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We present a set of experimentally feasible pulse sequences that implement any single-qubit gate on a
singlet-triplet spin qubit and demonstrate that these new sequences are up to three times faster than existing
sequences in the literature. We show that these sequences can be extended to incorporate built-in dynamical
error correction, yielding gates that are robust to both charge and magnetic field noise and up to twice as fast as
previous dynamically corrected gate schemes. We present a thorough comparison of the performance of our new
sequences with that of several existing ones using randomized benchmarking, considering both quasistatic and
1/f“ noise models. We provide our results both as a function of evolution time and as a function of the number of
gates, which respectively yield both an effective coherence time and an estimate of the number of gates that can
be performed within this coherence time. We determine which set of pulse sequences gives the best results for a
wide range of noise strengths and power spectra. Overall, we find that the traditional, slower sequences perform
best when there is no field noise or when the noise contains significant high-frequency components; otherwise,

our new, fast sequences exhibit the best performance.
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I. INTRODUCTION

The problem of how to efficiently and precisely control
qubits is of fundamental interest for quantum computing
and quantum information. This includes determining how to
perform gates within the limitations of a given platform and
how to combat errors while the gates are being implemented.
One goal is to achieve at least 99% average fidelity for all
gates, which is the threshold above which error correction
based on surface code architectures may be implemented
[1]. This >99% error constraint for surface codes is still
much lower than the very stringent quantum error correction
threshold of 99.99% required for general circuit level quantum
computations, and the current experimental activity in quan-
tum computing hardware is aimed at achieving >99% error
threshold to enable practical surface code architectures. One
platform that is particularly promising is that of electron spins
in semiconductor quantum dots, due to their compatibility
with the existing semiconductor industry, as well as to the
fast electrical control and long coherence times available in
these systems. Several different implementations of qubits
using such electronic spins include the single-spin Loss-
DiVincenzo qubit [2-9], the singlet-triplet qubit [10-19], the
triple-dot exchange-only qubit [20-24], and “hybrid” qubits
with three electrons in two dots [25-27]. While there has
been much experimental progress on improving the fidelity
of gate operations [3,13,15,28], with fidelities as high as about
99% for single-qubit gates and about 90% for two-qubit gates
having been demonstrated [29], more work must still be done
to comfortably exceed the 99% surface-code threshold for all
gate operations.

“rthrockm @umd.edu
x.wang@cityu.edu.hk

2469-9950/2017/96(19)/195424(26)

195424-1

One of the main problems that must be tackled in order
to achieve such efficient and precise control of qubits is
noise-induced gate error. In semiconductor spin qubits, the
two dominant types of noise are (magnetic) field noise due to
fluctuations both in nuclear spins and in applied magnetic
fields, and charge noise due to voltage fluctuations in the
gates and in the semiconductor environment used to define the
quantum dots or to nearby charged impurities. In fact, charge
noise in various forms is present in all of the currently pursued
experimental qubits, including superconducting and ion trap
qubits, in addition to semiconductor spin qubits of interest in
the current paper. While noise may be reduced to an extent at
the material platform level through techniques such as isotopic
purification for Si, dynamical nuclear spin polarization in
GaAs, and improved materials and device designs, it has
proven challenging to suppress it to a sufficiently low level.
Therefore, various dynamical decoupling techniques have
been developed to further mitigate the effects of noise at the
qubit control level. For example, by applying appropriate pulse
sequences or by implementing carefully designed feedback
control, it is possible to dramatically extend the coherence
time of spin qubits [17,30-34] with generalized spin echo type
(e.g., CPMG) pulse sequences being well-known examples
of extending spin coherence in semiconductors [35-37].
Several control techniques have also been proposed that are
capable of not only enhancing the lifetime of qubits, but
also of performing gate operations while noise errors are
simultaneously suppressed [38—47]. However, such techniques
generally need to be optimized according to the specific noise
profiles and physical constraints of a given type of qubit.

In this work, we focus on singlet-triplet qubits, which
have been used to experimentally demonstrate some of the
highest single- and two-qubit gate fidelities achieved so far in
a spin-qubit system [29]. Such a qubit consists of two electrons
occupying a double quantum dot, with an electrostatically
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controlled Heisenberg exchange interaction between them
and a magnetic field gradient across the two dots, the latter
typically produced with either a micromagnet or by polarizing
the nuclear spins [12,30,48-50]. It could also, in principle,
be produced via an effective g-factor difference between the
two quantum dots [51-53], but this has not been done in any
experiment on singlet-triplet qubits to date. The (effective)
Hamiltonian of this qubit within the logical subspace (total
S, = 0) has the form

H = Jé. + hé,, (D

where J is the exchange coupling and 4 is the magnetic field
difference between the two dots. In practice, it is very difficult
to change h quickly, and thus all operations are performed
by tuning J using external electrical gates that can rapidly
modify the electron wave functions in the quantum dot. If J is
switched on and held at a fixed value, then the associated time
evolution operator is

U(t,0) = exp [—i(J6, + hé)t]. )

This operator rotates the qubit about an axis in the xz plane,
which is determined by the magnitude of J relative to h.
The value of J is restricted in actual experiments to positive
(and, strictly speaking, nonzero) values due to the nature
of the exchange coupling. (Note that recent experimental
findings [54] indicate that it may be possible to relax these
restrictions in multi-electron systems.) As a result, with a
single square J pulse we can only perform rotations about
axes in the xz plane at an angle 6 € (Gmin,%) with respect
to the z axis; all other rotations require multiple pulses to
perform. The minimal value 6y, reflects the fact that in real
systems, it is not possible to make J arbitrarily large, which
would be necessary to implement a pure z rotation with a
single pulse when & # 0. Instead, it is restricted to J < Jpax,
where J,x is determined by the geometry of the quantum
dots. In terms of the effective Hamiltonian, Eq. (1), charge
noise induces fluctuations in the exchange coupling J, while
field noise produces fluctuations in the gradient /. The task of
designing robust gate operations for singlet-triplet qubits thus
requires that we somehow mitigate (at least) the leading-order
errors in U(z,0) caused by these fluctuations by modulating
J in a prescribed manner while respecting the 0 < J < Jpax
constraint. We will be implementing all gates in this work
using sequences of square pulses. Our reason for doing so is
for the sake of mathematical simplicity—we can solve for the
time evolution of our system under a constant magnetic field
gradient and a constant exchange coupling exactly. One could
also consider using AC pulses, but we would only be able to
determine the evolution of the system approximately, using,
for example, the random phase approximation. The fact that we
only have an approximate solution would result in systematic
error in the gates in addition to errors caused by noise [55].
We outline here a two-pronged approach to combatting the
effects of noise during gate operations: faster pulse sequences
and dynamical error correction. We begin by reviewing
existing pulse sequences in the literature and proposing new
sequences capable of implementing faster gates. We will
consider five sets of pulse sequences in this work, three
of which are not corrected for noise-induced error, and the
other two of which are. The first uncorrected set, which we
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will call the “uncorrected unoptimized” (UCUO) sequences,
is based on the composite z rotation sequence proposed by
Guy Ramon [56], and x rotations are performed by switching
off J for an interval of time. Other rotations can then be
performed using the standard z-x-z decomposition [57]. The
second is the “uncorrected optimized, type I’ (UCO-I) set, for
which z rotations are performed using the 6-26-6 sequence
proposed in Ref. [58], and x rotations are implemented using
a Hadamard-z-Hadamard sequence. These two sequence sets
have already been partially evaluated in Ref. [58], wherein the
fidelities as a function of time are determined and effective
decoherence times 7, are found by the same method that we
employ here. The third set, the “uncorrected optimized, type
II” (UCO-II) set, on the other hand, is a new set that we
introduce in this work. This set still uses the §-20-6 sequence
from the UCO-I set to perform z rotations, but also includes
new sequences for performing other rotations, which we will
describe in detail, as opposed to the z-x-z decompositions
from the existing sets. These sequences consist of fewer
pulses (at most five) than those from the UCUO and UCO-I
sets. These new pulse sequences, and the comparison of
their efficacies with the existing pulse sequences for singlet-
triplet gate operations, are one of the main results of this
work.

