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Conditional counting statistics of electrons tunneling through quantum dot systems
measured by a quantum point contact
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We theoretically study the conditional counting statistics of electron transport through a system consisting
of a single quantum dot (SQD) or coherently coupled double quantum dots (DQD’s) monitored by a nearby
quantum point contact (QPC) using the generating functional approach with the maximum eigenvalue of the
evolution equation matrix method, the quantum trajectory theory method (Monte Carlo method), and an efficient
method we develop. The conditional current cumulants that are significantly different from their unconditional
counterparts can provide additional information and insight into the electron transport properties of mesoscopic
nanostructure systems. The efficient method we develop for calculating the conditional counting statistics is
numerically stable, and is capable of calculating the conditional counting statistics for a more complex system
than the maximum eigenvalue method and for a wider range of parameters than the quantum trajectory method.
We apply our method to investigate how the QPC shot noise affects the conditional counting statistics of the
SQD system, going beyond the treatment and parameter regime studied in the literature. We also investigate
the case when the interdot coherent coupling is comparable to the dephasing rate caused by the back-action of
the QPC in the DQD system, in which there is considerable discrepancy in the calculated conditional current
cumulants between the population rate (master-) equation approach of sequential tunneling and the full quantum
master-equation approach of coherent tunneling.
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I. INTRODUCTION

The time-resolved measurement of electron charges
through a single quantum dot (SQD) by a nearby quantum
point contact (QPC) detector has been demonstrated experi-
mentally [1–6]. The ability to detect individual charges in real
time makes it possible to count electrons one by one as they
pass through the quantum dot (QD) [1–11]. The time-resolved
charge detection has allowed the precise measurement of the
QD shot noise at subfemtoampere current levels, and the full
counting statistics (FCS) of the current [4–6].

FCS in quantum transport provides information of quantum
statistical properties of transport phenomena and is studied
mostly based on the computation of its moment or cumulant
generating function [12–14]. Computing the generating func-
tion is more convenient in practice than the direct calculation
of the probability distribution function and then performing
average over the powers of electron number or current. A
theoretical approach called number-resolved master-equation
approach has been applied to calculate the generating functions
and unconditional FCS for the nanostructure electron transport
problems [13–19].

When a measurement is made on a single quantum system
and the result is available, the state or density matrix of the
system is a conditional state conditioned on the measurement
result [20–22]. Thus, the conditional state of the system is
important when its subsequent time evolution is concerned. If a
single system is under continuous monitoring and one wants to
map out the system state evolution conditioned on the contin-
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uous in time measurement results, the conditional (Bayesian)
stochastic Schrödinger or stochastic master-equation approach
or the quantum trajectory theory (quantum Monte Carlo
method) can be employed [20–24]. Each quantum trajectory
can mimic the stochastic system state evolution conditioned
on the continuous in time measurement outcomes in a single
run of a realistic experiment. The stochastic element in the
quantum trajectory corresponds exactly to the consequence
of the random outcomes of the measurement record [20–24].
Thus, the quantum trajectories have the full information of the
statistical properties about the measured system and can give
insight to the unconditional quantities.

In some cases, one is concerned with the system state or
physical observables conditioned on some average quantities
(e.g., average current) in a given period of time rather than
instantaneous and continuous in time measurement results.
For example, the conditional counting statistics of electron
transport through a SQD coupling to a QPC has been measured
in the experiment by Sukhorukov et al. [25]. The conditional
FCS that is the statistical current cumulant of one system
given the observation of a particular average current in time
t in the other system could be substantially different from its
unconditional counterpart. A theoretical approach that utilizes
the number-resolved rate (master) equation of a bistable SQD
system and neglects the QPC shot noise was put forward to
calculate the steady-state conditional FCS for the SQD-QPC
system [25,26].

One of the purposes of this paper is to provide a connection
with, and a unified picture of, the quantum trajectory, the
(partially reduced) number-resolved master equation, and
the unconditional (reduced) master-equation approaches. We
show that the master equations for the reduced or partially
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reduced density matrix can be simply obtained when an aver-
age or partial average is taken on the conditional, stochastic
density matrix (or quantum trajectories) over the possible
outcomes of the measurements [21–23].

Another purpose of this paper is to investigate the effect
of QPC shot noise on the conditional FCS of the SQD-QPC
system as well as to develop an efficient and systematic way
to calculate the conditional FCS for more complex systems
of interacting nanoscale conductors. Our investigation goes
beyond the analysis presented in Ref. [25]. In Ref. [25],
the number-resolved population master (rate) equation for
bistable system was first transformed into the counting field
(inverse Fourier transform) space and then the eigenvalue with
the smallest absolute real part (or maximum eigenvalue) in
the matrix of the transformed master equation was found
analytically. To evaluate the integral in partial or mixed
Fourier transform space analytically with the analytic form
of the eigenvalue to obtain the conditional steady-state current
moment (cumulant) generating function, a further approxima-
tion to neglect the QPC shot noise was made [25]. For the
experimental parameters used in Ref. [25], the QPC shot noise
as compared to the noise contribution of the random telegraph
signal in the QPC current trace induced by random electrons
tunneling on and off the QD is indeed small and can be
neglected. On the other hand, for the parameter regimes where
the QPC shot noise cannot be ignored, obtaining analytical
expressions for the conditional steady-state current moments
or cumulants is very difficult. Furthermore, for more com-
plicated interacting nanoscale conductors with the dimension
of the matrix equation of the master equation growing up, to
find analytical solution of the maximum eigenvalue becomes
very hard, not to mention to obtain the analytical forms of the
conditional steady-state current moment or current cumulant
generating function. Besides, direct numerical evaluation of
the conditional cumulant generation function in the same
way as in Ref. [25] and then taking partial derivatives to
obtain conditional cumulants are quite numerically unstable.
In these cases, the quantum trajectory approach may give
the conditional states or conditional current cumulants by
simultaneously simulating an ensemble of current outcomes
and corresponding quantum trajectories, and then categorizing
and averaging the current outcomes of one system (e.g.,
the QD system) for each of the observed average current
values in the other system (e.g., the QPC). However, in
some parameter regimes where the probabilities to observe
the average QPC current in certain values are very small,
it is then computationally expensive to simulate and map
out the conditional current cumulant in the whole parameter
space of the average QPC current by the quantum trajectory
method as an extremely large number of trajectories are
required to have enough statistical samples in those very low
probability domains. Thus, developing a method to evaluate
the conditional counting statistics directly and effectively for
more complex systems and for a wide range of parameter space
is desirable. It is one of the aims of the paper to develop such
an efficient method.

The paper is organized as follows. In Sec. II, we introduced
the model and Hamiltonian of the QD-QPC system that will
be considered. In Sec. III, we present the unconditional master
equation for the reduced density matrix of the QD system.

We then derive the conditional, stochastic master equation (or
quantum trajectory equation) that mimics the dynamics of the
QD system conditioned on the observed random outcomes
in Sec. IV. Then, the number-resolved master equation and
its inverse Fourier transform in the counting field space are
discussed in Sec. V. The procedure to calculate the uncondi-
tional and conditional FCS are described in terms of generating
functional approach in Sec. VI. Here, we also introduce our
efficient method to calculate the moments and cumulants of the
conditional FCS. Section VII is devoted to the presentation and
discussion of the results we obtain. Specifically, we provide a
thorough analysis using the method of Ref. [25], the quantum
trajectory theory, and the efficient method we develop to
simulate and calculate the conditional current and noise of
the SQD-QPC and DQD-QPC systems. We also investigate
how the QPC shot noise affects the conditional QD current
cumulants. Finally, a short conclusion is given in Sec. VIII. The
detailed procedure of the semiempirical method used to count
the number of tunneling electrons through the QD system in
each random current trace of quantum trajectories is described
in the Appendix.

II. QUANTUM DOT SYSTEM MEASURED BY A QPC

We consider a system consisting of either a SQD [see
Fig. 1(a)] or coherently coupled DQD’s [Fig. 1(b)] measured
by a QPC [4,5,15,25,27]. The QD system is connected to two
leads (reservoirs) biased so that electrons can tunnel onto the
SQD (onto the left dot of the coherently coupled DQD’s) from
the left lead and off the SQD (off the right dot of the DQD’s)
onto the right lead. The QPC serves as a sensitive electrometer
since its tunneling barrier can be modulated by the charge on
a nearby QD. In our setup, as the electron moves into the SQD
(the right dot of the DQD’s), it changes the tunnel barrier of
the nearby QPC. In this way, the modulated current through
the QPC can be used to continuously monitor the occupation
of the QD. We will follow the treatment given in Refs. [21–23]
to describe the dynamics of the system.

The Hamiltonian for the QD system coupling to the QPC
can be written as

H = HQD + HQPC + Hcoup, (1)

Γd

γL γR

Ω γR
dγL

(a)

(b)

FIG. 1. Schematic illustration of (a) SQD and (b) coherently
coupled DQD’s connected to two Fermi reservoirs (left and right
leads) by tunnel junctions, measured by a charge-sensitive QPC
detector. Electrons tunneling through the QD modulate the tunneling
current through the QPC.

