
PHYSICAL REVIEW B 96, 205101 (2017)

Power-law liquid in cuprate superconductors from fermionic unparticles
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Recent photoemission spectroscopy measurements (T. J. Reber et al., arXiv:1509.01611) on cuprate
superconductors have inferred that over a wide range of doping, the imaginary part of the electron self-energy
scales as �′′ ∼ (ω2 + π 2T 2)a with a = 1 in the overdoped Fermi-liquid state and a < 0.5 in the optimal to
underdoped regime. We show that this non-Fermi-liquid scaling behavior can naturally be explained by the
presence of a scale-invariant state of matter known as unparticles. We evaluate analytically the electron self-energy
due to interactions with fermionic unparticles. We find that, in agreement with experiments, the imaginary part
of the self-energy scales with respect to temperature and energy as �′′ ∼ T 2+2α and ω2+2α , where α is the
anomalous dimension of the unparticle propagator. In addition, the calculated occupancy and susceptibility of
fermionic unparticles, unlike those of normal fermions, have significant spectral weights even at high energies.
This unconventional behavior is attributed to the branch cut in the unparticle propagator which broadens the
unparticle spectral function over a wide energy range and nontrivially alters the scattering phase space by
enhancing (suppressing) the intrinsic susceptibility at low energies for negative (positive) α. Our work presents
evidence suggesting that unparticles might be important low-energy degrees of freedom in strongly coupled
systems such as the cuprate superconductors.
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I. INTRODUCTION

Understanding the physics of cuprate superconductors
involves identifying the low-energy degrees of freedom that
can reproduce the bizarre features of the normal state which
traditionally include T -linear resistivity, pseudogap, Fermi
arcs, etc. Adding to the complexity are the recent angle-
resolved photoemission spectroscopy (ARPES) measurements
[1] of the cuprates that revealed that its well-known T -linear
resistivity can be construed as a slice of a unified power-law
scaling behavior. Over a wide range of doping levels, the
measured scattering rates in the nonsuperconducting state
scale with respect to temperature and frequency as �′′ ∼
(ω2 + π2T 2)

a
, with only the scaling exponent a varying

with doping. The power law smoothly varies from Fermi-
liquid-like at overdoping, to one with a ∼ 0.5 representing
T -linear scattering rate at optimal doping, and to a � 0.5
at underdoping. Such a non-Fermi-liquid state of matter is
dubbed a power-law liquid.

Theoretically, mechanisms yielding similar non-Fermi-
liquid scalings have been extensively studied [2–11]. In a
marginal Fermi liquid [2], a polarizability proportional to ω/T

leads to T -linear resistivity, while a d-wave Pomeranchuk
instability in two dimensions [3] yields self-energies with ω2/3

and T 2/3 dependence. In addition, similar behaviors can also
be obtained by coupling quasiparticles with gauge bosons [4],
Goldstone bosons [5], and critical bosons [6] near a quantum
critical point [7]. Furthermore, strong coupling theories using
the anti-de Sitter spacetime (AdS)/conformal field theory
(CFT) correspondence [8] and Gutzwiller projection in hidden
Fermi-liquid theory [9] also exhibit T -linear resistivity. In par-
ticular, the spectral functions calculated within the AdS/CFT
formalism can also exhibit a range of power-law scaling when
the scaling dimension of the boundary fermionic operator is
tuned continuously [10,11].

Because of the recent unified scaling observations, it is
natural to invoke a scale-invariant sector such as unparticles as

the effective low-energy degrees of freedom in the cuprates.
Proposed a decade ago as a scale-invariant sector within the
standard model [12], unparticles can emerge in strong coupling
theories as low-energy degrees of freedom. Exhibiting features
similar to those of a fractional number of invisible massless
particles [12], unparticles are an incoherent state of matter
that lack any particlelike behavior. They can be construed as
a product of states with a continuous distribution of masses
[13–15] and can be constructed from theories in AdS [16].

While extensively studied in high-energy physics, unpar-
ticles remain relatively new in condensed matter physics. In
the context of the cuprates, unparticles have been proposed to
explain the absence of Luttinger’s theorem in the pseudogap
phase [17] using zeros in the Green function [18] and have
also been found to yield unusual superconducting properties
[17,19,20] and optical conductivity [21].

