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One of the amazing properties of graphene is the ultrarelativistic behavior of its loosely bound electrons,
mimicking massless fermions that move with a constant velocity, inversely proportional to a fine-structure
constant αg of the order of unity. The effective interaction between these quasiparticles is, however, better
controlled by the coupling parameter α∗

g = αg/ε, which accounts for the dynamic screening due to the complex
permittivity ε of the many-valence electron system. This concept was introduced in a couple of previous studies
[Reed et al., Science 330, 805 (2010) and Gan et al., Phys. Rev. B 93, 195150 (2016)], where inelastic x-ray
scattering measurements on crystal graphite were converted into an experimentally derived form of α∗

g for

graphene, over an energy-momentum region on the eV Å−1 scale. Here, an accurate theoretical framework is
provided for α∗

g , using time-dependent density-functional theory in the random-phase approximation, with a cutoff
in the interaction between excited electrons in graphene, which translates to an effective interlayer interaction in
graphite. The predictions of the approach are in excellent agreement with the above-mentioned measurements,
suggesting a calibration method to substantially improve the experimental derivation of α∗

g , which tends to a
static limiting value of ∼0.14. Thus, the ab initio calibration procedure outlined demonstrates the accuracy of
perturbation expansion treatments for the two-dimensional gas of massless Dirac fermions in graphene, in parallel
with quantum electrodynamics.

DOI: 10.1103/PhysRevB.96.201408

Graphene, the two-dimensional (2D) allotrope of carbon
with sp2-bonded honeycomb lattice, is the first discovered [1]
and currently most studied atomically thin material [2,3], due
to a variety of potential uses [4]. On the electronic side, the
unique properties of graphene stem from its semimetallic band
structure around the Fermi energy EF , with the valence (π ) and
conduction (π∗) energy levels exhibiting a conical dispersion
vs the in-plane momentum at the six corners of the (hexagonal)
first Brillouin zone (1stBZ), i.e., the Dirac K (or K ′) points
[5]. This peculiar feature has allowed the development of a
quasiparticle description of charge transport [6], consisting of
charge carriers that behave as massless Dirac fermions on a
velocity scale, characterized by the group velocity of the π

and π∗ electrons at the Dirac points, i.e., the Fermi velocity
vF ∼c/300, with c∼137 being the velocity of light in Hartree
atomic units (used throughout unless otherwise specified).

Nonetheless, the quasiparticle interaction in this picture
depends on a (bare) effective fine-structure constant αg =
1/vF ∼2.2 [7–12], being much larger than the vacuum
fine-structure constant α = 1/c of quantum electrodynamics
(QED). Indeed, many-body corrections to vF [12–15] can
significantly lower αg , which, however, contrary to QED,
remains too large for perturbation treatments. On the other
hand, αg is too small for strong-coupling approaches. Attempts
to reduce αg by changing the supporting dielectric medium
lead to α∗

g = αg/ε [16], where ε is the constant permittivity
of the “background” that embeds the graphene sheet. Even in
this case, α∗

g remains not far from unity.
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A more complete “view” of the interaction strength between
the band electrons in graphene amounts to replacing 1/ε in
α∗

g with the dynamic inverse permittivity [17–19], obtained
by transferring an energy ω and a momentum q to the
system. On these bases, inelastic x-ray scattering experiments
were performed to determine the many-electron screening in
crystal graphite [8,10], followed by reconstruction methods to
derive the full susceptibility of freestanding graphene and a
diagrammatic formalism structured in powers of α∗

g .
Here, it is demonstrated that time-dependent (TD) density-

functional theory (DFT) provides a reliable theoretical frame-
work for the above-mentioned measurements, with a key role
being played by the bare Coulomb interaction between excited
electrons within the graphene sheet [20–25], which reflects
in the interlayer interaction in graphite [8,10,26–28]. A sub-
stantial improvement on the determination of α∗

g is presented,
suitable for transferred energies from the far-infrared to the
extreme ultraviolet, and in-plane momenta up to ∼1 Å−1. An
exploration of the small in-plane momentum region yields the
static limiting value α∗

g∼0.14, in agreement with [8], which
supports the idea that the massless Dirac fermions of graphene
experience a sufficiently weak interaction. More importantly,
a procedure to extrapolate the effective fine-structure constant
of Dirac-cone materials is outlined.