195440-2



CONDITIONAL COUNTING STATISTICS OF ELECTRONS . . . PHYSICAL REVIEW B 96, 195440 (2017)

where

HQD = HS +
∑

k

h̄ωLka
†
LkaLk + h̄ωRka

†
RkaRk

+
∑

k

tLkaLkc
†
i + tRkaRkc

†
j + H.c., (2)

HQPC = h̄
∑

k

(
ωska

†
skask + ωR

k a
†
dkadk

)
+

∑
k,q

(Tkqa
†
skadq + T ∗

qka
†
dqask), (3)

Hcoup =
∑
k,q

c
†
j cj (χkqa

†
skadq + χ∗

qka
†
dqask), (4)

where HQD here is the Hamiltonian for the QD system
consisting of the left lead, right lead, and the central part
system and the tunneling between them. The symbols aLk , aRk

and h̄ωLk , h̄ωRk are, respectively, the electron annihilation
operators and energies for the left and right reservoir states
for the QD system at wave number k. For a SQD system, we
have the indices i = j = 2 in HQD and the Hamiltonian of the
central part system is just

HS = h̄ω2c
†
2c2, (5)

and for a DQD system, we have i = 1, j = 2 in HQD and

HS = h̄ω1c
†
1c1 + h̄ω2c

†
2c2 + h̄�(c†1c2 + c

†
2c1). (6)

Here, cj (c†j ) and h̄ωj represent the electron annihilation
(creation) operator and energy for a single-electron state in
dot j , respectively. In other words, dot 2 denotes the central
QD in the SQD system, and dots 1 and 2 stand for the
left dot and right dot, respectively, in the DQD system. The
tunneling Hamiltonian for the QPC detector is represented by
HQPC. Similarly, ask , adk and h̄ωsk , h̄ωdk are, respectively, the
electron annihilation operators and energies for the source and
drain reservoir states for the QPC at wave number k. Hcoup

[Eq. (4)] describes the interaction between the QPC detector
and dot j = 2. When the electron is located in dot j = 2,
the effective tunneling amplitude of the QPC detector changes
from Tkq → Tkq + χkq . We investigate here a simpler case of
electrons transport through the DQD-QPC system in which the
QPC couples only to the right dot (dot 2) of the DQD system
[5,15,27,28] to illustrate the usage of our method and discuss
the effects of QPC shot noise and interdot coupling on the
conditional current cumulants. Our approach can be straight-
forwardly generalized to the case where the QPC couples to
both dots with different coupling strengths [5,10,11,29–31].

III. UNCONDITIONAL MASTER EQUATION

By following the treatment in Refs. [15,21,22], the (uncon-
ditional) zero-temperature, Markovian master equation of the
reduced density matrix for the quantum dot (QD) system can
be obtained as

ρ̇(t) = − i

h̄
[HS,ρ(t)] + γLD[c†i ]ρ(t) + γRD[cj ]ρ(t)

+D[T + Xnj ]ρ(t) (7)

≡ Lρ(t), (8)

where nj = c
†
j cj is the occupation number operator of dot

j measured by the QPC. In Eq. (7) and the rest of the
paper, the Hamiltonian of the QD system Hs takes the form
of Eq. (5) for the SQD system and Eq. (6) for the DQD
system, and the subscripts i = j = 2 for the SQD system
and i = 1 and j = 2 for the DQD system. The parameters
T and X are given by D = |T |2 = 2π |T00|2gsgdV/h̄, and
D′ = |T + X |2 = 2π |T00 + χ00|2gsgdV/h̄. Here, D and D′
are the average electron tunneling rates through the QPC
barrier without and with the presence of the electron in dot
j = 2, respectively, eV = μs − μd is the external bias applied
across the QPC (μs and μd stand for the chemical potentials
in the source and drain reservoirs, respectively), T00 and χ00

are energy-independent tunneling amplitudes near the average
chemical potential, and gs and gd are the energy-independent
density of states for the source and drain reservoirs. γL and γR

are the tunneling rates from the left lead to the QD system and
from the QD system to the right lead, respectively. In Eq. (7),
the superoperator D is defined as

D[B]ρ = J [B]ρ − A[B]ρ, (9)

where J [B]ρ = BρB†, A[B]ρ = (B†Bρ + ρB†B)/2. Fi-
nally, Eq. (8) defines the Liouvillian operator L.

The conditional dynamics is quite different from its
unconditional counterpart. For example, the unconditional
dynamics of the number of electrons on the SQD system
follows immediately from Eqs. (7) and (5) as

d〈n2〉(t)
dt

= γL[1 − 〈n2〉(t)] − γR〈n2〉(t), (10)

where 〈n2〉(t) = Tr[c†2c2ρ(t)]. Clearly, the average current
through the SQD does not depend at all on the current through
the QPC in this model. This is because the Hamiltonian
describing the interaction between the SQD and the QPC
commutes with the number operator n2. However, if we ask
for the conditional dynamics of the SQD given an observed
averaged current in time t or given an instantaneous current in
time dt through the QPC, we need a different equation or even
a stochastic equation for 〈n2〉c.

IV. CONDITIONAL MASTER EQUATION
AND QUANTUM TRAJECTORIES

There are two classical stochastic currents through this
system: the current I (t) through the QPC and the current J (t)
through the QD. Equation (7) describes the time evolution
of the reduced density matrix when these classical stochastic
processes are averaged over. To make contact with a single
realization of the random outcomes of the measurement
records and study the stochastic evolution of the QD state,
conditioned on a particular measurement realization, we need
the conditional master equation. We first define the relevant
point processes that are the source of the classically observed
stochastic currents.
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We specify the quantum-jump conditional dynamics
through the QPC by defining the point processes [21–24]

[dNc(t)]2 = dNc(t), (11)

E[dNc(t)] = ζ Tr[ρ̃1c(t + dt)]

= ζ [D + (D′ − D)〈n2〉c(t)]dt

= ζP1c(t)dt, (12)

where dNc(t) is a stochastic point process which represents
the number (either zero or one) of tunneling events in the QPC
seen in an infinitesimal time dt ,

ρ̃1c(t + dt) = J [T + χn2]ρc(t)dt (13)

is the unnormalized density matrix [21,22] given the result of
an electron tunneling through the QPC barrier at the end of the
time interval [t,t + dt), 〈n2〉c(t) = Tr[n2ρc(t)],

P1c(t) = D + (D′ − D)〈n2〉c(t), (14)

and E[Y ] denotes an ensemble average of a classical stochastic
process Y . The subscript c indicates that the quantity to which
it is attached is conditioned on previous observations of the
the occurrences (detection records) of the electrons tunneling
through the QPC barrier in the infinitesimal time dt in the
past. The factor ζ � 1 represents the fraction of tunneling
events which are actually registered by the circuit containing
the QPC detector. The value ζ = 1 then corresponds to a
perfect detector or efficient measurement. By using the fact
that current through the QPC is I (t) = e dN(t)/dt , Eq. (12)
with ζ = 1 states that the average current is eD when the dot
is empty, and is eD′ when the dot is occupied.

Similarly, we can specify the quantum-jump conditional
dynamics through the QD system by defining two stochastic
point processes dMLc(t) and dMRc(t) which represent, respec-
tively, the numbers (either zeros or ones) of tunneling events
from the left lead to dot i and from dot j to the right lead seen
in an infinitesimal time dt [21–24]:

[dMLc(t)]2 = dMLc(t), [dMRc(t)]2 = dMRc(t), (15)

E[dMLc(t)] = γL〈cic
†
i 〉c(t)dt = γL[1 − 〈ni〉c(t)]dt, (16)

E[dMRc(t)] = γR〈c†j cj 〉c(t)dt = γR〈nj 〉c(t)dt, (17)

where 〈nj 〉c(t) = Tr[c†j cjρc(t)].
Unraveling both the QPC and the QD equations, we write

the conditional master equation at zero temperature as

dρc(t) = dMLc

[ J [c†]

1 − 〈ni〉c(t)
− 1

]
ρc(t)

+ dMRc

[ J [c]

〈nj 〉c(t)
− 1

]
ρc(t)

− dt{γLA[c†i ]ρc(t) + γRA[cj ]ρc(t)

− γL[1 − 〈ni〉c(t)]ρc(t) − γR〈nj 〉c(t)ρc(t)}

+ dNc

[J [T + χn2]

Pc(t)
− 1

]
ρc(t)

+ dt{−(i/h̄)[HS,ρc(t)] − A[T + Xn]ρc(t)

+ (1 − ζ )J [T + Xn]ρc(t) + ζ P1c(t)ρc(t)}. (18)

We now focus on the conditional dynamics of the QD as the
QPC current I (t) is continuously monitored. In the experiment,
the observed values of the random telegraph process are not
fixed at the average values D, D′, but are themselves stochastic
processes as electrons tunnel through the QPC. We average
over the jump process onto and off the QD. The stochastic
quantum-jump master equation of the density matrix operator,
conditioned on the observed event in QPC current in the case
of inefficient measurement in time dt , can be obtained as

dρc(t) = dNc(t)

[J [T + Xn]

P1c(t)
− 1

]
ρc(t)

+ dt{−(i/h̄)[HS,ρc(t)] − A[T + Xn]ρc(t)

+ (1 − ζ )J [T + Xn]ρc(t) + ζ P1c(t)ρc(t)

+ γLD[c†i ]ρc(t) + γRD[cj ]ρc(t)}. (19)

In the quantum-jump case, in which individual electron
QPC tunneling current events can be distinguished, the QD
system state [see Eq. (19)] undergoes a finite evolution (a
quantum jump) when there is a detection result [dNc(t) =
1] at randomly determined times (conditionally Poisson
distributed).

