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One of the hallmarks of time-reversal-symmetric topological insulators in three dimensions is the topological
magnetoelectric effect (TME). So far, a time-reversal breaking variant of this effect has attracted much attention,
in the sense that the induced electric charge changes sign when the direction of an externally applied magnetic
field is reversed. Theoretically, this effect is described by the so-called axion term. Here, we discuss a time-
reversal-symmetric TME, where the electric charge depends only on the magnitude of the magnetic field but is
independent of its sign. We obtain this nonperturbative result both analytically and numerically, and suggest a
mesoscopic setup to demonstrate it experimentally.
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Introduction. Time-reversal-symmetric (TRS) topological
insulators (TIs) [1,2] are a fascinating class of electronic
materials with insulating bulk and topologically protected
surface states, which are either gapless, break a symmetry,
or feature topological order [3]. Evidence for the existence
of such surface states comes from spin textures observed in
photoemission experiments [4,5] and from the observation of
a half-integer quantum Hall effect [6–9].

From a theoretical point of view, the hallmark response of
TRS TIs in three dimensions (3D) is the topological magne-
toelectric effect [10,11]. So far, a time-reversal (TR) breaking
variant of this effect has attracted much attention. When TR is
broken by, say, a magnetic coating with Zeeman coupling to
the TI surface, a Hall conductivity σxy = θ̃

2π
e2

2π
arises, where

θ̃ is quantized to θ̃ = ±π . Then, the insertion of a magnetic
flux tube gives rise to the accumulation of a charge |Q| = e/2
per flux quantum �0 = h/e. Importantly, sgn(Q) depends on
the direction of the magnetic field inside the flux tube, i.e.,
the response is not TRS. A consequence of the surface Hall
conductivity is quantized Kerr and Faraday rotations [12,13],
which have recently been confirmed experimentally [14–16].

In the presence of TRS, the linear magnetoelectric response
vanishes [17,18]. Thus, strictly speaking, all variants of
the topological magnetoelectric effect are nonlinear effects,
as they require an additional perturbation, say, a Zeeman
coupling on the surface as above. The absence of a linear
magnetoelectric response may seem to be at odds with the fact
that the bulk of a 3D TRS TI has been characterized by the so-
called axion action [10,11] Sθ = θ

2π
e2

2π

∫
d3x dt E · B. Under

a TR transformation, E → E, B → −B, and Sθ → −Sθ .
Classically, this action breaks TRS, but quantum mechanically,
only the Feynman amplitude eiSθ needs to be symmetric. If the
electronic wave functions and electromagnetic fields satisfy
periodic boundary conditions, one can show that this integral
is quantized to integer multiples of 4π2/e2 [19,20]. This
implies that Sθ = θ modulo 2π , hence θ = ±π would respect
TRS also. Now, for a TI with boundaries, by using partial
integration, S±π can be converted into the surface quantum
Hall term discussed above, and it seems naively that the axion
action indeed describes a magnetoelectric effect. However, this
is not the case, as the surface response due to S±π is canceled
by additional contributions from the surface states, in this case
the parity anomaly, to restore TRS [21–23].

In this work, we describe a TR-symmetric topological
magnetoelectric effect. This means that the accumulated
electric charge depends only on the magnitude of the magnetic
flux but is independent of its sign (magnetic field direction).
In particular, we consider a spherical TI threaded by a thin
magnetic flux tube, and subject to a small uniform electric
field [see Fig. 1(a)]. If Qtop(Ez,�) denotes the total charge
on the top half, we show that the additional charge due
to the insertion of one flux quantum is �Q(Ez,±�0) ≡
Qtop(Ez,±�0) − Qtop(Ez,0) = +(e/2) sgn Ez. This response
is TRS, in contrast to the TR-breaking surface quantum
Hall effect [6–9,24–28] described above. In addition, we
numerically analyze a lattice model, and suggest a mesoscopic
setup to demonstrate this effect experimentally. These results
are not related to the wormhole effect [29], which only occurs
when the diameter of the flux tube is much smaller than the
lattice spacing. Here, we instead consider a flux tube that
covers many plaquettes, so that the surface states of the TI
can be described by a continuum two-dimensional (2D) Dirac
Hamiltonian. Then, on an infinite planar surface, inserting
one flux quantum �0 will give rise to a single, spin-polarized
zero-energy state localized (power law) at the tube [30–32].
Our treatment of a finite geometry goes significantly beyond
this result.