The two sets of error-corrected pulse sequences are derived
using the SUPCODE method [38—40], which modifies a given
(naive) pulse sequence that implements a desired gate opera-
tion by combining it with a noisy identity operation designed
in such a way as to cancel the effects of noise-induced error
to leading order. SUPCODE is specifically designed for singlet-
triplet qubits, where the positivity of the exchange coupling
between the electron spins precludes the applicability of most
dynamical gate correction methods, although the basic strategy
of combining naive sequences with noisy identity operations to
cancel errors can be applied to a broad range of systems. This
strategy will be exploited in the present work to design new
sequences that implement dynamically corrected gates. These
sequences are derived under the assumption of quasistatic
noise (i.e., fluctuations in J and & are treated as constant
over the duration of the gate), but still work even when time
dependence of the noise is included, assuming that the high-
frequency components are sufficiently small. The first set of
corrected sequences we consider, the “corrected unoptimized”
(CUO) set, is based on traditional pulse sequences, and is the
set outlined in Ref. [40]. The uncorrected pulse sequences
that this set is derived from assume that x rotations can be
performed with a single pulse; z rotations are then performed
using the Hadamard-x-Hadamard sequence, and all others
with an x-z-x decomposition. The other corrected set is the
“corrected optimized, type II” (CO-II) set, the second new
set of pulse sequences that we introduce in this work. These
are derived from our UCO-II pulse sequences via a method
similar to SUPCODE and offer two major advantages. First of
all, the sequences that the CUO set is based on can be up to
seven pulses long, while none of the UCO-II sequences are
longer than five, and thus the UCO-II sequences are already
faster. Second of all, the uncorrected identities are faster (and,
in some cases, consist of fewer pulses) than those for the
corresponding CUO sequence. The different sets of sequences
are summarized in Table I.
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TABLE I. Summary of different sets of sequences considered in this paper.

Acronym Full name Meaning
ucuo UnCorrected Standard decomposition of an arbitrary rotation
UnOptimized into z rotations (done by the Ramon sequence [56])
and x rotations (constructed using
the Hadamard-z-Hadamard sequence).
UCO-1 UnCorrected Similar to the UCUO sequences, except that
Optimized, type I z rotations are performed using the 6-20-6
sequence as proposed in Ref. [58].
Uco-1I UnCorrected New set introduced in this work. Still uses
Optimized, type 11 the 6-26-0 sequence to perform z rotations,
but includes new, shorter, sequences to be
detailed in Sec. II C instead of decompositions
into z and x rotations.
CUO Corrected Traditional SUPCODE sequences correcting
UnOptimized noise errors, as outlined in Ref. [40], that correct
for noise-induced error to leading order.
CO-I1 Corrected Optimized, The other new set introduced in this work.

type II

Sequences derived from UCO-II via a similar
method to SUPCODE that correct for noise-induced
errors to leading order.

Having proposed these five sets of pulse sequences, we
now wish to evaluate their relative merits. The main part of
this analysis is a determination of how much time is required
to execute the sequences. We will show that the UCO-IL
sequences can be made faster than any of the other sets of
uncorrected sequences, due in large part to the fact that many of
the UCO-II sequences consist of fewer pulses than their UCUO
and UCO-I counterparts and to the fact that these sequences
can be made faster through adjustment of parameters. We show
that the UCO-I sequences can be up to three times faster than
the UCUO sequences, while the UCO-II sequences are up to
twice as fast as the UCO-I sequences, all depending on the
gate in question. We also compare our two sets of corrected
sequences, and find that the CO-II sequences are up to twice
as fast as their CUO counterparts. There are some advantages,
however, that the UCUO and CUO sequences have over their
faster counterparts. Due to the fact that they contain pure x
rotations (during which J is set to zero), they turn out to be
resistant to the effects of charge noise, and thus work very
well in systems with low magnetic noise, such as isotopically
purified Si. Unfortunately, these sequences are incompatible
with existing experimental systems for singlet-triplet qubits (at
least those based on two electrons in a double quantum dot),
as it is very challenging to completely turn off the exchange
coupling.

We then proceed with a randomized benchmarking [59,60]
analysis of these pulse sequences. In such an analysis, one
generates random sequences of Clifford gates of a given length
and determines the average fidelity of these sequences. The
single-qubit Clifford gates are the set of rotations that map the
three Cartesian coordinate axes, x, y, and z, onto themselves;
there are 24 such gates in all. Performing these simulations
for varying numbers of gates allows one to determine valuable
information about the qubit, such as the effective decoherence
time 75 and the number of gates that one can perform before the

loss of information in the qubit reaches an unacceptable level.
In this analysis, we will consider both (Gaussian) quasistatic
and 1/f* noise. We also compare barrier control and tilt
control [18,19,58], which correspond to different amounts
of charge noise, with the amount present when using barrier
control an order of magnitude smaller than when using tilt
control [19]. The reason why this is the case is because, when
using tilt control, we are moving the system away from a
“sweet spot,” a value of the detuning of the two quantum
dots at which the difference in energy between the singlet and
triplet states is a minimum. As a result, noise in the detuning
causes error in the exchange coupling to first order. When
we use barrier control, on the other hand, we remain at this
“sweet spot,” with only the energy difference at this point
changing, and thus the exchange is only affected by noise in
the detuning to second order. As a result, we would expect
an order-of-magnitude reduction in noise in the exchange
coupling, which is what is observed experimentally.

In the case of quasistatic noise, we find that, among the
uncorrected sequences, the UCUO sequences result in the
longest T, by an order of magnitude in the absence of field
noise. This results from the fact that there are segments
of these sequences during which the exchange coupling is
completely turned off. The amount of charge noise in the
system, quantified by the standard deviation of the distribution
that we draw the exchange coupling from, is proportional to
the mean exchange coupling [18,19,61], so that setting the
exchange coupling to zero results in zero noise. As a result, the
UCUO sequences are resistant to the effects of charge noise.
An immediate corollary is that, in systems with no field noise,
the UCUO sequence set is the optimal dynamical decoupling
technique for singlet-triplet qubits under quasistatic charge
noise—in fact, this remains true even for dynamic charge
noise as discussed in the next paragraph. On the other hand,
the exchange coupling is never turned off in the UCO-I and
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UCO-II sequences, and thus they are subject to the effects of
charge noise for their entire durations. When we introduce field
noise at levels typical of GaAs experiments, on the other hand,
the UCUO sequences have the shortest 75 of all the uncorrected
sequences, due to the fact that they take the longest to perform
and to the fact that they are now subject to noise-induced
error for their entire durations. We observe similar results with
the dynamically corrected sequence sets: in the absence of
field noise, the CUO sequences result in a longer 7; than the
CO-II sequences. This is again due to the fact that the CUO
sequences have segments during which the exchange coupling
is completely turned off. However, when sufficiently strong
field noise is present, the CO-II sequences have longer 7,. We
also consider the fidelities of these sets as a function of the
number of gates, and find similar results.

For the case of 1/f* noise, we first consider the case of
1/£2* field noise and 1/£°7 charge noise, roughly correspond-
ing to the experimentally measured power spectra [16,62].
Among the uncorrected pulse sequences, we find, once again,
that the UCUO sequences result in the best 7, values when
there is no field noise present, while the UCO-II sequences are
best when field noise is present. We also find that, regardless
of whether or not field noise is present, the CUO sequences
give the better T, values, compared with the CO-II sequences.
This latter result is likely due to the fact that the corrected
pulse sequences are longer than the uncorrected sequences
and that the charge noise possesses significant high-frequency
components, which are more detrimental to CO-II. When we
look at the fidelities as a function of the number of gates,
however, we find that, in the case of barrier control and in the
presence of field noise, we find that we can perform about the
same number of gates using either of the corrected sequences.

We then vary the exponents characterizing the two types of
noise, «;, and o for field and charge noise, respectively. We
consider two cases here—one in which we fix «;, = 2.6 and
vary o, and one in which we set o, = @y = o and vary o. We
again consider both the uncorrected and corrected sequences,
as well as cases in which field noise is absent and those
in which it is present. In the case of o, = oy = «, we find
that, as before, the UCUO sequences give the best T, of the
uncorrected sequences and the CUO sequences perform the
best among the corrected sequences if field noise is turned off
completely. When field noise is present, however, the situation
becomes more complex—which set of pulse sequences is
best depends on the value of o for both the uncorrected
and corrected sequences. The general tendency is for the
“optimized” sequences to have longer 7, when «; is large,
while the “unoptimized” sequences do better when o is small.
We also see similar complex behavior when we fix o, = 2.6
and vary oy .

We also provide similar plots of the fidelity as a function of
the number of gates, in order to help quantify how many gates
one can reliably perform for different amounts of noise, using
each set of pulse sequences. The results are not qualitatively
different from what we see from the plots as a function of
time, though some of the points at which a different sequence
set becomes more advantageous are different; the values of «
at which one begins to be able to perform more gates using
the “optimized” sequences are smaller than those at which
they begin to have better 75. This is due to the fact that the
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“optimized” sequences take less time to perform, so that, even
if T, is shorter when using them, the shorter durations of the
pulse sequences allow one to perform more gates within this
shorter time span. Thus, a long 7, is neither necessary nor
sufficient; what matters is the precise gating pulse sequence
determining the dimensionless coherence time measured in
units of the gating time.

Overall, our results show that “optimized” sequences
without any segments during which the exchange coupling
is turned off completely do best when there is field noise
present, which would be the situation in GaAs and natural
Si, while the “unoptimized” sequences tend to do better in
the absence of field noise, which is the case in isotopically
purified Si. This suggests that, if it were possible to completely
turn off the exchange coupling, then the “unoptimized” pulse
sequences will be more reliable in isotopically purified Si.
Furthermore, we see that “optimized” sequences do better
when high-frequency components in the noise are small, such
as in the quasistatic limit and when the exponents o, and o,
are large (i.e., a;,; 2 1) in the 1/f* model.