As Fig. 1(c) of Ref. [25] suggests, the current through the
QPC could be quite large and while we may be able to resolve
the random telegraph signal jumps between the two average
values D and D′, we may not have sufficient bandwidth in
the circuit to resolve the jump events dN(t) through the QPC.
The individual tunnel events through the QPC are too rapid to
be resolved in the external circuit, resulting in a process more
like a white-noise stochastic process. This leads us to make
the diffusive approximation to the quantum-jump stochastic
master equation for describing the conditional QPC current
dynamics. We now replace the quantum-jump master equation
for the QPC with the quantum diffusion stochastic master
equation. In this case, the total number of electrons that tunnel
through the QPC in a time δt , large compared to the inverse
of the jump rate, but small compared to the typical circuit
response time, is considered as a continuous diffusive variable
satisfying a Gaussian white-noise distribution [21,22]:

δN(t) = {ζ |T |2[1 + 2 ε cos θ 〈n2〉c(t)] +
√

ζ |T |ξ (t)}δt,
(20)

where ε = (|X |/|T |) � 1, θ is the relative phase between X
and T , and ξ (t) is a Gaussian white noise characterized by

E[ξ (t)] = 0, E[ξ (t)ξ (t ′)] = δ(t − t ′). (21)

Here, E denotes an ensemble average. In stochastic calculus,
ξ (t)dt = dW (t) is known as the infinitesimal Wiener
increment. In obtaining Eq. (20), we have assumed that
2|T ||X | cos θ 	 |X |2. Hence, for the quantum-diffusive
equations obtained later, we should regard, to the order
of magnitude, that | cos θ | ∼ O(1) 	 ε = (|X |/|T |) and
| sin θ | ∼ O(ε) � 1.

By taking the diffusive limit on the QPC, the quantum-
diffusive conditional master equation for the case of inefficient
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measurements can be found as

ρ̇c(t) = − i

h̄
[HS,ρc(t)]

+ γLD[c†i ]ρc(t) + γRD[cj ]ρc(t) + D[T + Xn2]ρc(t)

+ ξ (t)

√
ζ

|T | [T ∗X n2ρc(t) + X ∗T ρc(t)n2

− 2 Re(T ∗X )〈n2〉c(t)ρc(t)]. (22)

We will now make the simplifying assumption that θ = 0.
In that case, T and χ are real and D = |T |2, D′ = |T + χ |2.
This corresponds to D′ > D as in the experiment of Ref. [25].
The conditional current through the QPC, Ic(t) = eδN (t)/δt ,
conditioned on the dot occupation, satisfies the stochastic
differential equation

Ic(t) = eζD[1 − 2ε〈n2〉c(t)] + e
√

ζDξ (t) (23)

with

ε = 1 −
√

D′

D
. (24)

We can now find from Eq. (22) the conditional dynamics of
the dot occupation conditioned on the observed instantaneous
QPC current in time dt . For the SQD-QPC system, we have

d〈n2〉c(t)

dt
= γL[1 − 〈n2〉c(t)] − γR〈n2〉c(t)

−2χ
√

ζ [1 − 〈n2〉c(t)]〈n2〉c(t)ξ (t). (25)

Note that the noise “turns off” when the dot (dot 2) is either
occupied or empty. This can be understood if we regard
the QPC current as a measurement of the dot occupation.
Suppose that γL �= 0, and γR = 0, in which case an electron
will eventually tunnel onto the dot. The QPC current must
eventually revel this fact, as the current through the QPC will
increase. After a small interval of time, we will be confident
that this is a real effect and not a random fluctuation and
the conditional mean 〈n2〉c becomes locked on unity with no
further fluctuation. A parallel argument can be made in the
case that γL = 0, γR �= 0. We thus see that this feature of the
noise is a reflection of the fact that monitoring the QPC current
gives us information on the state of the QD.

Similarly, we obtain from Eq. (22) the equations of motion
to determine the DQD coherence and occupations conditioned
on the observed instantaneous QPC current in time dt as

d〈n1〉c
dt

= γL(1 − 〈n1〉c) − i�(〈c†2c1〉c − 〈c†1c2〉c)

+ 2χ
√

ζ ξ (t)(〈n1n2〉c − 〈n1〉c〈n2〉c), (26)

d〈n2〉c
dt

= −γR〈n2〉c − i�(〈c†1c2〉c − 〈c†2c1〉c)

+ 2χ
√

ζ ξ (t)(〈n2〉c − 〈n2〉2
c), (27)

d〈c†1c2〉c
dt

= −γL + γR + χ2

2
〈c†1c2〉c + i�(〈n2〉c − 〈n1〉c)

+ 2χ
√

ζ ξ (t)

(
1

2
− 〈n2〉c

)
〈c†1c2〉c, (28)

FIG. 2. Simulation of (a) the conditional expectation value of
the electron occupation number 〈n2〉c and (b) the QPC current. The
QPC current is taken with bandwidth of 100 kHz and through a
Butterworth filter with eight order and cutoff frequency 4 kHz as
in the experiment of Ref. [25] with parameters (D,D′, γL,γR) =
(4.85 × 1010, 5.03 × 1010,160, 586) Hz.

d〈c†2c1〉c
dt

= −γL + γR + χ2

2
〈c†2c1〉c + i�(〈n1〉c − 〈n2〉c)

+ 2χ
√

ζ ξ (t)

(
1

2
− 〈n2〉c

)
〈c†2c1〉c, (29)

d〈n1n2〉c
dt

= −(γL + γR)〈n1n2〉c + γL〈n2〉c
+ 2χ

√
ζ ξ (t)(1 − 〈n2〉c)〈n1n2〉c. (30)

It is understood that all the conditional quantum average
quantities in Eqs. (26)–(30) carry time dependence, i.e.,
〈. . . 〉c ≡ 〈. . . 〉c(t).

The quantum trajectory theory provides us with full
information of the statistical properties about the measured
system as that of an experimentalist who actually performs a
time-resolved transport experiment. One can use Eq. (25) for
the SQD system and Eqs. (26)–(30) for the DQD system to
calculate the conditional charge occupation number 〈n2〉c(t)
and then use Eq. (23) to mimic the measured QPC current
record Ic(t) continuously in time in a single run of a realistic
experiment. We show in Fig. 2(a) a typical realization of the
trajectories of 〈n2〉c(t) for the SQD-QPC system obtained by
the quantum trajectory theory and in Fig. 2(b) its corresponding
conditional QPC current Ic(t) taking into account the detection
bandwidth in experiment [25]. The simulated QPC current
shows random switchings between two average currents,
which correspond to the single-electron tunneling onto and off
the QD. It indeed resembles the typical measured QPC current
shown in Fig. 1(c) of Ref. [25]. Simulating a great amount
of trajectories by many different random realizations of ξ (t),
one is able to calculate all the statistical transport quantities
of the QD systems, such as the conditional counting statistics.
One can obtain the time-average QPC current I in time t by
integrating the instantaneous QPC current Ic(t) and acquire
the average QD current J conditional on QPC current I in
time t in its corresponding 〈n2〉c(t) trajectory (see Sec. VII B
for details). We simulate a great amount of trajectories and
sort J by different I , and use the formulas of the conditional
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moments and cumulants to obtain the conditional counting
statistics from the data collected from these trajectories.

It is easy to see that the ensemble-average evolution of the
conditional master equation (22) reproduces the unconditional
master equation (7) by simply eliminating the white-noise term
using Eq. (21). Similarly, averaging Eq. (19) over the observed
stochastic process, by setting E[dNc(t)] equal to its expected
value (12), gives the unconditional, deterministic master
equation (7). It is also easy to verify that for zero efficiency
ζ = 0 [i.e., also dNc(t) = 0], the conditional equations (19)
and (22) reduce to the unconditional one, (7). That is, the
effect of averaging over all possible measurement records is
equivalent to the effect of completely ignoring the detection
records or the effect of no detection results being available.

V. NUMBER-RESOLVED MASTER EQUATION

To study the current cumulants of one conductor (e.g., the
QD system) conditioned on the average current of the other
conductor (e.g., the QPC), we turn to the number-resolved
master equation [15,20,32,33] or the master equation for the
partially reduced density matrix [23,24] of the joint QD and
QPC system. If N electrons have tunneled through the QPC
and M electrons have tunneled through the right junction
of the QD at time t + dt , then the accumulated number of
electrons in the drain of the QPC at the earlier time t , due
to the contribution of the jump term of the QPC, should be
(N − 1) for M electron in the drain of the QD, and it should
be (M − 1) in the drain (right lead) of the QD system due to
the contribution of the jump term of the QD for N electron
in the drain of the QPC [23,24]. Hence, after writing out the
number dependence N , (N − 1), M , or M − 1 explicitly for
the density matrix in Eq. (7), we obtain the master equation
for the “partially” reduced density matrix as

ρ̇(N,M,t) = −(i/h̄)[HS,ρc(N,M,t)]

+ ζJ [T + Xn]ρ(N − 1,M,t)

+ (1 − ζ )J [T + Xn]ρ(N,M,t)

−A[T + Xn]ρ(N,M,t)

+ γLD[c†i ]ρ(N,M,t) − γRA[cj ]ρ(N,M,t)

+ γRJ [cj ]ρ(N,M − 1,t). (31)

If the sum over all possible values of N and M is
taken on the “partially” reduced density matrix [i.e., ρ(t) =∑

N,M ρ(N,M,t)], Eq. (31) then reduces to Eq. (7).

For simplicity, in the following we set the QPC detection ef-
ficiency ζ = 1 corresponding to perfect detections or efficient
measurements. We deal with the case of the SQD-QPC system
first. After evaluating Eq. (31) in the occupation number basis
|0〉 and |1〉 of the SQD, we obtain the rate equations as

ρ̇00(N,M,t) = |T |2ρ00(N − 1,M,t) − |T |2ρ00(N,M,t)

− γLρ00(N,M,t) + γRρ11(N,M − 1,t), (32)

ρ̇11(N,M,t) = |T + X |2ρ11(N − 1,M,t)

− |T + X |2ρ11(N,M,t)

+ γLρ00(N,M,t) − γRρ11(N,M,t), (33)

where ρaa = 〈a|ρ|a〉 with a = 0,1 referring to the QD
occupation number states.

