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High-energy surface-sensitive x-ray diffraction (HESXRD) is a powerful high-energy photon technique
(E > 70 keV) that has in recent years proven to allow a fast data acquisition for the 3D structure determination of
surfaces and nanoparticles under in situ and operando conditions. The use of a large-area detector facilitates the
direct collection of nearly distortion-free diffraction patterns over a wide q range, including crystal truncation
rods perpendicular to the surface and large-area reciprocal space maps from epitaxial nanoparticles, which is not
possible in the conventional low-photon energy approach (E = 10−20 keV). Here, we present a comprehensive
mathematical approach, explaining the working principle of HESXRD for both single-crystal surfaces and
epitaxial nanostructures on single-crystal supports. The angular calculations used in conventional crystal
truncation rod measurements at low-photon energies are adopted for the high-photon-energy regime, illustrating
why and to which extent large reciprocal-space areas can be probed in stationary geometry with fixed sample
rotation. We discuss how imperfections such as mosaicity and finite domain size aid in sampling a substantial
part of reciprocal space without the need of rotating the sample. An exact account is given of the area probed in
reciprocal space using such a stationary mode, which is essential for in situ or operando time-resolved experiments
on surfaces and nanostructures.

DOI: 10.1103/PhysRevB.96.195433

I. INTRODUCTION

Surface-sensitive x-ray diffraction (SXRD) allows a quan-
titative determination of the atomic structure of truncated real-
space objects with internal periodicity, such as single crystals
or crystalline faceted nanoparticles, exhibiting well-defined
surfaces and interfaces [1–7]. Because of the compatibility
of x-ray diffraction experiments with harsh sample environ-
ments, such as elevated temperatures, reactive gas mixtures
at atmospheric pressures, or strong electromagnetic fields, in
the last decade SXRD has opened unique opportunities for the
investigation of surfaces and nanostructures under application
relevant conditions [8–15]. In the case of single crystals, the
surface structures are retrieved from the analysis of intensity
variations along sets of crystal truncation rods (CTRs),
which are lines in reciprocal space of nonzero diffracted
intensity oriented perpendicular to the respective surface and
interconnecting the corresponding Bragg peaks of the bulk
material. To measure the integrated intensities at various points
along the CTRs, the sample needs to be rotated in the tradi-
tional SXRD rocking-scan mode (E = 10−20 keV) around its
surface normal at each point (“rocking scan” [4]), which is,
however, rather time-consuming (on the order of hours or days
for a complete set). For epitaxial nanoparticles supported by
single-crystalline substrates, extended reciprocal-space maps
need to be recorded, which can be simulated to retrieve the
average nanoparticle shape and size [11–13]. They also involve
time-consuming sample and detector movements.
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High-energy surface x-ray diffraction (HESXRD) is a novel
tool to investigate the atomic structure of surfaces, interfaces,
and ensembles of nanoparticles [16–20], which became fea-
sible with the advent of intense, microfocused hard x-ray
beams of high-photon energy (E > 70 keV) at third-generation
synchrotron radiation sources [21]. In combination with a
large two-dimensional detector, it allows, without scanning
the detector, for an immediate and nearly distortion-free
mapping of vertical planes in reciprocal space, also containing,
among others, CTR and nanoparticle facet diffraction signals.
Accordingly, HESXRD provides, with subsecond temporal
resolution, atomic-scale structural information without the
need for detector movement or extended sample scanning. This
is essential for the in situ and operando investigation of kinetic
processes on single-crystal surfaces, interfaces, and epitaxial
nanostructures. In addition, the performance of rocking scans
while taking 2D images allows a very fast high-resolution
mapping of reciprocal space for single-crystal surfaces (on the
order of 10 min. [16,17]).

This results in a 3D dataset of integrated intensities of CTR
diffraction signals, which is not feasible on comparable time
scales at conventional photon energies. This turns out to be
crucial during the search for unknown or unexpected struc-
tures, which may be metastable under reaction or processing
conditions. However, a reciprocal-space parametrization in
terms of the diffraction angles at high-photon energies and
a thorough discussion of the role of sample imperfections on
the diffraction signal are lacking so far.