To begin, the ground-state properties of graphene were
calculated by a standard plane-wave (PW) DFT approach
[29], using the local density approximation (LDA) [30]
and eliminating the core electrons by a norm-conserving
pseudopotential [31]. An energy cutoff of 25 hartree [32]
was applied to compute the Kohn-Sham (KS) electron states
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FIG. 1. Static fine-structure constant of graphene extracted from
the PDOS vs the π -π∗ energy E − EF and the inverse group velocities
α�K = 1/v�K (a), α�M = 1/v�M (b).

|νk〉 and corresponding energies ενk [33,34], indexed by their
band number ν and wave vector k in the 1stBZ (inset of
Fig. 1). The bulk geometry inherent to PW-DFT was modeled
by an infinitely periodic array of elementary graphene cells,
with in-plane lattice constant of 2.46 Å, replicated at an
out-of-plane distance L of 20 Å. The self-consistent run
was performed on the (four) valence and lowest conduction
bands with a Monkhorst-Pack grid of 60×60×1 k points [35],
sampling the 1stBZ [32]. Then, the KS structure was refined
in three non-self-consistent runs based on (i) 900×900×1 k
points with the same bands as the self-consistent run, (ii)
720×720×1 k points with the lowest set of eight bands, and
(iii) 360×360×1 k points with the lowest set of sixty bands
[Fig. S1(a) of [32]].

The output of dataset (i) was accurate enough to fix the
Dirac-cone features of the π and π∗ electrons [Fig. S1(b)], such
as the Fermi velocity vF at the K (or K ′) points, estimated to
have a value of 0.83 × 106 m/s (Fig. S2 of [32]), and the static
fine-structure constant αg = 2.64 (Fig. 1). It is worth recalling
that the anisotropic behavior of the π and π∗ bands, for wave

vectors distant more than ∼0.01 Å
−1

from the Dirac points,
has been conjectured to suggest the presence of distinct types
of charge carriers along different directions of the reciprocal
space, which generate markedly different extrinsic plasmon
responses at probing energies smaller than 1.0 eV [36]. This
point is further clarified here, by looking at the projected (P)
density of states (DOS) of the π and π∗ states as a function
of their energy E, relative to EF , and the static fine-structure
constant. The latter is defined in this context as the inverse
group velocity along selected high-symmetry directions of
the 1stBZ, namely, α�K = 1/v�K , along �K , and α�M =
1/v�M , along �M . In the (E − EF ,α�K ) plane [Fig. 1(a)],
the PDOS approaches αg (zero-DOS point) along two distinct
“branches,” which define two types of quasimassless Dirac
fermions, whose interaction is controlled by different coupling
constants, right outside the linear region where the Dirac-cone
approximation is violated [see also Fig. S3(a) of [32]]. On
the other hand, in the (E − EF ,α�M ) plane [Fig. 1(b)], the
PDOS approaches αg following a single branch, which defines

a single type of charge carriers and coupling parameter [see
also Fig. S3(b) of [32]].

Next, the unperturbed susceptibility of the KS electrons was
calculated in response to an energy-momentum transfer (ω,q)
from an incident particle (electron or photon). This quantity is
generally represented in reciprocal space as [37,38]

χ0
GG′ = 2




∑
k,ν,ν ′

(fνk − fν ′k+q)ρkq
νν ′ (G) ρ

kq
νν ′(G′)∗

ω + ενk − εν ′k+q + iη
, (1)

where G,G′ are reciprocal lattice vectors of in-plane com-
ponents g,g′ and out-of-plane components Gz,G

′
z. The χ0

GG′
matrix elements, normalized to the electron volume 
, include
a factor of 2 for the electron spin, the Fermi-Dirac occu-
pation numbers fνk,fνk+q, a lifetime broadening parameter
η (of the order of 10−2 eV), and the density correlation
terms ρ

kq
νν ′ (G) = 〈νk|e−i(q+G)·r|ν ′k + q〉, ρ

kq
νν ′ (G′)∗ = 〈ν ′k +

q|ei(q+G′)·r|νk〉. The 2D macroscopic average of Eq. (1) is pro-
vided by χM

0 = χ0
00, with χ0

2D = χM
0 L being the macroscopic

unperturbed susceptibility of graphene in two dimensions.
The KS structure from datasets (ii) and (iii) was plugged

into Eq. (1) to explore the lower infrared (ω < 1 eV) and midin-
frared to extreme ultraviolet ranges (ω < 35 eV), respectively.
Subsequently, the full susceptibility was computed from the
central equation of TDDFT [17]

χGG′ = χ0
GG′ + (χ0vχ )GG′, (2)

whose solution provides the macroscopic average χM = χ00.
Working in the random-phase approximation at room tem-

perature, an in-plane transferred momentum q was considered
and the v operator in Eq. (2) was represented by a Coulomb
interaction of matrix elements

vGG′(L) = 2πδgg′

|q + g|
∫∫ L/2

−L/2
dz dz′ei(Gzz−G′

zz
′)−|q+g||z+z′ |, (3)

truncated at half interslab distance.
The vGG′(L) terms have been carefully designed to de-

scribe the dielectric response of mono- and bilayer graphene,
graphene nanoribbon arrays, and freestanding silicene in the
whole range of momentum transfers over the 1stBZ [20–
25]. Interestingly enough, the leading component v00(L) =
4π
q2 − 4π