Unparticles can arise in the cuprates because any nontrivial
infrared dynamics in a strongly correlated electron system
is controlled by a critical fixed point. Consequently, scale
invariance can be used to construct the form of the underlying
propagator. This propagator which can acquire an anomalous
dimension within the renormalization group approach is
the unparticle propagator. Furthermore, in the context of
AdS/CFT, one of us [22,23] showed that a massive scalar
field in the bulk is generally dual to a nonlocal operator (i.e.,
a fractional Laplacian) on the boundary. The propagator of
these operators is of a power-law form, just like the unparticle
propagator. These results indicate that unparticles should
generically exist in a strongly coupled system.

In the context of the Hubbard model near half-filling,
dynamical spectral weight transfer [24] has long been observed
to occur. The key implication is that the number of low-
energy degrees of freedom exceeds the number of electrons
the lower band can hold. Hence, the low-energy physics is
not delineated by counting electrons alone. Such anomalous
physics disappears in the overdoped regime. If the critical
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physics near optimal doping is due to the apparent non-Fermi-
liquid behavior in the underdoped regime, then it is natural
to suggest that the nonelectronlike degrees of freedom in
the underdoped regime arise from a scale-invariant sector.
Consequently, unparticle propagators are a natural starting
point for describing such physics.

In this paper we show analytically that interactions be-
tween electrons and fermionic unparticles can reproduce the
power-law liquid revealed in the cuprates by recent ARPES
experiments [1]. This paper is a follow-up to our recent paper
that focused on bosonic unparticles [25]. Here we find that,
in agreement with the experiments, the electron self-energy
due to interactions with fermionic unparticles exhibits power-
law scaling with respect to both energy and temperature:
�′′ ∼ ω2+2α and T 2+2α , where α is the anomalous scaling
of the unparticle propagator. In addition, we find that the
occupancy number and susceptibility of fermionic unparticles,
unlike those of normal fermions, have significant spectral
weights even at high energies. These unconventional behaviors
can be attributed to the branch cut in the unparticle propagator
which broadens the unparticle spectral function over a wide
energy range, and nontrivially alters the scattering phase space
by enhancing (suppressing) the intrinsic susceptibility at low
energies for negative (positive) α.

II. ELECTRON-FERMIONIC UNPARTICLE SCATTERING

A. Model

We consider a system of electrons in the presence of a
background of fermionic unparticles. The action of the system
in Matsubara-Fourier space is given by

S = T
∑

n

∑
p

ψ†
n(p)G−1

0 (p,iωn)ψn(p)

+ T
∑

n

∑
p

φ†
n(p)G−1

α (p,iωn)φn(p)

+UT 3
∑
m,n,l

∑
k,p,q

ψ
†
m−l(k − q)φ†

n+l(p + q)φn(p)ψm(k),

(1)

where ψ is the nonrelativistic electron field, φ is the fermionic
unparticle field, G0 is the bare electron Green function

G0(p,iωn) = 1

iωn − Ep

, (2)

and Gα is the fermionic unparticle Green function

Gα(k,iωn) = 1

(iωn − εk + μ)1−α
. (3)

Here εk is the unparticle energy spectrum, 1 − α is the scaling
exponent, and μ is the chemical potential. When α = 0, the
Green function reduces to that of a normal particle. In addition,
U is the interaction between electrons and unparticles, and
T is the temperature. The subscripts of the fields denote
the dependence on the Matsubara frequency. In this model,
the fermionic unparticles are assumed to exist up to a UV
momentum cutoff 	 because they represent a low-energy
description of some microscopic theory. For the unparticle
Green function to be scale invariant, we set μ = 0 when

0
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FIG. 1. (a) The spectral function Aα(ω) of unparticles compared
to that of particles. As α deviates from zero, the delta peak in the
spectral function broadens due to the branch cut in the Green function.
(b) The energy and momentum dependence of the unparticle spectral
function for a quadratic energy spectrum εk ∼ k2 with α = 0.5. The
broadening of the spectral function reflects the incoherent nature of
unparticles.

α �= 0. While the literature in high-energy physics considers
fermionic unparticles as relativistic four spinors within the
standard model [26,27], here in the context of the cuprates, we
consider them as nonrelativistic fermions. For simplicity, we
also omit the normalization factor and the effects of spins.

In this paper we focus on unparticles with −1 < α < 1.
In this case, instead of a simple pole, the unparticle Green
function has a branch cut, which we choose to be along the
negative energy axis. That is, the branch cut of z1−α is chosen
to be along −∞ < z < 0 with the phase angle defined in
the range −π < θ < π . Figure 1 shows that, compared to
particles, the spectral function of unparticles

Aα(k,ω) ≡ − 1

π
ImGα(k,ω + iη)

= 1

π
| sin(πα)| θ (εk − ω)

|εk − ω|1−α
(4)

remains divergent at ω = εk , but has a broadened peak due to
the presence of the branch cut, representing the incoherence
of unparticles. Here θ (x) is the Heaviside step function. It is
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FIG. 2. The lowest-order Feynman diagram of the electron
self-energy due to interactions between electrons and fermionic
unparticles. The solid lines, double line, and wavy lines correspond
to fermionic unparticles, electron, and the electron-unparticle inter-
action, respectively.

precisely the modeling of the broad incoherent background in
the electron spectral function that unparticles are tailored to
handle.

