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We present a description of vacuum polarization in a circular Dirac quantum dot in two spatial dimensions
assuming α—the relative strength of the Coulomb interaction small enough to render an approximation with a
single electron (hole) lowest energy level relevant. Applying this approximation, we find that for αc ≈ 1.05 the
lowest level is half filled irrespective of the number of flavors that are present. The ground state can be represented
as a superposition of particular (even number) excitonic states which constitute an excitonic cloud that evolves
in a crossover manner. The ground state is degenerate with an intervalley excitonic state at αc ≈ 1.05, a critical
strength, that in our approximation marks a point with single electron and exciton resonances.
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I. INTRODUCTION

The experimental discovery of graphene [1], a two-
dimensional hexagonal lattice of carbon atoms, stirred the
interest for Dirac physics in condensed matter theory. Ac-
cording to band-structure calculations, in graphene there are
two special points where the valence and conduction band
meet and make two Dirac cones with linear dispersion. This
is the basis for the explanation of a peculiar (particle-hole
symmetric) integer quantum Hall effect in graphene [2]—a
prominent feature of the quasirelativistic behavior. But the
effect will be still in place if we assume a mass term in the
Dirac description [3]. If we neglect any presence of an explicit
symmetry breaking that will induce a mass term, we still need
to consider the possibility for spontaneous symmetry breaking
due to electron-electron (Coulomb) interactions. Then the
underlying mechanism for the presence of a band gap (a mass
term) would be a creation of (due to the Coulomb interaction)
bound particle-hole pairs, i.e., excitons. In graphene the
importance of the Coulomb interaction is measured by the
effective “fine structure constant”, i.e., α = e2/(κh̄vF ), where
e is the unit of electric charge, h̄ = h/(2π ), with h, Planck’s
constant, vF is the Fermi velocity in graphene, an analog
of the speed of light c, vF ≈ c/300, and κ represents the
dielectric constant of the surrounding medium. We have
α ≈ 2.16/κ , where κ = 1 in vacuum (i.e., αvac ≈ 2.16) or, if
a graphene sheet is sandwiched between two different media,
it equals the average of the corresponding dielectric constants.
Typically, graphene transport experiments are performed on a
SiO2 substrate with αSiO2 ≈ 0.79. Thus α, the dimensionless
measure of the effectiveness of the Coulomb interaction, is
much larger, α = e2/(κh̄vF ) ∼ 1, in graphene, than in the
(real) relativistic (quantum electrodynamics) case, for which
α = e2/(κh̄c) = 1/137. Therefore, electrons and holes are
strongly attracted to each other in graphene near Dirac points.
Theoretical investigations [4–7] lead to an expectation that
a mass gap would exist in a suspended graphene, i.e., for
a sufficiently large α, α ∼ 2. In the experiment of Ref. [8]
on suspended graphene, no sign of an insulating state is
observed down to 1 K, and, in the reference, the authors state a
conservative estimate on any possible band gap as <0.5 meV.

The large value of α in graphene leads to many phenomena
connected and related to the vacuum polarization, i.e., an

instability towards creation of particle-hole pairs—excitons of
interacting Dirac fermions. Our focus here will be the exciton
physics (vacuum polarization) in a circularly confined Dirac
system. In this context we would like to mention well explored
phenomena connected with the presence of charged impurities
in graphene [9,10]. The charge of the impurity, Ze, need not be
large (Z � 1) to lead to “supercritical atomic collapse”, which
in the case of (noninteracting) graphene leads to an infinite
family of quasibound states [9] (although massless particles
cannot form bound states). What is of particular interest to us
here, is the effect of vacuum polarization in which through
exciton formation the impurity is partially screened with a
long polarization (screening charge) tail. The algebraic decay
of the polarization reflects the absence of any length scale in
the Dirac equation [6]. In Refs. [7,11] it was emphasized that
a close connection exists between the supercritical Coulomb
center problem [9,10] and the many-body excitonic instability
in the interacting graphene case, which are both followed by
the vacuum polarization phenomenon [12,13].