Physical picture. The fractional charge e/2 arises because
an occupied delocalized eigenstate is transformed into an
occupied localized eigenstate when adiabatically inserting one
flux quantum: In a spherical geometry, the delocalized state has
equal weight in both hemispheres, whereas the localized state
is contained in one of them; this corresponds to a change of
charge in that hemisphere by e/2. The presence of a small
background field Ez is important for this to happen: Flux
insertion generates two localized states, one at each pole,
which would otherwise hybridize with each other, resulting in
delocalized eigenstates again, and no charge difference would
be observable. Only when the energy difference between the
localized states, due to Ez, is larger than the hybridization, one
localized state will be occupied, and the other one empty.

In order to evaluate the induced charge, we compute the two
eigenstates with energies closest to the Fermi level for each
value of the flux � between zero and �0, and then evaluate the
effect of an external electric field Ez in the subspace spanned by
these states. This projection to a low-energy subspace becomes
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(b)(a)

FIG. 1. Spherical topological insulator threaded by a thin mag-
netic flux tube with flux � and subject to an electric field Ez in vertical
direction. Insertion of one flux quantum induces a charge �Q = e/2.
(a) Geometry. (b) Analytical result for the charge difference in the
top hemisphere, �Q(Ez,�), in the thin flux tube limit for an external
electric field Ez, giving rise to a potential energy difference e2REz

between top and bottom, with e2REz = 0.2vF /R. Here, R denotes
the radius of the sphere and vF is the Fermi velocity on the surface.

exact if one first takes the limit of an infinitesimally thin flux
tube [see Fig. 2(a)], and then considers an infinitesimal electric
field Ez. In this way, the infinitesimal Ez does not polarize the
system for zero flux, but due to the order of limits described
above, at � = �0 the level splitting caused by Ez is much
larger that the hybridization energy. In a numerical calculation,
both the flux tube diameter and the electric field are small but
finite, and the exact analytic result is recovered by finite-size
scaling [see Fig. 3(b)].

The two lowest-energy eigenstates are superpositions of
spin-polarized wave functions ηn(�,x) and ηs(�,x) located
at the north and south pole; explicit expressions are derived
later. Projecting to these states, the Hamiltonian becomes
Ĥ = �sx + V sz where sx,sz are Pauli matrices, � is the
hybridization energy, and V is the projected potential energy

FIG. 2. Low-energy spectrum of a TI with a magnetic flux tube.
(a) Analytical results for a spherical geometry in the limit of a
thin flux tube. Angular momentum m = ± 1

2 ,± 3
2 , . . . is encoded by

different colors. (b) Numerical results for the lattice model, Eq. (11),
in a cuboid geometry with 10 × 10 × 8 sites, a flux tube spanning
3 × 3 plaquettes, and parameters λ = 1, t = 2, and κ = 4t . The
hybridization of the low-energy states after one flux quantum is due
to the finite size of the flux tube.

(b)(a)

−1.2×10−2 1.2×10−2

FIG. 3. Charge induced in the TI lattice model, Eq. (11), in
a cuboid geometry with 18 × 18 × 18 sites in the presence of a
magnetic flux tube of unit flux �/�0 = 1. Parameters are λ = 2.43,
t = λ, κ = 4t , and eU = 0.3λ. (a) Charge distribution for a flux tube
spanning 5 × 5 plaquettes. (b) Scaling of the total induced charge
in the top half of the cube depending on the relative size η of the
flux tube (η ∝ tube diameter). The inset shows that the charge scales
according to a power law.

