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Robust operating point for capacitively coupled singlet-triplet qubits
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Singlet-triplet qubits in lateral quantum dots in semiconductor heterostructures exhibit high-fidelity single-
qubit gates via exchange interactions and magnetic field gradients. High-fidelity two-qubit entangling gates are
challenging to generate since weak interqubit interactions result in slow gates that accumulate error in the presence
of noise. However, the interqubit electrostatic interaction also produces a shift in the local double well detunings,
effectively changing the dependence of exchange on the gate voltages. We consider an operating point where the
effective exchange is first-order insensitive to charge fluctuations while maintaining nonzero interactions. This
“sweet spot” exists only in the presence of interactions. We show that working at the interacting sweet spot can
directly produce maximally entangling gates, and we simulate the gate evolution under realistic 1/f noise. We
report theoretical two-qubit gate fidelities above 99% in GaAs and Si systems.
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I. INTRODUCTION

The singlet-triplet qubit [1] is an attractive platform for
quantum information processing due to its fast single-qubit
operations [2] and extended coherence times [3,4]. Voltage
gates “detune” the double quantum dot (DQD), i.e., adjust
the energy difference ε between the two minima of the DQD
potential, driving rotations around the z axis of the Bloch
sphere via the exchange interaction J (ε), and rotations about
the x axis are induced by a magnetic field difference across
the DQD, h. Two-qubit entangling operations can be achieved
via capacitive coupling [5] or interqubit exchange interactions
[6]. Here, we consider the former because they have been
demonstrated experimentally [7,8] and are naturally robust to
leakage outside of the logical subspace. The primary source of
error is fluctuation of the detuning due to charge noise in the
device, inhibiting the singlet-triplet qubit from performing at
fault tolerant levels.

Single-qubit gates can be fast, with a π rotation about
the z axis demonstrated in 350 ps [1], and precise, with
99% fidelity [8]. However, the relatively weak capacitive
interaction generates two-qubit gates that are much slower,
140 ns for a controlled-phase (CPHASE) gate [7], and these
slow gates accumulate substantial errors in the presence of
noise, with fidelities yet to exceed 90% [8]. Strategies such as
dynamical decoupling [9], pulse shaping [10,11], composite
pulse sequences [12–14], and control tuning using iterative
experimental feedback [15] can improve the fidelity of gating
in the presence of noise. These methods are particularly
effective against noise that fluctuates on time scales much
longer than the time required to complete the quantum
operation (i.e., the gate time). For the slower two-qubit gates,
however, high-frequency charge noise is difficult to suppress.
An alternative approach is to use a robust operating point in
control parameter space, often called a “sweet spot,” where
the Hamiltonian is insensitive to certain perturbations and
hence the effect of fluctuations of any frequency is reduced.
The remarkable recent progress of superconducting qubits can
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be largely attributed to the introduction of the transmon sweet
spot [16]. In this Rapid Communication, we introduce such a
sweet spot for two coupled singlet-triplet qubits.

Previous investigations of sweet spots in singlet-triplet
qubits have mainly focused on a single, isolated qubit [17–24],
in which case the sweet spot previously discussed is not
appropriate for capacitive coupling and the sweet spot we
present does not exist. Where the case of interacting qubits
has been considered [25,26], the focus was on the robustness
of the coupling term in the Hamiltonian. However, the primary
contribution to the error during a two-qubit gate is from
fluctuations of the strong local terms in the Hamiltonian rather
than in the weak coupling term itself.

