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Heat currents in electronic junctions driven by telegraph noise
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The energy and charge fluxes carried by electrons in a two-terminal junction subjected to a random telegraph
noise, produced by a single electronic defect, are analyzed. The telegraph processes are imitated by the action of
a stochastic electric field that acts on the electrons in the junction. Upon averaging over all random events of the
telegraph process, it is found that this electric field supplies, on the average, energy to the electronic reservoirs,
which is distributed unequally between them: the stronger is the coupling of the reservoir with the junction, the
more energy it gains. Thus the noisy environment can lead to a temperature gradient across an unbiased junction.
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I. INTRODUCTION

Nanoscopic electronic devices driven by time-dependent
fields (besides being subjected to stationary voltages and/or
temperature gradients) are currently attracting considerable
attention due to the possibility to control quantum-coherent
charge and heat dynamics in the time domain. Experimental
endeavors aimed to manipulate quantum capacitors [1], flying
single electrons [2] and other charge excitations [3], or to
perform fast thermometry [4,5] are conspicuous examples.
These systems are also the topic of numerous theoretical
studies, in which the time-dependent sources are oscillating
electric fields [6—10], periodic temperature variations [11],
and periodic time-dependent hybridizations of the mesoscopic
system and its reservoirs [12,13]. (See Ref. [14] for an
extensive review.)

The precise definition of energy and heat currents in the time
domain in such junctions, which comprise nanoscale devices
that accommodate a relatively small number of electrons
coupled to macroscopic reservoirs, is a fascinating theoretical
subject [15,16]. A meticulous analysis can be carried out
when the external force operating on the mesoscopic system
is slowly varying in time [16,17], particularly in the regime of
adiabatic quantum pumping [6,18,19], where proper response
coefficients can be derived via the Kubo formula [20].

An intriguing feature concerning heat transport in the time
domain is the role played by the energy flux associated with
the term in the Hamiltonian that couples the nanostructure
with the bulky reservoirs [13,15]. While the coupling part
does not contribute directly to the particle flux, it does store
energy momentarily, even when the hybridization between the
nanosystem and the reservoirs does not vary with time. The
generic Hamiltonian in which the time dependence is confined
to the nanosystem (see Fig. 1) is

H= Hleads + Hsys(t) + Htun’ (1)

where Hy,, pertains to the coupling between the nanosystem
[whose Hamiltonian is Hys(¢)] and the reservoirs (described

“oraentin@bgu.ac.il
fdebashreephys @ gmail.com

2469-9950/2017/96(19)/195435(10)

195435-1

by Hieads)- The operator of the particles’ current, say of the
left lead, is simply the time derivative of the particles’ number
operator in that lead. On the other hand, the operator of the
total energy flux is the time derivative of the total Hamiltonian.
It comprises the energy flux associated with the particles in
each of the leads: the one associated with the coupling and
the one arising from the time derivative of Hgy,. The latter
consists of the energy flux of the particles residing on the
nanosystem and the explicit time derivative of the applied
force, which amounts to the power supplied to the junction
by the time-dependent field. Thus, each of these fluxes has
an intuitive meaning except perhaps for the flux arising from
the tunneling term. While being a negligible contribution in
macroscopic systems, it becomes comparable to the other
energy fluxes in the nanoscale, where the surface-to-volume
ratio is not vanishingly small. The proposal to regard this
energy flux as part of the time-dependent heat current of
the corresponding reservoir [9,21,22], based on a comparison
between the Green’s function and the scattering approaches
for calculating averaged quantities of noninteracting electrons
[23], is still debated [12,17,24,25].

The lion’s share of the theoretical literature on thermoelec-
tric phenomena in mesoscopic junctions in the time domain
focuses on periodic ac fields, preferably of frequencies that are
low compared to the inverse time it takes the carriers to traverse
the sample [18,26]. Here we consider charge and energy
currents in a nanodevice subjected to a time-dependent source
which is a noisy environment, described by the so-called
telegraph process, or telegraph noise [27,28]. Telegraph noise
is believed to result from the (almost unavoidable) presence of
defects with internal degrees of freedom (coined “elementary
fluctuators”) that have two (or more) metastable configurations
and can switch between them due to their interaction with a
thermal bath (of their own). In many cases, the fluctuations are
due to the dynamics of charge carriers trapped at the defects
[29-33]. This picture of a noisy environment was widely
exploited at the time to study decoherence and dephasing of
qubits [34-39].