For the unparticle spectral function to satisfy the usual sum
rule, a high energy cutoff is implicitly assumed when α > 0.
Similarly, the IR divergence when α < 0 is regularized by an
IR cutoff η, where a convenient choice for the spectral function
is Aα(k,ω) = 1

π
| sin (πα)| θ(εk−ω)

|εk−ω−iη|1−α . These cutoffs naturally
arise from the fact that unparticles are effective degrees of
freedom of some strongly interacting theories and so are scale
invariant only within a certain energy range. These cutoffs
also ensure the convergence of other observables, such as the
susceptibility.

Since the IR/UV cutoffs are free parameters in our model,
they can in principle be made sufficiently small/large for
experimental agreement. However, what ultimately sets the
cutoffs cannot be an extrinsic scale. In the cuprates, phonons
with energies around 10 meV [28] are intrinsically present.
Since our model does not take into account these phonons,
they naturally set a low-energy scale η at which the power-law
scaling breaks down. This scale is well below the energy of
0.1 eV up to which the ARPES experiments are measured [1]
and therefore is low enough to explain the experiments.

B. Electron self-energy

For a constant interaction U between electrons and
fermionic unparticles, Fig. 2 illustrates the lowest-order
contribution to the electron self-energy �(k,iωn) within a
perturbative approach. This can be written as

�(k,iωn) = −U 2
∑

q

T
∑
iωm

G0(k − q,iωn − iωm)

×χα(q,iωm), (5)

where

χα(q,iωm) =
∑

p

T
∑
iωn

Gα(p,iωn)Gα(p − q,iωn − iωm)

(6)

is the unparticle susceptibility, and G0(p,iωm) is the electron
Green function. While unparticle-particle interactions in the
standard model are constrained by experiments to be weak

[12], the coupling strength U here in the cuprates can be
significant.

Appendix A details our analytic evaluation of the Matsubara
sums in Eqs. (5) and (6) using standard contour integration
techniques. After analytic continuation iωn → ω + iη, we
write the imaginary part of the electron self-energy in the
standard form

�′′(k,ω) = −U 2
∑

p

χ ′′
α (k − p,ω − Ep)

× [nB(ω − Ep) + nF (−Ep)], (7)

where

χ ′′
α (q,ω) = π

∫ ∞

−∞
dz[nF (z) − nF (z − ω)]

×
∑

p

Aα(p,z)Aα(p − q,z − ω). (8)

Here nF/B(z) = (ez/T ± 1)
−1

is the Fermi (Bose) distribution,
and Ek is the electron energy spectrum.

To understand how the electron self-energy depends on
the anomalous dimension α, it is insightful to consider the
scattering phase space. This phase space is governed by the
function S̃ ′′

α given by

S̃ ′′
α(ε1,ε2,ε3,ω)= [nB(ω−ε3) + nF (−ε3)][κ̄α(ε2,ε1 − ω + ε3)

− κ̄α(ε1,ε2 + ω − ε3)], (9)

κ̄α(ε,ε′) = π

∫ ∞

−∞
dz nF (z)Aα(z − ε)Aα(z − ε′), (10)

such that

�′′(k,ω) = −U 2
∑
pq

S̃ ′′
α(εp,εp−q,Ek−q,ω). (11)

This function S̃ ′′
α describes the amount of scattering at different

energies.
To elucidate the analytic structure of S̃ ′′

α , we note that, for
α > 0 in the T → 0 limit, the integral κ̄ evaluates to the closed-
form expression

κ̄(ε,ε′) = 1

1 − 2α

1

π
sin2(πα)

[
2

ξ (ε,ε′)

]1−2α

2F1

[
1 − α,

1

2
− α;

3

2
− α;

∣∣∣∣ ε − ε′

ξ (ε,ε′)

∣∣∣∣
2]

, (12)

where 2F1(a,b; c; z) is the hypergeometric function, and
ξ (ε,ε′) = max (|ε − ε′|,ε + ε′). As in the Fermi-liquid case,
α = 0,