Here we shed light on the working principles of HESXRD:
in the first section we will demonstrate how the angular
calculations for the scattering angles from Ref. [2], valid for
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the case of conventional photon energies used in SXRD, can
be approximated for the case of high-photon energies and
small diffraction angles. The result will illustrate why, from a
mathematical point of view, a nearly distortion-free mapping
of vertical planes in reciprocal space is possible for a relevant
range of momentum transfers. In the second section, these
equations will be applied to the case of samples featuring
nanostructured objects (nanoparticles, or domains inside a
single crystal) with small domain sizes on the order of 10 nm
and an angular distribution of these domains around a preferred
direction (“in-plane mosaicity”). We will show to what extent
such intrinsic sample imperfections in combination with high-
photon energies result in an enlargement of the detectable
reciprocal-space area in stationary geometry, which allows for
a 2D mapping without the need to rotate the sample, enabling
fast, time-resolved in situ or operando studies on surfaces and
nanostructures.

II. APPROXIMATION OF CRYSTAL TRUNCATION ROD
DIFFRACTION-ANGLE CALCULATIONS FOR

HIGH-PHOTON ENERGIES

An x-ray beam impinging onto the sample surface results
in a diffraction pattern in reciprocal space, in which the
real-space positions of the atoms determine the positions
and intensities of the diffracted signals to be probed by the
detector. In the following, the calculations for these diffraction
angles and accordingly required detector positions will be
conveyed from the conventional (E = 10−20 keV, SXRD) to
the high-photon-energy regime (E > 70 keV, HESXRD).

Figure 1(a) illustrates the principal diffraction geometry for
the case of conventional photon energies (SXRD). An x-ray
beam of distinct photon energy E and wavelength λ = hc

E

impinges under a grazing angle α onto the sample surface.
Its incident wave vector

−→
ki with magnitude k = 2π

λ
= E

h̄c
defines the radius of the Ewald sphere on which the observable
reciprocal space lies.

To measure the diffracted intensity at a distinct reciprocal

lattice point �G = h
−→
a∗ + k

−→
b∗ + l

−→
c∗ defined by the sample’s

reciprocal lattice vectors
−→
a∗ ,

−→
b∗,

−→
c∗ , the diffraction condition

FIG. 1. Surface x-ray diffraction geometry at conventional pho-
ton energies in the 10–20-keV regime illustrating the scattering
geometry and angles introduced in the text for a vertical (2+2)
diffractometer with the detector rotations δ and γ independent of
the sample rotations θ and α, similar to the geometry for a stationary
2D detector [22].

�G = �q needs to be fulfilled, in which the total momentum
transfer �q = −→

kf − −→
ki (q = 4π

λ
sin ϑ , with total diffraction

angle 2ϑ) is determined by the respective final and incident
wave vectors

−→
kf and

−→
ki with magnitude k = kf = ki. Accord-

ingly, a certain reciprocal-space lattice point is probed only if
its position coincides with the Ewald sphere and if the detector
is positioned along the kf direction. As an example, Fig. 1
shows the scenario where the diffracted intensity is measured
at a point on the sample’s (0, 2, l) rod, which accordingly
corresponds to the intersection point of the rod with the Ewald
sphere.

To collect crystal truncation rod data, as well as extended
reciprocal space maps, the in- and out-of-plane diffraction
angles δ and γ in the laboratory frame, both realized by
the detector arm, as well as the sample rotation θ around
the surface normal, need to be varied when using low-
photon energies. A convenient parametrization of the intrinsic
diffraction angles with respect to the angles of the sample
surface γ ′ and δ′ is given by [2]

sin2γ ′ = sin2α + 4cos2α sin θB (sin θ - sin θB), (1)

sin δ′ = 2 cos θ sin θB

[1−4 sin θB(sin θ - sin θB)]1/2
, (2)

cos2ϑ = cos δ cos γ . (3)

Therein, Eq. (1) describes how the exit angle γ ′ with respect
to the surface plane is connected to the sample rotation θ

when following a CTR perpendicular to the surface (incident
angle α fixed). In Eq. (2) the corresponding tracking of the
diffraction angle δ′ in the surface plane is given. Both equations
contain the in-plane Bragg angle θB, which is defined by �q‖ =
2ksin(θB), where �q‖ corresponds to the parallel component
of the momentum transfer �q = �q‖ + �q⊥ in the limit of α ≈
0, γ ≈ 0. Equation (3) describes the total diffraction angle
2ϑ, which is illustrated in Fig. 1. In the limit of small-angle
incident angles (α ≈ 0), as considered here, it can be shown
that γ = γ ′ and δ = δ′ [22], and we will make use of these
relations in the following.