To obtain the solution of ρaa(N,M,t) with a = 0,1 in the
number-resolved or the “partially” reduced density matrix
approach, we can first apply a two-dimensional Fourier
transform (to the counting field space) [23,24,32,33]

ρaa(k,q,t) =
∑
N,M

eikN+iqMρaa(N,M,t) (34)

to Eqs. (32) and (33) since these equations are translationally
invariant in N and M space. So, after the Fourier transform,
we obtain from Eqs. (32) and (33) that

dρ(k,q,t)

dt
= L(k,q)ρ(k,q,t), (35)

where

ρ(k,q,t) =
(

ρ00(k,q,t)
ρ11(k,q,t)

)
, (36)

L(k,q) =
(

D(eik − 1) − γL γReiq

γL D′(eik − 1) − γR

)
. (37)

We note here again that we have set T and χ to be real and their
relative phase angle θ = 0 so that D = |T |2, D′ = |T + χ |2.

Similarly for the case of coherently coupled DQD’s mea-
sured by a QPC [see Fig. 1(b)], the number-resolved master
equation in the Fourier space (counting field space) can also
be written in the form of Eq. (35) with L(k,q) given in matrix
form as

L(k,q) =

⎛⎜⎜⎜⎜⎜⎝
f (k) − γL 0 γReiq 0 0 0

γL f (k) 0 γReiq 0 2�

0 0 f ′(k) − 2γ 0 0 −2�

0 0 γL f ′(k) − γR 0 0
0 0 0 0 g(k) −ε

0 −� � 0 ε g(k)

⎞⎟⎟⎟⎟⎟⎠, (38)

and the column vector density matrix defined as ρT =
(ρ00,ρLL,ρRR,ρ11,ReρLR,ImρLR). Here, the matrix elements
ρab = ρab(k,q,t), with indices a,b ∈ {0,L,R,1}, denote the

Fock states |00〉, |10〉, |01〉, and |11〉 of the system, i.e.,
no electron, one electron in the first dot (left dot), one
electron in the second dot (right dot), and one in each
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dot, respectively. The functions f (k) = D(eik − 1), f ′(k) =
D′(eik − 1), and g(k) = √

DD′eik − Da − , where D =
|T |2, D′ = |T + χ |2,  = (γL + γR)/2, D0 = (D + D′)/2,
ε = ε2 − ε1.

The factor

d = (
√

D′ − √
D)2

2
= |χ |2

2
(39)

appears in the diagonal elements of the last two rows of the
resultant matrix L(k = 0, q = 0) of Eq. (38) and thus plays
the role of dephasing rate for the unconditional dynamics of
the DQD’s. As d becomes larger, the QPC tends to localize
the electron on the dot and thus reduces the coherent tunneling

� that changes the DQD states between |01〉 and |10〉. When
� � d , one expects ReρLR and ImρLR from the last two rows
of the master equation (35) with L(k = 0, q = 0)ρ defined in
Eq. (38) will decay much faster than other density matrix
elements. As a result, one can set the last two rows of Eq. (38)
equal to zero and then substitute the solution of ReρLR and
ImρLR back to the coupled equation. Thus, we obtain an
effective tunneling rate between the two dots as

� = 2�2/( + d )

[1 + (�ε


)2]
. (40)

In this case, the 6 × 6 coherent tunneling matrix of L(k,q) in
the master equation in the Fourier space (counting field space)
reduces to a 4 × 4 sequential tunneling matrix

Lseq(k,q) =

⎛⎜⎝f (k) − γL 0 γReiq 0
γL f (k) − � � γReiq

0 � f ′(k) − 2γ − � 0
0 0 γL f ′(k) − γR

⎞⎟⎠ (41)

with d defined in Eq. (39), and the column vector density
matrix becomes ρT = (ρ00,ρLL,ρRR,ρ11) involved only the
population elements.

In principle, one can solve the resultant coupled first-order
differential equations obtained from Eq. (35) for the column
elements of ρab(k,q,t) and then perform an inverse Fourier
transform to obtain ρab(N,M,t). The probability distribution
of finding N electrons that have tunneled through the QPC and
M electrons that have tunneled into the drain of the QD during
time t can then be obtained as

P (N,M,t) = Trdot[ρ(N,M,t)]

=
∑

a

ρaa(N,M,t)

=
∫ 2π

0

∫ 2π

0

dk dq

(2π )2
e−ikN−iqM

∑
a

ρaa(k,q,t). (42)

From this distribution function P (N,M,t), all orders of
unconditional and conditional cumulants (counting statistics)
of transmitted electrons can be in principle calculated.

VI. COUNTING STATISTICS: GENERATING
FUNCTIONAL APPROACH

A. Unconditional counting statistics

In practice, a more efficient method is the generating
functional technique. One may define the moment generating
function as [14]

e−F (k,q,t) =
∑
N,M

P (N,M,t)eikN+iqM. (43)

From this definition, it is easy to check that the nth moment of
N and the mth moment of M can be written as

〈NnMm〉(t) = (−i∂k)n(−i∂q)me−F (k,q,t)|k=0=q . (44)

The cross cumulants can be calculated through the cumulant
generating function F (k,q,t) as

〈〈NnMm〉〉(t) = −(−i∂k)n(−i∂q)mF (k,q,t)|k=0=q . (45)

For example, 〈〈O〉〉=〈O〉, 〈〈O2〉〉=〈(O − 〈O〉)2〉, 〈〈O3〉〉 =
〈(O − 〈O〉)3〉, 〈〈O4〉〉 = 〈(O − 〈O〉)4〉 − 3〈(O − 〈O〉)2〉, etc.

From Eqs. (43), (42), and (34), the moment generating
function can then be obtained from ρ(k,q,t) as

e−F (k,q,t) = Trdot[ρ(k,q,t)] =
∑

a

ρaa(k,q,t), (46)

and the cumulant generating function is then

F (k,q,t) = − ln

[∑
a

ρaa(k,q,t)

]
. (47)

As a result, the unconditional moments and cumulants can
be calculated using Eqs. (46) and(47) according to Eqs. (44)
and (45).

Thus, the solution of the number-resolved master equation
in the Fourier space (counting field space) ρ(k,q,t) has a direct
connection with the generating function approach to calculate
the FCS.

B. Conditional counting statistics

Having described the joint statistical properties of both the
QPC and QD currents, we discuss the conditional counting
statistics: the statistical current fluctuations (cumulants) of one
system given the observation of a given average current in the
other system in time t .

In QD-QPC transport system, the probability of having M

electrons tunneling into the drain of the QD system conditioned
on N electrons passing through QPC in time t can be written as

P (M|N,t) = P (N,M,t)/P (N,t). (48)
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By defining the conditional moment generating function as

eFc(N,q,t) ≡
∑
M

P (M|N,t)eiqM, (49)

the rth moment of electron number M passing through the
QD system, conditioned on the number of electrons N in the
drain of the QPC, is given by

〈Mr (t)〉c =
∑
M

MrP (M|N,t) = ∂r
iqe

Fc(N,q,t)|q=0, (50)

where the subscript “c” denotes the quantity it attaches to
being conditional. The conditional cumulant 〈〈Mr (t)〉〉c could
be found by taking partial derivatives with respect to (iq) on
the conditional cumulant generating function Fc(N,q,t):

〈〈Mr (t)〉〉c = ∂r
iqFc(N,q,t)|q=0. (51)

Using Eqs. (48) and (49), one observes that the conditional
cumulant generating function which is the logarithm of the
conditional moment generating function can be effectively
rewritten as

Fc(N,q,t) = − ln P (N,q,t), (52)

where

P (N,q,t) =
∑
M

P (N,M,t)eiqM

= 1

2π

∫ 2π

0
dk P (k,q,t)e−ikN . (53)

In obtaining Eq. (53), we have used the fact that P (N,q,t)
can also be expressed as the inverse Fourier transform
of P (k,q,t) with respect to the counting field variable k.
Since P (k,q,t) = Trdot[ρ(k,q,t)] = ∑

a ρaa(k,q,t), one can
calculate the conditional counting statistics once having
the solution of the number-resolved master equation in the
Fourier space (counting field space) ρ(k,q,t).

C. FCS in the stationary state

Unconditional current cumulant. In the stationary or steady
state (t → ∞), the calculation of moments or cumulants can
be simplified. The solution of Eq. (35) can be symbolically
written as

ρ(k,q,t) = eL(k,q)t ρ(k,q,0). (54)

There is a unique eigenvalue λ1(k,q) ofL(k,q) which develops
from the zero eigenvalue of L(k = 0, q = 0) with the smallest
absolute real part. The rest of the eigenvalue(s) has (have)
larger finite negative real parts that make their contributions
considerably much smaller for large times. As a consequence,
the long-time dynamics of the moment generating functional
(46) near the stationary state can be well approximated as
[14,25]

e−F (k,q,t) = Trdot[ρ(k,q,t)] ≈ eλ1(k,q)t . (55)

For the SQD-QPC system, the eigenvalue λ1(k,q) can be found
from Eq. (37) to be

λ1(k,q) = (eik − 1)D0 − 

+
√

[(eik − 1)�D − �]2 + γLγReiq, (56)

where D0 = (D + D′)/2,  = (γL + γR)/2, �D = (D −
D′)/2, and � = (γL − γR)/2. Similarly, the long-time
(stationary-state) probability distribution function from
Eqs. (42) and (55) can be approximated as

P (N,M,t) =
∫ 2π

0

∫ 2π

0

dk dq

(2π )2
e−ikN−iqM+λ1(k,q)t . (57)

We can define the QPC current I = N/t and QD current J =
M/t (setting e = 1) in time t . Replacing N = I t and M = J t ,
we then obtain the distribution function of the two currents

P (I,J,t) =
∫ 2π

0

∫ 2π

0

dk dq

(2π )2
e[λ1(k,q)−ikI−iqJ ]t . (58)

In the long-time (stationary) limit where the time t should
be much larger than γ −1

L,R , we may thus evaluate the integral
(58) in the stationary phase approximation. The dominant
contribution to the joint probability distribution then takes the
form of a Legendre transform [25]:

ln[P (I,J,t)] = t min
k,q

[λ1(k,q) − ikI − iqJ ]. (59)

Since the long-time charge-number cumulant generating
function F (k,q,t) from Eq. (55) is linear in time, we may define
the long-time (stationary-state) current cumulant generating
function as λ1(k,q), which is time independent. The stationary-
state current cumulant can then be calculated through

〈〈I nJm〉〉 = 〈〈NnMm〉〉/t

= (−i∂k)n(−i∂q)mλ1(k,q)|k=0=q . (60)

Note that the time dependence drops out in the expression of
the stationary-state current cumulant of Eq. (60).