In this paper we will discuss a finite size Dirac system,
i.e., a quantum dot, taking into account the simple fact that,
due to the relativistic spectrum, the lowest energy level,
which energy we will denote by ε1, is strongly affected by
the Coulomb interaction V , i.e., V ∼ ε1. Namely, both V

and ε1 scale with the only length present, the radius of the
dot R, as V ∼ ε1 ∼ 1/R. We assumed V ∼ ε1, because the
dimensionless constant α that measures the relative strength
of the Coulomb interaction (as previously discussed) is of the
order one in graphene, α ∼ 1.

As expected, interactions in these small Dirac systems
cannot cause dramatic effects as shown in Ref. [14]. But,
especially close or at the neutrality point of the Dirac system,
as we will show, we can track down the excitonic physics—the
creation of particle-hole pairs from the vacuum in a very
efficient manner. Assuming that only the lowest energy state
is affected by the Coulomb interaction, but taking all excitonic
physics exactly, we were able to reach conclusions for an
arbitrary number of fermionic flavors, Nf . In the case of the
graphene, with the spin degree of freedom, Nf = 2. We find
that, irrespective of Nf , there is a critical α, αc ≈ 1.05, for
which the lowest energy level is half-filled with excitons.
That is the critical strength of the Coulomb interaction, after
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which the polarization (the number of excitons) increases
monotonously, but the ground state does not experience a
crossing and evolves in a crossover manner from vacuum (no
excitons). At αc degeneracies of the levels of the reduced
subspace occur, that include the ground state which becomes
degenerate with multiplets of states with an odd number parity
of excitons. Thus αc can signify a characteristic value of the
Coulomb interaction for an exciton resonant transport. Also
we will present the energy necessary to bring an electron to
the neutral system (“charging energy”) as a function of α,
which can be relevant in the spectroscopic measurements of
graphene quantum dots—see the latest important work in that
direction in Refs. [15–17].

In the literature we can find various proposals for graphene
quantum dots. Constructions with different one-dimensional
potentials, which overcome Klein paradox by considering
states with finite momentum in the transverse direction (strip
geometry) were proposed and analyzed in Refs. [18–20].
Similarly, the circular geometry leads to quasibound states
[21–26] and may even lead to bound states if a confining
potential enters as a mass term in the Dirac equation [27].
Here we will use the circular setup with a confining mass
term that was used in Ref. [14], which analyzed the situation
slightly away from the neutrality point (charged systems), with
necessary approximations in that case.

The rest of the paper is organized as follows: In the first part
of Sec. II we review details of the setup and solutions for the
noninteracting circular Dirac dot [14], and, then, in the second
part, we describe the approximation that we apply (in order to
deal with the Coulomb electron-electron interaction) and its
consequences. The complete solutions for the cases with the
number of flavors equal to Nf = 1, and Nf = 2, are given in
Sec. II and Appendices A and B. Section III is devoted to a
discussion and conclusions.

II. DIRAC QUANTUM DOT

In the following we will introduce the model of the Dirac
quantum dot that we consider. We begin with 2 × 2 Dirac
Hamiltonian with a mass term,

H = vF �σ �p + μ(�r)σz, (1)

where �σ = (σx,σy) and σz are Pauli matrices, by μ we denoted
a mass, and vF is the Fermi velocity as before. As shown in,
for example, Ref. [27], the unitary operator U = σx together
with K , the complex conjugation, transforms the Hamiltonian
H into

H ′ = UKHKU−1 = −H, (2)

and thus if

� =
[
�1

�2

]
(3)

is an eigenstate of H with energy E, then

� ′ =
[
�∗

2

�∗
1

]
(4)

is also an eigenstate with energy −E. If we consider time re-
versal, U becomes iσy , and together with complex conjugation

transforms the mass term into minus itself, i.e., the transformed
Hamiltonian is

H ′′ = vF �σ �p − μ(�r)σz. (5)

The corresponding solution is

� ′′ =
[

�∗
2

−�∗
1

]
(6)

and represents the corresponding partner of (3) under time
reversal. In the graphene physics, the two states, (3) and (6),
will correspond the fermionic states belonging to two different
valleys—energy minima in �k space.

We introduced the Dirac equation with a mass term to
model the confining potential, i.e., a monotonously increasing
function of radius r of the dot that confines fermions. This
choice makes it possible to fix and resolve straightforwardly
the boundary condition as shown in Ref. [27] in the case of an
infinite mass potential. The boundary condition requires that
the current along the radius at the circular boundary is zero,
and the eigenstates have energy values that are real (infinite
lifetimes).