In the present work, using harmonic oscillator basis func-
tions in a Hund-Mulliken (HM) model for the singlet-triplet
two-qubit Hamiltonian [27,28], we report an interacting sweet
spot where the local effective exchange terms are insensitive
to fluctuations in the detunings caused by charge noise, while
maintaining a nonzero two-qubit coupling. Our results are
meant to be taken qualitatively, as computational methods
such as exact diagonalization [29] or a full configuration
interaction [26] would be necessary for quantitative precision.
However, since the experimental potential profile is typically
not known precisely anyway, a qualitative approach is not
inappropriate and provides a starting point for experimental
fine tuning. While the sweet spot only suppresses charge noise,
it can be combined with standard echo pulses to also mitigate
magnetic field gradient noise, thus producing high-fidelity
two-qubit entangling gates. We perform numerical simulations
of performance at the interacting sweet spot in the presence of
realistic noise with parameters typical for GaAs and Si devices,
and find that fidelities above 99% are achievable simply by
choosing the operating parameters wisely.

II. SWEET SPOT ANALYSIS

The Hamiltonian for two capacitively coupled singlet-
triplet qubits in a linear four-dot array is written using a HM
approximation [5,27,28], where the two-qubit Hilbert space
is spanned by products of the unpolarized triplet state |T0〉
and the hybridized singlet state |S̃〉 formed by the lowest
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harmonic oscillator orbitals centered at each minima, where
the singlet contains a small admixture of a doubly occupied
orbital controlled by the detuning of the corresponding DQD,
εi . In the basis {|S̃S̃〉,|S̃T0〉,|T0S̃〉,|T0T0〉},

H (ε1,ε2,h1,h2) =
2∑

i=1

[(
Ji(εi)

2
− βi(ε1,ε2)

)
σ (i)

z + hi

2
σ (i)

x

]

+α(ε1,ε2)σ (1)
z σ (2)

z , (1)

where �σ (i) are the Pauli operators for qubit i, Ji is the local
exchange splitting, and the interqubit Coulomb interactions
contribute both a local shift in the effective exchange due to
a monopole-dipole interaction βi(ε1,ε2), and a nonlocal term
due to a dipole-dipole interaction α(ε1,ε2). The magnetic field
difference between the two wells of each DQD is hi , which,
in GaAs, originates from an inhomogeneous Overhauser
field, hi = h ≈ 2π × 30 MHz [7], while in Si comparable
values can be realized with integrated micromagnets, hi =
h ≈ 2π × 15 MHz [30]. We use the convention that ε = 0
corresponds to a symmetric double well and ε > 0 raises
(lowers) the inner (outer) of the two dots. Pulsing both
qubits to positive ε then corresponds to tilting the DQDs
away from each other. Charge noise enters the Hamiltonian
through J , β, and α terms since they are controlled electrically
via ε1 and ε2. It has been found empirically in single-qubit
experiments that the exchange splitting increases roughly
exponentially with detuning, Ji(εi) ∝ J ′

i (εi) [9]. Thus, while
large detuning generates fast gates, the sensitivity to charge
noise, proportional to J ′

i (εi), also increases with detuning.
However, when the Coulomb interaction from the neigh-
boring qubit is considered, the effective exchange for qubit
i, Jeff,i(ε1,ε2) ≡ Ji(εi)/2 − βi(ε1,ε2), can markedly deviate
from simple exponential behavior due to the monopole-dipole
interaction [27,28], as shown in Fig. 1(a).

To model experiments in GaAs [7] we take a relative per-
mittivity κ = 13.1ε0, effective electron mass m∗ = 0.067me,
confinement energy of the quantum dots h̄ω0 = 1 meV (hence,
an effective Bohr radius aB = √

h̄/m∗ω0 ≈ 34 nm), and
intraqubit distance 2a = 5aB [a denoting the distance from
center to minima of the DQD in the (1,1) charge configuration].
Appropriately sized harmonic oscillator orbitals give an on-site
interaction energy U = 4.1 meV. The tunneling rate t0 is
computed assuming a quartic DQD potential [28], resulting
in t0 = 7 μeV. The resulting exchange model is near the limit
of the validity of the HM approximation, as can be tested
by checking the monotonicity of exchange with intraqubit
distance [18], but the qualitative physics is still safely captured.