For example, the zero-frequency QD current noise and QPC
current noise can also be calculated:

〈〈J 2〉〉 = (−i∂2
q

)
λ1(k,q)k=q=0

= γLγR

(
γ 2

L + γ 2
R

)
(γL + γR)3 , (61)

〈〈I 2〉〉 = (−i∂2
k

)
λ1(k,q)k=q=0

= 2(D − D′)2γLγR

(γL + γR)3

+ S(0)0

2

(
γR

γL + γR

)
+ S(0)1

2

(
γL

γL + γR

)
, (62)

where S(0)0 = 2D and S(0)1 = 2D′ are the values of the shot
noise of the QPC for the QD (dot 2) in |0〉 and |1〉 states,
respectively. The first term of the QPC current noise of Eq. (62)
comes from the random telegraph process in the QPC currents
making transitions between D and D′ caused by the electrons
randomly tunneling onto and out of dot 2 with rates γL and
γR , respectively.

Conditional current cumulant. Similarly, in the stationary
state, the conditional current cumulant generating func-
tion λcI (I,q) and λcJ (k,J ) can be calculated from the
reverse partial Fourier transform of the joint generating
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function [25]

eλcI (I,q)t = P (I,q,t) =
∫ 2π

0

dk

(2π )
e[λ1(k,q)−ikI ]t , (63)

eλcJ1(k,J )t = P (k,J,t) =
∫ 2π

0

dq

(2π )
e[λ1(k,q)−iqJ ]t . (64)

One may evaluate the integral in the stationary phase approx-
imation to obtain [25]

λcI (I,q) = min
k

[λ1(k,q) − ikI ], (65)

λcJ (k,J ) = min
q

[λ1(k,q) − iqJ ]. (66)

The conditional current cumulant then can be calculated from

〈〈Jm〉〉c = (−i∂q)mλcI (I,q)|q=0, (67)

〈〈I n〉〉c = (−i∂k)nλcJ (k,J )|k=0. (68)

However, the conditional current cumulant generating
functions of Eqs. (65) and (66) are difficult to evaluate unless
an analytic form of the eigenvalue λ1(k,q) is available. Even
for the problem of the SQD-QPC system where the eigenvalue
λ1(k,q) can be obtained analytically, it is still not easy to
evaluate Eqs. (65) and (66) directly. In Ref. [25], a further
approximation to neglect the shot-noise contribution from
the QPC was made. As a result, the calculations are signif-
icantly simplified and the conditional generating functions
and conditional current cumulants were obtained in analytical
forms. From the zero-frequency noise of Eq. (62), the QPC
shot-noise terms (the last two terms) can be neglected as
compared to the first term when the parameters (D − D′)2 	
(D,D′)(γL + γR). In Ref. [25], the QPC tunneling rates are
set to be D′ ≈ 5.03 × 1010 Hz and D ≈ 4.85 × 1010 Hz, and
the QD tunneling rates are chosen as γL = 160 Hz, γR = 586
Hz in configuration A and γL = 512 Hz, γR = 345 Hz in
configuration B. So, it was valid to neglect the QPC shot-noise
terms for the parameters used in Ref. [25]. Neglecting the
QPC shot-noise terms amounts to replacing eik → 1 + ik

in Eq. (56). Consequently, the conditional current cumulant
generating functions of Eqs. (65) and (66) can be obtained
analytically, so are the conditional current cumulants. How-
ever, when the QPC shot-noise terms cannot be neglected,
the conditional steady-state generating functions of Eqs. (65)
and (66) and thus also the conditional current cumulants
(67) and (68) are difficult to obtain even using the analytic
form of the eigenvalue of Eq. (56) due to the fact that the
numerical minimization and then numerical derivatives that
need to be performed are quite numerically unstable. It is
even more difficult for more complicated interacting nanoscale
conductors with the dimension of the matrix equation of the
master equation growing quickly and no analytical forms of
eigenvalues of L(k,q) are available.

D. Efficient numerical method

It is thus desirable to develop an efficient and numerically
stable method to calculate the conditional counting statistics
for a wider range of parameters and for more complicated
interacting quantum transport systems. For unconditional

steady-state cumulants, the projection operator technique
with perturbation expansion in counting fields developed in
Refs. [19,35–38] can be used to circumvent the problems of
large system dimensions and the instability of taking numerical
derivatives on the generating function. However, things are
different in the conditional case. The unconditional cumulants
are evaluated in the counting field (inverse Fourier transform)
space, e.g., the steady-state cross-current cumulant of Eq. (60).
Thus, a perturbation partition of the Liouvillian matrix L(k,q)
in Eq. (35) can be performed to calculate corrections to the
maximum eigenvalue [with counting fields set to zero, e.g.,
λ1(k = 0, q = 0)] order by order in the counting fields to avoid
taking derivatives. In contrast, the conditional cumulants are
evaluated in the partial or mixed Fourier transform space, i.e.,
the mixed space of counting field of one system and tunneled
electron number of the other system, e.g., the conditional
current cumulant of Eq. (67) in which I = N/t . Thus, even
though the perturbation expansion can be performed in the
counting field q, the Liouvillian matrix L(N,q) in the mixed
N -resolved and counting field master equation will couple
the N -sector density matrix elements with the (N − 1)-sector
ones, forming huge coupled difference equations that are
difficult to solve. To proceed, one crucial observation is that
the conditional moment of Eq. (50), with the help of Eqs. (48),
(49), and (53), can be written as〈
Mr (t)

〉
c
= 1

2πP (N,t)

∫ 2π

0
dk Trdot

[
∂r
iqρ(k,q,t)

∣∣
q=0

]
e−ikN ,

(69)
where P (N,t) = 1

2π

∫ 2π

0 dk Trdot[ρ(k,q,t)|q=0]e−ikN . Thus, if
we can find out how the rth derivatives ∂r

iqρ(k,q,t)|q=0 evolve
in time t directly, then we can just perform the trace and inverse
Fourier transform to obtain directly the moments of electron
number through the QD system conditioned on a given QPC
current.

To find the evolution equations for the variables
∂r
iqρ(k,q,t)|q=0, let us take partial derivatives with respect to

the counting factor iq on Eq. (35) r times for the QD system
and then set q = 0. We obtain r differential equations as [34]

ρ̇(k,q,t)|q=0 = L(k,q)ρ(k,q,t)|q=0,

∂iq ρ̇(k,q,t)|q=0 = ∂iq[L(k,q)ρ(k,q,t)]|q=0,

∂2
iq ρ̇(k,q,t)|q=0 = ∂2

iq[L(k,q)ρ(k,q,t)]|q=0,

...
∂r
iq ρ̇(k,q,t)|q=0 = ∂r

iq[L(k,q)ρ(k,q,t)]|q=0.

(70)

Note that with the expression of L(k,q) available [e.g., given
by Eq. (37) or (38)], the derivatives of

∂r
iq [L(k,q)ρ(k,q,t)]|q=0

= {[∂r
iqL(k,q)]ρ(k,q,t)}|q=0

+{L(k,q)[∂r
iqρ(k,q,t)]}|q=0 (71)

in Eq. (70) should be evaluated first. Then, the equation
resulting from Eq. (70) forms a set of coupled differential
equations for variables ∂r

iqρ(k,q,t)|q=0. In this way, the
derivatives of ∂r

iqρ(k,q,t)|q=0 can be considered as being
performed beforehand as one can obtain the solutions for
the rth derivatives ∂r

iqρ(k,q,t)|q=0 directly [34] and can thus
avoid taking the derivatives later on the generating functions
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(if the generating functions were obtained numerically first),
which are often quite numerically unstable. We can define a
supervector σ as

σ (k,q = 0,t) =

⎛⎜⎜⎜⎜⎜⎝
ρ(k,q,t)|q=0

∂iqρ(k,q,t)|q=0

∂2
iqρ(k,q,t)|q=0

...
∂r
iqρ(k,q,t)|q=0

⎞⎟⎟⎟⎟⎟⎠ (72)

and write Eq. (70) as

σ̇ (k,q = 0,t) = Z(k,q = 0)σ (k,q = 0,t), (73)

where the Z(k,q = 0) matrix contains all the elements of L
and its partial derivatives. The solution of Eq. (73) can be
obtained by the exponentiation of the Z(k,q = 0)t matrix as

σ (k,q = 0,t) = eZ(k,q=0)t σ (k,q = 0,t = 0). (74)

Performing the inverse Fourier transform of the supervector
σ (k,q = 0,t), then tracing over the system degree of freedom
on the rth derivative components of the resultant supervector,
and finally divide the quantity by the probability P (N,t),
one obtains the conditional moment 〈Mr〉c. Note that P (N,t)
is just the trace of the 0th derivative components of the
resultant inverse-Fourier-transformed supervector over the
system degrees of freedom. The conditional current cumulants
can be obtained from the conditional moments 〈Mr〉c. For
example, the first and second conditional current cumulants
are obtained by

〈〈J 〉〉c = 〈M〉c
t

, (75)

〈〈J 2〉〉c =
〈
M2

〉
c
− 〈M〉2

c

t
. (76)

This method can be applied to deal with more complex systems
with larger dimension of the Z(k,q) matrices.