The rest of the paper is organized as follows. Section II
is dedicated to reviewing existing pulse sequences in the
literature, introducing our new pulse sequences, reviewing
the SUPCODE method, and introducing dynamically corrected
versions of our (naive) pulse sequences. We discuss the relative
merits of these pulse sequences in Sec. III. In Sec. IV, we
evaluate our naive and corrected sequences using randomized
benchmarking. Finally, we summarize our conclusions in
Sec. V.

II. PULSE SEQUENCES

As pointed out in the introduction, it is only possible to
implement rotations about axes in the x z plane at angles O, <
6 < 7% with respect to the z axis with single pulses, due to the
form of the Hamiltonian, Eq. (1), and experimental constraints
on the exchange coupling. Therefore we need to implement
all other rotations using sequences of multiple pulses. We
now review existing pulse sequences found in the literature
and introduce new sequences. Let R(7,¢) denote the matrix
describing a rotation by an angle ¢ about an axis given by the
normal vector 7, i.e.,

R(i,¢) = e '#7/2, 3)

where & is the vector of Pauli matrices, = 0,X + 0,y + 0.Z.
We then see that the time evolution operator, Eq. (2), performs
a rotation about the axis given by

> h N J 5
n= X+ z “)
Vh? 4+ J? Vhr+J?
and by an angle

¢ =20v/h2 + J2. )

We will also make use of the shorthand, R(6,¢), to denote
. . . - . 35 5 .

rotations about the axis given by n = sin6x + cos 68z. In this

case, the time required to perform the rotation is given by

ht = ¢ sin6. (6)

Experimental restrictions require that 6, < 6 < %
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A. Uncorrected unoptimized (UCUO) pulse sequences

In this work, we will be comparing the performance of
five different sets of pulse sequences, which we will now
detail. We begin with what will henceforth be referred to as
the “uncorrected unoptimized” (UCUO) sequences. These are
the “unoptimized” sequences employed in Ref. [58], which
we will review here. Since J < Jyax, it iS not possible to
implement a pure z rotation with a single pulse, and composite
pulses must be used instead. The UCUO sequences are based
on the following z rotation sequence proposed by Guy Ramon
[56] (note that our notation differs from that of the original

paper):
R(Z,¢) = RO, x)R(X,a)R (O, %), 7

and may be summarized as follows.

(1) Rotate by angle x about an axis at an angle 6 with
respect to the z axis.

(2) Rotate by angle « about the x axis.

(3) Repeat the first rotation.

If we now multiply out the right-hand side and set both
sides equal, we find two solutions for «; one is

o = —2arcsin |:tan 0 sin (%>:| ®)

and the other is
o = 27 + 2 arcsin [tan@ sin (g)] )

The solutions for x are

X = arccos

=+ cos (%)\/1 — sin? (%5) tan?  — sin® ("—2’) sin? 6
x cos?2 (%) + sin? (%) cos2 6 '

(10)

where we use the plus sign for + if we use Eq. (8) for « and
the minus sign if we use Eq. (9). Which solution we choose
depends on the sign of ¢. If ¢ is positive, then we use Eq. (8)
for , and we use Eq. (9) if ¢ is negative. We can see from
Egs. (8) and (9) that we can only obtain real values of o for
any value of ¢ if we restrict 6 to the interval, (0,%).

We note, however, that the value of « that we obtain from
Eq. (8) is negative. Because J and /h are restricted to be
positive, we cannot perform a rotation with negative «. To
fix this problem, we can add 2m to the obtained value of «,
at the expense of introducing an overall minus sign on top of
peforming the z rotation by ¢:

RG,0) = —R(0, x)R(E,a + 27)R 6, x). an

Let us consider four values of ¢, namely, 7 /2, & /4, 7/8,
and /16, as examples, and determine x and « as functions of
6. As noted earlier, the value of « that we obtain from Eq. (8)
is negative, and thus we must add 2 to the obtained value.
This is exactly what we do, and we plot the resulting values of
a and x in Fig. 1.

We also consider four negative values of ¢: —m /2, —m /4,
—m/8,and —r /16. In this case, as stated earlier, « is now given
by Eq. (9) and we choose the minus sign in the formula for .

PHYSICAL REVIEW B 96, 195424 (2017)

0 /16 /8 3n/16 n/4 0 n/l6 /8 3n/l6 n/4
12
6.0 1.0
¢ 0.8 ¢
— mi6 — mi6
355 — 8 | <06 // — 8
— T4 0.4 — 74
5.0 — 72 0.2 - —— |2
-
0.0
0 n/l16 nx/8 3n/l16 n/4 0 n/16  n/8 3n/16 n/4
4 [

FIG. 1. Plots of « (left) and x (right) as functions of 6 for the
Ramon sequence, Eq. (7), for positive values of ¢. Note that we add
27 to the (negative) value of « obtained from Eq. (8); this results in
an overall minus sign on top of the rotation.

This time, we obtain a positive value for ¢, and thus we do not
have to add 27 to it. Therefore the Ramon sequence performs
a proper z rotation; we do not acquire an overall minus sign.
We plot our results in Fig. 2.

To implement other rotations, one approach is to use the
standard z-x-z decomposition for arbitrary rotations [57]:

R(ii,¢) = R(Z,$3)R(X,$2)R(Z, 1), (12)

where the angles ¢, ¢,, and ¢3 depend on the rotation that
one wishes to perform.

We note a problem with this set of pulse sequences—they
require that one be able to completely turn off the exchange
coupling, which is challenging in existing experimental setups.
However, if it were possible to do so (for example, with singlet-
triplet qubits defined in multi-electron quantum dots [54]), then
this fact will actually prove advantageous when dealing with
noise, as we will see later. The strength of the charge noise in
our system, quantified as noise in the exchange coupling, is
roughly proportional to the exchange coupling itself, and thus
the UCUO pulse sequences will be largely immune to charge
noise.

B. Uncorrected optimized pulse sequences, type I (UCO-I)

We will now give the “uncorrected optimized” (UCO) pulse
sequences. The first such set, “type I’ (UCO-I), is the same
as the UCUO set, except that we perform z rotations using
a generalization of the Hadamard-x-Hadamard sequence that
we will call the “6-20-6” sequence [58]:

R(Z.¢) = —R(®.m)R(20,$)R(6. 7). (13)
0 n/16 n/8 3n/16 n/4 0 n/l16 n/8 3n/16 n/4
6.0 3.0
- —0
— 716 28 — 76
e 55 s | = — 8
— nj4 2.6 — 74
5.0 — 2 — 2
24
0 n/16 /8 3n/l16 n/4 0 n/16 n/8 37/16 n/4
0 0

FIG. 2. Plots of « (left) and x (right) as functions of 6 for the
Ramon sequence, Eq. (7), for negative values of ¢. Unlike the case
of positive values of ¢, we do not need to add 27 to the value of «
obtained from Eq. (9), and thus we perform a proper z rotation.
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One may verify this by using the identity,

N 2 N W
R(n,¢) = cos (5> —isin <E>n -0, (14)

and the fact that the Pauli matrices are mutually anticommut-
ing. We thus realize a z rotation (with an overall minus sign)
by an angle ¢ via the following sequence:

(1) Rotate by angle m about an axis at an angle 6 with
respect to the z axis.

(2) Rotate by angle ¢ about an axis at an angle 26 with
respect to the z axis.

(3) Repeat the first rotation.

The restriction on 6 imposed by the restrictions on the
Hamiltonian parameters requires that O, < 6 < %.

We also present here the values of J needed for each type
of rotation. If we take J; to be the value of J used for the
rotations by 7, then the value of J needed for the rotation by
¢, which we denote by J,, is

JE—h?
J= , 15
2 7 (15)
which may be verified via the trigonometric identity,
0 — 1
cot20 = =27 7 (16)
2cotf

AsinRef. [58], x rotations are performed using the Hadamard-
z-Hadamard sequence in order to avoid switching off J, and
all other rotations are performed via the z-x-z decomposition,
with each piece implemented by composite pulses.

C. Uncorrected optimized pulse sequences, type II (UCO-II)

We now introduce the second set of UCO pulse sequences,
or “type II”’ (UCO-II). Unlike the previous two sets of pulse

J
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sequences, we do not simply introduce a new sequence for
performing z rotations and then build the other sequences from
it using standard decompositions. We instead introduce new
sequences for performing these other rotations that are shorter
and, as we will show in the next section, faster than those
obtained from said standard decompositions. We still use the
0-260-0 sequence detailed above for z rotations, but the other
rotations are performed using the sequences that we describe
below.