To collect the data needed for the CTR analysis, two
different approaches were established in the past using
conventional photon energies. The first one is the traditional
crystallography approach using a point detector with defined
aperture combined with rocking scans at each reciprocal lattice
point �G in reciprocal space along the crystal truncation rods
[4]. In the second approach, a two-dimensional detector is
mounted on the detector arm and the intersection of the
reciprocal lattice truncation or surface rods gives rise to a
diffraction spot (for high l values), which can be integrated
after background subtraction [23]. At low l, rocking scans still
need to be performed. Hence, either way, rocking scans at
various points along a CTR cannot be avoided.

This changes when high-energy photons (E > 70 keV)
as in HESXRD are employed. Figure 2 illustrates how, with
increasing photon energy, the Ewald sphere flattens such that
more structural information per detector area is probed within
a single snapshot, allowing for a complete avoidance, or at least
a significant reduction, of rocking scans. At the same time, the
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FIG. 2. Surface x-ray diffraction geometry at (a) conventional
(E = 12.4 keV) and (b) high-photon energies (E = 88.6 keV) drawn
using the same scale.

scattering angles decrease significantly. As an example, the
total scattering angle of the Pd(200) Bragg peak comprises
2ϑ1 = 20.94◦ at a low-photon energy of E1 = 12.4 keV, but
only 2ϑ2 = 2.92◦ at a high-photon energy of E2 = 88.6 keV.

Accordingly, the use of high-photon energies makes a
small-angle approximation feasible, which allows a reformu-
lation of the aforementioned scattering angle parametrization
(see Appendix):

γ ∼= 2
√

θB (θ -θB), (1a)

δ ∼= 2θB, (2a)

2ϑ ∼=
√

δ2 + γ 2. (3a)

The sets of equations for the parametrization of scattering
angles at conventional [Eqs. (1)–(3)] and high-photon energies
[Eqs. (1a)–(3a)] allow for a direct comparison of the diffracted
beam trajectories along CTRs in angular space, which will be
discussed in the following.

Figures 3(a) and 3(b) reveal various CTR trajectories
for the wavelengths λ = 0.1 nm (E = 12.4 keV, conven-
tional regime) and λ = 0.014 nm (E = 88.6 keV, high-energy
regime), respectively. The trajectories (black lines) are plotted
as a function of the in- and out-of-plane scattering angles δ

and γ in the (δ, γ ) plane of the detector. Note that both plots
cover the same in-and out-of-plane momentum transfer range
q|| and q⊥ of 70 and 60 nm−1, respectively. Along a CTR
trajectory, the in-plane momentum transfer q|| is constant and
only q⊥ is varied. At γ = 0 (and accordingly l = q⊥ = 0), the
trajectory of a distinct CTR starts at a δ value corresponding
to the (constant and energy-independent) in-plane momentum
transfer q||. For λ = 0.1 nm (E = 12.4 keV, in the conven-
tional regime) the rod trajectories are curved and they level off
at specific momentum transfers q⊥ = 2π

λ
sin γ perpendicular

FIG. 3. Comparison of trajectories (black lines) of the diffracted
beam along various CTRs as followed by the detector arm [(δ,γ )
plane] at conventional (a) 12.4 keV and high-photon energies (b)
88.6 keV, when the sample is rotated around its surface normal. The
plots in (a) and (b) cover the same in- and out-of-plane momentum
transfer range q|| and q⊥ of 70 and 60 nm−1, respectively.

to the surface, with further small increase requiring a large
movement in θ limiting the range in accessible q⊥.

Contrary, for the higher-photon energy (λ = 0.014 nm), the
rod trajectories in the (δ, γ ) plane of the detector correspond to
almost straight lines, in agreement with nearly constant values
of δ, as predicted by Eq. (2a), representing a direct image of
crystal truncation rods in reciprocal space. The sample rotation
θ varies only on the order of 2θB (few degrees) when following
a CTR over a range of �q⊥ typically investigated in experiments.
In small-angle approximation the reciprocal lattice index l is
directly proportional to the exit angle γ .

