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Unbinding slave spins in the Anderson impurity model
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We show that a generic single-orbital Anderson impurity model, lacking, for instance, any kind of particle-hole
symmetry, can be exactly mapped without any constraint onto a resonant level model coupled to two Ising
variables, which reduce to one if the hybridization is particle-hole symmetric. The mean-field solution of this
model is found to be stable to unphysical spontaneous magnetization of the impurity, unlike the saddle-point
solution in the standard slave-boson representation. Remarkably, the mean-field estimate of the Wilson ratio
approaches the exact value RW = 2 in the Kondo regime.
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I. INTRODUCTION

Within any approximate technique based on independent
particles, as, e.g., Hartree-Fock, the electron’s quantum num-
bers, i.e., its charge, spin, and, eventually, orbital component,
are inevitably all entangled into single-particle excitations.
This is ultimately the reason why such independent-particle
schemes fail in correlated electron systems where charge
degrees of freedom are instead well separated in energy from
spin and orbital ones.

An efficient and popular trick to disentangle charge from
other degrees of freedom is to enlarge the Hilbert space
by adding auxiliary particles slaves to the physical charge
excitations. There are by now various implementations of
such tricks, starting from the older slave-boson theory [1–3] to
more recent slave-spin [4–6] and slave-rotor [7] ones. Those
auxiliary particles are bound by a product of local constraints
that project the enlarged Hilbert space H∗ onto the physical
subspace H , and concurrently the effective Hamiltonian H∗
of the electrons plus the auxiliary particles onto the original
electron-only one, H . As is common in such cases, H∗
possesses a local gauge invariance that translates into local
conserved quantities. The constraints simply fix the values that
those conserved quantities must have in the physical subspace.

The big advantage of this apparently more cumbersome ap-
proach is that a mean-field decoupling of the electrons from the
slave particles naturally provides the desired disentanglement
of charge from all other degrees of freedom, thus allowing
access to phenomena such as Mott’s localization [3] otherwise
inaccessible by the mean field in the original electron-only
representation.

The problem with the mean field in slave-particle theories is
that the constraints are only satisfied on average, which brings
about unphysical gauge-symmetry breaking, i.e., mean-field
solutions mixing the physical subspace with the nonphysical
one. There is actually an exception where the constraint is
not required: a particle-hole (p-h) symmetric single-orbital
Anderson impurity model (AIM) that is represented in terms
of a resonant level coupled to a two-level system, one level
corresponding to the impurity being singly occupied and the
other to the impurity being empty or doubly occupied. Because
of p-h symmetry, the partition function within the physical
subspace is equal [8] to that in the unphysical one, so that the
former is just half of the partition function calculated in the

whole enlarged Hilbert space without any restriction. In this
representation the Hamiltonian possesses a local Z2 gauge
symmetry, which is spontaneously broken at zero temperature
[9] since the model effectively corresponds to a two-level
system in a subohmic bath [10]. Therefore, the symmetry
breaking is here not a spurious result of the mean field but
a real feature of the model. Since a p-h symmetric Hubbard
model in infinitely coordinated lattices maps within dynamical
mean-field theory (DMFT) [11] just onto that same AIM, one
can show [8] that the free energy of the lattice model can
be straightforwardly obtained by that of its Z2 slave-spin
representation [5,6] without imposing any constraint. One
remarkable consequence of such mapping is that the metallic
phase of the Hubbard model translates into a phase where the
local Z2 gauge symmetry breaks spontaneously [12], which
is not prohibited when the lattice coordination number is
infinite [13], whereas the symmetry is restored in the Mott
insulator. This mapping thus endows the Mott transition of
a genuine order parameter. More recently, a similar trick
of exploiting particle-hole symmetry to get rid of the local
constraints was used [14] to derive a Landau-Ginzburg theory
of the orbital-selective Mott transition in a two-band Hubbard
model at half filling.