Charge fluctuations such as the ones that give rise to
telegraph noise result in fluctuating electric potentials [40].
The transport of spinless electrons through a junction subjected
to a stochastic potential (or field) due to telegraph noise has
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FIG. 1. Schematic picture of the model junction: a localized elec-
tronic level is coupled to two electronic reservoirs, held at chemical
potentials p, and pg, at temperatures 7, and Ty, respectively. An
electron residing on this level is subjected to a stochastic electric
field. This is imitated by a stochastic time dependence of the level
energy, €,4(t). The coupling with the reservoirs causes the level € to
become a resonance, of width I' = I'; + 'y, where I'; ,I'; are the
partial widths.

been analyzed in various regimes of the noise characteristics
[41,42], but, to our best knowledge, energy fluxes in such
junctions were not discussed. Exceptions occur in Ref. [43],
which discusses the thermal transport, and in Ref. [44],
which focuses on the thermopower in a junction subjected
to electromagnetic environment.

Here we present a detailed study of the electrons’ energy
fluxes in this configuration, carried out for the simplest (but
realizable [45]) junction: that of a single localized level
(referred to below as a “quantum dot”) attached to two
reservoirs of spinless electrons. In addition to the possible
relevance of this study to the influence of environments
on electronic and thermoelectric transport, we also aim at
a comparison of these effects with those of periodically
oscillating fields.

The effect of the telegraph processes on the transport is
embedded in the time dependence of the energy on the dot,
€4(t), which fluctuates randomly in time (see Fig. 1). It turns
out that, within the Keldysh formalism for time-dependent
nonequilibrium Green’s functions, this simple geometry is
amenable to an analytical solution for the particle and the
energy fluxes in the time domain. This happens when it can be
assumed that the densities of states in the electronic reservoirs
that supply the electrons are faithfully represented by their
value at the respective chemical potentials, an approximation
coined “the wideband limit” [46,47]. We show that, once the
time-dependent particle and energy fluxes are averaged over
the processes of the telegraph noise, they lose their dependence
on time and become stationary. In particular, by examining the
energy conservation conditions of the junction we obtain the
electric power supplied to the junction from the source of
the telegraph process. We find that this power is not equally
distributed between the two electronic reservoirs: rather the
bigger part of the supplied power is absorbed by the reservoir
which is connected more strongly to the dot. Thus, even
when the electronic reservoirs are at identical temperatures and
chemical potentials, the telegraph noise “attempts” to create a
temperature difference between them. It is interesting to invoke
in this context Ref. [48], which calculates the charge current at
zero bias and equal electronic temperatures under the effect of
alocal ac field. Averaged over a period, the resulting current is
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nonzero, as long as the partial resonance widths (I';, and I'g)
on the dot are energy dependent (that is, once the wideband
approximation is abandoned).

The calculation of the electronic properties in the time
domain, by now rather standard, is well documented in the
literature (mainly with the aim of investigating the currents
under the effect of oscillatory fields; see, e.g., Ref. [14]).
It is summarized briefly in Sec. II and in Appendix A in a
way which is particularly suitable for carrying out the average
over the telegraph processes. The averaging procedure itself is
explained in Sec. III and in Appendix B. After this somewhat
technical detour, we return to the fluxes in our junction and
present the results for their stationary limits in Sec. IV. Our
conclusions are summarized in Sec. V.

II. ENERGY AND PARTICLE FLUXES
IN THE TIME DOMAIN

As mentioned, our model system consists of a localized
level; hence,

Hyy = €,(0)d'd, 2)
where d (d') annihilates (creates) an electron on the level,
whose energy depends on time. This time dependence need not
be specified in this section. The dot is coupled to two electronic

reservoirs of spinless electrons by tunneling amplitudes Vi and
V
P

Hyp = »_(Veekd +Hee) + Y (Vyeld +He),  (3)
k P

where Ck(p) (c;(((p)) are the annihilation (creation) operators for
the electrons in the leads; the latter are modeled as free electron
gases:

Hleads = Z EkCIT(Ck + Z GI’CIT)CP' 4)
k P

[We use the wave vector k (p) for the states on the left (right)
lead.]