On the other hand if we consider the electrostatic confine-
ment V (r) so that

H = vF �σ �p + V (r), (7)

in this case a hard-wall construction does not confine electrons
which is a manifestation of the Klein paradox. For a finite
steplike electrostatic potential we have quasibound states as
shown in Ref. [25]. We note that at E = 0, bound states are
possible for special potentials, as shown in Ref. [28]. The
structure of the quasibound states is very similar to the one that
we get by using the infinite mass confinement as can be seen in
Ref. [15], where the electrostatic confinement was considered
both experimentally and theoretically by calculating spectra
in a parabolic electrostatic confinement. The lowest energy
state, with the maximum probability peaked at the origin,
corresponds to the one in the infinite mass confinement with
the same feature (and the rest of the low-lying spectrum has a
similar correspondence in terms of the maxima of probability),
and we expect that at least qualitatively our conclusions will
be valid also for the experimental setup of Ref. [15] and, in
general, in the case of electrostatic confinement.

We proceed by reviewing the infinite mass confinement
solutions (Ref. [14]). The decoupling of the radial and angle
part leads to the following form of the general solution with
energy E > 0 in polar coordinates r and φ,

�(r) = A exp{imφ}
[

Jm(kr)
i exp{iφ}Jm+1(kr)

]
, (8)

where the Bessel functions, Jm(kr), of the first kind, m =
0,±1,±2, . . ., k = E/(h̄vF ), and A is a normalization con-
stant. The infinite mass boundary condition (Ref. [27]) implies
at R, the radius of the dot,

Jm(kaR) = τJm+1(kaR), (9)

where τ = ±1 is the valley index and a in ka denotes
a set of indexes, a = (n,m,τ ), that specify the eigenvalue
Ea = E(n,m,τ ). Here n enumerates discrete energy levels,
n = 0,1,2, . . . starting from the lowest one, with m the orbital
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angular momentum quantum number and τ index. We see
that the degeneracy between the different valley solutions is
described by the following relation,

E(n,m,τ ) = E(n,−m−1,−τ ). (10)

We will denote by 
(+)
a the normalized positive energy

solutions,


(+)
a (r) = Aa exp{imφ}

[
Jm(kar)

i exp{iφ}Jm+1(kar)

]
, (11)

where ka = Ea/(h̄vF ), and the normalization factor is,

Aa = [
π

(
J 2

m − Jm−1Jm+1 + J 2
m+1 − JmJm+2

)] 1
2 , (12)

with Jm ≡ Jm(Ea/�0) and �0 = (h̄vF )/R. To introduce the
Coulomb interaction into the problem we consider the full
electron second-quantized field operator,

�(r) =
∑

a


(+)
a (r)ca +

∑
a


(−)
a (r)d†

a, (13)

where we introduced 
(−)
a (r), the negative energy solutions,

which according to our previous discussion, must be of the
following form,


(−)
a (r) = Aa exp{−imφ}

[−i exp{−iφ}Jm+1(kar)
Jm(kar)

]
. (14)

In Eq. (13), ca denotes the particle annihilation operator for
level a, and d

†
a denotes the hole creation operator for the same

level. The corresponding particle creation operator is c
†
a , and

the hole annihilation operator is da .
We can decompose the full electron operator as �(r) =∑
τ,s �τ,s(r), where we introduced an additional flavor index

s; s = 1, . . . ,Nf ; where Nf denotes the number of flavors.
The Hamiltonian can be expressed as

H = HK + HI , (15)

with the kinetic part,

HK =
∑

a

Eac
†
aca +

∑
a

Ead
†
ada, (16)

and the interaction term,

HI = h̄vF α

2

∑
τ,s,τ ′,s ′

∫
d�rd�r ′

|�r − �r ′|

× : �†
τs(�r)�†

τ ′s ′ (�r ′)�τ ′s ′ (�r ′)�τs(�r) : , (17)

where colons denote normal ordering, and α is the dimen-
sionless parameter, α = e2/(h̄kvF ), which was introduced and
discussed in the introduction section.