Further advantage of the high-energy beam trajectories can
be seen in the possibility to measure a wide �q⊥-range also
for low in-plane momentum transfers, as they might occur for
surface reconstructions. This stands in contrast to the low-
photon energy case, in which only a limited �q⊥ -range can
be reached. Accordingly, the high-energy approach helps to
overcome one of the shortcomings of traditional SXRD as
compared to low-energy electron diffraction (LEED), which
allows the measurement of high �q⊥ values for small �q‖ values
[24].

To illustrate the validity of Eq. (1a), Fig. 4 shows experi-
mental data obtained from a Pd(001) single crystal investigated
at high-photon energies (E = 85 keV). The sequence of im-
ages shown in Fig. 4(a) displays the diffracted beam on the 2D
detector measured at selected θ values during a rocking scan of
constant step size 	θ when scanning along the Pd(11L)-CTR
(fcc bulk coordinates). The last image in Fig 4(a) was obtained
by superimposing all 75 detector images performed during the
scan, where for each pixel the highest intensity in all of the de-
tector frames was plotted. Accordingly, it corresponds to the
detector (δ, γ ) plane of Fig. 3(b), and confirms experimentally
the almost straight trajectories of negligible variation in δ as
predicted by Eq. (2a).

Figure 4(b) displays the experimental γ values (circles)
plotted as a function of the sample rotation θ . They were
deduced from the respective intersection points of the CTR
with the Ewald sphere (positions of highest intensity) in
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FIG. 4. (a) High-energy x-ray diffraction patterns from a Pd(100)
surface at selected θ values taken during a rocking scan over a range of
approximately 7˚; last image: superposition of all 75 detector images
performed during the scan plotting for each pixel the highest intensity
in all of the detector frames. The boxes mark the intersection region
of the reciprocal lattice with the Ewald sphere. (b) Experimental γ

values of the respective intersection points between the CTR and the
Ewald sphere (circles) as a function of the sample rotation θ ; the red
solid line represents the calculated dependency according to Eq. (1a);
the blue bars correspond to the range 	γ along the CTR within
which still 25% of the maximum intensity of the intersection point
was monitored. The blue bars are missing for the cases in which this
intensity range was blocked by beamstops securing the 2D detector
from the high-intensity Pd Bragg peaks.

the individual 2D maps as the ones shown in Fig. 4(a).
The experimental data follow the square-root dependency
predicted by the derived equation (1a) (red line), which is
thus affirmed experimentally. For a measurement with equal
step size 	l, the rotation step width can be adopted according
to Eq. (1a).

As can be inferred from the 2D maps measured at a fixed
θ value [Fig. 4(a)], not only the respective intersection points
of the CTR with the Ewald sphere are detectable [circles in
Fig. 4(b)]; in addition, there is also measurable signal above
and below the respective intersection points. Their extent in
area along the CTR decreases with increasing γ values, as
for low γ values the angle between the CTR and the Ewald
sphere decreases significantly. The respective intensity ranges
are illustrated by the blue bars in Fig. 4(b), which correspond
to the range 	γ along the CTR within which still 25% of the
maximum intensity at the intersection point was monitored.
It will be discussed in the following that they result from the

presence of finite-size crystallite domains featuring an angular
distribution with respect to a preferential orientation (in-plane
mosaicity). Due to their small mosaicity (around 0.05◦) and the
large surface domain size (typically 100–200 nm) of the inves-
tigated crystal, the diffracted beams for individual steps in the θ

scan are still discernible along the Pd CTRs [see Fig. 4(a), sum
of all images]. Note that the typical energy resolution 	E

E =
	ϑ
ϑ

≈ 2 × 10−3 in high-energy diffraction experiments corre-
sponds to an angular peak broadening 	ϑ which is of the order
of 5 × 10−3◦

and plays a role for perfect single crystals only.