The various fluxes in this simple junction, in terms of the
Keldysh Green’s functions in the time domain, are as follows.
The particle flux of the left lead, i.e., the rate of change of the
number of particles there, is

d
1,(1) = <E Zcf(ck> =Y Ve Gigt.t) = VG0,
k

k

&)

Here G;,(t,t') = i(dT(t’)ck(t)) is the lesser Green’s function;
the angular brackets indicate the quantum average. (This
notation of the Green’s function pertains to all others, e.g,
G4q and Gyp.) As usual, one expresses I (f) in terms of the
Green’s functions on the dot [46],

I, () = /dtl[EL(t,tl)Gdd(tl,t) — Gyt t)Z, (.01,

(6)
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where X, (¢,¢') is the self-energy due to the tunnel coupling
with the left lead,

2,00 =) VilPato), (7)
k

and gg(z,1') is the Green’s function of the decoupled left lead.
The lesser Green’s function of the product in Eq. (6) is found
by using the Langreth rules [46]. The particle flux of the right
lead is derived from Eqgs. (6) and (7) by interchanging L &
R and k < p. The flux of particles of the dot itself is then
compensated by the sum of the two,

d
1,(t) = <Edfd> = [ () + 1] ®)

that is, particle number in the junction is conserved.
Explicitly, within the wideband approximation, the particle
current Eq. (6) in the time domain is

d
1,(t) = 2iFL</ %fL(w)[ng(a),t) - Gly(w,n)]

- G;d(t,t)>, ©)

where FL(R) = 7'[|VkF|2NL(R), I = FL + FR’ NL(R) is the
density of states of the left (right) lead at the respective Fermi
energy, and

frp(@) = [e@ /ST 4 1]7! (10)

is the Fermi distribution there. The retarded and advanced
Green’s functions on the dot are

t
G;(da)(w t) — :Fl/ dt/eii(t—t’)(a)iir):Fi fr” d‘[ed(f)‘ (] ])

This result is derived in Appendix A. As shown there,

d ' ,
G (t.t) = / §Z<(a)) / dt'e” ="

x [iGlhy(w,t') — iGy(w.1)], 12)
where

() =21 fi () + T fr(w)]. 13)

Equations (9)—(13) completely describe the particle current in
the time domain.

We next turn to the energy fluxes that flow in the time
domain. First, there is the usual energy flux of the left lead,

d
If (1) = <E Zekcltck>
k

= Z(ek[Vfod(I,I) — VG (t.DD), (14)
k

and the analogous energy flux associated with the right
reservoir, derived from Eq. (14) by interchanging L < R and
k < p. Interms of the Green’s functions on the dot, this energy
flux reads

IE(t) = /dtl[ELE(t,tl)Gdd(tl,t)— Gt t)ZE 0],
15)
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where £ (z,1) is

SR =) Vit (16)
k

Explicitly, the rate of change of the energy in the left lead [see
Eq. (14)], is

d
IE(r) = ZiFL(/ ﬁwa(w)[do(w,t) — Gly(,0)]

d
_ed(t)do(t,t)> —iFL/§2<(w)[do(a),t)

+Gly(,0)]- (17)

Details of the derivation of this expression, in particular the
last term on the right-hand side, are given in Appendix A.
The particle and energy fluxes associated with the leads,
i.e., Egs. (6) and (15), are all that is needed to investigate
thermoelectric effects in stationary two-terminal electronic
junctions [49].

In the time domain, however, there are two additional
energy fluxes. The first, which results from the temporal
variation of the (left and right) tunneling Hamiltonians, Eq. (3),
reads

d
L (1) = <Z Z(chld + H.c.)>
k

= e, (1) — IF (1) + ) [V V,Gip(t.1)
k.p

— Vi Vi G0, (18)

(with an analogous expression for Ifm z)- The calculation of the
last term on the right-hand side is carried out in Appendix A.
From Eq. (A16) one finds

1E () = e, (1) — IF (1)
d
+2r, T, / 2 a@) ~ Sy )

X [G(‘}d(w,t) + G;d(w,t)]. (19)

The second “new” energy flux is the one that comes from the
temporal variation of the dot’s Hamiltonian, Eq. (2):

Eon i i __,ded(t)
Id(t)—<dted(t)d d>— i T

Gt t)+€,(1),(1).
(20)

The first term on the right-hand side of Eq. (20) results from
the explicit time dependence of the localized energys; i.e., it is
due to a time-dependent electric potential acting on the dot.
Since the electronic occupation on the dot [46], Q,(?), is

Q,(t)=—iGj,(t,1), 21)

this term expresses the power supplied to the system by the
field. We denote this power by P,(t), with

d
Pty = Q1) Z’f”.

