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Dynamics of Anderson localization in disordered wires
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We consider the dynamics of an electron in an infinite disordered metallic wire. We derive exact expressions for
the probability of diffusive return to the starting point in a given time. The result is valid for wires with or without
time-reversal symmetry and allows for the possibility of topologically protected conducting channels. In the
absence of protected channels, Anderson localization leads to a nonzero limiting value of the return probability
at long times, which is approached as a negative power of time with an exponent depending on the symmetry
class. When topologically protected channels are present (in a wire of either unitary or symplectic symmetry),
the probability of return decays to zero at long time as a power law whose exponent depends on the number
of protected channels. Technically, we describe the electron dynamics by the one-dimensional supersymmetric
nonlinear sigma model. We derive an exact identity that relates any local dynamical correlation function in a
disordered wire of unitary, orthogonal, or symplectic symmetry to a certain expectation value in the random matrix
ensemble of class AIII, CI, or DIII, respectively. The established exact mapping from a one- to a zero-dimensional
sigma model is very general and can be used to compute any local observable in a disordered wire.
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Introduction. Quantum interference leads to localization
of electrons in the presence of disorder. In one- (1D) and
two-dimensional (2D) systems, even weak random potential
localizes all eigenstates, while in three dimensions (3D)
localization occurs when disorder is stronger than a certain
threshold level [1–3]. In the past few years, the phenomenon
of Anderson localization has witnessed a revival of activity
due to discoveries made in several fields. On the experiment
side, Anderson localization has been observed in a multitude of
systems including cold atoms [4–6], light waves [7], ultrasound
[8], as well as optically driven atomic systems [9]. On the
theory side, dynamical phenomena such as thermalization and
relaxation after a quantum quench in disordered systems have
been the subject of growing interest [10–14]. This has been
inspired, in part, by the discovery of many-body localization
[15–19], which is an interacting analog of Anderson localiza-
tion, and more recently by the proposal to diagnose quantum
chaotic behavior by means of out-of-time-order correlations
[20–24]. Furthermore, the discovery [25–31] and complete
classification [32–36] of topological insulators has opened the
door to a new arena where the interplay between disorder and
topology leads to unusual localization-related effects. These
include ultraslow (Sinai) diffusion at the critical phase between
two topological insulator phases [37], as well as enhanced
localization effects in systems where topologically protected
and unprotected channels coexist [38,39].

Despite more than half a century since Anderson’s original
paper [40], there exist very few exact results [41] about electron
dynamics in the Anderson-localized phase beyond the strictly
1D (single channel) case [42]. In particular, the absence of
exact results for dynamical correlations in disordered wires
(quasi-1D multichannel system) is rather surprising in light
of the remarkable success of the field-theoretic approach
to the problem in terms of the supersymmetric nonlinear
sigma model (NLSM). The NLSM method has proven to
be very efficient in describing static response [43–45] and
has been successfully employed to obtain the conductance,

its mesoscopic fluctuations [44,46,47], as well as the full
distribution function of transmission eigenvalues [39,48–50]
in disordered wires. In addition to being an effective model
for localization problems in general, NLSM is a generic field
theory arising in a number of other problems such as random
banded matrices [45,51] and the dynamics of the quantum
kicked rotor [52–56].

In this Rapid Communication, we provide an exact analytic
expression for an arbitrary local dynamical correlation (LDC)
function of a disordered metallic wire in one of the three
Wigner-Dyson symmetry classes. This is done by showing
that, rather surprisingly, any LDC of the supersymmetric
1D NLSM in the unitary, orthogonal, or symplectic class
is given exactly by a corresponding correlation function of
a zero-dimensional (0D) NLSM in one of the classes AIII,
CI, and DIII, respectively. The latter can always be evaluated
explicitly as a finite-dimensional integral.