S̃ ′′
FL(ε1,ε2,ε3,ω) = πδ(ε1 − ε2 − ω + ε3)[θ (−ε1)θ (−ε3)θ (ε2)

+ θ (ε1)θ (ε3)θ (−ε2)], (13)

we find that the analogous expression for unparticles
S̃ ′′

α(ε1,ε2,ε3,ω) diverges when ε1 − ε2 + ε3 − ω = 0 and
ε1ε2 < 0. However, given that the unparticle chemical po-
tential μ = 0, this divergence does not occur because ε1,ε2

are nonnegative. In addition, unlike the Fermi-liquid result,
S̃ ′′

α(ε1,ε2,ε3,ω) can be nonzero for other values of energies
ε1,ε2,ε3,ω. These features are illustrated in Fig. 3. These
nonzero values provide additional contributions to the electron
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FIG. 3. Top: Plot of the self-energy Matsubara sum
S̃ ′′

α(ε1,ε2,E,ω) at T = 0.01 for ε1 = 2.7, ε2 = −1.4, and E = 4.2.
Bottom: Same plot but with ε2 = 1.4. Compared to the Fermi-liquid
result, the unparticle one has additional nontrivial contributions.

self-energy, and can be attributed to the broadening of the
unparticle spectral function illustrated in Fig. 1.

Next, to determine the scaling form of the electron self-
energy in the T → 0 limit, we note that the unparticle spectral
function scales as

Aα(λω) = − 1

π
lim
η→0

ImGα(λω + iη)

= − 1

π
λ−1+α lim

η→0
ImGα(ω + iη)

= λ−1+αAα(ω). (14)

Consequently, we have

κ̄α(λε,λε′) = λ−1+2ακ̄α(ε,ε′), (15)

S̃ ′′
α(λε1λε2,λε3,λω) = λ−1+2αS̃ ′′

α(ε1,ε2,ε3,ω). (16)

Then, approximating the density of states to be constant near
the Fermi level, we find that the imaginary part of the electron
self-energy in the T → 0 limit becomes

�′′(k,ω) = −U 2
∑

p1p2p3

δp1+p3,p2+kS̃
′′
α

(
εp1 ,εp2 ,Ep3 ,ω

)

∼ −U 2
∫

dε1dε2dE S̃ ′′
α(ε1,ε2,E,ω), (17)

which scales with respect to energy ω as

�′′(k,λω) = λ2+2α�′′(k,ω). (18)

Therefore, the electron self-energy due to electron-unparticle
interactions behaves as �′′ ∼ ω2+2α at low temperatures,

FIG. 4. Schematic of the energy and temperature dependence
of the electron self-energy, showing deviations from Fermi-liquid
theory. In the cuprates, unparticles with α � 0, α ≈ −0.5, and α <

−0.5 correspond to overdoping, optimal doping, and underdoping,
respectively.

deviating from the Fermi-liquid behavior of �′′
FL ∼ ω2. In the

ω → 0 limit, a similar argument shows that �′′ ∼ T 2+2α at low
energies. Summarized in Fig. 4, these scaling behaviors of the
electron self-energy are our main result; they hold for −1 <

α < 1, and do not depend on the specific form of the electron
energy spectrum Ek . For α � 0, this non-Fermi-liquid state of
matter quantitatively corresponds to the power-law liquid re-
vealed in the cuprates by the recent ARPES measurements [1].

C. Susceptibility

The scaling behavior of the electron self-energy can be
traced back to the unparticle susceptibility χα given by Eq. (8).
Figure 5 illustrates the unparticle susceptibility in the q → 0
and T → 0 limit for a quadratic energy spectrum εk ∼ k2

in two dimensions. We note three features distinctive from
the analogous free electron susceptibility. First, the unparticle
susceptibility is nonzero despite the chemical potential being
restricted to be zero on account of scale invariance. This is
unlike normal particles for which a zero chemical potential
necessarily implies that there is zero filling and hence zero
susceptibility. Second, the unparticle susceptibility does not
have a cutoff at high energies. Third, from

χ ′′
α (q = 0,ω) ∝

∫
dz[θ (−z) − θ (ω − z)]

×
∫

dεAα(z − ε)Aα(z − ω − ε), (19)

we see that the susceptibility scales as χ ′′(0,ω) ∼ ω2α . Such
a scaling form ensures that when α < 0 (α > 0), the suscep-
tibility is enhanced (suppressed) at low energies, as shown
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FIG. 5. The energy dependence of the unparticle susceptibility
χ ′′

α for a quadratic energy spectrum εk ∼ p2 in the T → 0 and q → 0
limit, for various values of α. The scaling behavior χ ′′

α ∼ ω2α is
associated with the scaling of the electron self-energy depicted in
Fig. 4. Note that these plots are only qualitatively accurate due to
issues with numerical stability.

in Fig. 5. Such an enhancement (suppression) is crucial for
the increased (decreased) scattering rate, as quantified by the
electron self-energy in the previous subsection. These features
completely violate the usual susceptibility sum rule and can be
attributed to the broadening of the unparticle spectral function.
As |α| decreases, the features become less pronounced, as
expected.