Combining Egs. (14), (18), and (20), one finds
IFO+T5@) + 15 (O + I g (O + 17 (1) = Py(t), (23)

which expresses the energy conservation in the junction.

(22)
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III. AVERAGE OVER THE RANDOM
TELEGRAPH PROCESS

The localized energy on the dot in our junction fluctuates
with time,

e,(1) =€+ UEQ), (24)

where £(¢) describes a random telegraph process. Telegraph
noise is an example of a dichotomous, stationary, and discrete
process. Beginning at an initial time ¢, the function &()
jumps instantaneously between the values +1 and —1 at
random instants #, < f; <, <t; < --- < t. Each history of
the system involves a certain sequence of times at which the
jumps occur. In our calculation, we average the time-dependent
fluxes (at time #) over all histories; this procedure amounts
to averaging over all the time sequences, and over the two
possible initial values of the random variable & (). The average
contains the case with no jump, the case with one jump at any
intermediate time between the initial time #, and ¢, the case
with two jumps at any intermediate times f, < t;, <, < t, efc.
The average value of any physical quantity depends only on
the time difference, t — #,; due to this property, the averages of
the time-dependent fluxes derived in Sec. Il become stationary.

In the simplest example, the telegraph noise is characterized
by the a priori probabilities of the occurrence of &€ = +1 (or
—1). In the example of the elementary charge fluctuators,
each fluctuator is assumed to be in one of two states; these
states, which occur with probabilities p_ or p_, generate
an electrostatic potential +U or —U on the electron which
occupies the quantum dot. If the two states of the fluctuator
have energies 0 or Ey > 0, and when their occupation is
determined by their interaction with a separate heat bath
of temperature 7', then the probabilities are given by the
(normalized) Boltzmann factors [41],

_ expl£Ey/(2kyT)]
(1) = 2cosh[Eo/ (ks T)]’

(25)

The “telegraph noise temperature” 7 is an effective tem-
perature that models the probabilities p, . Since the model
Hamiltonian does not include the interaction between the
fluctuator and the dot, nor does it include the back-action from
the electrons to the fluctuator, the system is not in equilibrium
and there is no meaning in a comparison of 7 with the
temperatures of the electronic reservoirs. At zero telegraph-
noise temperature, T =0, this example yields p, =1
and hence no fluctuations. The effect of the fluctuations then
increases as T is raised. Other models of the telegraph noise
give similar results. With these probabilities, the average of
&(¢) is independent of the time:

& = p(T) — p_(T) = tanh[ Eo/(2ky T)]. (26)

(We denote an average over the telegraph process by an overbar
to distinguish it from the quantum average, which is indicated
by angular brackets.) As T — oo, the average & tends to zero.

In addition to the probabilities p, , one also needs to specify
the mean rate y at which the instantaneous jumps occur.
Assuming detailed balance, the probability per unit time to
jump from § = a(=*£1)to § = b(=F1)is W, = yp,, and
the inverse lifetime of the state a is —W,, =, Wap =
YP_,- The total rate for any jump is y = W, ;| +W_, ;. It
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is expedient to present the four possible values of W,;, in a
matrix form:

_ —P_ p_
W= y[ Py —PJ' @7

To average over the telegraph noise histories, it is conve-
nient to define conditional averages: the average of the function
F(t,t") under the assumption that £(¢') = a and &(¢) = b (with
t > t’) is expected to depend only on 7z — ¢’ and is hence
denoted by F(t —1t'),,. The average over all histories and
all initial and final values of & is

F.0) =Y p,F(t =)y, (28)
a,b

In particular, the conditional average probability that £(¢) = b,
given that £(¢') = a, is the 2 x 2 matrix P(¢,¢), which solves
the differential equation

d o ,
Ep(;,; ) = WP(t,1), (29)

with the initial condition P(z,") = I, the 2 x 2 unit matrix.
The solution depends only on t — ¢/,
P(t,t) =Pt — 1) =V
=1+W/y —We 74 /y. (30)
We now demonstrate the averaging over the telegraph noise
by considering the particle flux on the left lead, I, (). As
seen from Eq. (9), this average requires the averages over

G (w,t) =[Gl (w,1)]*, which also determine the average
over G ,(t,t), Eq. (12). To this end, we rewrite Eq. (11) as

l ru .
Giw.t)=i / di'e (e USEIDX 1, (1)
with the random part
X(1,1) = &V i a8, (32)
Since dX(t,t")/dt = iU[E(t) — E]X(t,t"), integration yields
[27]