In view of the above promising results, it is worth exploring
whether it is still possible to get rid of the constraints away
from particle-hole symmetry, which is precisely the goal of
the present Rapid Communication.

II. THE MODEL

We consider the single-orbital AIM,

H =
∑
kσ

[εkσ c
†
kσ ckσ + Tkσ (d†

σ ckσ + c
†
kσ dσ )]

− U

4
� − μ(n↑ + n↓ − 1) − h(n↑ − n↓), (1)

where nσ = d†
σ dσ and

� = �† = �−1 = −(2n↑ − 1)(2n↓ − 1), (2)

such that �dσ � = −dσ . We assume generically
spin-dependent and p-h nonsymmetric hybridization
amplitudes Tkσ . By contrast, we can always consider, without
loss of generality, a p-h symmetric spectrum εkσ , which
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implies the existence of a one-to-one correspondence between
spin-dependent pairs of momenta, k and p = Cσ (k), such that
εkσ = −εpσ . For convenience, we define for all k such that
εk < 0 the following combinations of fermionic operators,

c1(2)kσ = (
ckσ ± cCσ (k)σ

)
/
√

2, (3)

as well as of hybridization amplitudes,

V1(2)kσ = (
Tkσ ± TCσ (k)σ

)
/
√

2, (4)

so that the Hamiltonian can be rewritten as

H (U,μ,h,V2↑,V2↓) =
∑
kσ

εkσ (c†1kσ c2kσ + H.c.)

+
∑
kσ

2∑
a=1

Vakσ (d†
σ cakσ + H.c.)

− U

4
�−μ(n↑+n↓−1)−h(n↑−n↓),

(5)

where we denote the sets of V2kσ shortly as V2σ , and hereafter
k is restricted to εkσ < 0.

Under a spin-σ particle-hole transformation,

Cσ :

(
dσ → d†

σ ∪
∏

k

(c1kσ → −c
†
1kσ ∪ c2kσ → c

†
2kσ )

)
, (6)

the Hamiltonian parameters change as follows,

U → −U, μ → ∓h, h → ∓μ,

V2↑ → ∓V2↑, V2↓ → ±V2↓, (7)

while V1kσ and εkσ stay invariant. The two signs here refer
to the action of C↑ and C↓, respectively. Since the partition
function Z(U,μ,h,V2↑,V2↓) is invariant under any unitary
transformation, then

Z(U,μ,h,V2↑,V2↓) = Z(−U,−h,−μ,−V2↑,V2↓)

= Z(−U,h,μ,V2↑,−V2↓)

= Z(U,−μ,−h,−V2↑,−V2↓). (8)

III. MAPPING WITHIN THE SLAVE-SPIN
REPRESENTATION

In Ref. [4] a new slave-particle representation of Hubbard-
like models was introduced, which in our case consists in
associating to each impurity-electron species dσ an auxiliary
Ising variable τ a

σ , a = x,y,z. The Hamiltonian in such an
enlarged Hilbert space can be written as

H2(U,μ,h,V2↑,V2↓) =
∑
kσ

[εkσ (c†1kσ c2kσ + H.c.)

+ τ x
σ V1kσ (d†

σ c1kσ + H.c.)

+ i τ y
σ V2kσ (d†

σ c2kσ − H.c.)]

+ U

4
τ z
↑ τ z

↓− μ

2
(τ z

↑+τ z
↓)− h

2
(τ z

↑−τ z
↓).