Similar non-Fermi-liquid behavior induced by the enhance-
ment of low energy susceptibility also occurs, for example, in
systems where large portions of the Fermi surface are nested
with a single nesting wave vector [29,30], and in multiband
models with orbital fluctuations [31]. Additionally, the self-
energy of a Fermi liquid in the presence of weak impurities
has an imaginary part of the form �′′ ∼ (E − Ef )d/2, where
d is the spatial dimension [32]. Non-Fermi-liquid behavior in
this case can also be understood as an enhancement in the low
energy spectrum of the susceptibility [32].

When α < 0, the scaling behavior χ ′′
α (q = 0,ω) ∼ ω2α may

seem to suggest a divergence as ω → 0. However, when the IR
divergence of the spectral function is regularized as described
above, the susceptibility in fact remains finite and continuous.
What happens is that the scaling behavior is true only for ω

larger than some energy scale dependent on the IR cutoff.

D. Occupancy

In Fermi-liquid theory, the quadratic scaling of the electron
self-energy follows from a phase-space argument involving
the occupancy of electrons. Therefore, it can be illuminating to
explore how this argument is modified in the case of unparticles

FIG. 6. The energy εp dependence of the unparticle occupancy at
T = 0. The significant occupancy at large εp differs from the Fermi
distribution.

by computing the occupancy for unparticles,

nα(εp) =
∫ ∞

−∞
dz nF (z)Aα(z − εp)ez0+

. (20)

Figure 6 shows that in the T → 0 limit, unlike the Fermi
distribution for particles, the occupancy of unparticles is signif-
icant even when εp is large. This counterintuitive result can be
understood by noting that the occupancy number measures the
filling of states at momentum p, instead of at energy εp. This
distinction is important because, unlike the particle case, the
unparticle spectral function is broadened over a wide energy
range. Consequently, even unparticles with a large εp possess
a significant amount of low energy states that are filled at low
temperatures. For α < 0, these states enlarge the scattering
phase space in the electron self-energy by enhancing the low
energy susceptibility bubble, resulting in the non-Fermi-liquid
behavior described in the preceding section. In addition, the
occupancy is notably nonsymmetric, reflecting the particle-
hole asymmetry of the unparticle Green function. This en-
hancement of phase space undoubtedly reflects the enhanced
scattering rate that ultimately grows linearly with temperature
as opposed to the standard T 2 in the Fermi-liquid case.

III. DISCUSSION AND CONCLUSIONS

While our model likely exhibits conventional Fermi-liquid
behavior at energy scales below the IR cutoff, what happens in
that regime does not detract from the main point of our paper.
That is, the electron self-energy above the IR cutoff exhibits
the power-law scaling observed experimentally. In fact, the
ARPES measurements [1] also possess an inherent cutoff due
to a limited energy resolution of 4 meV [33]. Consequently,
the behavior of the cuprates at lower energies remains unclear.

As discussed in Ref. [1], a sublinear scaling of the electron
self-energy can be interpreted as having a vanishing quasi-
particle residue Z in Fermi-liquid theory. This signifies that
interactions with fermionic unparticles with α < −0.5 cause
electrons to behave completely incoherently, which is unsur-
prising given the nature of unparticles. Nevertheless, since
�′′(ω = 0,T = 0) = 0, the Fermi surface remains sharp [34].

We can similarly calculate the self-energy of unparticles
due to self-interactions, that is, when the electron line in Fig. 2
is replaced by another unparticle line. Naively, we expect the
self-energy to scale as �′′ ∼ ω2+3α and T 2+3α . This result,
as well as the susceptibility and occupancy calculated above,
can in principle be observed experimentally. However, any
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meaningful comparison with experimental observations would
require further knowledge about the form of couplings between
unparticles and external fields.