X(t,t')=1+iU/ drE(r) — E1X(r,t).  (33)

t

The conditional average of this equation is expected to depend
only on ¢t — ¢/, and it obeys the equation

t
Xt—1),=Pt—1t),+ iUZ/ dtX(t —1),,
c v

x[c —E]P(t — 1), (34)
In matrix form,

Xt —1t)

=Pt —1)+ iUf dtX(t —t)[o, — EIP(r — 1), (35)

t

where o, is the Pauli matrix. Equation (35) is conveniently
solved by Laplace transforming it [27],

X(s) = P(s) + iUX(s)(o, — EDP(s), (36)
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where f(s) = fooo dte™" f(r). In particular, P(s) = [sI —
\~7V]_1 , which results from Eq. (30). The solution for the matrix
X(s) is

X(s) = [P(s)' —iU(o, —ED]!

:i|:s+iU(§—|—1)+)/p+ yp- ]
D YDy s+iUE—-—D+yp_|

(37)
with
D=(s+iUE)s+iUE+y)+U>—iUyE. (38)
It follows from Eq. (28) that [50]
X(s)=I[s +y +2iUE)/D. (39)

Inspection of the definition of the advanced Green’s function,
Eq. (31), reveals that its telegraph-process average is indepen-
dent of the time ¢ and is given by

Giy()=iX(s =T +ilw— e — UE). (40)

The telegraph-process averaging over the energy fluxes in-
volves averages of products of Green’s functions with €,(t),
Eq. (24), and its derivative. There are essentially two quantities
to average, €,(1)[G{,(w,t) — G (w,t)] and —ie, ()G 7,(t,1).
Their calculation is quite similar to the one represented in
detail above, and is relegated to Appendix B.

IV. THE STATIONARY FLUXES

Once all histories of the telegraph-process events are
averaged upon, the physical expressions become independent
of time. It is illuminating to begin the analysis of this stationary
limit by inspecting the averages of the occupation on the
dot, Q4 [Eq. (21)], and of the power absorbed from the
telegraph-noise source, P; [Eq. (22)]. Using Eq. (40) in
conjunction with Eq. (12) gives

Q_ _ 2/ d_wFLfL(CU)+ g fr(®)
4=

> = Im[G, (@] (@&1)

This is in fact the usual expression for the stationary occupation
of a dot coupled to two reservoirs that supply electrons.
The first factor is the weighted average of the two Fermi
distributions [which becomes simply f1(w) = fr(®) = f(w)
for an unbiased dot]. The second factor is the density of states
on the dot, with

Gia(@) =[G @]

_ w—e_—i(T+y)
C[w—e, —iTllw—e_—i(T+y)] - &

(42)

As seen, the telegraph noise turns our single resonance on the
dot (centered around € in the absence of it) into two resonances
[42], centered essentially around €, and €_,

€, =€+ UE, 43)

with disparate widths, essentially (i.e., small values of U) I'
and " + y.
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The more interesting factor is the “effective electric field”
(squared), £2:

E U1 -8)=4Up (T)p_(T). (44)

This quantity, which vanishes when 7' = 0 [see Eq. (26)],
determines the power absorbed by the junction. Indeed, using
Eq. (B12) in Eq. (22) yields

> _ g Ay / do Ty f (@) + T fr@)
d 2r+y ) 27 r

Im[7*(w)],
(45)

where the function F*, given in Eq. (B7) and reproduced here
for clarity, is

Fi() = [F (@)
B 1
Clo—e —iTw—e —i(T+y)]—E

(46)

The expression for the power P, possesses several remark-
able properties. First, Eq. (45) yields a finite positive power,
as long as the temperature of the noise source is finite, i.e.,
|€] # 1. This implies that the junction absorbs energy from the
source responsible for the telegraph noise. For instance, when
one confines oneself to the lowest order in £2 (or, equivalently,
to order U?), then

(0 — € 4T
(0 =€) + (T +y)?