In summary, to avoid numerical instability and complexity
of taking derivatives on the generating functions, we develop
an efficient numerical method to calculate the conditional
moments and cumulants for more complicated interacting
quantum transport systems. This method also allows the cal-
culations of both transient and stationary conditional counting
statistics. To demonstrate its advantage and usage, we will
apply this method to calculate the first and second current
cumulants of two nanoscale interacting conductor systems.
The first one is just the SQD-QPC system but without ignoring
the QPC shot noise. The second one is a more complicated
system of DQD’s in series with one of the dots measured by a
QPC, for which analytical eigenvalues of matrix L(k,q) of the
evolution equation for general parameters are not available.

Considering, for example, the QPC shot noise without
replacing eik → 1 + ik for the SQD-QPC system, we can
write in our numerical method the matrix form σ̇ (k,q,t) =
Z(k,q)σ (k,q,t) to calculate the first and second QD current
moments and cumulants conditioned on the QPC current I ,

where

σ (k,q,t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ρ00(k,q,t)
ρ11(k,q,t)

∂iqρ00(k,q,t)
∂iqρ11(k,q,t)
∂2
iqρ00(k,q,t)

∂2
iqρ11(k,q,t)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(77)

and

Z(k,q)

=

⎛⎜⎜⎜⎜⎜⎝
f1(k) γReiq 0 0 0 0
γL f2(k) 0 0 0 0
0 γReiq f1(k) γReiq 0 0
0 0 γL f2(k) 0 0
0 γReiq 0 2γReiq f1(k) γReiq

0 0 0 0 γL f2(k)

⎞⎟⎟⎟⎟⎟⎠,

(78)

with f1(k) = D(eik − 1) − γL and f2(k) = D′(eik − 1) − γR .

VII. RESULT AND DISCUSSION

We focus on the first two orders of the QD current
cumulants, i.e., 〈〈J 〉〉c and 〈〈J 2〉〉c, conditioned on an observed
QPC current I . We will vary the QPC tunneling rates such
that the difference in the QPC tunneling rates with and
without the occupation of an electron on dot 2 goes from
high to low, and at the same time the condition to ignore
the QPC shot noise term is also progressively not satisfied.
We will take the QD tunneling rates to be γL = 160 Hz,
γR = 586 Hz which are the same as those of configuration
A in Ref. [25]. As stated earlier, the QPC shot-noise terms
of the second and third terms of Eq. (62) can be neglected
as compared to the first term of the random-telegraph-process
noise when (D′ − D)2 	 (D,D′)(γL + γR). Since the values
of (D′,D) = (5.03 × 1010, 4.85 × 1010) Hz have already been
demonstrated in Ref. [25] to be an excellent parameter set to
neglect the QPC shot noise, we specifically choose three sets of
the QPC tunneling rates to be (D′,D) = (5.03 × 108, 4.85 ×
108) Hz, (5.03 × 107,4.85 × 107) Hz, (5.03 × 106, 4.85 ×
106) Hz to investigate the effect of shot noise. Note that these
values of (D,D′) in front of the exponents in the three sets of
(D,D′) are the same. As a result, when the QPC tunneling rate
(i.e., the exponent) decreases, the random telegraph signal will
no longer dominate over the QPC shot-noise contribution and
therefore the QPC shot noise cannot be neglected completely.
In other words, the analytic method that replaces eik → 1 + ik

in Ref. [25] will be progressively not valid as the QPC
tunneling rates in the three sets of (D,D′) decrease from high
to low.

A. SQD-QPC system

We will show how the QPC shot noise (intrinsic noise)
affects the conditional current cumulants for the SQD-QPC
system through the quantities of the joint probability dis-
tribution P (I,J,t) of detecting the QPC current I and QD
current J , and the conditional current 〈〈J 〉〉c and conditional
zero-frequency noise 〈〈J 2〉〉c.
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FIG. 3. The logarithm of the joint probability distribution,
ln P (I,J ), of observing SQD current J and QPC current I as a
color contour plot obtained by using maximum eigenvalue method
for (a) (D′,D) = (5.03 × 106, 4.85 × 106) Hz, (b) (D′,D) = (5.03 ×
108, 4.85 × 108) Hz. The tunneling rates of the SQD are γL = 160 Hz
and γR = 586 Hz.

1. Joint probability distribution

With the maximum eigenvalue λ1(k,q) of Eq. (56) available,
it is possible to obtain the joint probability distribution P (I,J )
from Eq. (59) without replacing eik → 1 + ik. The contour
plots of the logarithm of the joint probability distribution
ln P (I,J ) of detecting QPC current I (horizontal axis) and
QD current J (vertical axis) for (D′,D) = (5.03 × 106, 4.85 ×
106) Hz and (D′,D) = (5.03 × 108, 4.85 × 108) Hz are shown
in Figs. 3(a) and 3(b), respectively. The logarithm of the
joint probability distribution in Fig. 3(a), with low QPC
tunneling rates (D,D′) for which (D′ − D)2 is comparable to
(D,D′)(γL + γR), differs considerably from that of neglecting
the QPC current shot noise presented in Ref. [25]. Especially
near the end points of I = D and D′, substantially larger
probabilities for finite J values are observed here. This
indicates (see the discussion in the next paragraph about the
conditional current probability) that the resultant conditional
QD current and noise conditioned on the observed QPC current
at or near I = D and D′ will deviate from zeros as those shown
in Ref. [25]. For the parameter set of higher QPC tunneling
rates shown in Fig. 3(b), the the logarithm of joint current
probability distribution looks closer to that of Ref. [25].

The conditional QD current probability P (J |I,t) can
be obtained from the joint current probability distribution
P (I,J,t) using the Bayesian formalism as

P (J |I,t) = P (I,J,t)

P (I,t)
= P (I,J,t)∫

dJ P (I,J,t)
. (79)

With conditional current probability, we can calculate the
conditional quantities. The conditional current moments
can be obtained directly from P (J |I,t) as 〈J r (t)〉c ≡∫ ∞

0 dJ P (J |I,t)J r (t) and the conditional current cumulants
〈〈J r (t)〉〉c can be calculated from 〈J r (t)〉c accordingly, e.g.,
〈〈J 2〉〉c = 〈J 2〉c − 〈J 〉2

c . We will show in the next section the
results of the conditional QD current and zero-frequency noise
(the first and second conditional cumulants) using the method
of the joint current probability distribution and the Bayesian
formalism as a confirmation of our numerical method for the
SQD-QPC case.

Integrating the conditional 〈J r (t)〉c over the QPC current
probability P (I,t) gives the corresponding unconditional cur-

FIG. 4. Conditional SQD current, the first cumulant (left panel)
and zero-frequency noise, the second cumulant (right panel) obtained
by different methods for (a) and (b) (D′,D) = (5.03 × 106, 4.85 ×
106) Hz, (c) and (d) (D′,D) = (5.03 × 107, 4.85 × 107) Hz, and (e)
and (f) (D′,D) = (5.03 × 108, 4.85 × 108) Hz. The tunneling rates
of the SQD are (γL,γR) = (160, 586) Hz.

rent moments: 〈J r (t)〉 = ∫ ∞
0 dI P (I,t)〈J r (t)〉c. This formula

demonstrates that the conditional quantities 〈J r (t)〉c provides
us with more information and can give insight into the
unconditional quantities.

2. First and second conditional current cumulants

The first and second steady-state conditional QD current
cumulants 〈〈J 〉〉c and 〈〈J 2〉〉c shown in Figs. 4(a) and 4(b) for
low QPC tunneling rates (D′,D) = (5.03 × 106, 4.85 × 106)
Hz, Figs. 4(c) and 4(d) for medium tunneling rates (D′,D) =
(5.03 × 107, 4.85 × 107) Hz, and Figs. 4(e) and 4(f) for
high tunneling rates (D′,D) = (5.03 × 108, 4.85 × 108) Hz
are obtained by five different methods: (i) the analytical
formulas neglecting the QPC shot noise given in Ref. [25]
(in thin solid line), (ii) the joint probability P (I,J,t) obtained
with the replacement of (eik → 1 + ik) (i.e., neglecting the
QPC shot noise) and the Bayesian rules (in light blue dotted
line), (iii) the joint probability P (I,J,t) obtained without the
approximation of (eik → 1 + ik) and the Bayesian rules (in
red open triangles), (iv) the numerical method described in
Sec. VI D (in blue dots) and (v) the quantum trajectory method
described in Sec. IV (in red open diamonds). As expected,
the curves obtained by methods (i) and (ii) coincide and
by methods (iii) and (iv) coincide for a given set of QPC
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tunneling rates. They all approach to each other for the high
QPC tunneling rate case in Figs. 4(e) and 4(f), then start to
deviate from each other near the end points of I = D and
D′ for the medium QPC tunneling rate case in Figs. 4(c)
and 4(d) and differ significantly from each other for the
low QPC tunneling rate case in Figs. 4(a) and 4(b). This is
consistent with the observations of the joint current probability
distribution discussed in Sec. VII A 1 and indicates that one can
approximately neglect the QPC shot noise for the parameter
set shown in Figs. 4(e) and 4(f) but cannot do so for the
parameter set shown in Figs. 4(a) and 4(b). When the QPC
shot noise is completely ignored, 〈〈J 〉〉c and 〈〈J 2〉〉c calculated
by analytical solution are universal semicircles as a function
of the current I , have a maximum at I = (D + D′)/2 and
equal to zero at I = D,D′ even though the SQD tunneling
rates are asymmetric, i.e., γL �= γR [25]. But, when the QPC
shot noise is not negligible, when QPC current I = D,D′,
the SQD is no longer completely occupied or empty within
the whole duration time t . As a result, the conditional SQD
〈〈J 〉〉c and 〈〈J 2〉〉c are not equal to zero at the end points
I = D,D′ of the interval I = [D,D′]. Furthermore, 〈〈J 〉〉c
and 〈〈J 2〉〉c in this case become asymmetric for different γL

and γR tunneling rates. At the QPC current I = D, the SQD
in most of the duration time t is empty, while at the QPC
current I = D′, the SQD in most of the duration time t is
occupied. For the parameter (γL,γR) = (160,586) of Fig. 4,
the SQD has a larger unconditional probability γR/(γL + γR)
of being empty than the probability γL/(γL + γR) of being
occupied. This leads to more switchings at I = D′ than at
I = D and thus results in larger conditional current cumulants
〈〈J 〉〉c and 〈〈J 2〉〉c at I = D′ than at I = D with maximums
occurring at I > (D + D′)/2. The results become opposite
if γL > γR for which the SQD has a larger unconditional
probability γL/(γL + γR) of being occupied, leading to more
switchings at I = D than at I = D′. Thus, the conditional
current cumulants 〈〈J 〉〉c and 〈〈J 2〉〉c at I = D are larger than
at I = D′ with maximums occurring at I < (D + D′)/2. If
γL = γR , the equal unconditional probability of being empty
and being occupied makes the QPC shot-noise contribution
symmetric with respect to I = (D + D′)/2, resulting in
symmetrical conditional current cumulants 〈〈J 〉〉c and 〈〈J 2〉〉c
with maximums at I = (D + D′)/2.