While the unparticle approach may resemble Anderson’s
proposal of a 2D Luttinger liquid [35], the two models
differ for two main reasons. First, Anderson’s model acquires
anomalous properties because the current-carrying degrees of
freedom themselves are scale-invariant objects. In the present
unparticle picture, the current-carrying degrees of freedom are
still electrons; their unusual properties arise from scattering
off scale-invariant unparticles. Second, in Anderson’s model,
the extension of Luttinger liquid to two dimensions lacks
a rigorous basis: bosonization by transforming fermions to
particle-hole excitations requires the particle-hole pairs to be
long lived, which is guaranteed only in 1D. On the other hand,
as is well known in conformal field theory, the unparticle
idea is completely general regardless of spatial dimension;
the construction of unparticles depends only on symmetry
considerations. In fact, as shown previously by one of us [17],
scale-invariant matter constructed using gauge/gravity duality
has its anomalous dimension a function of spatial dimension
and a mass of the bulk scalar field.

While dimensional considerations may suggest the self-
energy’s power-law scaling, they are insufficient as a proof due
to technical complications. Since the unparticle propagator has
branch cuts instead of poles, the convergence of the self-energy
contour integral requires a careful choice of contour. In fact,
the convergence of certain components of the integral depends
on α, which is not obvious from the formal expression of the
self-energy. Moreover, an explicit evaluation elucidates the
way the scattering phase space is altered by an enhancement of
the imaginary part of the low-energy susceptibility. Obtaining
this simple physical interpretation would have been impossible
from trivial power counting.

For the perturbative approach we have adopted to be
meaningful, two conditions need to be satisfied. First, the con-
tributions at each order of perturbation are finite. Second, the
perturbation series converge. For the first condition, Fig. 3(b)
and Eq. (12) show that the Matsubara sum S̃α in the self-energy
converges for all energies when α < 1

2 at least in the limit
T → 0. Consequently, the self-energy is finite, as required. For
the second condition to be satisfied, one can consider a model
in which both fermionic unparticles and electrons satisfy an
SU(N ) gauge group. For an unparticle-electron interaction
given by U/N , the effective electron-electron interaction (the
fermionic unparticle pair bubble) is of the order U 2/N . One
can then follow the same analysis of Ref. [36] which outlines
the details of the 1/N expansion. Nevertheless, for simplicity,
we just assume that the electron interaction with the unparticle
sector is small.

Our recent paper [25] studied the effects of bosonic
unparticles on the electron self-energy. While similar scaling
behaviors were obtained, there are a few subtle differences.
First, while a unitarity bound constrains the scaling dimension
of bosonic unparticles, we do not know of any such constraint
for fermionic unparticles. This freedom allows for a more
qualitative agreement with experiments. Second, unlike the
results in the bosonic case, there is no dependence on the
dimensionality in the scaling of �′′. This state of affairs is
obtained because we approximate the density of states of both

electrons and fermionic unparticles to be constant near the
Fermi level. Third, our susceptibility plots in Fig. 5 differ
from that in Ref. [25], because a nonzero chemical potential
was previously adopted.

In conclusion, we showed analytically that interactions be-
tween electrons and fermionic unparticles—a scale-invariant
state of matter—can produce the power-law liquid revealed in
the cuprates by recent ARPES experiments [1]. In particular,
we found that, at low temperatures and energies, the electron
self-energy due to interactions with fermionic unparticles
exhibits power-law scaling with respect to energy and tempera-
ture: �′′ ∼ ω2+2α and T 2+2α , where α is the anomalous scaling
of the unparticle propagator. This non-Fermi-liquid behavior
can be attributed to the broadening of the unparticle spectral
function over a wide energy range, which drastically alters
the scattering phase space by enhancing (suppressing) the
intrinsic susceptibility at low energies for negative (positive)
α. Although unparticles have zero chemical potential as
required by scale invariance, they nevertheless can contribute
to the electron self-energy due to the same broadening. Our
results present evidence suggesting that unparticles might be
important low-energy degrees of freedom in the cuprates, and
should inspire the interpretation of other experimental data
using unparticles.
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APPENDIX: ANALYTIC EVALUATION
OF MATSUBARA SUMS

1. Susceptibility

The unparticle susceptibility defined by Eq. (6) involves the
fermionic Matsubara sum

Sα(ε1,ε2,iωn) = T
∑
iωm

Gα(iωm − ε1)Gα(iωm − iωn − ε2),

(a) (b)

FIG. 7. The contours used to evaluate the Matsubara sums in (a)
the unparticle susceptibility and (b) the electron self-energy.
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where iωn is a bosonic Matsubara frequency. Using Cauchy’s residue theorem, we rewrite the Matsubara sum as

Sα(ε1,ε2,iωn) = − 1

2πi

∮
C

dz nF (z)Gα(z − ε1)Gα(z − iωn − ε2),

where nF (z) = (ez/T + 1)
−1

is the Fermi distribution. Since the integrand is analytic except along Imz = 0 and Imz = iωn, we
use the contour C illustrated in Fig. 7(a).