Inserting this expression into Eq. (45) and integrating by parts,
one obtains

1 98
lim Im[F*(w)] = — — ln[
250 2]/ Jw

] (47)

= 2 dw d
— 2 | ——
P,=E£ 2F+y/2ﬂ< aw[FLfL(w)+FRfR(w)])
(@ —€)? 4+ (T +y)?
Xm[ T } (48)

which is obviously positive. In the more general case, but
assuming for simplicity [51] that the two electronic reservoirs
are identical, i.e., fr(w) = fr(w) = f(w), one finds

d
f 2—“’f<w>f“(w)
JT

__ /d_“’<—af(”)>1nw_w+, (49)
w, —w_ ) 2r dw w—w

where

w, =e+i(C+y/2)+ \/UZ —(y/2)? —iyUE. (50)

Using this expression, Fig. 2 shows P;/£2 as a function of
U/ T for& = 0.5 and three values of € — 1, the bare energy on
the dot relative to the common chemical potential in the leads,
wr = g = u (the resonance width I' scales all energies). At
intermediate values of U such that U > y, one observes a
fast increase and a peak in P;/E2 near Up, = € — . This
peak arises as the chemical potential crosses the resonance
at € — Up,. At large values of U, the integral in Eq. (49)
is well approximated by —iw /U, making the power positive
and linear in U, while it is quadratic in U at small values. The
curves in Fig. 2 are computed for zero electronic temperatures,
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FIG. 2. The power absorbed by the junction (in units of the
effective electric field squared, £2), for identical electronic reservoirs
(see text), £ = 0.5 and y = 1. The different curves with increasing
dashes are for e — u = 0.1, 1, 5. (Energies are in units of I".)

i.e., for [-df(w)/dw] — 8(w). However, this approximation
is also good at finite low temperatures, since the logarithmic
function in Eq. (49) varies slowly with w. Indeed, numerical
integration at higher electronic temperatures gives similar
qualitative results. [The temperature of the noise source is
determined by &; see Eq. (26).]

Second, the power absorbed by the junction necessitates
tunnel coupling with at least one lead. The reason for this is
quite clear: an empty dot (which is the situation assumed for the
decoupled junction) cannot absorb energy from a fluctuating
electric field. With two leads, Eq. (48) shows that the absorbed
power is a weighted average over the absorption of the two
terminals (note that I' = I'; 4+ I'j). Third, as noted, power
is absorbed also when the junction is not biased, i.e., when
fr(w) = fr(w) = f(w). Finally, we note that the absorbed
power vanishes when the mean rate y of instantaneous jumps
vanishes. This is particularly interesting in view of the fact that
the telegraph noise does affect the density of states on the dot,
Im[G§,(w)] [see Eq. (42)], even when y = 0 [52].

How is this flux of energy distributed between the two
electronic reservoirs? To answer this question we examine the
various electronic currents. The average of the particle current
over the telegraph processes [using Eq. (42) in Eq. (9)] takes
the usual form of stationary particle current in a two-terminal
junction [49],

— dw
I, = / E[fR(w) — fL(@]T (), (51)
where
T (w) = 4T, Tz Im[G%,(w)] /T (52)

is the transmission through the junction; it vanishes unless
the junction is biased and/or there is a temperature difference
across it. The telegraph noise affects the density of states on
the dot, and so modifies the transmission [42].

The electronic energy fluxes, however, differ substantially
from their “canonical” forms in two-terminal junctions. We
find that the average of the energy flux associated with the
left reservoir [see Eq. (17) and the technical details given in
Appendix B] is
r,—

LP,.  (53)

— d
iF = / @)~ fo@oT (@) + -
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The first term, which vanishes unless the junction is biased
(by a voltage and/or temperature difference), is indeed the
usual energy current in a two-terminal electronic junction,
with the transmission 7 () given in Eq. (52). The second term
comes from the power supplied by the source of the telegraph
processes. The sign of the first term depends on the bias and/or
on the temperature difference across the junction; this means
that energy flux represented by the first term can flow out
of or into the left reservoir [49]. As opposed, P; is positive,
which means that energy flows into the left reservoir from the

source of the telegraph noise. Since 1} is given by Eq. (53)
with L < R, it follows that energy flows also into the right
reservoir. Thus, the telegraph noise supplies energies to both
reservoirs, with the larger portion going into the more strongly
coupled one.

Interestingly enough, the averages over the energy fluxes
associated with the tunneling terms in the Hamiltonian,
Itfn‘ Lr) [EQ- (19)], vanish (as is also the case when the junction
is subjected to an oscillatory field; this point is elaborated upon
further in Sec. V). As a result, one finds that

IF+1E+1F =P, (54)

which is the stationary form of energy conservation in the
junction [IF is the total average energy flux of the electrons
on the dot, Eq. (20)].