Our result is quite general and can be used to compute
any LDC such as correlations of the local density of states at
different energies, out-of-time-order correlations of operators
at nearby points, and diffusion probability of return. We will
focus on the latter quantity since it is the simplest to compute
and the most intuitive to understand [57–63].

Return probability quantifies the relaxation of a local
density perturbation in time. It is readily observable in time-
resolved measurements of the electron density profile, which
has already been experimentally achieved in cold atom setups
[4–6] and in disordered photonic crystals [64–66] where one
of the spatial coordinates plays the role of time. Our theory
allows for the existence of topologically protected channels,
which models an edge of a 2D topological insulator. This, in
particular, applies to the interface between two quantum Hall
samples [38,67–70], graphene zigzag nanoribbons [71] and
multiwall nanotubes, as well as doped Weyl semimetals in a
strong magnetic field [39,72]. It can also be implemented with
cold atoms by coupling the disordered quasi-1D wire [4–6] to
the edge of a 2D Chern insulator [73,74].
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TABLE I. Sigma-model manifolds for Wigner-Dyson classes
Q ∈ G(2n)/G(n) × G(n). The parameter γ accounts for the size of
the matrix and normalizes the supertraces. The effective 0D sigma
model defined on the group manifold G(2n) is used in the integral
representation (10).

Class γ G(n) Noncompact Compact Topology

Unitary 1 AIII GL(n,C)/U(n) U(n) Z
Orthogonal 2 CI SO(2n,C)/SO(2n) Sp(2n) 0
Symplectic 2 DIII Sp(2n,C)/Sp(2n) O(2n) Z2

Formalism. We consider a model of an infinite quasi-1D
metallic wire with N � 1 conducting channels with or without
time-reversal symmetry (TRS) T . The system belongs to one
of three Wigner-Dyson symmetry classes: unitary (no TRS),
orthogonal (T 2 = 1), or symplectic (T 2 = −1). In the absence
of TRS, the numbers of left- and right-moving channels
generally differ by an integer m that represents a topological
invariant and corresponds to the number of chiral topologically
protected channels. The presence of TRS enforces the number
of left- and right-moving channels to be the same. In this case,
it is possible to have a single helical topologically protected
channel if T 2 = −1 (symplectic class) and the total number
of channels N is odd.

Any LDC of a disordered system can be expressed as the
disorder-averaged product of Green’s functions. Dynamical
correlations involve Green’s functions at two different en-
ergies, whereas local correlations involve Green’s functions
between spatially close points within the localization length
ξ = Nl, where l is the mean-free path. The main quantity we
will consider in this work is the return probability W (t), which
is the probability that a diffusing electron returns to the starting
point after time t . It can be expressed in terms of the disorder
average of two Green’s functions as

W (t) =
∫

dω e−iωt

4π2ν

〈
GR

ε+ω(x,x ′)GA
ε (x ′,x)

〉∣∣∣
x ′→x

, (1)

with ν being the density of states. The limit x ′ → x implies that
l � |x ′ − x| � ξ ; the first inequality excludes any nonuniver-
sal ballistic effects.

Disorder averaging of a product of Green’s functions can be
performed following the standard procedure [43–45] that starts
by writing this product as a Gaussian integral over supervector
field ψ . Averaging over disorder leads to a quartic term in ψ

that is decoupled with the help of a supermatrix field Q. The
effective field theory in terms of Q is obtained by means of a
saddle-point approximation followed by a gradient expansion.

The resulting action at an imaginary frequency ω = i	 has
the form of a nonlinear sigma model [38,39,43–45]

S = −πν

4γ

∫
dx str[D(∂xQ)2 − 2	�Q] + Stop,

Stop = m

2

∫
dx str(T −1�∂xT ), Q = T −1�T. (2)