In Si, recent overlapping Al gate layering techniques
have produced more densely packed dots with size aB =
29 nm and spacing 2a 
 3.5aB [31]. Using these parameters,
κ = 11.68ε0, and m∗ = 0.19me, one estimates U = 5.3 meV.
Again assuming a quartic DQD potential would produce
a tunneling rate outside the validity of HM, but since the
tunneling barrier can be independently tuned [23,32], it is more
reasonable anyway to directly set the tunneling parameter to
an experimentally reported value. We take t0 = 40 μeV [32],
which allows a good approximation for an intraqubit distance
of 2a = 160 nm.
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FIG. 1. (a) Two examples of effective exchange vs symmetric
detuning ε1 = ε2 = ε for GaAs (orange) and Si (blue) at two
interqubit separations (solid/dashed). The interacting sweet spots are
located extremely close to the zeros of J ′

eff(ε). In the Si case, we
focus on the first extremum since the HM model is more accurate at
lower detunings. (b) Insensitivity defined in Eq. (3) as a function of
symmetric detuning on the ε1-ε2 diagonal line for two examples of
interqubit separation.

The sensitivity of the Hamiltonian to charge noise is
quantified by the Frobenius norm of the gradient on the ε1-ε2

plane,

‖ �∇H (ε1,ε2)‖ 

√√√√ 2∑

{i,j}=1

(
∂Jeff,i

∂εj

)2

, (2)

where we have omitted the derivatives of α because they are
orders of magnitude smaller, as also noted experimentally [7],
and their effect is negligible. [This makes Eq. (2) easier to
measure experimentally, too.] Numerically minimizing this
function using the HM form of Jeff,i derived in Ref. [28], we
find previously unreported minima that reduce the sensitivity
by orders of magnitude. The locations of these interacting
sweet spots depend on the interqubit distance 2R [i.e., the
center-to-center distance between the DQDs in the (1,1,1,1)
charge configuration], but always lie on the ε1 = ε2 diagonal
line in our search space. Therefore, from here on, we only
consider symmetric operating points ε1 = ε2 = ε (though the
fluctuations in εi are not restricted to be symmetric). At the
sweet spot εss , J ′

eff(εss) ≈ 0 while α(εss) 
= 0 [33]. This only
occurs when interqubit interactions are present and, if one
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FIG. 2. Interacting sweet spot operating point vs interqubit
distance 2R for (a) GaAs and (b) Si. Log plot of maximally entangling
gate time vs 2R for (c) GaAs and (d) Si. For GaAs, the gray region
is where the entanglement power (red) could not consistently be
optimized to within 1% of the maximum value 2/9.

stays predominately in the (1,1,1,1) configuration, only when
the qubits are tilted away from each other (i.e., in a “breathing”
mode rather than a “sloshing” mode). Other sweet spots may
exist at larger, possibly asymmetric, detunings, but we cannot
use HM to explore those regions.

In order to capture the effect of charge noise on an
entangling gate, we define the two-qubit insensitivity in
analogy to the single-qubit case of Ref. [23] as something
roughly akin to the rate of entanglement divided by the rate of
decoherence,

I(ε) = α(ε)

‖ �∇H (ε)‖ . (3)

Figure 1(b) shows that the insensitivity, though finite, increases
by orders of magnitude at an interacting sweet spot.

The HM approximation can break down at high detuning
if the S(0,2) probability is large, so we restrict detunings such
that this probability is below h̄ω0/U (which is why the GaAs
curves in Fig. 1 appear truncated). For Si, two sweet spots are
valid within this range, however, we focus on the lower one
because it is deeper in the regime of HM applicability.

The location of the interacting sweet spot depends on the
interqubit separation 2R, as shown in Figs. 2(a) and 2(b). For
the parameters given above, we find no interacting sweet spots
at interqubit distances greater than 2Rmax = 1544 nm (674
nm) for GaAs (Si). We do not consider interqubit distances
less than four times the intraqubit distance, 2Rmin = 4a, so as
to safely neglect tunneling between adjacent DQDs.