1. x rotations

First, we introduce a new sequence for performing x
rotations. This sequence is based on a generalization of the
“Ramon” sequence for performing z rotations:

R(x,¢) = R(®,x)R®',)R(©, X). a7

It may be summarized as follows:

(1) Rotate by angle x about an axis at an angle 6 with
respect to the z axis.

(2) Rotate by angle « about an axis at an angle 6’ with
respect to the z axis.

(3) Repeat the first rotation.

If we expand the right-hand side and solve for @ and x, we
obtain two possible values of «,

_ 5 . |: cos 6 . <2>] (18)
o = —2arcsin —sin(é — %) sin 5

and

0
o = 27 + 2 arcsin [% sin <%>:|, (19)

and two possible values of

+cos (%)\/Sinz(é — 6") — cos? 6 sin? (%5) — sin? (%) sinf cos 0 cos(6 — 0")

X = arccos

We can deduce from Egs. (18) and (19) that we can only obtain
real-valued solutions for « for arbitrary ¢ if 6 > % + %. We
find by direct substitution back into these equations that, for
positive values of ¢, we must use Eq. (18) to obtain « and
choose the plus sign in Eq. (20). On the other hand, we must
use Eq. (19) for @ and choose the minus sign in Eq. (20) if
¢ 1is negative. Note that, under the stated constraint on 6, we
will always obtain a negative value for o from Eq. (18); this
means that we must add 27 to the value so obtained, at the
expense of introducing an overall minus sign to the x rotation
that this sequence performs.

We will now consider four positive values of ¢, namely, %
%, %, and 1”—6, as well as the corresponding negative values,
and 0’ = 7, %, and {¢. As pointed out before, we must add 27
to the values of « that we obtain from Eq. (18). We plot our
results for « and y in Fig. 3.

Now let us consider rotations by the corresponding negative
angles. We plot the values of o and yx that we obtain in
Fig. 4.

[cos2 (%) + sin? (%) sin? 9] sin(6 — ")

(20)

(
2. y rotations

We now give a sequence that performs a y rotation.
We could, in principle, perform a y rotation by simply
decomposing it into a z-x-z sequence and using the above
sequences for performing z and x rotations, yielding a
nine-pulse sequence. However, it turns out that there is a
shorter, five-pulse sequence for performing y rotations:

5 7 3r
R(.9) = R(el,5)R(ez,n>R<93,¢>R<ez,n>R(91,7).

2y

The angles 6, are the angles with respect to the z axis of
the axes of rotation for each rotation. These angles are not
independent—if we multiply out the rotation operators on the
right-hand side, we find that, in order to obtain a y rotation,
we must take

0, +0
SRS (22)

)
2 2 4
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FIG. 3. Plots of « (left) and y (right) for the modified Ramon
sequence, Eq. (17) with 6’ = 7 /4 (top row), /8 (middle row), and
/16 (bottom row) and for positive values of ¢.

Since we require that 0 < 6, < %, we must necessarily take

01 + 603 < 5. We will show in the next section that this se-
quence takes less time to execute than the nine-pulse sequence.

3. x — z rotations

We now consider a sequence for performing rotations about
X — ? It turns out that this can be done, up to an extra minus
sign, as a symmetric three-part sequence:

R(01,7)R(62,9)R(01,7) = —R(20, — 6,,—9). (23)

. 5 5
In order to perform a rotation about x — z, we set

26, — 6, = —% 24)

or
T
6r=261 + . (25)

T T

We require that 0 < 6, < 7, which implies that 0 < 0, < %.

The following sequence thus performs a rotation by —¢ about
5

N
X — Z:

RG ~2,-9) = —RO.0R(20 + %,qﬁ)R(G,ﬂ)- (26)

In words, the sequence just described is as follows:

(1) Perform a rotation by angle m about an axis at an
angle 6.

(2) Perform a rotation by angle ¢ about an axis at an angle
20 + 7 with respect to the z axis.

(3) Repeat the first rotation.

PHYSICAL REVIEW B 96, 195424 (2017)

3n/8 137/32 Tn/16 157/32 /2 3n/8 1371/32 Tn/16 157/32 n/2

6.0 3.0

—é —o

— 716 — n/l6

¢ 55 —ms | = 2 — s

— nj4 2.6 — 4

5.0 — 72 — 72
2.4

3n/8 137/32 7x/16 157/32 V2 3n/8 1371/32 Tn/16 157/32 n/2
0 0

Sml6  237m/64 13732 297/64 72 S5m16  23m/64 137/32 2971/64 2

El

6.0 3.0
-6 —¢
— 6 28 — w6
355 — 8 = — 78
— 4 26 — 4
5.0 — 72 — 2
24
sm/l6 2364 13732 297m/64 72 smil6 23m/64 13732 29764 T2
[4 0

om/32 437/128 25m/64 57m/128  71/2 97/32 437/128 257/64 577/128

El
S

6.0 3.0
-0 —0
— n/16 28 — n/l6
3 5.5 — 8 = — 78
— 4 26 — 4
50 — 2 — 2

24
9m/32 437128 25m/64 STm/128  7/2 om/32 437/128 257/64 57m/128 72
(4 (4

FIG. 4. Similar to Fig. 3, but for negative values of ¢.

The fact that this sequence is symmetric will prove
beneficial in when we derive a dynamically corrected version
of it using SUPCODE—we will be able to use fewer pulses
to correct this sequence than an asymmetric sequence, as is
shown in Ref. [40].

4. Other rotations

We now consider the remaining rotations. We find that all
of these rotations may be expressed in the form

R(61,2 — Y)R(02,0)R(1,¥) = —R(n,¢),  (27)
where the unit vector 7 is given by
1 = [sin#; cos(f; — 6,) — cos 6 sin(B; — 6,) cos 1//])?
+ sin(@; — 6,) sinyry
+ [cos 6) cos(B) — 62) + sin 6 sin(6) — 62) cos Y ]Z.
(28)

In order to obtain the desired sequence, we simply set the
components of 7 to the appropriate values and solve for 6,
and 6, for a given value of ¢. While these equations could, in
principle, be solved analytically, the resulting expressions are
incredibly unwieldy, and thus we elect to instead solve them
numerically.

In words, the sequence just described is as follows:

(1) Perform arotation by angle 1/ about an axis at an angle
0, with respect to the z axis.

(2) Perform a rotation by angle ¢ about an axis at an angle
6, with respect to the z axis.

(3) Perform a rotation by angle 2w — i about an axis at
an angle 6, with respect to the z axis.
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D. Corrected unoptimized pulse sequences (CUO)

So far, we have detailed sets of pulse sequences that, under
ideal conditions, can be used to perform the 24 Clifford gates
required for randomized benchmarking simulations. However,
we will still encounter error in performing these sequences due
to charge and nuclear spin noise in our qubit. Therefore we
require a means of combatting the effects of this noise. The
method that we use to do this is SUPCODE, which is detailed
in Ref. [40]. We will begin with a review of the method
and the basic results that we employ throughout. The basic
idea is to combine a pulse sequence that implements a noisy
gate with another sequence that implements a noisy identity
operation. This identity operation is designed to have errors
which precisely cancel those of the noisy gate. If we let U (6,¢)
represent an uncorrected rotation (i.e., with noise), then we
may write our “identity” operation as a sequence of interrupted
identities:

I = U@,,m,w — ¢,) - UOr,mam — $2)U(61,2m77)
X U(Oy,momt + o) - - - U(B,,m,,w + ). (29)

One of the major strengths of this form of the uncorrected iden-
tity is that we may derive higher “levels” of this uncorrected
identity recursively:

i(n+1) == U(6n+lamn+l77 - ¢n+l)i(n)U(9n+l’mn+l7T +¢n+l)-
(30)

Unless specified otherwise, we will be assuming that all of
the ¢, = 0, m; = 2, and the remaining m, = 1, resulting in a
symmetric form for 7.

To first order in the errors in the magnetic field gradient 64
and in the exchange §J, the uncorrected single-pulse rotations
are given by

U@©.¢)=RO.0|1—i Y Ao ], 3D

i=x,y,z

where the o; are the Pauli matrices, R(6,¢) is the ideal rotation,
and the A; give the first-order error in the rotation. The
expressions for the A; are

_ h*¢+ J*sing Jh(¢ — sin )
= 2wy pn Mt gy apn M GY
J(1 —cos¢) h(1 — cos ¢)
A =TT gy o Y
_ Jh(¢ —sing) J*¢ + h’sing

= 8J, (34
2R+ IR 2(h% 4 J?)3/? ©
where J = hcot9 is the ideal exchange coupling.

The parameter, €, which may be the detuning between the
two quantum dots or a small voltage shift that changes the
height of the potential barrier between them, sets the exchange
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TABLEII. Parameters for the CUO identity, rotations by — 7 and
7 about x axis, and the rotation by & about X + 2. Here, J = hcot#.