V. DISCUSSION

Let us begin by summarizing our results and comparing
them with the electronic fluxes derived in the presence of an ac
electric field that acts on the dot. We considered a single-level
quantum dot coupled to two leads, on which the electrons are
subjected to a stochastic electric field that imitates telegraph-
noise processes. Expressions for the electronic properties of
this junction in the time domain can be found analytically
within the Keldysh formalism for nonequilibrium Green’s
functions. This calculation is carried out without specifying
the explicit time dependence of electric field; it thus pertains
also for a junction in which a periodic ac electric field acts on
electrons residing on the dot [21,22]. We then focused on the
specific time dependence that characterizes telegraph-noise
processes, and averaged the fluxes over the history of those
processes, to obtain their stationary limits. In studies devoted
to the effect of oscillatory fields, this step is replaced by an
integration over a single period of the ac field. It turns out that
the energy currents associated with the tunneling terms in the
Hamiltonian vanish when integrated over a period of the ac
field; as found above, this is also the fate of these currents in
the stationary limit of the telegraph noise.

Whereas the telegraph noise affects only modestly the
particle current by changing the density of states on the dot
without inducing any dramatic modifications, this is not the
case with the energy currents. In contrast with the charge (or
particle) current that is established only when the junction is
biased (either by voltage or by temperature gradient), disparate
energy currents do flow from the dot to the two leads even when
the two reservoirs are identical.

We believe that investigations of the correlations of the
particle and energy currents will shed further light on this
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interesting problem. This is because the average currents,
either over the telegraph processes or, in the case of an ac
field, over a period, produce qualitatively similar results. It
may well be that the difference in the time dependence of the
stochastic electric field and that of the oscillatory one will
manifest itself in the correlations.
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APPENDIX A: THE GREEN’S FUNCTIONS

In the time domain, the Dyson equations for the Green’s
functions depend on two time arguments. For instance [46],

(AD)

G (t.t) = /dtlgk(t,tl)VkGdd(tl,t/).

(The lowercase Green’s functions pertain to the decoupled junction.) The Green’s function of the decoupled left reservoir is
gt — 1) = FIOEF ) (o (1).cf(t)}) = Fi Ot (F) )e ') (A2)
and
gt =) =if(€e™ ™, f(e) = (che).

[The superscript r(a) indicates the retarded (advanced) Green’s function and corresponds to the upper (lower) signs on the
right-hand side.] The Green’s functions Eqs. (A2) and (A3) determine the self-energies ¥; and X £, Egs. (7) and (16), respectively.
When the densities of states in the reservoirs are assumed to be independent of the energy, i.e., in the wide-band limit [46], then

(A3)

2 Vi "8k (@ ~ FiT L) (A4)
[
where I'rg) = 7|V, |>Ni(r), and Ni(r) is the constant density of states of the left (right) lead. As a result,
2:2((016))(‘0) = Fi 1-‘L(R)’ EIT(R)(“)) =2 l—1L(R)fL(R)(C‘))v Ef(r]g[;)(w) = :FinL(R)a Ef(;)(w) = ZiQ)FL(R)fL(R)(w)7 (AS)

where fL( R)(a)) [Eqg. (10)] is the Fermi distribution there. (Note that the self-energies depend only on the time difference and
therefore are conveniently represented by their Fourier transforms.)
The Dyson equation for the Green’s function on the dot reads

Gyt = g (t,t") + / dtydt, g, (t,t ) (1,,1,)G 44 (t5,1), (A6)
where
St =2,@,1)+ Zi¢,t), T =T, +T. (A7)
The Green’s function of the decoupled dot is
8" (11" = FiO(FtFt Yo I dhea®), (A8)

and g7 = 0, since it is assumed that the dot is empty in the decoupled junction. Solving Eq. (A6) for the retarded (advanced)
Green’s function gives [47]
G (1) = FiO(ErFt e I dneaFTa=), (A9)

The Fourier transforms of these functions,

Gy(w,t) = / dr'eé =G (1,1), G4 (w.1) = / dr'e” " =1Ge (1 1), (A10)

lead to Eq. (11) in the main text. Inserting these solutions into the Dyson equation (A6) for the lesser Green’s function on the dot
yields

d t t ) ot
Gjt,t) = / %v(w) / dr, / dt,e" =20 i) gl i dres(®) (Al1)
By changing the double integration,
t t t 3
/dq/ dtzF(tl,tz)z'/ dtl/ dt,[F(t,,ty) + F(t,,1)], (A12)

and using Eq. (11), one derives Eq. (12).
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The rate of energy associated with the left reservoir [see Eqgs. (14) and (15)] involves the expression
’ r 4 < / < 4 a / 3 < <