V (�) = ed(�)Ez with d(�) = 〈ηn|x3|ηn〉 the dipole moment.
The charge response is �Q(Ez,�) = ρ(Ez,�) − ρ(Ez,0) with

ρ(Ez,�) = e

2

w(�)√
V (�)2 + �(�)2

V (�), (1)

and w(�) = ∫
top dx [|ηn(�,x)|2 − |ηs(�,x)|2]. In the limit of

a thin flux tube, the hybridization equals the energy �(�) =
(�/�0 − 1)vF /R for � < �0 where vF is the Fermi velocity
and R the radius of the sphere. The corresponding charge
response is depicted in Fig. 1(b). Since we have �(�) → 0
and w(�) → 1 for � → �0, an infinitesimally small electric
field is sufficient to lift the degeneracy, and we find that
�Q(Ez,�0) = +(e/2) sgn Ez for Ez → 0.

Fractional charge. The appearance of a half-integer charge
due to localized zero-energy states can be interpreted as an
instance of charge fractionalization [31,33–35]. To make the
connection to condensed matter, we consider a general lattice
Hamiltonian Ĥ (A0,A) which depends on an electric potential
A0 and a vector potential A, and has n internal degrees of
freedom per site x. At zero temperature and chemical potential,
the expectation value of the charge density is

〈ρ̂(x)〉A0,A = (−e)
∑
Eα�0

|ηα(x)|2, (2)

where Eα are the energy eigenvalues of Ĥ (A0,A), and
ηα(x) the corresponding eigenfunctions. We now focus on
Hamiltonians with a chiral pseudosymmetry, described by
a local operator Ĉ anticommuting with the Hamiltonian at
zero electric field, {Ĥ (A0 = 0,A),Ĉ} = 0. Microscopically,
such a pseudosymmetry can be realized for Hamiltonians
defined on a bipartite lattice, with hoppings only between
sublattices. Anticommutation implies that eigenstates come
in pairs with positive and negative energy E = Eα = −Eβ ,
and locality means that the corresponding eigenfunctions
have equal probabilities, |ηβ(x)|2 = |Ĉηα(x)|2 = |ηα(x)|2. In
particular, each probability can be expressed as half the sum
of a positive and a negative energy eigenstate, |ηα(x)|2 =
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1
2 (|ηα(x)|2 + |ηβ(x)|2). In the absence of zero-energy states,
whose consequences will be discussed shortly, Eα �= 0, we
can apply the above decomposition to Eq. (2), and find that
the charge density can be expressed as 1/2 times the sum
over all eigenstates. But this sum corresponds to all bands
completely filled, hence the electron density in the absence of
an electric field is spatially uniform and has the constant value
〈ρ̂(x)〉A0=0,A = (−e)n/2.

The charge deviation from a reference configuration with-
out fields is δ〈ρ̂(x)〉A0,A = 〈ρ̂(x)〉A0,A − 〈ρ̂(x)〉A0=0,A=0. Being
constant, the reference charge density is 1/2 times the sum over
any complete set of states, giving

δ〈ρ̂(x)〉A0,A = (−e)

⎡
⎣1

2

∑
Eα�0

|ηα(x)|2 − 1

2

∑
Eβ>0

|ηβ(x)|2
⎤
⎦.

(3)

In high-energy physics, this expression defines the vacuum
charge [31,33]. Here, an occupied state contributes a total
charge of δQ = −e/2, an empty state contributes δQ =
+e/2, while zero-energy states are ambiguous and can be
attributed to either sum. In our setup, the magnetic flux gives
localized zero-energy states, and this formula now describes a
physical, localized charge deviation δQ = ∓e/2 whose sign
is determined by the occupation of the states selected by the
infinitesimal electric field Ez.