III. STATIONARY DIFFRACTION GEOMETRY (FIXED
SAMPLE ROTATION θS) FOR IN SITU STUDIES OF

EPITAXIAL NANOSTRUCTURES

So far we have considered a variable sample rotation θ to
follow the beam trajectories discussed above. However, during
operando studies or time-resolved experiments, processes are
usually too fast to be followed by azimuthal sample (rocking)
scans. Accordingly, probing a large section in reciprocal space
at a fixed (stationary) sample rotation θS is desirable. In the
following we will elucidate why mosaic spreads of finite-size
crystalline domains within samples are highly beneficial in
this respect. In addition, the thus-gained detectable area
in reciprocal space at a fixed sample rotation θS will be
estimated, which facilitates time-resolved operando studies
by the sequential recording of 2D diffraction patterns.

In general, crystalline samples feature intrinsic imper-
fections. For metal single crystals, they include finite-size
crystallite domains exhibiting angular distributions on the
order of 0.05–0.1◦ around a preferred direction. In the case
of epitaxial nanoparticles on single-crystal oxide supports, it
is the weak interaction between the metal particles and the
oxide that triggers angular distributions of the nanoparticles,
typically on the order of 1–3◦. In this case effects of the
typical energy broadening 	E

E
= 2 × 10−3 on the signal can

be neglected (see Sec. II).
Figure 5(a) displays the scenario of epitaxially grown

nanoparticles featuring an angular in-plane mosaicity distri-
bution 	
 which, as illustrated in the inset at the figure top,
is well described by a Gaussian distribution. The sketched
orange particles are perfectly aligned to the given substrate
orientation, whereas the blue (green) particles are tilted coun-
terclockwise (clockwise) by +	
/2(−	
/2) with respect
to the preferred direction around the substrate normal. The
high-energy reciprocal-space map (E = 85 keV) included in
Fig. 5(a) was measured on such a sample system with epitaxial
Rh nanoparticles grown on MgAl2O4(001) [20]. The map was
probed in a single snapshot with the sample aligned to the
(111) Bragg peak of the untilted (here: orange) particles.
Accordingly, as illustrated in Fig. 5(a), the Ewald sphere
intersects the rod of the untilted particles (vertical orange bar)
at the position of the (111) Bragg peak (closed orange circle)
resulting in the detection of the (111) reflection.

As can be inferred from the measured 2D map, a much
wider range in reciprocal space in addition to the particle
(111) Bragg reflection is detectable, and it is the particles’
in-plane mosaicity that facilitates the measurability of signals
over this wide (�q⊥, �q||)-range by compensating for the missing
rocking scan at a fixed sample rotation θS. Hence, as indicated
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FIG. 5. High-energy diffraction measurement scheme for epitaxial nanoparticles: (a) perspective view of the diffraction geometry for
nanoparticles with an in-plane angular distribution 	
 and finite diameter D; (b) diffraction pattern from epitaxial Rh nanoparticles on
MgAl2O4(100) recorded by a 2D detector in stationary geometry with fixed sample rotation θS; (c) (left) schematic view of a (100)-oriented,
truncated octahedral nanoparticle with (001) top and (111) side facets, (right) corresponding reciprocal lattice with facet rod signals indicated.

in Fig. 5(a), the rods from particles tilted counterclockwise
(clockwise) around the surface normal intersect the Ewald
sphere at higher (lower) out-of-plane angles. This results in
intensities above (below) the (111) reflection, hence enlarging
the range of detectable signals along the particle rod in the �q⊥
direction with the intensity modulated by a Gaussian function.
An additional, but less pronounced, extension of the measur-
able area along �q⊥ can be traced back to the finite particle width
D (typically � 10 nm), leading to a broadening 	qD = 2π

D

of the respective rods. The borders of the resulting overall
detectable range along �q⊥ are sketched by the red lines in
Fig. 5(a). Applying this scenario to other vertical cuts through
the Ewald sphere explains the additional detectability along
the �q|| direction, spanning the measureable (�q⊥, �q||) space.