Operating at these new sweet spots is useful because it
generates an entangling operation while providing protection
against charge noise. The entangling power can be quantified
as [34]

ep(U ) = 2

9

(
1 −

∣∣∣∣ tr2[(Q†UQ)TQ†UQ]

16

∣∣∣∣
)

, (4)

where Q is the transformation from the logical basis to the
Bell basis [35]. One can always construct a controlled-NOT

(CNOT) gate from at most two applications of any maximally
entangling gate [36]. We numerically search for the shortest
time τ required to generate a maximally entangling gate in
a single square pulse of the detunings to the sweet spot εss .
The results are shown in Figs. 2(c) and 2(d). For our GaAs
parameters, there is a region of interqubit distances where
no sweet spot gate can directly generate more than 99% of
the maximal entangling power. For our Si parameters, there
is no such excluded region, and gate times are generally
faster in Si due to the smaller distance scale. Note that
gate time actually decreases as the qubits are moved farther
apart. Although this may seem counterintuitive at first, it
can be understood by noting that increasing the interqubit
distance moves the interacting sweet spot to stronger detuning.
Since τ ∝ 1/α(ε), and the nonlocal coupling α(ε) increases
exponentially with the detuning [since α(ε) ∝ J1(ε1)J2(ε2) has
been shown empirically [7]] but, as an electrostatic term, only
decreases polynomially with distance, if we restrict ourselves
to operations at the sweet spot, the gate time will decrease as
the interqubit distance increases.

III. SIMULATIONS

There are two main noise sources for singlet-triplet qubits:
fluctuations in the magnetic field gradient δhi and fluctuations
in the detunings δεi . We now simulate the evolution of the
two-qubit singlet-triplet system when targeting maximally
entangling gates at the interacting sweet spot. The fluctuations
in h are predominantly a low-frequency noise source, with
its power spectral density (PSD) Sh(ω) ∝ 1/ω2.6 [37]. We
thus model the noise in h as quasistatic with a standard
deviation of 8 neV [3] (4.2 neV [30]) in GaAs (Si).
Detuning fluctuations due to charge noise also contains a
quasistatic contribution δε

(QS)
i with a standard deviation of

8 μV × 1 eV/9.4 V (6.4 μeV) in GaAs [8] (Si [30]), but
in addition includes higher-frequency noise δε

(1/f )
i with a

PSD Sε(ω) ∝ 1/ω0.7 [9]. We generate this “1/f ” noise by
superimposing random telegraph noise (RTN) traces with a
range of switching rates ν and varying amplitudes (1/2ν)

0.7−2
2 .

The total PSD is then computed in order to scale the noise
to the experimentally reported magnitude, 0.09 neV/

√
Hz

(10.04 neV/
√

Hz) at 1 MHz for GaAs [9] (Si [38]). The
resulting PSD is shown in Fig. 3. In GaAs, the noise PSD
has been measured to be proportional to 1/ω0.7 for a range
50 kHz < ω < 1 GHz [8,9].

For ease of computation when solving for the evolution
operator, we assume that the effect of the 1/f noise on the
evolution operator of a gate of time length τ is predominantly
from the frequency band ranging from 1/10τ to 10/τ .
We absorb noise at lower frequencies into the quasistatic
contribution and we ignore noise at higher frequencies since
we confirmed numerically that it is too fast compared to the
entanglement dynamics of the evolution to have a noticeable
influence, essentially averaging itself out. We then numerically
construct the 1/f noise from ten RTNs with switching
rates logarithmically distributed uniformly in this range. The
generated noise is ∝1/ω0.7 in the relevant bandwidth and is
Lorentzian elsewhere. Figure 3 shows an example of the noise
generated in this way when τ = 100 and 10 μs.
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FIG. 3. PSDs used in the simulations for two gate times, τ = 100
and 10 μs. The noisy thick solid lines show the 1/ω0.7 power spectral
distributions in the band 1/10τ to 10/τ calculated numerically from
a set of 100 temporal noise traces. For clarity, outside that frequency
band we plot with thin solid lines the analytical Lorentzian behavior
of these PSDs outside the 1/f bandwidth (the numerically calculated
PSD has a slightly shifted low-frequency plateau which is purely
an artifact of the finite duration of the time traces, and it also has
a white noise tail at high frequency which is purely an artifact
of the discretization of time in the numerical integration of the
autocorrelation function). The dotted line shows 1/ω0.7 for reference.