We also simulate 120 000 realizations of the conditional
SQD occupation number 〈n2(t)〉c and QPC currents by
quantum trajectory method to calculate 〈〈J 〉〉c and 〈〈J 2〉〉c. The
quantum trajectory method is described in the next section.

B. Counting statistics by quantum trajectories

We describe how we obtain the conditional counting
statistics using the quantum trajectory method. Take the case
of SQD-QPC as an example. Using Eqs. (25) and (23), we
can numerically simulate the evolutions of the conditional
expectation value of the electron occupation number 〈n2〉c(t)
on the QD as well as the measured conditional instantaneous
QPC current record Ic(t) in a single run of a realistic exper-
iment as shown in Fig. 2(b). The time-average QPC current
I in time t can be obtained by integrating the instantaneous
QPC current Ic(t) over time t . The average QD current J

can be obtained by the number M of electrons transmitted

FIG. 5. (a) A simulated trajectory of 〈n2〉c for relatively mod-
erate QPC tunneling rates of (D,D′,γL,γR) = (4.85 × 107, 5.03 ×
107,160,586) Hz, i.e., with a moderate induced dephasing rate. (b)
Histogram of each interval value of conditional 〈n2〉c for the trajectory
shown in (a). The values form 0 to 1 for 〈n2〉c of the horizontal axis
is divided into 101 intervals and the vertical axis of the number of
counts is plotted on a logarithmic scale. The dashed line in the middle
is the reference line of 〈n2〉c.

through the QD in time t , i.e., J = M/t . The number M

could be determined [25] by the number of “up” and then
immediate “down” switches M of the random telegraph signal
in a given time trace of Ic(t) of duration t , or the number
of “1” and then immediate “0” switches M in a given time
trace 〈n2〉c(t) of duration t [see Fig. 2(a)]. When the strength
of the random telegraph signal is much larger than that of
the QPC intrinsic current (shot) noise [25], this provides an
excellent way to determine the occupation number 〈n2〉c(t)
on the QD and the average current J through the QD (even
if the current J is rather weak). However, when the noise
induced by the random telegraph signal is not much smaller
than or is comparable to the QPC shot noise, the measured
QPC current Ic(t) may not be able to give an unambiguous
measurement of the occupation number 1 or 0 on the QD.
For example, a typical trace or realization of 〈n2〉c(t) for the
parameter set of medium QPC tunneling rates of (D′,D) =
(5.03 × 107, 4.85 × 107) Hz is shown in Fig. 5(a). Comparing
the QPC current trace shown in Fig. 5(a) to that in Fig. 2(a)
for the case of (D′,D) = (5.03 × 1010, 4.85 × 1010) Hz with
a large χ value, one finds that many values of 〈n2〉c(t) in
the trajectory shown in Fig. 5(a) are close to or in-between
but not at either 0 or 1 due to relatively large contribution
from the shot-noise fluctuations. This leads to ambiguity in
counting the number of electrons tunneling on and off dot
2 and then onto the right lead (or drain) with the method
outlined in Ref. [25]. Therefore, we adopt a semiempirical
method with details described in Appendix to diminish the
ambiguity, to count the number M of electrons which have
tunneled through dot 2 into the right lead of the QD system,
and thus to obtain the average QD current J = M/t for a
given trajectory 〈n2〉c(t) in time t . Moreover, the corresponding
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FIG. 6. Probability distributions of the QPC current (a) for the
case presented in Figs. 4(c) and 4(d), and (b) for the case presented in
Figs. 4(e) and 4(f). The whole range [D,D′] of the horizontal axis of
the QPC current shown in (a) and in (b) is divided into 200 intervals.

average QPC current I in time t can be obtained by integrating
the instantaneous QPC current of Ic(t) generated from Eq. (23).
Thus, we know both J and I of the given trajectory 〈n2〉c(t) in
time t . We divide the values of I (J ) into small intervals. After
simulating many trajectories to get meaningful statistics, we
categorize the values of I (J ) extracted from the trajectories
into their corresponding small intervals. To calculate the QD
current cumulant 〈〈J 〉〉c conditioned on the QPC current I ,
we calculate the average of the different values of the QD
currents Ji that all fall into the same small interval Ii (i.e.,
corresponding to the same value of I ) as 〈〈J 〉〉c = ∑S

i=1 Ji/S,
where S is the number of samples Ji in this interval of Ii . The
QD current noise cumulant 〈〈J 2〉〉c conditioned on the QPC
current I is obtained by 〈〈J 2〉〉c = t[

∑S
i=1 J 2

i /S − 〈〈J 〉〉2
c].

The results of 〈〈J 〉〉c and 〈〈J 2〉〉c obtained by the quantum
trajectory method with 120 000 realizations of 〈n2〉c(t) are
shown in open diamonds in Figs. 4(c) and 4(d) and in Figs. 4(e)
and 4(f) for different sets of (D,D′) values. One notices that
the results of the quantum trajectory method in Figs. 4(e)
and 4(f) for large QPC tunneling rates or large (D′ − D)2

are in a better agreement with those of other methods than
the results in Figs. 4(c) and 4(d) for small QPC tunneling
rates or small (D′ − D)2. This is because larger difference
of QPC tunneling rates or larger (D′ − D)2 represents a
better occupation number measurement of dot 2 and a better
condition to ignore the QPC shot noise, which in turn give
a more accurate number M of electrons that have tunneled
through dot 2 into the right lead of the QD system in time t for
a given trajectory 〈n2〉c(t) and thus the corresponding average
QD current J = M/t .

One also notices that the open diamonds representing 〈〈J 〉〉c
and 〈〈J 2〉〉c obtained by the quantum trajectory method in
Figs. 4(c) and 4(d) and in Figs. 4(e) and 4(f) show only results
in certain ranges of the QPC currents, which should correspond
to the regimes where the probability distributions of the QPC
current P (I ) are not small. Indeed, the corresponding prob-
ability distributions P (I ) = ∫

P (I,J )dJ shown, respectively,
in Figs. 6(a) and 6(b) are highly concentrated with appreciable
values only in the same small ranges of the QPC currents I of
their corresponding plots in Fig. 4. Consequently, even a large
number of 120 000 quantum trajectories give only data samples
in that small range of I . The first and last open diamonds in
〈〈J 2〉〉c of Fig. 4(f) deviate more from the results obtained by
other methods due to the fact that the numbers of QD current
data samples in the two corresponding QPC current intervals

are not large enough to give accurate statistics of conditional
noise 〈〈J 2〉〉c. We thus disregard the results of the QPC current
intervals outside the regime bounded by the two intervals as
less data samples are expected and observed.

In short, the quantum trajectory method can, in princi-
ple, give the full information about the transport properties
provided a very large number of trajectories are available.
However, due to highly concentrated QPC current probability
distribution, a substantial amount of different realizations
of quantum trajectories that can perhaps already simulate
unconditional quantities well can still not sample the complete
range of the QPC currents for the conditional quantities.
Thus, an efficient method to calculate the conditional counting
statistics is demanding, and the method that is also capable
of treating more complicated nanostructure transport systems
(e.g., the DQD-QPC system) described in Sec. VI D provides
exactly such a method.

C. DQD-QPC system

Electron transport properties through a DQD system have
been studied intensively [15,16,27,39–45], Unconditional
transport properties of a DQD system measured by a QPC
have also been investigated [5,15,27–31]. Here, we concentrate
on the conditional current cumulants through a DQD system
conditioned on the observed average QPC current, which has
not yet been explored extensively in the literature.

1. Conditional counting statistics

As mentioned, it is numerically unstable to follow the
same procedure [25] of taking (partial) derivatives to find
conditional current cumulants from Eqs. (65), (66), (67), and
(68) for the DQD-QPC system. It is also numerically inefficient
(using too much memory) to calculate the joint probability
distribution (59), and then use the Bayesian formalism to find
the conditional quantities for the DQD-QPC system.

Here, we use our numerically stable and efficient method
to calculate 〈〈J 〉〉c and 〈〈J 2〉〉c, and discuss their depen-
dence on � and d . The dephasing rates d on the
DQD’s due to the QD-occupation-dependent QPC tunneling
rates of (D′,D) = (5.03 × 107, 4.85 × 107) Hz and (D′,D) =
(5.03 × 108, 4.85 × 108) Hz that will be considered are
estimated from Eq. (39) to be about d = 8200 and 82 000 Hz,
respectively. We will discuss cases with values of interdot
coupling � greater than, smaller than, and comparable
to d .