(9)

This model maps onto the original Hamiltonian Eq. (5) in
a specified physical subspace H of the enlarged Hilbert
space H∗. We introduce the two commuting operators,

P↑ = τ z
↑(2n↑ − 1), P↓ = τ z

↓(2n↓ − 1), (10)

which have eigenvalues pσ = ±1 and can thus be regarded as
parity operators. The Hamiltonian (9) commutes with both P↑
and P↓, so that each eigenstate of H2 can also be chosen as the
eigenstate of Pσ with eigenvalues pσ , σ = ↑,↓. The physical
subspace H comprises all states even under parity, i.e., with
pσ = +1. The projector onto H is thus

P = P↑ P↓ = 1
2 (1 + P↑) 1

2 (1 + P↓), (11)

and corresponds to the operator equivalence

τ z
σ ≡ (2nσ − 1), (12)

which is just the slave-spin constraint [4]. We observe that
the hybridization with the operators c2kσ might seem at odds
with the original representation dσ → τ x

σ dσ in Ref. [4], but
in reality it is not since in the physical subspace, τ x

σ d†
σ ≡

iτ
y
σ d†

σ . We shall prefer the expression (9) of the slave-spin
Hamiltonian, since here the role of the p-h symmetry trans-
formation Cσ is simply played by τ x

σ . Indeed, the equivalences
below hold straightforwardly,

H2(−U,h,μ,V2↑,−V2↓) = τ x
↓ H2(U,μ,h,V2↑,V2↓)τ x

↓ ,

H2(−U,−h,−μ,−V2↑,V2↓) = τ x
↑ H2(U,μ,h,V2↑,V2↓)τ x

↑ ,

H2(U,−μ,−h,−V2↑,−V2↓) = τ x
↑ τ x

↓ H2(U,μ,h,V2↑,V2↓)

× τ x
↓ τ x

↑ ,

so that, through Eq. (8), we find that

Z(U,μ,h,V2↑,V2↓) = Tr(e−βH2(U,μ,h,V2↑,V2↓)P)

= Tr(τ x
↓ e−βH1(U,μ,h,V2↑,V2↓) τ x

↓P)

= Tr(τ x
↑ e−βH1(U,μ,h,V2↑,V2↓) τ x

↑ P)

= Tr(τ x
↑ τ x

↓ e−βH1(U,μ,h,V2↑,V2↓) τ x
↓ τ x

↑ P).

(13)

Since 1 = P + τ x
↑ P τ x

↑ + τ x
↓ P τ x

↓ + τ x
↑ τ x

↓ P τ x
↓ τ x

↑ , it readily
follows that

Z(U,μ,h,V2↑,V2↓) = 1
4 Tr(e−βH2(U,μ,h,V2↑,V2↓)). (14)

Equation (14) is our main result. It states that the partition
function of the original impurity model (5) can be calculated
without any constraint through the partition function of the
model (9).

Following the same line of reasoning, we can demonstrate
that also the physical single-particle Green’s functions in
imaginary time τ of the impurity can be calculated through the
Green’s functions of the composite operators τ x

σ dσ and τ
y
σ dσ

in the slave-spin representation without constraints. In partic-
ular (details can be found in the Supplemental Material [15]),

Gσ (τ ) = −〈T(dσ (τ )d†
σ (0))〉

= −〈
T
(
τ x
σ (τ )dσ (τ )τ+

σ (0)d†
σ (0)

)〉
2, (15)

where τ+
σ = τ x

σ + iτ
y
σ , and 〈· · · 〉2 denotes the thermal average

with the Boltzmann distribution of H2 in Eq. (9) and with
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the operators propagating in imaginary time with that same
Hamiltonian.

A. An equivalent representation

The Hamiltonian (9) lacks a clear separation between
charge and spin degrees of freedom that is desirable above
all when the interaction U is large. The latter is coupled to the
combination τ z

↑ τ z
↓, which is therefore the actual operator that

controls the large-U freezing of valence fluctuations. Since
τ z
↑ τ z

↓ is still an Ising variable, with value ±1, we can exploit a
convenient change of variables and define, following Ref. [16],

τ z
↑ τ z

↓ = −σ z, τ z
↑ = τ z, τ z

↓ = −τ z σ z,

τ x
↑ = τ x σ x, τ x

↓ = σx, (16)

τ
y

↑ = τ y σ x, τ
y

↓ = −τ z σ y.

After this transformation, Eq. (9) changes into

H2(U,μ,h,V2↑,V2↓)

=
∑
kσ

[εkσ (c†1kσ c2kσ + H.c.)