Here D is the diffusion constant and γ is given in Table I. The
topological term Stop involves an integer number m denoting
the difference between the number of left- and right-moving
channels in a unitary wire, or the total number of channels

in a symplectic wire. The matrices T and Q operate in the
direct product of retarded-advanced, Bose-Fermi, and (if TRS
is present) time-reversal spaces in addition to the space of n

replicas. The latter is required to compute an average of 2n

Green’s functions [75]. The matrix � is diag{1, − 1}RA.
The matrix T is an element of a Lie supergroup G(2n) given

in Table I for the three classes [76]. The matrix Q, parametrized
as T −1�T , is invariant under left multiplication T �→ KT by
any matrix K that commutes with �. As a result, Q belongs
to the coset space G(2n)/G(n) × G(n) [77]. We restrict T and
K to have unit superdeterminant sdet T = sdet K = 1, which
is necessary for the proper definition of Stop in Eq. (2) [38].

The topological term Stop is not invariant under gauge
transformations T �→ KT but rather changes by an integral
of a total derivative, much like the action of a charged particle
in an external magnetic field [38]. In the three symmetry
classes, the value of Stop is either identically zero (orthogonal),
0 or iπ (symplectic), or an arbitrary imaginary number
(unitary). Hence the value of m is immaterial in an orthogonal
wire. In symplectic wires, only the parity of m is relevant,
distinguishing the cases of even and odd number of channels.
In the unitary class, m corresponds to the imbalance between
left- and right-moving channels.

Evolution operator and correlation functions. Any LDC
is expressed in the sigma-model language as the expectation
value of a function of Q at a single point

〈F (Q)〉 =
∫

DQF [Q(x = 0)]e−S[Q], (3)

with the action S[Q] given by Eq. (2). Equation (3) represents a
path integral over the field configurations of the matrix Q with
the operator F (Q) inserted at x = 0 (the point at which the
observable is computed). In particular, the return probability
W (t), defined in Eq. (1), can be written as

W (t) = −ν

∫
dω e−iωt

16γ 2
str〈kP+QkP−Q〉, P± = 1 ± �

2
.

(4)

Here k = diag{1, −1}BF is the grading matrix.
Calculation of the expectation value (3) is facilitated by

defining the evolution operator

ψm(T ) =
∫ x=∞,T (∞)=1

x=0,T (0)=T

DQe−S[Q]. (5)

which is a path integral on the half-infinite wire in terms of
Q = T −1�T . The boundary conditions at x = ∞ are applied
to fix the gauge. We write the evolution operator as a function
of T rather than Q to emphasize its gauge dependence. Under
a gauge transformation T �→ KT , it transforms as

ψm(KT ) = (sdet KR)mψm(T ) = (sdet KA)−mψm(T ) (6)

in full analogy to a wave function in magnetic field.
In Eq. (6), KR/A are the two (retarded and advanced) blocks

of the matrix K , each from the supergroupG(n). The restriction
sdet K = 1 ensures the equivalence of the two expressions
in Eq. (6). The product ψm(T )ψ−m(T ) is gauge invariant
and hence depends on Q only. This allows us to write the
expectation value 〈F (Q)〉 as an ordinary rather than path
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integral:

〈F (Q)〉 =
∫

dQψ−m(T )F (Q)ψm(T ). (7)

The function ψm(T ) can be identified with the zero mode of
the transfer matrix Hamiltonian corresponding to the action (2)
with the coordinate x playing the role of a fictitious imaginary
time. Under evolution in x, all nonzero modes exponentially
decay, hence only the zero mode survives in a half-infinite
wire. The transfer matrix Hamiltonian contains a kinetic term,
represented by the Laplace-Beltrami operator on the sigma-
model manifold, and a potential term str �Q [78].

The main result of this Rapid Communication is an explicit
integral representation of ψm(T ) that we construct as

ψm(T ) =
∫

dK(sdet KR)mφ(KT ). (8)

This integral runs over K ∈ G(n) × G(n) constrained by
sdet K = 1. For any function φ(T ), the above integral rep-
resents an average over the gauge group K with the weight
(sdet KR)m that ensures the correct transformation properties
(6). Choosing the function φ to be

φ(T ) = exp

[
− κ

2γ
str P±(T + T −1)

]
, κ = 4πν

√
D	,

(9)
we observe that the integral (8) is annihilated by the transfer-
matrix Hamiltonian, which is shown explicitly in the Supple-
mental Material [78], and hence indeed provides an explicit
expression for the zero mode.