Analytical results. Since the low-energy states of a TI
are localized on the surface [18], we consider the Dirac
Hamiltonian on a sphere with radius R [26,36,37],

Ĥ =
(

0 h+
h− 0

)
,

(4)

h± = ∓
(

∂θ + 1

2
cot θ

)
+ i∂φ

sin θ
+ eRAφ,

where φ ∈ [0,2π ), θ ∈ [0,π ] are spherical coordinates, and
energy is measured in units of vF /R with vF denoting
the velocity of Dirac electrons. We have specialized to a
vector potential A which has only an azimuthal component
Aφ(θ ), reflecting rotational symmetry around the flux tube.
We can decompose ψ(φ,θ ) = ψ̃(θ )eimφ/

√
R with half-integer

angular momentum m = ± 1
2 ,± 3

2 , . . . for spin-1/2 electrons.
In the absence of an external field, Aφ = 0, the energy
eigenvalues of the spherical Dirac operator are known to
be nonzero integers E = ±1,±2, . . . whose multiplicities
increase with angular momentum [38,39]. It is tempting to
incorporate the flux tube by using the Aharonov-Bohm effect
and shifting the angular momentum, m → m − N0 [26], where
N0 = �/�0 is the number of flux quanta, but this approach
does not allow the implementation of the correct boundary
condition that the wave function ψ̃(θ ) stays finite as θ → 0,π

for spatial coordinates within the region of the flux tube [40].
To model the flux tube, we express the vector potential

as Nφ(θ ) = eRAφ(θ ) sin θ and substitute x = cos θ . Then,
we choose Nφ(x) = N0 min{1,(1 − |x|)/δ}, which is equal to
the total flux N0 in most of the sphere, but vanishes at the
poles. For a thin flux tube, we have 0 < δ � 1. Using that
Ĥ 2 = diag(h+h−,h−h+), we only need to solve the eigenvalue
equation h+h−ψ↑ = E2ψ↑. Then, the eigenvectors of the

original Hamiltonian are obtained as ψ±E = (±Eψ↑,h−ψ↑)T

if E �= 0. Zero modes, E = 0, are obtained from h−ψ↑ = 0,
or h+ψ↓ = 0. One finds that

h+h− = − d

dx

[
(1 − x2)

d

dx

]
+ 1

1 − x2

[
−m + 1

2
x + Nφ

]2

+ dNφ

dx
+ 1

2
, (5)

resembling the Legendre differential operator. This is a special
case of the Schrödinger-Lichnerowicz formula [41]. We now
use a piecewise ansatz [36,39], here shown for angular
momentum m � 1/2:

ψ↑(x) =

⎧⎪⎨
⎪⎩

(1 − x)(1/2)(m−1/2)(1 + x)(1/2)(m+1/2)−(N0/δ)g0(x)

(1 − x)(1/2)(m−N0−1/2)(1 + x)(1/2)(m−N0+1/2)g(x)

(1 − x)(1/2)(m−1/2)−(N0/δ)(1 + x)(1/2)(m+1/2)g1(x),

(6)

where the pieces are defined for 1 − δ � x � 1, |x| < 1 − δ,
and −1 � x � −1 + δ, respectively. We emphasize that the
wave function stays finite near the poles. In coordinates
ξ = (1 − x)/2, the eigenvalue equation is equivalent to a set of
hypergeometric equations for the functions g0(ξ ),g(ξ ),g1(ξ ),
solved by hypergeometric functions F (a,b,c; ξ ) [42]. Abbre-
viating c = (m + 1/2 − N0) and assuming c �∈ Z, the general
solution for the middle part is

g(ξ ) = αF (c − E,c + E,c,ξ )

+ βξ 1−cF (1 − E,1 + E,2 − c,ξ ) (7)

with parameters α,β that have to be determined by two jump
conditions for derivatives, the first one being

g′(ε)/g(ε) − g′
0(ε)/g0(ε) = N0/ε (8)

with ε = δ/2, and the other similar [18]. To make progress,
we now take the limit of a thin flux tube, ε → 0. Expanding
the solutions g0,g1 to leading order in ε while ignoring powers
of order ε|c| or higher, we find [18] that the jump conditions
can only be satisfied for energies E that fulfill