/dt [Zf (.Gt 1) — G, (t,tTE(t D] =-T, / dr(S(r)a[Gdd(t,t —1)— Gt —t.1)], (A13)

where we have used Eqgs. (AS). Inserting here
< / dw —iw(t—t") ~r < a ’
Gt = 7€ G2~ (w)G(w,t") (Al14)
[X=(w) is given in Eq. (13)] and carrying out the derivatives exploiting Eqs. (A9) and (11) results in the last term on the
right-hand side of Eq. (17).

The last term in Eq. (18) for the energy rate associated with the tunneling between the dot and the left reservoir is calculated
from the Dyson equation,

Gp(t,t) = Vkvp"/dt1 fdtzgk(t,tl)Gdd(tl,tz)gp(tz,t’). (A15)

With the definition of the self-energy, Eq. (7) (and the analogous one for X ), this term in Eq. (18) becomes

/dt’/dt”[EL(t,t/)Gdd(t/,t”)ER(t”,t) — R, )G 1y (' FNE, (0] (Al6)

It remains to apply the Langreth rules to the product of Green’s functions; the result is the last term in Eq. (19).

APPENDIX B: DETAILS OF THE AVERAGE OVER THE TELEGRAPH PROCESS

As mentioned in Sec. III, the averages of the energy fluxes are determined by averaging over products of Green’s functions
with €,(t), Eq. (24), and its derivative. Using Eq. (32) and the definition

Y,/ ")y =EWX({H' 1) for t >t > 1, B
one can write

t
€, ()G (w,t) =i / dt' (e "= == e X (1,1') + UY(1,1,1)]. (B2)

The inverse Laplace transform of Eq. (39) yields

Xt.1)=X(t—1)= %[e“+("”> + -] 4 MWH” — e, (B3)
u
with
vy o=\ = y
u= <E+iU§) — &% and siz—E:I:u. (B4)
[£2 is defined in Eq. (44).] Similarly,
-
‘U 1 - o ’ " ’ " !
Y, 0/ ) =Yt —tt—t")=EX{H —1") + 1(2—%)[6“&*0 1) _ st )]e_)/(l_t). (B5)
Inserting Egs. (B3) and (B5) into the average of Eq. (B2) yields
€,(NGo(@,1) = €, Gl (w.1)]" = €,G%(w) + E2F9(w), (B6)
where the function F%(w) is
Fw) = [F@]* =[[lo—e, —illw—e —i(T+y)]-E&", (B7)

with e given in Eq. (43).
The second quantity to average is —i€ ()G ,(¢,t). Inserting the definitions (32) and (B1) into Eq. (12) gives

d t ’ r/ . . ! A
ie,(G(t,t) = f §2<(w) / dt'e=>r=1 / dt’(ie "= "I ex (' — "y + UY (1,1 ,1")] —cc).  (BS)

The average over the telegraph process of this expression is obtained upon using Egs. (B3) and (BS),

—ir —
G- —L
or 2PQT + )

ie, (NG, (1.1) = f 621—:2<(w)< f“(w)—c.c.>. (B9)
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Note the identity

PHYSICAL REVIEW B 96, 195435 (2017)

(w — zF)G (@) —cco=¢€, Zd(a))—i—?}'“(w)—c.c., (B10)
which turns the average Eq. (B9) into
- dow &2
i€, ()G5,(t, t)_/Z—E (w )[ G“d(w)+zr+ ]—"‘(a))—cc} (B11)
Finally, the average of the product of de;(t)/dt with G= is
.4 d ' 0 . g dY (E,1,17
214 )Gdd(t 0 :/_0)2<(w)/ dt/e_zr(’_’)/ gt [ ie-ito—e-inw-my XY@ o
dt 27 dt
dw y?
=— [ —%° Fw) —c.c.|. B12
f271 (w)[erry (w) CC} (B12)
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[52] y =0 is the static limit of the telegraph noise, in which the
site energy increases or decreases by U, depending on the
initial value of &: wy = € = U 4 iI". However, our procedure
averages over the initial conditions, and therefore the final
result contains the two resonances, independent of the initial
conditions.
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