Several comments are in place here about the expression for
the evolution operator [Eqs. (8) and (9)]. First, the integral (8)
can be equivalently written with the factor (sdet KA)−m, while
the function φ(T ) contains any of the two projection operators
P± defined in Eq. (4). It turns out that the result of integration
is independent of the choice of P±. In both cases, integration
over K in Eq. (8) reduces to integration over KR or KA within
the group G(n), since the integrand depends only on one of
the two blocks of K . Second, the very existence of the zero
mode relies crucially on supersymmetry. Both compact and
noncompact replica sigma models do not possess a zero mode
and the function defined in Eqs. (8) and (9) does not vanish
under the action of the transfer-matrix Hamiltonian. However,
the result of such an action does vanish in the replica limit
n → 0. This means that the simple integral representation for
the evolution operator is an exclusive feature of symmetric
superspaces not shared by their compact or noncompact
nonsupersymmetric counterparts. Third, the expression (8)
already captures the correct topological properties of the three
classes. The determinant factor is always 1 in the orthogonal
class and thus drops out for any m, while it equals ±1 in the
symplectic class making it sensitive only to the parity of m.
In the unitary class, the determinant represents a phase factor
and hence distinguishes all integer values of m.

An arbitrary LDC can now be expressed using Eqs. (7), (8),
and (9). The integral for 〈F (Q)〉 contains the functions ψm

and ψ−m. We choose the form with KR integral in (8) for one
of them and with the KA integral for the other. This amounts
to using two different projectors P± for the two functions.
The integrals over Q, KR , and KA can be combined into
a single integral over T ∈ G(2n) leading to the remarkably

simple expression

〈F (Q)〉 =
∫
G(2n)

dT (sdet T )mF (T −1�T )

× exp

[
− κ

2γ
str(T + T −1)

]
, (10)

where the assumption sdet T = 1 has been dropped.
Integrals of the type (10) were previously studied in the

context of Gaussian ensembles of random chiral matrices [79].
Equation (10) relates any local correlation function of a 1D
sigma model at frequency 	 to the correlation function of a
0D sigma model at frequency κ ∼ √

	 in a different symmetry
class. The unitary, orthogonal, and symplectic classes map to
classes AIII, CI, and DIII, respectively (see Table I).

Return probability. We now demonstrate the power of
Eq. (10) and compute the return probability, Eq. (4). We em-
ploy the minimal n = 1 model and use a specific parametriza-
tion of T ∈ G(2) whose details are given in the Supplemental
Material [78]. The result takes the simplest form in terms of
the inverse dimensionless time z:

W (t) = F (z)

8πνD
, z = 1

τ
= 8π2ν2D

t
. (11)

The function F (z) is given by

F U
m (z) = 2e−z

3
[(2z + m + 2)Im(z) + zIm+1(z)], (12a)

F O(z) = 1 + e−z

3
[(3z + 5)I0(z) + (3z + 4)I1(z)], (12b)

F
Sp
e/o(z) = F O(z) − 2 ± e−z/2

3
(z + 2). (12c)

Here Im(z) denotes the modified Bessel function. These
simple expressions capture the complete crossover between
classical diffusion at short times τ � 1 and localization at
long times τ � 1.

The return probability F (τ ) in the absence of any topo-
logical channels is plotted in Fig. 1. At short times τ � 1,
all the curves approach the result for classical diffusion F =√

2/πτ . The leading correction to the classical result is given
by ±1 for the orthogonal/symplectic class indicating weak
localization/antilocalization. In the unitary class, localization
correction (5/4)

√
τ/2π appears only in the second order.