Lq3 (1 − e−qL) tends to v2DL, where v2D = 2π
q

is the 2D
Coulomb potential, for vanishingly small momenta (qL �
1 limit), whereas in the opposite case (qL � 1 limit) it
behaves as the three-dimensional (3D) Coulomb potential
4π
q2 . Indeed, the cutoff in v→vGG′(L) cancels the residual
coupling between the 2D replicas of the bulk DFT approach,
which gives a reliable expression for the inverse dielectric
matrix (ε−1)GG′ = δGG′ + (vχ )GG′ and its macroscopic aver-
age (εM )−1 = 1 + (vχ )00. The imaginary part of the latter is
proportional to the energy loss function ELOSS = −Im[(εM )−1].

Crystal local-field effects [39] were included in χM and εM

by reducing χ to a 61×61 matrix [32], indexed by reciprocal
lattice vectors of lengths below 9.5 Å−1. The neglect of crystal
local fields turns Eq. (2) into a scalar equation that, in the low-q
limit v00(L)→v2DL, allows one to define the 2D macroscopic

susceptibility χM
2D = χ0

2D

1−v2Dχ0
2D

, permittivity εM
2D = 1

1−v2Dχ0
2D

, and

loss function E2D
LOSS = Im(v2Dχ0

2D).
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FIG. 2. Experimentally derived susceptibility Im(χ expt.
2D ) of [10]

and macroscopic susceptibility Im(χM ), obtained from Eq. (2) with
v→vGG′ (L) and the KS structure of dataset (iii). Im(χM ) is multiplied
by a typical length d0 to match the dimensions of Im(χ expt.

2D ). The
closest values of q‖�M to the measured in-plane momenta are
selected to represent Im(χM ), with a broadening lifetime η of
0.02 eV (red). The q-shifted spectra (green) are broadened by 0.2 eV
to match the experimental uncertanties.

Figure 2 (or Fig. S4 of [32]) presents a comparison of
the calculated imaginary susceptibility of graphene Im(χM )
with its experimental counterpart Im(χ expt.

2D ), derived in [8,10].
Theoretical calculations are consistent with the experiments,
although the agreement with data is excellent if an increasingly
small positive shift in q (with q � 0.1 Å−1) is applied to
Im(χM ). The main reason for this discrepancy is due to
the fact that Im(χ expt.

2D ) was obtained from the measured
imaginary susceptibility of graphite Im(χ expt.

3D ), using χ
expt.
2D =

χ
expt.
3D d

1−(v2D−v3D)χ expt.
3D d

. Such a conversion works under the following

assumptions: the macroscopic unperturbed susceptibility of
graphene χM

0 and that of graphite are equal [40]; the electron-
electron interaction in graphene is purely two-dimensional

[v→δGG′v2DL in Eq. (2)]; the role of crystal local fields
can be neglected, i.e., the full susceptibility of graphene is
χM

2D; the interaction of graphene layers in graphite, separated
by d = 3.35 Å, can be modeled by the interlayer potential
v3D = v2D

sinh(qd)
cosh(qd)−cos(qzd) [26,27], with qz being an out-of-

plane momentum. An open boundary version of the interlayer
potential, suitable for finite numbers of layers, was introduced
in [28]. However, the use of v2D for the electron-electron
interaction in graphene is strictly valid for vanishingly small
momenta, which are far from the experimental values (in
the range of 0.2 to 0.8 Å−1) acquired in [8,10]. Indeed, the
macroscopic inverse permittivity (εM )−1 appears to accurately
predict the π -plasmon loss peaks of graphene measured in
[41], significantly improving the results that would be obtained
with (εM

2D)−1. On the other hand, both (εM )−1 and (εM
2D)−1 are

in close agreement with electron-energy-loss measurements
performed in [42] at q�0.1 Å−1 (see Fig. S5 and discussion
in [32]). Another clue in favor of the use of vGG′(L) in spite
of v2D is provided in Figs. 3(a), 3(c), and 3(e), where χM

0
is compared with the macroscopic unperturbed susceptibility
of graphene χ

expt.
0 , experimentally derived from χ

expt.
2D =

χ
expt.
0

1−v2Dχ
expt.
0

. It is evident that the theoretical and experimental

curves follow similar trends on the same vertical scale,
although the specific features of Im(χM

0 ) are different from
those of Im(χ expt.