E = ±
{
c + n if c > 0
0 or 1 − c + n if c < 0,

(9)

where n = 0,1,2, . . . . This spectrum is visualized in Fig. 2(a).
We can now give explicit wave functions for the two

eigenstates with energy closest to zero, used in Eq. (1). For
flux 0 < � < �0, they have angular momentum m = 1/2
and are superpositions η∓ = (ηn ± ηs)/

√
2 of states ηn(x) =

[ψ↑(x),0]T and ηs(x) = [0,ψ↑(−x)]T with

ψ↑(x) = 1√
N

(1 − x)(1/2)(−�/�0)(1 + x)(1/2)(1−�/�0) (10)

in the region |x| < 1 − δ and with normalization N =
R[

√
π�(c)/�(c + 1/2) + O(δc)].

Numerical results. To confirm our analytic result, we have
performed a numerical calculation using a minimal lattice
model for a topological insulator [10]. This model concerns a
four-component fermionic wave function on a cubic lattice. In
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momentum (Bloch) space, the TR-symmetric Hamiltonian is

Ĥ = −2λτz

3∑
μ=1

σμ sin(kμ) + τx

⎛
⎝κ − 2t

3∑
μ=1

cos(kμ)

⎞
⎠,

(11)

where λ,κ,t are real parameters, and σμ and τμ are Pauli
matrices acting on the spin (respectively, orbital) degrees
of freedom. This model is a (strong) topological insulator
in the parameter range 2t � κ � 6t [10]. Coupling to the
electromagnetic field is achieved by Peierls substitution [18].

The induced charge in the presence of a flux tube and a
small electric field is shown in Fig. 3. The charge distribution
δ〈ρ̂(x)〉A0,A is TR symmetric, localized on the surface, and
concentrated at the flux tube. To compare with the analytical
results, we need to take the limit of a thin flux tube by a
scaling analysis where we fix a system size and shrink the
size of the flux tube. The electric potential has to be smaller
than the level spacing, but larger than the hybridization, as
the order of limits is important. We find that the extrapolated
value of the charge difference in the top half is �Q(�0) =
+(0.49 ± 0.02)e, in excellent agreement with our analytical
results. For a topologically trivial insulator (e.g., 6t < ε, not
shown) no significant charge is accumulated at the flux tube.

Experimental realization. A mesoscopic setup for measur-
ing the TR-symmetric charge response is illustrated in Fig. 4.
If we use Bi2Se3 as an example TI [4] with a Fermi velocity
vF ∼ 5 × 105 m s−1 and assume that the system has a diameter
of 1 μm, then the level spacing (9) of the surface states,
�E = h̄vF /R, should be on the order of half a meV. This
is well below the bulk band gap Egap ∼ 0.35 eV, but large
enough to be comparable to an externally applied voltage.
A thin magnetic flux tube could be generated by using a
superconductor to focus the magnetic field, or by pinning two
magnetic vortices, or a giant vortex [44,45]. The numerical
results, Fig. 3, indicate that larger tube diameters still yield an
appreciable charge response, and the value for a thin tube can
be obtained by finite-size scaling. The key signature of a TI is
that the charge is a half-integer multiple of the elementary
charge, as opposed to an integer multiple for purely 2D
materials like graphene. Such an experiment is expected to
be challenging but within reach of present day technology.

FIG. 4. Illustration of an experimental setup to measure the TRS
surface charge. A superconductor focuses the magnetic flux through
the TI, while a scanning single-electron transistor (SET) allows
sensitive charge measurements [43]. The top and bottom sides of
the TI have a voltage difference U .

Conclusion. While the electromagnetism of TRS TIs in 3D
is commonly associated with the axion action, we have argued
that this action is inadequate for describing a physical response,
in particular one that is TRS. In search of the latter, we have
adapted the idea of charge fractionalization from high-energy
physics to a condensed-matter setting. Our main result is that
the insertion of a thin flux tube leads to a pair of localized states
whose hybridization at one flux quantum is much smaller than
the level spacing. Combined with small background electric
field, this allows us to adiabatically transform a delocalized
eigenstate into a localized eigenstate, giving a TRS charge
response of e/2 that is, in principle, amenable to experimental
detection.
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