Operation J/h ¢ N/h S/ h J3/h Jy/h Js/h

1 1 0 0.64714 3.7138 0 2.2988 0.54893
R(X,—m/2) 0 —m/2 052870 4.1944 0 4.5149 0.79467
R(X,7) 0 —m 052902 72860 O 3.0639 0.86059
RGx+2Z.m) 1 —m 049263 63648 0 2.0008 0.67803

coupling, so that §J takes the form
8J = g(J)de. (35)

Here, we will assume that g(J) = é, corresponding to the
approximately exponential dependence of J on detuning seen
in experiments [16].

We let the uncorrected identity take the form

i — Z (a; 8h + B; 8€)oi, (36)

i=x,y,2

where §h and §e are the errors in the magnetic field gradient
and the detuning, respectively. To find the corrected sequence,
we simply derive equations for ¢; and S; such that the total
first-order error in the sequence under consideration is zero.

The sequences we refer to as “corrected unoptimized”
(CUO) were first developed in Ref. [40]. In order to provide a
self-contained presentation of our results, we will review the
sequences and list the appropriate parameters here.

1. Identity, x, and x + Z rotations
We start with the identity, the rotations by &7 and by

m about the x axis, and the rotation by 7 about X + ? The
naive versions of these rotations are implemented with a single
pulse, and thus are the simplest to treat. We implement them
as interrupted rotations by 2w + ¢, with the identity placed
between the two “halves” of the pulse:

Uc0.0) =U (0.7 + 1) IPU (0.7 +1¢). (3D

We use a level 5 identity, i.e., it is specified with five exchange
couplings. It is shown in Ref. [40] that, in the case of a
symmetric sequence such as that given above, a level 4 identity
suffices to cancel all the errors to leading order. However, a
level 4 identity requires that the exchange coupling become
negative at some point in the sequence, and thus we will
require a level 5 identity. As the equations that we obtain from
multiplying out the above identity are very complicated, we
must solve them numerically. We now present the parameters
required to perform these rotations in Table II. The corrected
sequence for an x rotation about 7 uses a level 6 identity,
rather than level 5; we give the parameters in Table III.

TABLE III. Parameters for the CUO rotation by 5 about the x axis.

Operation J/h ¢ Ji/h Jo/h

J3/h Ja/h Js/h Jo/ h

R(X,7/2) 0 /2 0.83930 0

1.1402 0.0025406 2.7063 0.46095
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TABLEIV. Parameters for CUO rotations by —%, 7, and 7 about
the z axis.

Operation ¢ J/h  LJh T3k Ja/h Js/h

RG,—m/2) —m/2 21165 0
RGZ.w/2)  w/2 095366 0
R(EZ.7) T 066942 0

0.91080 0.35565 5.5498
0.70853 0.021024 2.5518
0.76034 0.0079157 2.0111

2. z rotations
We now consider z rotations; here, they are implemented
using the Hadamard-x-Hadamard sequence. The x rotation is
splitinto two “halves” and a level 5 identity is inserted between
the two:
UcE.¢) = U = h,mU (X, + 30)[OU (¥, 7 + 39)
x U(J = h,n). (38)

We list the parameters specifying the uncorrected identity for
each rotation in Table I'V.

3. Other rotations
Finally, we consider the remaining rotations. These are
accomplished via an x-z-x decomposition,
R(i,¢) = R(X,¢3)R(J = h,m)R(X,$2)

x R(J = h,m)R(X,¢1). (39)

We obtain the corrected versions of these gates by inserting
a level 7 identity between the second Hadamard gate and the
preceding z rotation:

Uc(ii,¢) = UX,¢)U(J = h,m)U(J1,m — ) OU(x,¢)

PHYSICAL REVIEW B 96, 195424 (2017)

We list the parameters for the rest of the Clifford gates in
Table V.

E. Corrected optimized, type II, pulse sequences (CO-II)

We now detail what we will call the “corrected optimized,
type II”’ (CO-II) pulse sequences, which we present here for the
first time. These sequences are dynamically corrected versions
of the UCO-II pulse sequences detailed earlier. One problem
that arises with the CUO sequences is that they require the
exchange coupling to go to zero, which is difficult to achieve
in actual experiments. We will once again employ SUPCODE to
derive these dynamically corrected sequences.

1. Identity and x + 7 rotations

We start with the identity and the rotation by 7 about
x + 2 Unlike the CUO case, these are the only two rotations
that are implemented with a single pulse. As with their
CUO counterparts, the corrected sequences are implemented
as interrupted rotations by 2w + ¢, with the identity placed
between the two “halves” of the pulse:

Uc®.¢) =U (0.7 +1¢)IOU 0.7 +14). (4D

As before, we use a level 5 identity. We present the parameters
required to perform these rotations in Table VI.

2. z rotations

We now consider how to perform corrected z rotations.
These corrected sequences are based on our 9-20-6 sequence.
We create the corrected version of this sequence by splitting
the rotation by ¢ into two rotations by 7 + %¢> and inserting a
symmetric level 5 uncorrected identity between the two halves:

UcZ.¢) = —U@O.m)U (20,7 + 1) T

xU(J7,m +0,)U(J = h,n)U()?,qbl). (40) X U(29,Tc + %¢)U(9,n). (42)
TABLE V. Parameters for CUO versions of the other Clifford gates.

Operation o 1033 o3 Ji/h J/h J3/h Ja/h Js/h Jo/ h J1/h 0;
R(y,—1/2) w/2  3m/2 3mw/2 0.75330 0.56113 0 1.6884 0 1.0914  0.60835 1.2726
R(Y.7/2) 37/2 3mw/2 S5m/2 0.81782 0 13113 0.55040 1.0366 0 1.6911 —1.1929
R(3,7) /2 T 37/2 0.46134 0.68677 0 1.7332 0 0.90639 0.41421 1.9727
R(X —Z,7) n/2 3m/2 w/2 0.71967 1.3078 0 0.81623 0 1.5118 0 —3m/4
R(x + y,7) 3 /2 0 0.54448 0.63330 0 1.4188 0 1.7652  0.041400 1.7384
R — y,m) 2r S5m/2 T 0.60618  0.71995 0 0.88507 0 22037  0.019841 2.1125
R(Y +2,7) 2 b4 /2 1.1424 0 0.59501 0.0042383  1.4268 0 0.62132 2.1010
R(Y —Z,7) 0 T /2 031843 0.84663 0 1.2694 0 0.92116 0.20711 1.7924
R + Y +2,21/3) /2 w/2 0 0.40554 1.1271 0 1.0423 0 1.1682  0.022417 2.0737
R(X +y +2.47/3) 27 Im/2 Tm/2  1.1099  0.67185 0 0.58455 0 3.5271  0.72636 1.3825
R(X +y —2.27/3) 4 3m/2 5m/2  0.81495 0 0.53383  0.16963 1.0824 0 0.73536 —1.7509
R(X +y —2,471/3) 3n/2  mw/2 0 0.46515 0.90353 0 1.2451 0 1.2943  0.035404 1.8526
R(X —y +2,21/3) 27 S5m/2  w/2 059703  0.74094 0 0.88895 0 2.0930  0.029762 1.9536
R(X — Y +2,471/3) 3n/2 Tm/2 2w 0.96348 1.0402 0 0.47533 0 5.0237  0.19295 —2.2348
R(-X+y+2.21/3) 2« w/2  3m/2 052445 0.69563 0 1.36738 0 1.6155  0.0095420 2.2507
R(—=x+y+2.4n/3) 5m/2 Tn/2 4n 1.3517  0.79872 0 0.40171 0 8.0500  0.97474 1.5893
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TABLE VI. Parameters for the CO-II identity operation and
rotation by 7 about X4z

Operation J/h ¢ S /h LJh S5 h o Jy b Js/h

1 0.93248 0 0.93248 30 0.32914 30 0.93248
R(X +2,7) 1 —m 0.60016 30 0.15535 2.8328 0.74943

We present the parameters for rotations by ¢ = —7, 7, and
in Table VII.

3. x rotations

Next, we consider corrected x rotations. Unlike in the CUO
case, we do not perform x rotations with single pulses. Instead,
we use our “modified Ramon sequence,”

R(X.¢) = R(®,X)R(® .0)R(O. ). (43)

As noted earlier, restrictions on experimental parameters
required that 6 > % + 7. As a special case, let us saturate
the bound on 6 for this sequence, i.e., we set 0 = % + %. In
this case, for ¢ > 0, we find that « = 27 — ¢ [note that we
have already added 27 to the value obtained from Eq. (18)]
and

1+3cos¢g — (1 —cos@)sinb’
34 cos¢ + (1 —cos¢)sinb’

cos x = , 44)

while, for ¢ < 0, we simply get « = 2w + ¢ and y = 7. We
thus find that, for negative ¢, the “Ramon” sequence reduces
to the Hadamard-z-Hadamard sequence. This special case will
in fact be the naive sequence that we base our corrected
sequence on. We correct this identity in a manner similar to
that of our z rotation sequence (i.e., we split the rotation by «
into two rotations by  + %oz and insert a level 5 uncorrected
identity), and present the parameters for the corrected rotations
in Table VIIL

4. y rotations

We now consider the y rotations. In this case, our sequence
for performing these rotations is asymmetric, so that we will
not be able to use an uncorrected identity of a level less than
6. In fact, we will employ here a level 7 identity of the form

17 = U7 — ) IOUG.7 + ), 45)

where 7© is a symmetric level 6 identity. We insert this identity
between the third and fourth rotation operators:

i} 3
U(el,%)U(92,n)1<7>U(93,¢)U(92,n)U(91,7”). (46)
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Here, we will assume that 8, = 6; = 6, so that 6, =6 + %.
We provide all of the parameters for the corrected rotations in
Table IX.