0 ) in the π -plasmon region. An improved
model to link the graphene and graphite susceptibilities is
proposed here, where the interlayer potential v3D is replaced
by vd∗

3D = v00(d∗) sinh[q(d−d∗)]
cosh[q(d−d∗)]−cos[qz(d−d∗)] , which depends on

the effective “thickness” d∗ of a graphene layer in graphite,
from the point of view of the electron-electron interaction. The
value of d∗ changes with the total momentum qtot = (q,qz),
ranging from d∗ = 0 for qtot→0 to d∗ = d for qtot→∞.
Amazingly, Figs. 3(b), 3(d), and 3(f) show that the theoretical
susceptibility of graphite, calculated with this renormalized

interaction as χM
3D = χM

0

1−vd∗
3DχM

0
, is in excellent agreement with

the measurements performed in [10], where d∗ takes val-
ues from 3.10 to 3.27 Å for 0.212 < q < 0.563 Å−1 and
qz < 0.3 Å−1.

The dynamic properties of the effective fine-structure
constant are dictated by the macroscopic inverse permittivity
(εM )−1, whose (minus) imaginary and real parts are reported in
Figs. 4(a) [Fig. S6(a)] and 4(c) [Fig. S6(b)], respectively, with
the π and σ -π structures being clearly outlined. Of particular
importance is the static limiting behavior of (εM )−1, or the
q→0 and ω→0 features of Re(εM )−1, which are explored
with the outputs of datasets (ii) and (iii) yielding the lowest-q
value 1/εs = 0.054 [Fig. 4(e)].

The main difference between the approach presented here
and the derivation of [8,10] lies in the treatment of the
vχ operator in ε−1, whose macroscopic average (vχ )00 is
compared to the 2D approximated form v2DχM

2D in Figs. 4(b)
and 4(d), with the real and imaginary parts of the two quantities
being normalized to the same height.

Apart from the above-discussed shift in q, (vχ )00 and
v2DχM

2D have almost identical profiles, while the peak-to-peak
ratios of their real (r3D

2D ) and imaginary (i3D
2D ) parts decrease

with increasing q, similarly to v00(L)
v2DL

[Fig. 4(f)]. This produces
major errors in the estimation of α∗

g , obtained in [8,10] using
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FIG. 3. Experimentally derived unperturbed susceptibility of
graphene Im(χ expt.

0 ) and measured susceptibility of graphite Im(χ expt.
3D )

taken from [10] in comparison with their theoretical counterparts
Im(χM

0 ) and Im(χM
3D).

(α∗
g)expt. = αg(1 + v2Dχ

expt.
2D ), with the χ

expt.
2D spectra of Fig. 2,

which have been shown to have a close shape and intensity with
the theoretical functions χM . On these bases, the following
correction is proposed: (α∗

g)c
expt. = αg(1 + r3D

2D v2Dχ
expt.
2D ), being

suitable for the ω→0 limit with α∗
g becoming a real quantity

[Figs. 4(b) and 4(d)]. The static value of αg ranges from the
LDA estimate of αLDA

g ∼2.64, equivalent to vF ∼0.83 × 106

m/s [15], to the GW value of αGW
g ∼1.95, corresponding to

vF ∼1.12 × 106 m/s [13], or it may be taken to be ∼2.20
as in [8,10,12], with vF ∼1.0 × 106 m/s. In either case,
the theoretical predictions of α∗

g are consistent with the
corrected data (α∗

g)c
expt. [Fig. 4(g)], within a percentage error

of 5%–7%. In addition, a value of αLDA
g /εs∼0.14 is obtained

at q∼0.008 Å−1, in close agreement with [8].
In conclusion the strength of the electromagnetic interaction

between charge carriers in graphene has been estimated by
TDDFT [Eqs. (1) and (2)], using a truncated Coulomb potential

FIG. 4. (a),(c) (εM )−1 vs ω < 25 eV and q < 1.5 Å−1, with the
q orientation averaged between �K and �M; (b),(d) (vχ )00 and
v2DχM

2D vs ω < 13 eV at fixed q values along �M that match the
experimental in-plane momenta of [10]; (e) (εM )−1 vs q < 0.1 Å−1

at ω→0, with the datasets (ii) and (iii); (f) peak-to-peak ratios r3D
2D ,i3D

2D

of the real and imaginary parts of (vχ )00 and v2DχM
2D vs v00(L)

v2DL
.

(g) Dressed fine-structure constant α∗
g at ω → 0 in comparison with

the experimentally derived data (α∗
g)expt. of [8,10], and the corrected

data (α∗
g)c

expt. with the r3D
2D points of (f).
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[vGG′(L)] to describe the bare interaction between excited
electrons. The calculations have been proved to accurately
reproduce the measurements of [8,10], suggesting a calibration
method to estimate α∗

g , based on the comparison of the
density-density response function χM , obtained with vGG′(L),
and its 2D approximated form χM

2D, derived from δGG′v2DL.
The static limiting value of α∗

g has turned out to be suitable for
perturbation expansion treatments of the many-body features
of the band electrons in graphene. This result may have an

impact in defining the transport properties of novel materials
with a Dirac-cone structure, such as topological insulators,
Weyl semimetals, or iron-based thin films.
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