The integrals along the paths at large radius vanish when α < 1/2. For α � 1/2, a convergence factor ez0+
can be included so

that the same integrals vanish. Consequently, the nonvanishing contributions to the contour integral are those along the branch
cuts:

Ib1(ε1,ε2,iωn) = − 1

2πi

∫ ∞

−∞
dz nF (z)[Gα(z+ − ε1) − Gα(z− − ε1)]Gα(z − iωn − ε2)

= − 1

2πi

∫ ∞

−∞
dz nF (z)2iIm[Gα(z+ − ε1)]Gα(z − iωn − ε2)

=
∫ ∞

−∞
dznF (z)Aα(z − ε1)Gα(z − iωn − ε2),

Ib2(ε1,ε2,iωn) = − 1

2πi

∫ ∞+iωn

−∞+iωn

dz nF (z)Gα(z − ε1)[Gα(z+ − iωn − ε2) − Gα(z− − iωn − ε2)]

= − 1

2πi

∫ ∞

−∞
dz nF (z + iωn)Gα(z + iωn − ε1)[Gα(z+ − ε2) − Gα(z− − ε2)]

= − 1

2πi

∫ ∞

−∞
dz nF (z)Gα(z + iωn − ε1)2iImGα(z+ − ε2)

=
∫ ∞

−∞
dz nF (z)Gα(z + iωn − ε1)Aα(z − ε2).

Here z± = z ± iη, with η = 0+ being a positive real infinitesimal. After analytic continuation iωn → ω + iη, the imaginary part
of the Matsubara sum becomes

ImSα(ε1,ε2,ω + iη) =
∫ ∞

−∞
dz nF (z)[Aα(z − ε1)ImGα(z − ω − iη − ε2) + ImGα(z + ω + iη − ε1)Aα(z − ε2)]

=
∫ ∞

−∞
dz nF (z)[Aα(z − ε1)πAα(z − ω − ε2) − πAα(z + ω − ε1)Aα(z − ε2)]

= π

∫ ∞

−∞
dz nF (z)Aα(z − ε1)Aα(z − ω − ε2) − (ε1 ↔ ε2,ω → −ω)

≡ κ̄α(ε1,ε2 + ω) − κ̄α(ε2,ε1 − ω),

where we have defined

κ̄α(ε,ε′) = π

∫ ∞

−∞
dz nF (z)Aα(z − ε)Aα(z − ε′).

For α > 0, we can evaluate this exactly in the T → 0 limit using the unparticle spectral function in Eq. (4):

κ̄α(ε,ε′) = 1

π
sin2(πα)

∫ min(ε,0,ε′)

−∞
dz

1

(ε − z)1−α

1

(ε′ − z)1−α

= 1

π
sin2(πα)21−2α

∫ ∞

ξ (ε,ε′)

dz

[z2 − (ε − ε′)2]1−α

= 1

π
sin2(πα)

1

2

[
2

ξ (ε,ε′)

]1−2α ∫ 1

0
dt

t−
1
2 −α

[
1 − t

∣∣ ε−ε′
ξ (ε,ε′)

∣∣2]1−α

= 1

π
sin2(πα)

1

1 − 2α

[
2

ξ (ε,ε′)

]1−2α

2F1

[
1 − α,

1

2
− α;

3

2
− α;

∣∣∣∣ ε − ε′

ξ (ε,ε′)

∣∣∣∣
2]

,

where ξ (ε,ε′) = max (|ε − ε′|,ε + ε′), and 2F1(a,b; c,z) is the hypergeometric function.
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2. Self-energy

The electron self-energy defined by Eq. (5) involves the bosonic Matsubara sum

S̃α(ε1,ε2,ε3,iωn) = T
∑
iωm′

G0(iωn − iωm′ − ε3)Sα(ε1,ε2,iωm′ )

= 1

2πi

∮
C ′

dz′nB(z′)G0(iωn − z′ − ε3)Sα(ε1,ε2,z
′) + T G0(iωn − ε3)Sα(ε1,ε2,0),

where iωn is a fermionic Matsubara frequency, and nB(z) = (ez/T − 1)
−1

is the Bose distribution. Since the integrand has a
branch cut along Imz′ = 0 and a pole on a line Imz′ = iωn, we adopt the contour C ′ shown in Fig. 7(b). If α < 1, the integrals
along the paths at large radius vanish.