In Fig. 1 we can see the part of the spectrum that describes
positive energy solutions, calculated from Eq. (9) with τ =
+1. The energy of the lowest energy state can be found to be
E(n=0,m=0,τ=+1) ≡ E00 = 1.44�0. On the other hand we may
estimate that the Coulomb energy gained by the presence of
an exciton, with a particle and a hole at distance (uncertainty)
of the order of R, as α�0. Thus if we want to study critical
behavior and the process in which the first exciton is created
under the steady increase of α, from zero, we may concentrate
on the lowest lying state, and its negative energy counterpart,

 0
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FIG. 1. The energy spectrum for the noninteracting case. Here m

represents the quantum number of the orbital angular momentum.

and in that small subspace understand the influence of the
valley and flavor degrees of freedom. The price we pay is
certainly the absence of the higher energy physics, but we will
be able to track down, in this small subspace, the processes that
are relevant for the excitonic physics, which do not conserve
separately particle and hole number, but only their difference.

Thus the subspace that we consider is made of two positive
energy E = E00 > 0 eigenstates:



(+)
(n=0,m=0,τ=+1)(r) = A00

[
J0(k0r)

i exp{iφ}J1(k0r)

]
, (18)

and



(−)
(n=0,m=−1,τ=−1)(r) = A00

[− exp{−iφ}J1(k0r)
iJ0(k0r)

]
, (19)

and their negative energy counterparts. Here k0 = E00/(h̄vF ).
Note that the states in (18) and (19) are also eigenstates of
the total angular momentum, Jz = −ih̄ ∂

∂φ
+ 1

2σz, and can be
classified by its quantum number, M = m + 1/2. Thus the two
states in (18) and (19), related by time reversal operation, are
associated with M = 1/2 and M = −1/2 quantum number,
respectively.

In the reduced, small subspace we denote the relevant
second-quantized creation and annihilation operators by
c
†
τ,s ,d

†
τ,s , and cτ,s,dτ,s , where τ = ±1, and s = 1, . . . ,Nf . c’s

stand for particles and d’s for holes.
Using the solutions of the Dirac quantum dot we can express

the electric (charge) density of the system as

ρ(r) =
∑
s,τ

I1(r)c†τ,scτ,s +
∑
s,τ

I1(r)dτ,sd
†
τ,s

+
{∑

s,τ

I2(r)(−i)e−iτφc†τ,sd
†
τ,s + H.c.

}
, (20)

with

I1(r) = A2
00

[
J 2

0 (k0r) + J 2
0 (k0r)

]
(21)
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and

I2(r) = A2
00 2 J0(k0r)J1(k0r). (22)

We define

ρd =
∑
s,τ

c†τ,scτ,s +
∑
s,τ

dτ,sd
†
τ,s . (23)

Then the normal ordered expression,

: ρ(r)ρ(r ′) : , (24)

enters the formula for the Hamiltonian that describes Coulomb
interaction, which final expression is

H = V1 : ρdρd : −V2

∑
τ,s,s ′

{c†τ,sd†
τ,sc

†
−τ,s ′d

†
−τ,s ′ + H.c.}

+ 2 V2

∑
τ,s,s ′

c†τ,sd
†
τ,sdτ,s ′cτ,s ′ , (25)

where V1,V2 are the coefficients obtained by spatial integration
over the Coulomb potential.

We define operators

B†
τ,s = c†τ,sd

†
τ,s , (26)

so that we can rewrite the interacting part of the Hamiltonian
as

H = V1 : ρdρd : −V2

∑
τ,s,s ′

{B†
τ,sB

†
−τ,s ′ + H.c.}

+ 2 V2

∑
τ,s,s ′

B†
τ,sBτ,s ′ . (27)

We also define

Bτ =
∑

s

Bτ,s =
∑

s

dτ,scτ,s (28)

for which we have the following commutation relations,

[Bτ ,B
†
τ ] =

∑
s

(−c†τ,scτ,s + dτ,sd
†
τ,s) = Nf − n̂τ . (29)

We can easily conclude that we can express the Hamiltonian
with the help of Bτ ’ s and that the following states,

|n,Nf ,n � Nf 〉 = 1

(n!)2
(

Nf

n

) (B†
τ )n(B†

−τ )n|0〉, (30)

where n = 0,1, . . . ,Nf , make an invariant subspace of the
Hamiltonian. In Eq. (30) we used parenthesis to denote the
binomial coefficient,(

Nf

n

)
= Nf !