5. The x — z rotation

We now consider the rotation by 7 about the axis given by
X —Z. Our sequence for these rotations is symmetric, and thus
we can perform error correction using only a level 5 symmetric
uncorrected identity. We insert this identity in the same way as
we did with our z and x rotation sequences—we simply split
the middle rotation into two rotations by 7w + %qb and insert
the identity between the two halves of this rotation:

T ~
UeR —3,—¢) = U(Gl,n)U<291 + gt §¢)1<5>

b4
X U(ze1 + Tt %qb)U(@l,n). 47)
We present the parameters for this rotation in Table X.

6. Other rotations

Finally, we consider the remaining rotations, which are all
based on the sequence,

R(1i,¢) = R(01,2 — Y)R(02,$)R(61,). (48)

We make use of an asymmetric level 7 uncorrected identity of
the same form as that used for the corrected y rotations. We
insert this identity between the first two rotation operators:

Uc(ii,@) = U(61,2m — y)U (O, 0)I U 01,9).  (49)

We present the parameters for the remaining Clifford gates in
Table XI.

III. EVALUATION OF SEQUENCE SETS

Now that we have described the five sets of gates that we will
be working with, let us compare their relative merits. We will
begin by comparing the three sets of uncorrected sequences,
the UCUO, UCO-I, and UCO-II sets. The main part of our
evaluation will be in comparing the times required to perform
the pulse sequences in these three sets. We consider all of the
nontrivial gates here. In all three sets, the identity gate and the
rotation by & about the axis, X + Z, can be done with a single
pulse, so there is no difference in timing for these rotations
among the three sets.

A. z rotations

Let us begin by considering the z rotations. In both the
UCO-I and UCO-II sets, we use the 6-20-0 sequence to
perform these rotations:

R(?,tb) = —R@O,7)R(20,90)R(O,7). (50)

TABLE VII. Parameters for CO-II z rotations by —x /2, /2, and 7.

Operation 6/ ¢ Ji/h L/ h J3/h Ju/h Js/h
R(Z,—7/2) 0.096480 —/2 1.1362 30 0.56070 30 0.54537
R(Z.,7/2) 0.13734 /2 2.6293 0.59137 30 0.86896 30
RGZ.7) 0.067969 bid 1.0446 30 0.99351 30 0.37080
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TABLE VIII. Parameters for CO-II x rotations by —x/2, /2,
and 7. Here, we take 6 = %/ + % and the parameter J = cot6’'.

Operation J ¢ Ji J> J; Js Js

R(X,—m/2) 30 —m/2 0.70104 14.803 1.0934 30 0.45532
R(X,w/2) 28086 m/2 0.89829 30 0.83484 30 0.48661
R(X,7) 6.3521 w 0.84298 30 0.89938 30 0.60238

Using Eq. (6), we find that the total time required to perform
this sequence is

it = 7 sin0 + 3¢ sin20. 51

We will now compare our sequence to the Ramon sequence,
which is used in the UCUO set,

R(Z.¢) = RO.X)ORX. )R, ). (52)
where « is given by Eq. (8) if ¢ is positive or by Eq. (9) if ¢ is
negative, and x is given by Eq. (10). The formula giving the

total time taken to perform this sequence is

hto,g = X sinf + 1. (53)

Bl

We plot this for ¢ = 1”—6, %,
for any given value of 6, th
value of ¢.

We also find the time required to execute both the Ramon
sequence and the 6-26-6 sequence for negative values of ¢.
Because we cannot perform rotations by negative angles, we
must instead perform a rotation by 27 4 ¢ in the 6-26-0
sequence, so that the total time taken is now

, and % in Fig. 5. We see that,
-26-6 sequence is faster for any

D

htioar = 70 $in6 + (7 + 5¢) sin 26. (54)

This additional 2w cancels out the overall minus sign that
we would normally acquire and thus our sequence, too, just
performs a z rotation. We plot the time required to perform
both sequences for each value of ¢ in Fig. 6. We find that,
once again, the 6-26-0 sequence is faster for given values of
6 and ¢; in this case, however, we find that both sequences
become equally fast for & = 7, since both sequences reduce
to the Hadamard-x-Hadamard sequence in this limit.

As we pointed out before, the Ramon sequence requires
one to perform an x rotation. This, in turn, requires that we be
able to completely turn off the exchange coupling between the
electrons, which is experimentally challenging. As a result, we
have also considered a generalized version of this sequence,
in which the x rotation is replaced by one about an axis at an
angle 0’ to the 7 axis; we discuss this sequence in Appendix A.
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B. x rotations

Now we turn our attention to the x rotation sequences.
The UCUO sequences implement x rotations in a single shot
by switching off the exchange interaction for an interval of
time, while UCO-I sequences use a Hadamard-z-Hadamard
sequence to implement these rotations. The UCO-I sequence
implements the z rotation using the 68-26-6 sequence, which
we rewrite as

RG.¢) = —R(e — %,n)R(ZG — %,QS)R(@ _ %,n).
(55)

Here, we replace 6 with 6 — 7 to facilitate comparison with
the corresponding UCO-II sequence; the limits on 6 will be
the same for both. The UCO-II set uses the “modified Ramon
sequence,’

R(x,¢) = R(0,x)R® ,a)R (6, X), (56)

to implement x rotations directly.

‘We now determine how fast these sequences are. The time it
takes to implement a UCUO x rotation is Aty = ¢/2, while
the total time required to execute the full UCO-I sequence is

1
httota1=l+ﬂ8in 9—2 + —¢ sin 29—E . (57
V2 4) " 2 2

The analogous formula for the UCO-II sequence, Eq. (17), is
Mt = x sin® + Sasin®’, (58)

where « and y are determined by Egs. (18)—(20).

We will now consider four positive values of ¢, namely, R
T %» and {¢, as well as the corresponding negative values,
and 0" = 7, T, and {z. We plot the gate times for both
sequences in Fig. 7. We see that the modified Ramon sequence
for performing a UCO-II x rotation is always faster than the
UCO-I Hadamard-z-Hadamard sequence. UCUO implements
the fastest x rotations since it does not employ composite
pulses for these rotations.

Now let us consider rotations by negative angles. In this
case, as pointed out earlier, we must add 2w to the rotation
by ¢ in our Hadamard-z-Hadamard sequence. We plot the
total times required to execute the two sequences in Fig. 8.
In this case, the UCO-II modified Ramon sequence is once
again faster than UCO-I. We thus see that, for both positive
and negative rotation angles, the modified Ramon sequence is
the faster of the two, while UCUO implements the fastest x
rotations overall. We have also considered a modified version
of the 0-20-6 sequence for performing x rotations; we discuss
it in Appendix B.

T

TABLE IX. Parameters for CO-II y rotations by —n /2, /2, and 7.

Operation 9/7‘[ ¢) Jl Jz J3 J4 J5 \16 J7 Y

R(§,—7T/2) 0.1525 3n/2 0.79604 30 0.99065 1.2187 0.11114 30 0.81728 1.5905
R(;,rr/2) % — (arctan 30)/m /2 1.0391 10.188 1.4257 30 0.21446 30 11.565 —1.1069
R(;,rr) 0.15085 b4 30 1.5408 0.22841 30 0.61838 30 12.287 2.7737
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TABLE X. Parameters for the CO-II X — Z rotation by 7. Note
that, up to a minus sign, a rotation by —x is the same as a rotation
by &.