The integrals along the small circle of radius r around the origin require special consideration. Since Sα(ε1,ε2,z
′) is analytic

in the upper (lower) half-plane, we see that Sα(ε1,ε2,z
′) → Sα(ε1,ε2,0) in the limit z′ → 0 for z′ in the same domain. Hence, as

the radius r → 0, the integral along the small circle reduces to

1

2πi

∮
|z′|=r

dz′nB(z′)G0(iωn − z′ − ε3)Sα(ε1,ε2,z
′) ∼

[
1

2πi

∮
|z′|=r

dz′nB(z′)
]
G0(iωn − ε3)Sα(ε1,ε2,0)

= −T G0(iωn − ε3)Sα(ε1,ε2,0),

which exactly cancels the iωm′ = 0 term in S̃α(ε1,ε2,ε3,iωn). This cancellation can be physically motivated. First, notice that the
imaginary part of the term contains the factor δ(ω − ε3) after analytic continuation. Then, since ω = ε3 corresponds to no energy
transfer between unparticles and electrons, such a term understandably should not contribute to the electron self-energy.

Then, the nonvanishing contributions to S̃α are simply the integrals along the lines Imz′ = 0 and Imz′ = iωn:

Ĩb1(ε1,ε2,ε3,iωn) = 1

2πi

∫ ∞

−∞
dz′nB(z′)G0(iωn − z′,ε3)[Sα(ε1,ε2,z

′+) − Sα(ε1,ε2,z
′−)]

= 1

2πi

∫ ∞

−∞
dz′nB(z′)G0(iωn − z′,ε3)2iImSα(ε1,ε2,z

′+)

= 1

π

∫ ∞

−∞
dz′nB(z′)G0(iωn − z′,ε3)[κ̄α(ε1,ε2 + z′) − κ̄α(ε2,ε1 − z′)],

Ĩb2(ε1,ε2,ε3,iωn) = 1

2πi

∫ ∞+iωn

−∞+iωn

dz′nB(z′)[G0(iωn − z′+,ε3) − G0(iωn − z′−,ε3)]Sα(ε1,ε2,z
′)

= 1

2πi

∫ ∞

−∞
dz′nB(z′ + iωn)[G0(−z′+,ε3) − G0(−z′−,ε3)]Sα(ε1,ε2,z

′ + iωn)

= 1

2πi

∫ ∞

−∞
dz′[−nF (z′)]2iIm[G0(−z′+,ε3)]Sα(ε1,ε2,z

′ + iωn)

= − 1

2πi

∫ ∞

−∞
dz′nF (z′)2iπA0(−z′,ε3)Sα(ε1,ε2,z

′ + iωn)

= −
∫ ∞

−∞
dz′nF (z′)A0(−z′,ε3)Sα(ε1,ε2,z

′ + iωn).

Here A0 = − 1
π

ImG0 is the spectral function of G0, and we take principal values of the integrals in Ĩb1 due to the cancellation
mentioned above. Then, analytic continuation iωn → ω + iη gives

ImĨb1(ε1,ε2,ε3,ω + iη) = −
∫ ∞

−∞
dz′nB(z′)A0(ω − z′,ε3)[κ̄α(ε1,ε2 + z′) − κ̄α(ε2,ε1 − z′)],

ImĨb2(ε1,ε2,ε3,ω + iη) = −
∫ ∞

−∞
dz′nF (z′)A0(−z′,ε3)[κ̄α(ε1,ε2 + z′ + ω) − κ̄α(ε2,ε1 − z′ − ω)]

= −
∫ ∞

−∞
dz′nF (z′ − ω)A0(ω − z′,ε3)[κ̄α(ε1,ε2 + z′) − κ̄α(ε2,ε1 − z′)],

ImS̃(ε1,ε2,ε3,ω + iη) = −
∫ ∞

−∞
dz′[nB(z′) + nF (z′ − ω)]A0(ω − z′,ε3)[κ̄α(ε1,ε2 + z′) − κ̄α(ε2,ε1 − z′)]

=
∫ ∞

−∞
dz′A0(ω − z′,ε3)[nB(z′) + nF (z′ − ω)][κ̄α(ε2,ε1 − z′) − κ̄α(ε1,ε2 + z′)].
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Finally, using A0(ω) = δ(ω) gives

ImS̃α(ε1,ε2,ε3,ω + iη) = [nB(ω − ε3) + nF (−ε3)][κ̄α(ε2,ε1 − ω + ε3) − κ̄α(ε1,ε2 + ω − ε3)].
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