(Nf − n)! n!
. (31)

The n = 0 state is the vacuum state.
If we denote by δH1,

δH1 = V1 : ρdρd : , (32)

we have

〈n,Nf |δH1|n,Nf 〉 = −4V1n. (33)

If we denote by δH2,

δH2 = −V2

∑
τ,s,s ′

B†
τ,sB

†
−τ,s ′ = −V2

∑
τ

B†
τB

†
−τ , (34)

we have

〈n + 1,Nf |δH2|n,Nf 〉 = −2V2(n + 1)(Nf − n). (35)

If we denote by δH3,

δH3 = 2V2

∑
τ,s,s ′

B†
τ,sBτ,s ′ = 2V2

∑
τ

B†
τBτ , (36)

we have

〈n,Nf |δH3|n,Nf 〉 = 4nV2(Nf − n + 1). (37)

Although very useful for the determination of the ground
state energy (due to the reduction to smaller space) the
subspace does not give a complete picture of the spectrum.
In Fig. 2 we can view the complete spectrum when Nf = 1
and Nf = 2, respectively. In the Appendix the complete
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FIG. 2. The eigenspectrum for (a) Nf = 1 and (b) Nf = 2. See Appendix A for explicit formulas of the plotted energies, {Ei ; i = 0,1,2,3}
in (a). See main text and Appendix B for explicit formulas of the following energies, {Ei ; i = 3,4, . . . ,11} in (b). E0,E1, and E2 in (b) are
numerically obtained.
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classification of eigenvectors and eigenstates is given for both
cases.

From the solutions of the complete problem in the Nf = 1
case and in the Nf = 2 case, we can conclude that the ground
state in a crossover manner evolves from the vacuum to a
highly polarized state with an increase of the strength of the
Coulomb interaction measured by the α coefficient.

In Fig. 2(b), we can view the graphene, Nf = 2, case. The
eigenvalues E0,E1, and E2 are numerically obtained, while
the rest of the energies can be expressed as: E3(−)/4(+) =
2(2E00 − 2V1 + V2 ∓

√
(E00 − V1 + V2)2 + V 2

2 ), E5 = 2
(E00 − V1), E6 = 2(3E00 − 3V1 + 2V2), E7(−)/8(+) =
2(2E00 − 2V1 + 3V2 ∓

√
(E00 − V1 + V2)2 + 4V 2

2 ), E9 = 4
(E00 − V1), E10 = 4(E00 − V1 + V2), E11 = 2(2E00 −
2V1 + V2). In these expressions, E00 represents the kinetic
term.

The analysis of the Nf = 2 makes clear that the state(s)
which energy is the closest to the ground state energy at
arbitrary α comes from the invariant subspace made by the
following states

|n,Nf ,σ,σ ′,n � Nf − 1〉

= 1

(n!)2
(

Nf − 1
n

) (B†
τ )n(B†

−τ )nc†τ,σ d
†
−τ,σ ′ |0〉, (38)

where, σ and σ ′ represent any two flavors (that are allowed
also to be the same); σ,σ ′ ∈ {1,2, . . . ,Nf }.

In each special subspace defined by fixed σ,σ ′, we have

〈n,Nf ,σ,σ ′|δH1|n,Nf ,σ,σ ′〉 = −(4n + 2)V1, (39)

and

〈n + 1,Nf ,σ,σ ′|δH2|n,Nf ,σ,σ ′〉
= −2V2(n + 1)(Nf − 1 − n), (40)

and

〈n,Nf ,σ,σ ′|δH3|n,Nf ,σ,σ ′〉 = 4nV2(Nf − n). (41)

If we compare the diagonal energy of the state |n = Nf 〉 of
the subspace in (30), which we denote by Ea , and the diagonal

energy of the state |n = Nf − 1,σ,σ ′〉 of the subspace in (38),
which we denote by Eb, we see that

Eb − Ea = 2(V1 − 2V2 − E00), (42)

where by E00 we denoted the lowest energy level of the kinetic
part. For V1 > 2V2, and for large enough α, we expect that
the correlated state connected with vacuum, with an even
number of excitons, and the large participation of the state
with the maximum number of excitons equal to 2Nf , will
always have lower energy than the correlated state with odd
number of excitons, and the large participation of the state
with the number of excitons equal to 2Nf − 1. This is indeed
the case when Nf = 1 and Nf = 2.