Operation 0/m ¢ Ji J> J; Jy Js

R(X —Z%,m) 0021086 = 2.0552 0.54844 30 0.80575 30

C. y rotations

Next, we consider the y rotations. The UCO-I set uses the

Z-x-Z sequence,
N 5 T N 5 37

RG.9) = R(ZZ)REOR(ZT). 59

to realize these rotations, using the 6-26-6 sequence for the

z rotations and the Hadamard-z-Hadamard sequence for x

rotations. The UCUO sequence is similar, except that the

Ramon sequence is used to realize z rotations, and x rotations

are implemented by turning off the exchange coupling. On the

other hand, y rotations are realized in the UCO-II set with the
five-pulse sequence,

5 b4 3
R(.9) = R(el,5)R(esz(es,as)R(ez,n)R<91,7),

(60)

where
_ 601 + 05 T

2 4°
We now evaluate the performance of the UCUO, UCO-I,
and UCO-II pulse sequences for y rotations. The time required
to perform the UCO-II five-pulse sequence is
0 +6 T 1
! er >y Z) + 5sinés. (62)

6, (61)

Rtioral = 7 SIN G + 7T Sin <

To compare this to the UCUO and UCO-I z-x-z sequences, we
will consider the special case, 8; = 63 = 6. In this case, the
time reduces to

Bt = S[2 +V2)m + ¢1sind + 1v/2m cosf.  (63)

PHYSICAL REVIEW B 96, 195424 (2017)

We now give the expression for the UCO-I z-x-z rotation. We
will assume that 6 takes the same value in all three of the z
rotations. If we do this, then the total duration of this sequence
will be

b4
V2
We provide plots of these two gate times, Egs. (63) and (64),
in Fig. 9. We see that the UCO-II five-pulse sequence is faster

than the UCO-I z-x-z sequence except in the limit & — 0, for
which they are equal. The total time for a UCUO y rotation is

1
htiora = 37 8in 0 + E(qﬁ + 2m)sin 26 + (64)

o = (1 +2) + 1¢. (65)

One may easily show that the UCO-I and UCO-II sequences
can be made faster than the UCUO sequences by as much as a
factor of more than 3, depending on the choice of parameters.

D. Other rotations

Finally, we consider the other rotations. The rotation by 7
about X — Z is performed in the UCO-II set with the sequence,

RG—3—¢)= —R(G,n)R(ZO n %,q&)R(Q,n). (66)

In the UCUO and UCO-I sets, we simply use the z-x-z
decomposition, as we do with the y rotation:

RG—37)= R(?,Z)R(§,3—”>R(2‘,5),

2 2 2 (67)

For the remaining rotations, we also use the z-x-z decomposi-
tion,

R(i,¢) = R(Z,$3)R(X,$2)R(EZ, 1), (68)

for the UCUO and UCO-I sets. In the UCO-II set, we use the
formula

RG = 2—9) = —RO.DR(20+ 2.6)RO.D). ()

for rotations about ¥ — 7, and

R(1.¢) = —R(01,21 — Y)R(O2.$)R(01, %), (70)

TABLE XI. Parameters for the remaining CO-II Clifford gates. We write the vectors specifying the axes of rotation in unnormalized form

for the sake of brevity.

Operation 0,/ 6,/ v/ ¢ Ji J> J3 Jy Js Js J7 y

R +y,7) 036572 0.088911 0.62370 = 19137 0.78946 30  0.89791 30  1.0856 30 1.2867
R —y.,7) 031911 0.022346 1.3428 7  1.4287 30 1.0830 30 064235 30  3.0553  1.6360
R +2,7) 0.010606 0.26078 1.4894 7 1.7257 1.1462 30 0.60456 30  0.88605 1.6688  1.1494
R(=y +2.7m) 0.010606 0.26078 0.51060 7 1.6614 30 0.50802 2.7467 1.0111 30 051060 —1.1494
R(X 4y +2.2m/3) 0.010606 0.30726 1.7445 27/3 1.7657 0.62197 30  1.1774 30 0.64309 1.9760  2.5331
R +y+2z,47/3) 0010606 030726 1.7445 4x/3 14124 085916 30  0.87090 30  0.71657 2.5246  2.6369
R(—% — ¥ +2,47/3) 0.010606 0.32225 0.75513 47/3 1.0888 30 0.63115 24528 0.83733 30  0.90701 —1.9200
R(—% — y +2,27/3) 0.010606 0.32225 0.75513 27/3 1.8354 30 046602 2.8446 0.88736 30  0.48343 —1.8961
R(X —y+2.2m/3) 0.010606 030726 0.25548 27/3 2.1355 30 043106 2.6247 091504 30  0.34196 —1.5958
R(X —y+2.4m/3) 0.010606 030726 0.25548 47/3 091817 30 12022 3.6850 027003 30 17613  0.66640
R(—X + Y +2,27/3) 0.010606 0.32225 1.2449 27/3 1.9034 30 0.65056 6.2506 0.90090 30  0.83256 —2.2863
R(=X + Y +2,47/3) 0016871 033304 1242  47/3 1.0864 30 040950 1.2284 058329 30  0.19263  2.7855
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0 =n/16 n/8 3n/16 n/4

3 2.0t 1| = %16
£ -
— T/4
— 72

0.0

0 7/16 /8 3n/16 /4
0

FIG. 5. Plots of the time required to execute our 6-260-6 sequence,
Eq. (13) (solid lines), and the Ramon sequence, Eq. (7) (dashed lines),
as a function of 0 for positive values of ¢.

where
n = [sin6; cos(f, — 6>) — cos 6, sin(f; — 6>) cos 1//]5?
+ sin(@; — 6,) sinyry
+ [cos 61 cos(6) — 6,) + sin 6 sin(f; — 6,) cos W]E,
(71

for all other rotations. We present a comparison of the time re-
quired to perform the Clifford gates not so far considered using
these three sets of pulse sequences in Table XII. We see that the
UCO-II sequences are the fastest of the three sets in all cases.

E. Corrected pulse sequences

Now we consider the two sets of dynamically corrected
pulse sequences, the CUO and CO-II sets. As stated before,
the CUO sequences are those presented in Ref. [40] and
reviewed in Sec. II D, while the CO-II sets are dynamically
corrected versions of the UCO-II sequences described earlier.
To determine the timing of these sequences, we simply use
the fact that, for a given pulse, J = hcotf, where 6 is the

0 n/16 n/8 3rn/16 n/4
5, i
4,
—¢
=3} — /16
] — 78
2 — /4
1k — 72
0 ) ) ) d
0 n/16 n/8 3n/l16 n/4

0

FIG. 6. Plots of the time required to execute our #-20-0 sequence,
Eq. (13) (solid lines), and the Ramon sequence, Eq. (7) (dashed lines),
as a function of 0 for negative values of ¢.
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/4 Sn/16 3n/8 Tn/16 n/2 3m8 13732 Tm/16 15732 m2
5.0 5.0
45 45
¢ [
z4.0 — 716 40 — 116
=35 —ms | =4 -
— 4 ) — 4
3.0 Cm 3,0 -,
2.5 B ——
/4 Sn/16 3n/8 Tn/16 n/2 3m8 13732 Tml6 15732 m2
0 0
Sm16 23764 13732 29764 72 9732 437128 257/64 577128 72
5 5
4 o ¢ ¢
= — 7nj16 2 — 7116
: 23 _
X3 — 78 b 8
— m4 ) — 4
B — 2 . — 2
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -

Sm16  237m/64 13732 297/64 72 9732 437/128 25764 57m/128 72
0 0

FIG. 7. (Top left) Plot of the time required to execute the UCO-I
Hadamard-z-Hadamard sequence, Eq. (57), for all possible values of
0, namely, 7/4 < 6 < m /2. The remaining plots compare the times
required to execute this sequence (solid lines) with the time required
to execute the UCO-II modified Ramon sequence, Eq. (58) (dashed
lines), for 8" = % (top right), % (bottom left), and {7 (bottom right).
All plots shown here are for positive values of ¢.

angle that the rotation axis makes with the z axis, and that
the duration of a single pulse is ht = %qﬁ sin 6, where ¢ is the
rotation angle. We give our results for all 24 Clifford gates in
Table XIII. We see that the CO-II sequences are always faster
than the CUO sequences.

IV. RANDOMIZED BENCHMARKING

We now evaluate the above sets of pulse sequences using
randomized benchmarking. Before doing so, let us quickly
review the randomized benchmarking procedure [59,60]. The
basic idea behind randomized benchmarking is to generate

n/4  5n/16 3n/8 Tm/l6  m/2

3a/8 13732 Tn/16 15832 m2
7 75
6 —é —
3s — 716 . A
= — n/8 :5 — 78
4 — n/4 — n/4
, — a2 — a2
n/4  Sn/16 3n/8 Tn/16 /2 3n/8 13732 n/l6 15732 w2
0 0
5n/16 23n/64 13n/32 29n/64 /2 97/32 437/128 257/64 57x/128 m/2
7
-9 6 —¢
— 716 3 — /16
— a8 = — /8
— n4 - — /4
— a2 4 — a2
3feee
5x/16 237/64 137/32 29n/64 72 97/32 437/128 25n/64 57n/128 /2
[4 0

FIG. 8. Similar to Fig. 7, but for negative values of ¢.
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FIG. 9. Plots of t,, for the five-pulse sequence (solid lines) and
for the z-x-z sequence (dashed lines), given by Eqgs. (63) and (64),
respectively, for positive ¢ (left) and negative ¢ (right).

random sequences of Clifford gates of varying lengths (i.e.,
number of individual gates) and determine the state- and
sequence-averaged fidelity for that sequence length. We may
define the state- and sequence-dependent fidelity as follows:

F(O.) = [(¥] Oy Ol 2, (72)

where |y) is the initial state of the system, Ojgeq iS the
operation that the gate sequence would ideally perform on the
system, and O is the actual operation that is performed. In other
words, the fidelity is the probability that, upon measuring the
system, we will find it in the state that we expect the operation
O to leave it in if there is no noise present. The average fidelity
is then the average over gate sequences of a given length
and over all (distinct) starting states. We can then plot this
average fidelity as a function of sequence length and determine
a characteristic number of gates ny, which provides us with a
measure of how many gates can reliably be performed. We can
also plot the average fidelity as a function of time and extract
the effective decoherence time, 73, characterizing the decay of
the average fidelity. We will now proceed to do this for two
different noise models—quasistatic noise and 1/f* noise.