To illustrate the richness in information the accessible
(�q⊥, q||) space allows us to obtain on nanoparticle systems,
Fig. 5(b) displays the reciprocal space map of Fig. 5(a) along
with indications for various measured signals. Such a 2D
map, probing the substrate (H = K,L) plane, contains for
instance quantitative information on the main particle epitaxy
consisting of (001)-oriented and truncated octahedral-shaped
particles [see Fig. 5(c)]: their size can be deduced from
the full widths at half maximum of the indicated (111) and
(002) Bragg reflections, their quantitative shape from the facet
signals oriented perpendicular to the corresponding particle
facets, respectively. In addition, also the presence, percentage,
and size of particles belonging to other epitaxies such as
(111)-oriented particles (hexagons) or (110)-oriented particles
(open circles), can be inferred from the respective Bragg
reflections. Moreover, the substrate reflections (diamonds)
allow for a direct identification of the respective epitaxial

relationships, while information on particle growth defects
(“internal twinning,” upward triangles) also can be deduced.

To estimate the amount of reciprocal space that can be
probed in stationary geometry with θ = const. = θS, the
parametrization in Eq. (1) or (1a) was employed in Eq. (2)
or (2a) for high- and low-photon energies, respectively, to
calculate γ as a function of δ, covering again the same
in-and out-of-plane momentum transfer range q|| and q⊥
of 70 and 60 nm−1, respectively. In Fig. 6(a) and 6(b) the
γ (δ) trajectories are plotted for photon energies of 88.6 and
12.4 keV, respectively, with θS fixed at the Pd(111) Bragg
angle for a (100)-oriented surface in the (h = k,l) plane. For

FIG. 6. (a) Accessible area in reciprocal space at high-photon
energies for a nanoparticle mosaic distribution of 	
 = 3.5◦ around
the surface normal (green). (b) Accessible area of reciprocal space
at 12.4 keV is indicated (green). The half circles in the (δ, γ ) plane
fulfilling the scattering condition and going through the (111) Bragg
peak are plotted as solid lines.
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both energies the trajectories constitute, in the (δ, γ (δ)) plane,
in good approximation, semicircles centered at δ = θS and
γ = 0◦, with radius θS. For a fixed angle θS reciprocal space is
probed along these circles at once, even for a perfect sample.

Due to the differently tilted particles within the mosaic
spread, the diffraction condition is fulfilled for a range of
various in-plane diffraction angles θB at a stationary sample
angle θS. Taking an in-plane mosaicity with full width at
half maximum 	
 into account, we can draw semicircles
for θS − 	
/2 and θS + 	
/2, describing the range within
which the diffraction condition is fulfilled due to the particles’
in-plane mosaicity. Hence, the green area in Fig. 6(a) is
accessible at 88.6 keV photon energy and taking 	
 = 3.5◦
into account; for comparison the much smaller reciprocal-
space area for 	
 = 3.5◦ at 12.4 keV photon energy is
displayed in Fig. 6(b). Hence, a much wider (�q⊥, �q||) range
in reciprocal-space plane can be imaged when employing
high-energy x rays. In both cases a slight (nearly identical)
variation in in-plane momentum transfer perpendicular to the
probed reciprocal-space plane is present, which, due to the
finite in-plane peak widths, can in practice be neglected. Apart
from the in-plane mosaic spread discussed so far, an out-of-
plane mosaic spread is often present in sample systems in
addition. It makes also the region around the specular rod with
�q|| = 0 available for detection, leading in the Rh nanoparticle
case [Fig. 5(b)] to the monitoring of the out-of-plane Bragg
reflections of (001)- and (111)-oriented nanoparticles. Hence,
the areas in reciprocal space accessible due to both in-plane
and out-of-plane mosaicity are superimposed.

For the investigation of surfaces or interfaces in stationary
geometry, the high-energy approach suggests that by tuning the
sample mosaicity, substrate crystal truncation rods or surface
rods originating from reconstructions or incommensurate
layers can be probed over a wider l range. This opens interest-
ing opportunities to follow atomic-scale structural changes
in stationary geometry during time-resolved measurements
without moving the sample.