+ σx(τ x δσ↑ + δσ↓)V1kσ (d†
σ c1kσ + H.c.)

+ i(τ y σ x δσ↑ − τ z σ y δσ↓)V2kσ (d†
σ c2kσ − H.c.)]

− U

4
σ z −

[
μ

2
(1 − σ z) + h

2
(1 + σ z)

]
τ z, (17)

where δσσ ′ is the Kronecker delta. Equation (17) notably
simplifies when V2σ = 0. In this case, P↑ = τ z(2n↑ − 1),
with eigenvalues p↑ = ±1, is conserved, and, moreover, the
two subspaces with p↑ = ±1 are actually related by the p-h
transformation C↑, Eq. (6). Therefore, following exactly the
same steps as before but in reverse order, we conclude that
the partition function of the original model (5) at V2σ = 0 can
be calculated as

Z(U,μ,h,0,0) = 1
2 Tr(e−βH1(U,μ,h)), (18)

where

H1(U,μ,h) =
∑
kσ

[εkσ (c†1kσ c2kσ + H.c.)

+ σx V1kσ (d†
σ c1kσ + H.c.)] − U

4
σ z

−
[
μ

2
(1 − σ z) + h

2
(1 + σ z)

]
(2n↑ − 1) (19)

involves now a single auxiliary Ising variable. The mapping
(18) with the Hamiltonian (19) generalizes the results obtained
in Ref. [8] in the presence of a chemical shift of the impurity
level, both spin independent and dependent.

B. Extension to multiorbital impurity models

The mapping in Sec. III can be straightforwardly extended
to a multiorbital impurity model with the Hamiltonian

H = Himp +
∑
kσ

M∑
α=1

εαkσ (c†1αkσ c2αkσ + H.c.)

+
∑
kσ

2∑
a=1

M∑
α=1

Vaαkσ (d†
ασ caαkσ + H.c.), (20)

in the simple and not very realistic case where the isolated
impurity Hamiltonian Himp involves only the occupation
numbers nασ = d†

ασ dασ , where α = 1, . . . ,M is the orbital
index, i.e., Himp = Himp({nασ }), does not include Coulomb
exchange terms. In this circumstance we can exploit the
p-h transformations (6) for each orbital species and follow
exactly the same reasoning as in Sec. III to show that the
partition function Z of the Hamiltonian (20) can be calculated
through

Z = (
1
2

)2M
Tr(e−βH∗ ), (21)

where

H∗ = Himp
({

τ z
ασ

}) +
∑
αkσ

εkασ (c†1αkσ c2αkσ + H.c.)

+
∑
αkσ

[
τ x
aσ V1kaσ (d†

aσ c1kaσ + H.c.)

+ iτ y
aσ V2kaσ (d†

aσ c2kaσ − H.c.)
]
. (22)

IV. MEAN-FIELD SOLUTION

To highlight the importance of a mapping without con-
straints, we here study the simple case where the bath and the
hybridization are both p-h invariant and the only source of
p-h asymmetry is either a Zeeman splitting h or a chemical
shift μ of the impurity level. The Hamiltonian is therefore
that in Eq. (5) at finite h � 0 but μ = 0, or vice versa, with
V2kσ = 0 and spin-independent εkσ = εk and V1kσ = Vk.

We mention that the mean-field approach to the standard
slave-boson representation of such a Hamiltonian at h =
μ = 0 erroneously yields at large U a negative magnetic
susceptibility χimp < 0 (see the Supplemental Material [15] for
details), signaling the instability of the paramagnetic solution
towards spontaneous spin polarization [17]. This is tangible
evidence that imposing the constraint on average may lead to
wrong results.

