical solution) and solve this self-consistent equation
for a given V , then we get Uqqcr (V ). Indeed, if d < 1, then
for any d1 the function w(Uqqcr ,V ,d,d1) < w(Uqqcr ,V ,d =
1,d1); hence, it becomes negative within a certain interval of
d1 around d1 = (2 − U 2)/2UV − 1, thus producing a positive
value of the density of states at εF .

It appears that also for V > 0 both positive and negative
solutions for Uqqcr (V ) exist. In the ground state phase diagram
in Fig. 2 they are displayed by the dotted lines (black for
U > 0 and red for U < 0). For V = 0 the positive and negative
values of Uqqcr are symmetrically distributed around U = 0
and equal

√
2 and −√

2, respectively, but for V > 0 their
positions around U = 0 becomes asymmetric.

An increase of V moves Uqqcr (V ) towards smaller values
in the case of both U > 0 and U < 0. However, for U > 0
it diminishes smoothly down to the value Uqqcr ≈ 1.086 for
V ≈ 0.543, where it meets the line U = 2V . So when U is
positive, the minimum value of Uqqcr exists for the maximum
value of V ≈ 0.543, and for V greater than ≈ 0.543 there is no
quasicritical point Uqqcr . On the other hand, for U < 0 there is
apparently no minimum value of Uqqcr and, consequently, no
maximum value of V above which there is no such quasicritical
point (see Fig. 1).

It is obvious that the HFA cannot find the quasicritical
point discussed in this section because it is a feature of the
model at infinitesimally small, but finite, temperatures and
the dynamical effects which are captured by the DMFT are
completely neglected in the HFA.

IV. CONCLUSIONS AND FINAL REMARKS

In this work, we studied the ground-state behavior of
the EFKM, which also includes nonlocal interactions. To
investigate the system on the Bethe lattice the DMFT and
the HFA (static mean field) were employed.

The main achievement of our work was finding the
exact solution in the form of analytical formulas for
the density of states, energy, and energy gap, depending on the
coupling constants U , V , and d1. The parameter d1, being the
difference between the average densities of moving electrons
at neighboring lattice sites, was determined in a self-consistent
way from the integral (8) or, equivalently, from Eq. (12).
Based on these equations, the ground-state phase diagram was
determined, and it was proven that for any value of V > 0
the system is an insulator. Moreover, the phase transition that
occurs when the coupling U changes from U < 2V to U > 2V

is always discontinuous and is accompanied by the finite jump
of d1 from d1 > 0 to d1 < 0. But if U = 2V , then the phases
with d1 < 0 and d1 > 0, both of which are insulators, coexist,
while the solution with d1 = 0, which corresponds to the
phase with zero energy gap, is completely unstable. We have
therefore shown that the conclusion presented in [55], that the
phase transition is continuous when U = 2V , is incorrect.

One of the most surprising conclusions drawn from all these
studies is that the solutions obtained with DMFT and the static
HFA are equivalent at T = 0. It was proven in Ref. [56] that
in the limit of high dimensions the on-site U interaction is
the only one which remains dynamical. It was also shown
rigorously that all other (intersite) interactions reduce to their
Hartree approximations. Thus, obviously, at any temperature
(including T = 0) the DMFT and the HFA give the same
results for any V > 0, but only for U = 0. The results of the
present work show that for the EFKM the HFA also gives
the proper description of the ground-state properties of the
system. This result suggests that the insulating behavior of
the ground-state ordered phases originates from the long-range
order occurring in the system, rather than directly from the
interactions. In contrast, the metal-insulator transition between
paramagnetic phases is directly driven by interactions.

We also found that the ground state of the EFKM is not
an analytic continuation of the T → 0+ states. As we demon-
strated analytically, the gapless (i.e., metallic) charge-ordered
phase cannot occur at T = 0, but it appears at infinitesimally
small temperatures at the quasi-quantum-critical point, i.e.,
for U = Uqqcr (V ), only if V � 0.543. Indeed, �(εF ) is not a
continuous function of d at d = 1 due to the appearance of the
subgap bands for d = 1 − 0+. We leave the details of the finite-
temperature studies of the model to subsequent publications.

Finally, let us comment that the EFKM analyzed in this
work can be treated as a limiting case of the extended
asymmetric HM, where both types of electrons can move but
their hopping amplitudes are different from each other [69].
In the absence of intersite V interactions in that model it was
found that the disordered phase exhibits an orbital-selective
crossover at finite temperatures to the non-Fermi-liquid phase
[70–72]. We believe that an analytical result for the various
generalizations of the EFKM similar to those presented in this
paper can be found.
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Exact solution of the multicomponent Falicov-Kimball mode
in infinite dimensions, Philos. Mag. B 81, 1443 (2001).
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[31] J. Jędrzejewski and R. Lemański, Falicov-Kimball models of
collective phenomena in solids (a concise guide), Acta Phys.
Pol. B 32, 3243 (2001).

[32] T. Kennedy and E. H. Lieb, An itinerant electron model with
crystalline or magnetic long range order, Phys. A (Amsterdam,
Neth.) 138, 320 (1986).

[33] E. H. Lieb, A model for crystallization: A variation on
the Hubbard model, Phys. A (Amsterdam, Neth.) 140, 240
(1986).

[34] U. Brandt and R. Schmidt, Exact results for the distribution of the
f-level ground state occupation in the spinless Falicov-Kimball
model, Z. Phys. B 63, 45 (1986).

[35] U. Brandt and R. Schmidt, Ground state properties of a spinless
Falicov-Kimball model; additional features, Z. Phys. B 67, 43
(1987).

[36] J. K. Freericks and R. Lemański, Segregation and charge-
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