IV. DISCUSSION AND CONCLUSIONS

The approach presented here raises the question, under
which circumstances the use of high-energy photons is benefi-
cial for the investigation of systems with reduced dimensions
such as surfaces, interfaces, or nanostructures. Even in the
high-energy x-ray case (70–90 keV) the Ewald sphere is not
completely flat and in a stationary geometry diffraction takes
only place in directions where the reciprocal lattice intersects
the Ewald sphere. For perfect surfaces or perfectly aligned
nanostructures this gives rise to well-defined diffraction spots
on the 2D detector, as seen in Fig. 4(a) in the case of a
Pd(100) single crystal with low mosaicity. A sample rotation
is still needed to record the whole reciprocal space, which
is traditionally performed at lower photon energies using a
smaller 2D detector, involving a time-consuming point-to-
point movement of the sample and detector arm, which can
be significantly speeded up by a continuous movement of
the detector arm and synchronized readout of the detector
and automatized absorber system [25,26]. Alternatively, also
at lower, conventional photon energies a stationary, large
2D detector could also be employed for fast data recording,

together with fast online data analysis to create distortion-free
cuts through reciprocal space, as they are directly delivered
in very good approximation in the high-energy case. The
data acquisition is still speeded up in the high-energy case,
since for the detection of the useful signal in one azimuthal
reciprocal-space plane only a small angular movement of a
few degrees is required and straightforward data interpretation
is possible without further numerical processing.

With current detector technology, there is however one
drawback when using a large 2D detector (both low- and
high-energy case): it lies in the need of masking the posi-
tions of bulk Bragg reflections by placing individual small
absorbers on the 2D detector to avoid detector saturation
or damage. This fortunately does not represent a loss in
information, since the bulk Bragg reflections do not contain
surface structural information. The new generation of 2D pixel
detectors optimized for high-photon energies [27] overcomes
some of these shortcomings by providing a largely enhanced
dynamical range. A future high-photon-energy x-ray detector
development on the basis of the principle of the adaptive gain
integrating pixel detector is expected to fully overcome this
technical problem [28].

The real benefit using high-energy photons lies in the
investigation of systems with slight imperfections such as
mosaicity on the order of the in-plane diffraction angle θB

or reduced domain size. In the case of a stationary geometry,
in which the sample is not rotated, these imperfections make
a wide range of a vertical reciprocal-space plane detectable,
as was pointed out in Sec. III. This is very beneficial for
time-resolved in situ and operando experiments monitoring
growth, catalytic, or electrochemical processes on surfaces
and nanoparticles [18]. In addition, it is also highly attractive
for the investigation of ultrafast phenomena on time scales
from ns to fs during pump-probe experiments. High-photon
energies are naturally suited for the investigation of interfaces
buried deeply underneath strongly absorbing materials [29–
31]. The recently proposed investigation of free surfaces in
normal incidence transmission mode [32] is promising but
can be expected to suffer from a worse signal-to-noise ratio,
hampering quantitative data analysis.

In conclusion, we have elucidated the working princi-
ples of high-energy x-ray reciprocal-space mapping for the
investigation of surfaces, interfaces, epitaxial nanoparticles,
and nanostructures. We have demonstrated that, in good
approximation, a distortion-free mapping of reciprocal-space
planes perpendicular to the surface can be performed in
stationary geometry employing a suitably large 2D detector
and we have highlighted the important role of controlled
defect structures in the sample for this purpose. This opens up
new possibilities for operando and time-resolved experiments
with atomic-scale structural resolution at third-generation
synchrotron sources providing sufficient flux in the hard x-ray
regime and emphasizes the need for high-energy photons at
free-electron laser x-ray sources for ultrashort-time pump-
probe experiments.
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APPENDIX

The use of high-photon energies makes a small-angle approximation [sin x = x, cos x = 1, valid up to x = 0.14 rad (8˚)
within 1% error] feasible, which allows a reformulation of the aforementioned scattering-angle parametrization:

γ = α2 + 4 θB(θ -θB) ∼= 4 θB(θ -θB)

(within 1% for γ � 7α)

γ ∼= 2
√

θB(θ -θB), (A1)

δ = 2 θB

[1−4θB(θ -θB)]1/2 = 2 θB

[1 − γ 2+α2]1/2
∼= 2θB, (A2)

(within 1% for θB > 4◦ and γ < 8◦, or within 4% for θB > 1◦ and γ < 8◦).
Further, it follows from Eq. (3):

1 − 1
2 (2ϑ)2 = (

1 − 1
2δ2)(1 − 1

2γ 2) ∼= 1 − 1
2δ2 − 1

2γ 2 ,

and

2ϑ ∼=
√

δ2 + γ 2. (A3)
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