We notice that for αc ≈ 1.05, i.e., when E00 − V1 + V2 ≈ 0
all participations of the states in (30) of the invariant subspace
in the ground state are equal, and the lowest energy level is
half filled with excitons. In the cases with Nf = 1 and Nf = 2,
the participations with definite exciton numbers can be seen in
Fig. 3, respectively. At the same time the lowest energy eigen-
states that belong to the two invariant subspaces [expressed
by Eq. (30) and Eq. (38)] are degenerate—see Fig. 4. They
represent states with different parities of the exciton number, in
which the state with odd parity is characterized by the presence
of a single intervalley exciton. Notice that from the degenerate
states from different subspaces described by Eq. (38) we can
make superpositions that are invariant under the time reversal.

On the other hand we can consider a situation when an
electron of valley τ and flavor index σ is brought to the lowest
level that we consider. The relevant, invariant subspace in that
case is

|n,Nf ,σ,n � Nf − 1〉

= 1

(n!)2

√(
Nf − 1

n

)√(
Nf

n

) (B†
τ )n(B†

−τ )nc†τ,σ |0〉. (43)

In each special subspace defined by fixed σ , we have

〈n,Nf ,σ |δH1|n,Nf ,σ 〉 = −(4n + 1)V1, (44)
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FIG. 3. Exciton number and polarization of the ground state for (a) Nf = 1 (the participations of the states with 0 and 2 excitons), and
(b) Nf = 2 (the participations of the states with 0, 2, and 4 excitons).
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FIG. 4. The two lowest energies of the two invariant subspaces, expressed by Eq. (30) and Eq. (38) for (a) Nf = 2 and (b) Nf = 4.

and

〈n + 1,Nf ,σ |δH2|n,Nf ,σ 〉
= −2V2(n + 1)

√
(Nf − 1 − n)(Nf − n), (45)

and

〈n,Nf ,σ |δH3|n,Nf ,σ 〉 = 4nV2(Nf − n) + 2V2n. (46)

In Fig. 5 we can see that around α ∼ 1 the energy of the
added electron is nearly degenerate with the ground state
energy. We find this behavior irrespective of the number of
flavors.

III. DISCUSSION AND CONCLUSIONS

We presented a description of vacuum polarization in
a circular Dirac quantum dot in two spatial dimensions
assuming α—the relative strength of the Coulomb interaction
small enough to render an approximation with a single
electron (hole) lowest energy level relevant. Applying this
approximation, we find that for αc ≈ 1.05 the lowest level is
half filled irrespective of the number of flavors that are present.

We also find that the lowest energy state can be described
as an “excitonic cloud”, i.e., a superposition of excitonic states
given by Eq. (30) with (28). The first level above can be
described as an intervalley exciton, modified by the presence of
other excitons (excitonic cloud). This state is always given by a
superposition of states described by Eq. (38). These two levels,
the ground and intervalley excitonic state, touch at αc ≈ 1.05
when the average number of excitons is half the maximum
occupancy of a single (particle, hole) level. The renormalized
intervalley exciton is always below intravalley excitations due
to the exchange effect, which is easily identified in the case
with no flavors (only valley degree of freedom) in Fig. 2(a). It is
interesting to note that if we were to surround our dot, not with
trivial but a topological insulator, in the infinite mass limit, in
the case with only valley degree of freedom, there would be a
real level crossing of the (unpolarized) vacuum state with the
intervalley exciton state, degenerate with intravalley exciton
state.

Although our approach is certainly relevant for α 
 1,
due to the half filling at α ∼ 1, we expect that the crossover
behavior for α � 1 that we detect, see Fig. 2, would remain
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FIG. 5. The energy difference, as a function of α, between the lowest energy state in subspace Eq. (43) and the one in subspace described
by Eq. (30), i.e., the ground state for (a) Nf = 2 and (b) Nf = 4.
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if higher energy levels are included. Thus our results are
reliable for α � 1. We expect that the critical behavior that we
described—level narrowing, and electron and exciton (near)
resonances—will be present as we are approaching αc. That is
in particular relevant for graphene on the SiO2 substrate with
α � 0.79. Certainly, in the case of free standing graphene,
α � 2.16, at least one more level should be included and this
is a subject for future investigations.