Considering the case of large � = 15 000 Hz, we compare
the conditional cumulants 〈〈J 〉〉c and 〈〈J 2〉〉c of the DQD’s
to those of SQD with the same values of γL = 160 Hz and
γR = 586 Hz as the DQD’s. In Figs. 7(a) and 7(b) where
d = 8200 Hz is smaller than � = 15 000 Hz, the agreement
in 〈〈J 〉〉c and 〈〈J 2〉〉c between DQD’s and SQD is rather
good, indicating that the coherently coupled DQD’s can be
approximately regarded as a SQD. On the other hand, in
Figs. 7(c) and 7(d), where d = 82 000 Hz is larger than
� = 15 000 Hz, there are appreciable differences between
DQD and SQD results due to the effect of stronger dephasing
(back-action) caused by the QPC. The larger d tends to reduce
the coherent tunneling amplitude between the DQD’s and
hence reduce the current passing through the DQD’s. As a
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FIG. 7. Conditional DQD 〈〈J 〉〉c (left panel) and 〈〈J 2〉〉c (right
panel) plotted as a function of the observed average QPC current
I with high interdot coupling � = 15 000 Hz for (a) and (b)
(D′,D) = (5.03 × 107, 4.85 × 107) Hz, and (c) and (d) (D′,D) =
(5.03 × 108, 4.85 × 108) Hz. The DQD cumulants plotted in solid
blue dots are compared with their SQD counterparts in open red dots
with the same QD tunneling rates of (γL,γR) = (160,586) Hz from
the left lead and to the right leads, respectively.

result, the value of the conditional current 〈〈J 〉〉c of the DQD-
QPC system is slightly smaller than that of the SQD-QPC
system [see Fig. 7(c)]. In contrast, the value of the conditional
zero-frequency current noise 〈〈J 〉〉c of the DQD-QPC system
is slightly larger than that of regarding the DQD system as a
strongly coherently coupled SQD-QPC system [see Fig. 7(d)].
This is consistent with the unconditional noise property that
quantum coherence suppresses noise [27,42,46].

In the low coherent tunneling regime where � � d , the
QPC charge detector introduces substantial decoherence to
the DQD’s. Thus, the dynamics of the electron transport of the
coherent tunneling DQD’s described by the (6 × 6) matrix
L(k,q) defined in Eq. (38) can be in this case effectively
described by a sequential tunneling (4 × 4) matrix defined in
Eq. (41). This is clearly shown in Fig. 8 in which the condition
� � d holds and the results of 〈〈J 〉〉c and 〈〈J 2〉〉c calculated
by our numerical method with the coherent tunneling matrix
of Eq. (38) and with the sequential tunneling matrix of Eq. (41)
coincide. Also shown in red open squares are the results
obtained by the quantum trajectory method, which are in
good agreement with the results by our numerical method.
However, only the results conditioned on small values of IQPC

are available due to small effective sequential tunneling rate
� of Eq. (40). This then makes the second dot (the right dot)
of the DQD’s preferring to be empty, resulting in probability
distribution of P (I ) concentrating in a small regime of the QPC
currents I as shown in Figs. 9(a) and 9(b). This highlights the
inability of the quantum trajectory method to cover in practice
the whole range of the QPC current I for the cases of extremely
small �.

FIG. 8. Conditional DQD 〈〈J 〉〉c (left panel) and 〈〈J 2〉〉c (right
panel) plotted as a function of the observed average QPC current
I for different interdot couplings and QPC tunneling rates of (a)
and (b) (D′,D,�) = (5.03 × 107, 4.85 × 107,100) Hz, and (c) and
(d) (D′,D,�) = (5.03 × 108, 4.85 × 108,800) Hz obtained by the
number-resolved master equations of coherent tunneling (in blue solid
dots) and sequential tunneling (in open green dots) and by the method
of quantum trajectories (in open red squares). The tunneling rates of
the DQD’s from the left lead and to the right leads are, respectively,
(γL,γR) = (160,586) Hz.

However, when �, d , γL, and γR are comparable, using
the classical master equation of the sequential tunneling
matrix of Eq. (41) involving only the occupation probabilities
cannot treat this case of the DQD system. The unconditional
steady-state currents 〈〈J 〉〉 obtained by the unconditional
master equation of sequential tunneling and the unconditional
quantum master equation of coherent tunneling are the same
independent of the DQD and QPC parameters [27,42,46]. But,
the steady-state unconditional zero-frequency noise 〈〈J 2〉〉,
in the parameter regime in which �, d , γL, and γR are
all comparable [27,42,46], shows considerable difference
between the coherent and the sequential tunneling cases.
Choosing comparable parameters of interdot coupling � =

FIG. 9. Probability distributions of the QPC current (a) for the
case presented in Figs. 8(a) and 8(b), and (b) for the case presented
in Figs. 8(c) and 8(d). The inset in (a) is its zoom-in plot for small
QPC currents. The whole range [D,D′] of the horizontal axis of the
QPC current shown in (a) and in (b) is divided into 200 intervals.
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FIG. 10. Conditional DQD 〈〈J 〉〉c (left panel) and 〈〈J 2〉〉c (right
panel) plotted as a function of the observed average QPC current
I obtained by the number-resolved master equations of coherent
tunneling (in blue solid dots) and sequential tunneling (in open
red dots) with interdot coupling � = 3000 Hz, QPC tunneling
rates (D′,D) = (5.03 × 107, 4.85 × 107) Hz, and QD tunneling rates
(γL,γR) = (2930,800) Hz.

3000 Hz, dephasing rate by the QPC d = 8200 Hz for
the QPC currents (D′,D) = (5.03 × 107, 4.85 × 107) Hz, and
the DQD tunneling rates from the left lead and to the right
leads (γL,γR) = (2930,800) Hz, respectively, we show in
Fig. 10 the conditional steady-state DQD current and zero-
frequency noise for ε = 0. One can see that the steady-state
conditional currents 〈〈J 〉〉c obtained by the coherent-tunneling
and sequential-tunneling master equations show still some
observable difference, in contrast to no difference in their
unconditional counterparts. The conditional steady-state noise
〈〈J 2〉〉c obtained by the coherent-tunneling master equation
with the matrix of Eq. (38) is considerably smaller than that
obtained by the sequential-tunneling master equation with the
matrix of Eq. (41), i.e., quantum coherence suppresses noise
as in the unconditional case [27,42,46].

The unconditional current moment can be expressed as
〈J r〉 = ∫ ∞

0 dI P (I )〈J r〉c and thus can be calculated from the
conditional counting statistics. We thus use the conditional
counting statistics obtained by our numerical method to
compute unconditional current cumulants. The results are
consistent with the unconditional current cumulants obtained
by the method of Ref. [27]. Thus, conditional counting
statistics can provide more detailed information about and
physical insight into the quantum transport properties of the
system than its unconditional counterpart.

VIII. CONCLUSION

We have applied the maximum eigenvalue method, the
quantum trajectory method, and a stable and efficient method
we develop to calculate the conditional counting statistics of
QD systems measured by a QPC detector. The method we
develop is capable of calculating the conditional counting
statistics for a more complex system than the maximum
eigenvalue method and for a wider range of parameters than
the quantum trajectory method. We have investigated the effect
of QPC shot noise on the conditional cumulants of the QD
systems. For the considered case of high QPC tunneling
rates for which the QPC shot noise as compared to the
noise contribution of the random telegraph signal in the QPC
current trace is small and can be neglected, our results are

in excellent agreement with those obtained by the method of
Ref. [25]. However, for the cases of low QPC tunneling rates
for which the QPC shot noise cannot be neglected, significant
difference between 〈〈J 〉〉c and 〈〈J 2〉〉c obtained by our method
and those obtained by the analytical solutions of Ref. [25]
can be observed. We have also shown that for strong interdot
coupling of � 	 d , conditional DQD cumulants 〈〈J 〉〉c and
〈〈J 2〉〉c recover those of a SQD case (i.e., the DQD’s acct as
a SQD). For small interdot coupling (� � d ), the results of
〈〈J 〉〉c and 〈〈J 2〉〉c calculated by our numerical method with the
coherent-tunneling matrix and with the sequential-tunneling
matrix coincide, while they show considerable difference
when �, d , γL, and γR are all comparable. The conditional
current cumulants that are significantly different from their
unconditional counterparts can provide additional information
and insight into the electron transport properties of mesoscopic
nanostructure systems.
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APPENDIX: SEMIEMPIRICAL METHOD TO COUNT THE
ELECTRON TUNNELING EVENTS

The detailed procedure of the semiempirical method used
to count the number of tunneling electrons in each of the
quantum trajectories is described as follows. First, divide the
entire range of values from 0 to 1 of 〈n2〉c(t) into several
small intervals and count the numbers of 〈n2〉c(t) values that
fall into each interval in a quantum trajectory (see Fig. 5).
Second, select the interval where the value of histogram is
minimum and let the middle value of 〈n2〉c(t) in this minimum
interval as the reference value or line [as indicated in Fig. 5(b)]
to determine whether the QD is occupied or empty. Third,
calculate the average value of 〈n2〉c over the region on the left
(right) side of the reference line and set it as the lower (upper)
threshold whose value is usually close to 0 (1). Suppose the
QD is initially being empty, the value of 〈n2〉c(t) is small.
Then, the QD is considered being occupied only until 〈n2〉c(t)
is above the upper threshold; the QD is considered being
empty again only until 〈n2〉c(t) is below the lower threshold.
Thus, when 〈n2〉c(t) in a quantum trajectory realization reaches
the above occupied situation and then the immediate empty
situation sequentially and successively, an electron tunneling
event from the QD to the right lead is registered. By this
counting method, we can obtain the number M of electrons
that have tunneled through the QD system. With this counting
method, one can proceed to calculate the conditional current
cumulants as described in Sec. VII B.
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