Let us consider instead our mapping onto the equivalent
Hamiltonians (17) and (19), which do not require any
constraint to be imposed. The simplest mean-field approach
consists in approximating the ground-state wave function with
a factorized one product of a fermionic part |
〉 times an
Ising one |�〉. However, such an approximation is physically
sound as long as the two subsystems are controlled by
well-separated energy scales, otherwise we have no guarantee
that the fluctuations beyond the mean field are negligible.
This is indeed realized in model (19) when U is large. On
the contrary, a sharp distinction of energy scales is absent
in the equivalent representation (17), where, after mean-field
decoupling, the Ising sector (τ ,σ ) ≡ (τ↑,τ↓) always contains
excitation energies within the resonant level spectral width.
Therefore, even though Eq. (17) is equivalent to Eq. (19), the
mean-field approximation is only justified in the latter model
and when U is large, which we shall consider hereafter.

Within mean field applied to model (17), if we denote as

sin θ = 〈�|σx |�〉, cos θ = 〈�|σ z|�〉, (23)
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then the optimal |
〉 is the ground state of the Hamiltonian

H∗ =
∑
kσ

[εkσ c
†
kσ ckσ + sin θ Vk(d†

σ ckσ + c
†
kσ dσ )]

− ε(1 ± cos θ )

(
n↑ − 1

2

)
,

where the plus sign applies to ε = h, while the minus to ε = μ.
Assuming, as usual, that the hybridization function (ω) with
the bath can be approximated as

(ω) =
∑

k

V 2
k

ω − εk + i0+  −i �0 θ (D − |ω|), (24)

where the cutoff D is of the order of the conduction bandwidth,
we readily find that

E∗(θ ) ≡ 〈
|H∗|
〉 = E0 − ε↑(θ )

(
n↑(θ ) − 1

2

)

− �(θ )

π

⎡
⎣ln

eD

�(θ )
+ ln

eD√
ε↑(θ )2 + �(θ )2

⎤
⎦,

(25)

where E0 is the bath energy in the absence of impurity, �(θ ) =
sin2 θ �0, and

ε↑(θ ) = ε(1 ± cos θ ), n↑(θ ) − 1

2
= 1

π
tan−1 ε↑(θ )

�(θ )
.

The variational energy is therefore

E(θ ) = 〈�|〈
|H1(U,0,h)|
〉|�〉 = E∗(θ ) − U
4 cos θ,

which we still have to minimize with respect to θ . It is more
convenient to use � = �(θ (�)) as the variational parameter,
which leads to the saddle-point equation

0 = ∂E(�)

∂�
= − 1

π

⎡
⎣ln

D

�
+ ln

D√
ε↑(θ (�))2 + �2

⎤
⎦

+
(

U

4
± ε

π
tan−1 ε↑(θ (�))

�

)
1

2

1√
�2

0 − �0 �

.

(26)

For large U the solution of Eq. (26) at ε � � reads

�(ε)  �(0) − ε2

4�(0) (1 ± √
1 − �(0)/�0)2, (27)

where �(0)  D exp [−πU/16�0] is the same as in slave-
boson mean-field theory, and can be associated with the Kondo
temperature TK , though overestimated with respect to its actual
value [9]. The susceptibility to the field ε readily follows,

− ∂2E

∂ε2

∣∣∣∣∣
ε=0

 1

π�(0)
(1 ±

√
1 − �(0)/�0)2. (28)

Since �0 � �(0) for U � �0, the impurity contribution to
charge κimp, ε = μ and minus sign, and spin χimp, ε = h and

plus sign, susceptibilities become

κimp  �(0)

4π�2
0

 0,

χimp  4

π�(0)

(
1 − �(0)

2�0

)
 4

π�(0)
. (29)

We emphasize that χimp is positive, unlike in slave-boson
mean-field theory. The impurity contribution to the specific
heat at low temperature only comes from the fermionic degrees
of freedom and reads explicitly

cimp  2π2

3

T

π�(0)
, (30)

thus a Wilson ratio RW = 2 at large U , in agreement with the
exact value.