Our results are unaffected by screening because, at the
neutrality point, with no finite density of charge, screening
is suppressed in graphene. Ripples and disorder (which will
induce puddles of particles and holes) will break the particle-
hole symmetry, and hinder the creation of excitons, and this
may blur the critical behavior we described.

It follows from our results that, due to the particle-hole
symmetry, at the neutrality point, the first energy level in the
particle spectrum will be pushed effectively downwards (less
energy needed to bring an electron, see Fig. 5), and the first
energy level in the hole spectrum will be pushed effectively
upwards. This should be a consequence of the inclusion of
electron-electron (i.e., Coulomb) interaction. Unfortunately,
experimentally it is hard to realize a mass confinement, in order
to make a direct comparison with our results. Nevertheless, as
we already discussed at the beginning of Sec. II, electrostatic
confinements may serve as experimental setups that may show
some of the behavior we find. Indeed, the basic prediction
of the relative shift of the first (hole) energy level [with
α �= 0, see Fig. 5(a)] may be relevant for the explanation
of the experimental data in Ref. [16]. Namely, considering
the negative energy (hole) states in an antidot electrostatic
confinement, it was noticed that there is a discrepancy between
the experimental and calculated energy of the first energy level.
As we described, the inclusion of the Coulomb interaction is
important for the description of the lowest lying state(s) in
graphene, and the discrepancy, i.e., shift towards the neutrality
point energy of the “bare”, noninteracting level, may be
an explanation for the observed discrepancy. It would be
interesting to use different substrates to make antidots, in
order to find out how shift depends on the effective α (which
can be measured as shown in Ref. [16]). Our expectation is
that, upon decreasing of α, the observed discrepancy will be
smaller.

It is interesting to note that for some special confining
potentials for which V (r) ∼ |r| in Eq. (7), we may map
the (noninteracting) eigenvalue problem to one in an effec-
tive magnetic field [29,30]. The ensuing eigenstates include
degenerate zero energy states, as well as other low-lying
states that must be taken into account if the reduced space
approximation discussed here is considered. A reduction was
already considered in Ref. [29], not in the case of a single dot,
but in the case of an array of quantum dots to find the dispersion
of collective (“magnetoplasmon”) states that propagate along
the system. The potential, V (r) ∼ |r|, is special because of
the nonanalytic behavior at |r| = 0, in the real space, and
does not represent a usual modeling of confinement that
was considered in this paper. A generalization to an array
of dots, possibly in the presence of magnetic field, may be
a direction for future work. This is motivated by the search
for devices that will control and modify graphene transport
properties.
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APPENDIX A: N f = 1

In this Appendix A we will present the complete solutions,
eigenvectors and eigenvalues, when Nf = 1, of our effective
Hamiltonian for the circular graphene dot. The subspace
described by Eq. (30) in this case consists of the vectors,

|0〉,B†
τB

†
−τ |0〉 ≡ c

†
+d

†
+c

†
−d

†
−|0〉. (A1)

The eigenproblem in this invariant subspace is represented by
the following matrix,[

0 −2V2

−2V2 4(E00 − V1 + V2)

]
. (A2)

The eigenvalues are E0,3 = 2(E00 − V1 + V2) ∓√
4(E00 − V1 + V2)2 + 4V 2

2 with corresponding eigenvectors.
The remaining vectors, B†

τ |0〉, τ = ±, are eigenvectors with
eigenvalue E2 = 2(E00 − V1 + V2), and c†τ d

†
−τ |0〉, τ = ±,

are eigenvectors with eigenvalue E1 = 2(E00 − V1). The
resulting spectrum and its dependence on α can be seen in
Fig. 2(a).