At long times τ � 1, all curves approach a nonzero
saturating value indicating localization. This value is 4/3 for
the unitary and symplectic classes and 8/3 for the orthogonal
class. This is consistent with the fact that the localization length
in the latter case is twice shorter [47,80]. The function F (τ )
approaches its saturation value as a power law ∼1/τ 3, 1/τ 2,
and 1/τ 5 in the unitary, orthogonal, and symplectic classes,
respectively.

Return probabilities in symplectic wires with even and
odd number of channels are compared in Fig. 2. Short-time
asymptotics of F (τ ) is insensitive to the parity to all orders.
This shows that the effects of Z2 topology are invisible on
the perturbative weak localization level [38]. At long times,
the curve for odd number of channels decays to zero as
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FIG. 1. Return probability F (τ ) as a function of dimensionless
time τ (logarithmic scale) for the unitary (black), orthogonal (red),
and symplectic (blue) classes together with the result for classical
diffusion (dashed).

∼1/τ 2 indicating delocalization due to the presence of a single
topologically protected channel.

Return probability in a unitary wire is shown in Fig. 3 for
different values of the channel imbalance m. For m = 0, the
curves decay to zero as ∼1/τm indicating delocalization. The
decay power increases with m since delocalization is enhanced
with increasing the number of topologically protected chan-
nels. It is instructive to compare this result to the classical
picture of diffusion accompanied with a unidirectional drift
due to protected chiral channels [38,72]. In the classical limit,
the return probability is given by F (τ ) = √

2/πτe−m2τ/2 and
decays exponentially at long times. This corresponds to a
Gaussian wave packet that spreads as

√
2Dt and drifts with a

constant velocity m/2πν. Localization corrections turn this
exponential decay of return probability into a power law
indicating that the drifting wave packet leaves a “fat tail”
behind.

Discussion and conclusion. The main result of this Rapid
Communication is the identity (10) that relates an arbitrary
local correlation function of the 1D NLSM at finite frequency
to the correlation function of a 0D NLSM in a different

FIG. 2. Return probability F (τ ) in a symplectic wire with an even
(red) and odd (blue) total number of channels.

FIG. 3. Return probability F (τ ) in a unitary wire for several
different values of the channel imbalance m.

symmetry class. The latter can be evaluated explicitly as a
finite-dimensional integral. The result applies to supersym-
metric models with an arbitrary number of replicas, is valid
for disordered metallic wires in the presence or absence of
time-reversal symmetry, and allows for an arbitrary topological
index m. It remains to be seen whether the result can be
generalized further to superconducting and chiral symmetry
classes. The exact identity between correlation functions of
the 1D and 0D NLSM raises an intriguing possibility that
similar relations could also hold in higher dimensions.

The identity (10) was applied to study diffusion probability
of return, which is the simplest local dynamical observable.
We obtained exact analytic expressions (12) that cover the
complete crossover from the short-time semiclassical (weak
localization) regime to the long-time strong localization
regime. The return probability has a nonzero value at long
times indicating complete localization in wires without topo-
logically protected channels (Fig. 1). This saturation value
is approached as a power law in time with an exponent that
depends on the symmetry class. In the presence of protected
channels, the return probability decays to zero as a power
law in time (Figs. 2 and 3) with an exponent that depends on
the topological index m. This power-law decay arises due to
quantum interference effects and is in sharp contrast with the
exponential decay predicted by the classical model of diffusion
and drift.

The general result (10) can be used to compute various
physical observables in disordered systems exactly. In addi-
tion to the diffusion probability of return considered here,
these observables include out-of-time-order correlations [81],
correlations of the local density of states at different energies
[41] (which can be probed in optical response experiments),
zero-bias anomaly in disordered wires in the presence of
short-range interactions [82], strong Anderson localization
peak in cold atom quantum quenches [83–85], as well as the
proximity effect at the interface between a superconductor and
a disordered wire [86,87].
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