According to Nozières’ Fermi liquid description of the
Kondo effect [18] (see also Ref. [19]),

κimp = 2ρ∗(1 − AS), χimp = 2ρ∗(1 − AA), (31)

where ρ∗ = 1/π�(0) = Zρ0 is the quasiparticle density of
states at the chemical potential, as opposed to its bare value
ρ0 = 1/π�0, with Z = sin2 θ � 1 the quasiparticle residue,
while AS and AA are the quasiparticle scattering amplitudes
in the symmetric (S) and antisymmetric (A) channels, respec-
tively. The mean-field results (29) are thus compatible at large
U with

AS = −AA = 1, (32)

which, together with Eq. (30), are the bases of Nozières’ local
Fermi liquid theory of the Kondo effect [18], which has been
successfully exploited in very many contexts, not least to
derive universal properties in transport across quantum dots
[20,21]. We emphasize that the universal values in Eq. (32)
simply follow from the expressions of the impurity charge and
spin density vertices, the former proportional to (1 − σ z) and
the latter to (1 + σ z), and the fact that, at large U , σ z  1 with
negligible fluctuations. As a result, the mean-field solution,
σ z → 〈σ z〉, already captures the leading vertex corrections,
which is indeed remarkable. By contrast, the mean-field
approximation does not allow one to recover the nonuniversal
corrections to the Kondo regime, which are polynomials in
1/U for large U [22,23]. These corrections are subleading
in the spin susceptibility, but leading in the charge one [see
Eq. (29)].

We conclude by mentioning that the model (19) can
be still viewed as a dissipative two-level system [10] in a
subohmic bath, as it was the case at ε = 0 [9]. Each potential
well corresponds to a value of σx = ±1, while σ z induces
quantum tunneling between the two wells. Localization inside
a well is signaled by a finite expectation value of σx , and
also corresponds to spontaneous breakdown of the local Z2

gauge symmetry σx → −σx and dσ → −dσ . The Kondo
temperature TK ∼ 〈σx〉2 thus plays the role of a bona fide
order parameter.

In this language, the field ε translates into an assisted
tunneling that does hamper localization but, at least within
mean field, cannot impede it, as shown in Fig. 1 for the case
of a Zeeman splitting ε = h, where we plot the mean-field
values of �(h) ∼ 〈σx〉2

h and magnetization m(h). We believe
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FIG. 1. Mean-field values of the effective hybridization
width �(h) and magnetization m(h) as a function of the magnetic
field h. The parameters are U = 0.1 and �0 = 1.96 × 10−3 in units
of the cutoff D, which correspond to �(0) ≡ TK  4.1 × 10−5.

that the persistence of Z2 gauge-symmetry breaking even in
the presence of the assisted tunneling is real and not just an
artifact of the mean field.

V. CONCLUSIONS

We have shown that a generic single-orbital Anderson
impurity model can be mapped without any constraint onto
a resonant level model coupled to two Ising spins, or just

one in the simpler case when the hybridization with the
bath is particle-hole symmetric. The mean-field decoupling
of electrons from the Ising variables is able to reproduce
quite accurately the magnetic properties of the model even
deep inside the large-U Kondo regime, specifically, the
finite susceptibility χ ∼ 1/TK and Wilson ratio RW = 2. By
comparison, in the same Kondo regime, conventional slave-
boson mean-field theory yields a spin-polarized lowest-energy
solution that unphysically breaks spin SU(2) symmetry.

We also demonstrate how single-particle Green’s functions
of the physical fermions can be calculated without constraints,
which would, for instance, allow exploiting DMFT to study in
the slave-spin representation [12] particle-hole nonsymmetric
Hubbard-like models in lattices with infinite coordination. This
could in some cases be more convenient than directly working
within the physical Hilbert space, though smaller, especially
when one wants to prevent spontaneous symmetry breaking
that usually accompanies a Mott transition, since the slave-spin
Hamiltonian (9) is particle-hole symmetric in terms of the
auxiliary fermions, despite the fact that the Hamiltonian of the
physical electrons is not.
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