APPENDIX B: N f = 2

In this Appendix B we will present the complete solutions,
eigenvectors and eigenvalues, when Nf = 2, of our effective
Hamiltonian for the circular graphene dot. The subspace
described by Eq. (30) in this case consists of the vectors,

|0〉, 1
2B†

τB
†
−τ |0〉, 1

4 (B†
τ )2(B†

−τ )2|0〉. (B1)

The eigenproblem in this invariant subspace is represented by
the following matrix,⎡

⎢⎣
0 −4V2 0

−4V2 4(E00 − V1 + 2V2) −4V2

0 −4V2 8(E00 − V1 + V2)

⎤
⎥⎦. (B2)

The eigenvalues E0 < E1 < E2 as functions of α can be
viewed in Fig. 2(b).

Next we consider subspace(s)

1√
2
B†

τ |0〉, 1

2
√

2
(B†

τ )2B
†
−τ |0〉, (B3)

where τ = ±. In each subspace we have the following
eigenvalue problem:[

2(E00 − V1 + V2) −4V2

−4V2 6(E00 − V1) + 8V2

]
, (B4)

and the resulting eigenvalues E7,8 = 2[2(E00 − V1) + 3V2 ∓√
(E00 − V1 + V2)2 + 4V 2

2 ].
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If we introduce Xτ = c
†
τ↑d

†
τ↑ − c

†
τ↓d

†
τ↓ we can consider

states,

1√
2
X†

τ |0〉, (B5)

which are eigenvectors with eigenvalue E5 = 2(E00 − V1),
and

1

2
√

2
B†

τB
†
−τX

†
τ |0〉, (B6)

with eigenvalue E6 = 2[3(E00 − V1) + 2V2]. The subspace(s)
described by Eq. (38) in this case consists of the vectors,

c†τσ d
†
−τσ ′ |0〉, 1

2B†
τB

†
−τ c

†
τσ d

†
−τσ ′ |0〉, (B7)

where σ,σ ′ =↑ , ↓. In each subspace the eigenproblem is given
by the following matrix,[

2(E00 − V1) −2V2

−2V2 6(E00 − V1) + 4V2

]
. (B8)

The eigenvalues are E3,4 = 2[2(E00 − V1) + V2 ∓√
(E00 − V1 + V2)2 + V 2

2 ] and are plotted in Fig. 2(b).

The intravalley exciton state(s), c†τσ d
†
τσ ′ |0〉,, with σ �= σ ′,

is an eigenstate with eigenvalue E5 = 2(E00 − V1). Also
possible eigenvectors are X†

τX
†
−τ |0〉 with eigenvalue

E9 = 4(E00 − V1), then B†
τX

†
−τ |0〉, and (B†

τ )2|0〉 (equivalent to
(X†

τ )2|0〉) with common eigenvalue E10 = 4(E00 − V1 + V2).
With a single intravalley exciton with different flavors

(spins) and X’s and B’s, we have states B
†
−τ c

†
τσ d

†
τσ ′ |0〉

where σ �= σ ′ with eigenvalue E10 = 4(E00 − V1 + V2),
and X

†
−τ c

†
τσ d

†
τσ ′ |0〉 with eigenvalue E9 = 4(E00 − V1),

(B†
−τ )2c†τσ d

†
τσ ′ |0〉 (equivalent to (X†

−τ )2c†τσ d
†
τσ ′ |0〉) with eigen-

value E6 = 2[3(E00 − V1) + 2V2], and with a single interval-
ley exciton we have states B†

τ c
†
τσ d

†
−τσ ′ |0〉 and B

†
−τ c

†
τσ d

†
−τσ ′ |0〉

with energy E11 = 4(E00 − V1) + 2V2. (These states are
equivalent to X†

τ c
†
τσ d

†
−τσ ′ |0〉 and X

†
−τ c

†
τσ d

†
−τσ ′ |0〉.)

Now we have to classify remaining four-particle states that
cannot be described solely by Bτ ,Xτ with τ = ±, or with a
presence of a single intervalley or a special (combining differ-
ent flavors) intravalley exciton. They are: c†τσ d

†
τσ ′c

†
−τσ d

†
−τσ ′ |0〉,

c†τσ d
†
τσ ′c

†
−τσ ′d

†
−τσ |0〉, c†τσ d

†
−τσ c

†
τσ ′d

†
−τσ ′ |0〉 with σ �= σ ′ and

energy E9 = 4(E00 − V1).
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