The noisy gate is constructed by computing the time ordered
exponential of Eq. (1) where εi(t) = εss + δε

(QS)
i + δε

1/f

i (t)
and hi = h + δhi , resulting in U ′. We then compare U ′ to the
same operation in the absence of noise U using the averaged
two-qubit fidelity defined in Ref. [39].

While the sweet spot provides protection against charge
fluctuations, it does not suppress δhi noise at all. However,
the quasistatic nature of the magnetic field noise allows its
effects to be suppressed with standard echo techniques. For
example, a π pulse about y applied to both qubits halfway
through the maximally entangling gate operation suppresses
(though not completely removes) the errors due to both δh

and the dc component of δJ since it anticommutes with the
dominant error terms produced by those noises, yet preserves
the entanglement because it commutes with the nonlocal
interaction. We compute gate fidelities both with and without
the π pulses at the halfway point, assuming errorless single-
qubit gates in our simulations, a reasonable approximation
since single-qubit fidelities near 99% are accessible [8]. The
results are shown in Figs. 4(a) and 4(b).

For our GaAs parameters, the magnetic field noise is much
stronger than the residual charge noise coupled in through
higher-order derivatives at the sweet spot, so unless a pulse
sequence is used to suppress magnetic noise, the optimal
strategy is simply to use a sweet spot at the largest possible
R, resulting in the shortest gate times, so as to reduce the
accumulation of magnetic noise. However, if a simple echo
is used to reduce the magnetic noise, its residual effects
become comparable to the residual charge noise. Reducing the

(a) (b)

FIG. 4. Infidelity of maximally entangling gates operated at the
sweet spot, with and without an echo pulse, subject to both δh and
δε(t) noise for the range Rmin < R < Rmax in (a) GaAs and (b) Si.

interqubit distance decreases higher-order sensitivity to charge
perturbations at the cost of increasing the time over which the
residual magnetic field noise accumulates, a tradeoff resulting
in an optimal distance for a sweet spot operation of about 1 μm,
corresponding to a gate time of about 950 ns, and yielding a
fidelity of 99.96%. For our Si parameters, due to the generally
faster gate times and larger charge noise, the two types of errors
are already comparable without using a pulse sequence, and
the tradeoff results in an optimal distance of 2R ≈ 324 nm,
corresponding to τ ≈ 830 ns and a fidelity near 86%. Once
a pulse sequence is used to further suppress magnetic noise,
residual charge noise dominates and the optimal strategy is
simply to use the sweet spot at the smallest possible R,
resulting in the smallest second derivatives. Then one obtains
fidelities of up to 99.86%.

IV. CONCLUSION

Using the Hund-Mulliken model for two capacitively
coupled singlet-triplet qubits, we have found a symmetric
outward detuning, called the interacting sweet spot, where
the effective exchange is insensitive to charge noise. This is
particularly useful for combatting high-frequency noise that is
difficult to correct with existing standard pulse sequences. We
simulate the evolution at the sweet spot under realistic charge
and magnetic field noise and show maximally entangling gates
above the current 90% fidelity [8] are accessible. By using
this interacting sweet spot to perform two-qubit gates and a
noninteracting sweet spot [23,24] to perform the single-qubit
gates, one can ensure that, with the exception of the ramping
times, the qubits remain protected against charge noise for the
entire duration of the computation.
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