A. Quasistatic noise

We first consider the simpler of the two models, quasistatic
noise. In the quasistatic noise model, we assume that the noise
may be approximated as a constant-in-time stochastic shift
of the exchange coupling and the magnetic field gradient,
each of which is drawn from a Gaussian distribution. This
model is often used [40,58] because fluctuations due to
noise in our qubit tend to be slow compared to gate times;
gate times are on the order of ns, while noise fluctuation
frequencies are on the order of kilohertz [16,62]. For this
reason, we expect such a quasistatic model to agree well with
experiment, which has been demonstrated in previous work, at
least qualitatively [19,61]. In our randomized benchmarking
simulations, we draw random values for the magnetic field
gradient & and the exchange coupling J from Gaussian
distributions for each realization (i.e., for each random gate
sequence considered) with means Ay and Jy and standard
deviations o}, and oy, respectively. From this point forward,
we will refer to the standard deviations as the strengths of
the respective noises. We plot our results comparing the
performance of the uncorrected gate sets in Fig. 10. The 7,
values given in the plot are extracted from fits to the equation,

F=4+ ™" 4 e0/m2), (73)
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We will see that this equation provides good, if not necessarily
perfect, fits to the randomized benchmarking data. We simply
adjust the parameters y;, ¥», and T to obtain the best fit to
each data set. We have attempted to use a simple exponential
form; however, we obtain very poor fits to such a form. This
fact indicates some degree of correlation in the noise present
in our system [59,60,63]. Similar considerations apply to the
form that we use to fit the fidelity versus number of gates data
that we discuss below.

From these results, we see that, in the absence of field noise,
the UCUO pulse sequences have the longest 7 of all of the
uncorrected sets by an order of magnitude. This is because
the UCUO sequences include segments during which the
exchange coupling is completely turned off, and thus there is
zero charge noise for the duration of these segments (recall that
we assume that the charge noise strength is proportional to the
exchange coupling). On the other hand, we never turn off the
exchange coupling in the UCO-I and UCO-II sequences, and
thus they are affected by charge noise for the entire duration of
the pulse sequence. Once we introduce field noise, however,
the UCUO sequences have the shortest 7, of the three sets.
This is due to a combination of the fact that they require more
time to execute than the corresponding UCO-I and UCO-II
sequences and the fact that they are, in this case, subject to
the effects of noise for their entire durations. We also note
that the UCO-II set is intermediate between the UCUO and
UCO-I sets. This is due to the fact that the UCO-II pulse
sequences that we use in our simulation are the naive versions
of the corresponding CO-II sequences, and thus some of the
sequences never set J to the maximum possible value.

‘We now turn our attention to the corrected sequence sets,
the CUO and CO-II sets. We compare the performance of these
two sets in Fig. 11. We see a similar pattern in the values of
T, for these two sets as for the uncorrected sets. For zero field
noise, we find that the CUO sequences give better 7, values.
This is for similar reasons for why 75 is longest for the UCUO
sequences out of all of the uncorrected sequences. However,
once we turn on field noise, we find that the CO-II sequences
have longer T,. We also note that the 7, values obtained from
these corrected sequences are longer by at least an order of
magnitude than any of the times obtained from the uncorrected
sequences in the corresponding situation, thus illustrating the
effectiveness of SUPCODE in reducing the effects of noise on
our gates.

We also plot the fidelities of the uncorrected and corrected
sequence sets as functions of the number of gates in Figs. 12
and 13, respectively, and fit the data to a form similar to that
used for the plots as a function of time:

F = % + %[e*(n/no)y' + e*("/"o)yz]_ (74)

This alternate way of plotting the results allows us to determine
how many gates one can perform with each set before the
fidelity decays to an unacceptable level, characterized by the
parameter ny. We see that these plots show a similar pattern
as the plots with respect to time, but some of the curves may
be closer or further apart vertically than in the time plots,
due simply to the fact that the sequences from each set for a
given gate take different amounts of time to complete. Despite
what our results so far may imply, we will see later that
achieving a longer 7, with a given set of pulse sequences
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TABLE XII. Parameters for the remaining Clifford gates. We write the vectors specifying the axes of rotation in unnormalized form for the
sake of brevity. In the 6-20-6 sequence used to implement the z rotations in the UCO-I sequences, we always set & = 7 — arctan 30 ~ 0.010606.

Operation (ol 03 &3 htycuo htuco 0,/m ¢ /7 v/n htycon
R(x — g,n) /2 3r/2 /2 8.3699 2.7969 0.010606 b4 0.27121 1 1.2869
RG: + ;,n) b4 /2 0 6.7991 2.9015 0.31119 b4 0.010606 0.66225 1.6729
R()? - f,rr) 0 /2 b4 6.7991 2.6923 0.31119 g 0.010606 1.3377 2.6572
R(; + 2,%) 3r/2 b4 0 8.3699 2.7969 0.010606 bid 0.26078 1.4894 1.2524
R(—f}' + 2,%) 0 /2 b4 6.7991 2.6923 0.010606 bid 0.26078 0.51060 1.2524
R(? + ; + ?,271/3) /2 /2 0 6.0137 2.6400 0.010606 2m/3 0.30726 1.7445 0.96568
R(f@ + ; + iz‘,47‘r/3) 0 3r/2 3n/2 9.1553 2.8492 0.010606 47 /3 0.30726 1.7445 1.8267
R(—)? - ; + ?,471/3) 0 37/2 /2 7.5845 2.7446 0.010606 47 /3 0.32225 0.75512 1.8809
R(—)? - ; + ?,271/3) 37/2 /2 0 7.5845 2.7446 0.010606 21 /3 0.32225 0.75512 0.99279
R()? — ; + ?,27‘[/3) 0 37/2 /2 7.5845 2.7446 0.010606 21 /3 0.30726 0.25548 0.96568
R()? — ; + ?,471/3) 37/2 37/2 0 9.1553 2.8492 0.010606 47/3 0.30726 0.25548 1.8267
R(—)_? + § + ?,27‘[/3) 0 /2 37/2 7.5845 2.7446 0.010606 21 /3 0.32225 1.2449 0.99279
R(—)? + § + 2,471/3) /2 37/2 0 7.5845 2.7446 0.010606 47/3 0.32225 1.2449 1.8809

does not guarantee that we can perform more gates with them
within that longer T3, especially if the sequences take longer
to perform. We present the parameters for all of the curves that
we fit to our data in Table XIV in Appendix C.

B. 1/f* noise

We now consider 1/f* noise. It is important to investigate
more realistic models of noise that capture the time dependence
of the noise in semiconductor spin qubits because, as we will
see shortly, we may find qualitatively different results from
the quasistatic limit, especially if one or both types of noise
have significant high-frequency components. The field and
charge noise present in quantum dot spin qubits may, and
in fact do, have different exponents characterizing them, o,
and «y, respectively. We will begin by fixing these exponents
to their experimental values [16,62], o, = 2.6 and a; = 0.7.
Throughout this section, we determine the strength of the noise
as follows. We assume that the power spectrum has the form

Ay g

Sh,J(CU) = W’

(75)

where the constants Aj ; are determined by requiring that
these spectra integrate to [61]

/ " dw Si(w) = 1o} (76)

ir

wuy 2
/w. de,(w):n(%). a7

ir

and

We will take o;, =23 MHz throughout and use the usual
values, o; = 0.00426J and 0.0563J for barrier and tilt
control, respectively. We set the infrared and ultraviolet cutoffs
[61] for the field noise to w;, = 10 kHz and w,, = 100 kHz,
and those for the charge noise to wi; = 50 kHz and w,y =
1 MHz. The 1/f noise is generated using the method specified
in Ref. [64]. Specifically, the noise is obtained from a discrete
inverse Fourier transform of the power spectra given above.
The coefficients A, ; are fixed by requiring that the energy
(the integral of the spectrum from the infrared to the ultraviolet
cutoff) matches the level corresponding to the Gaussian case.
The noise is then fed into the evolution of a sequence made

TABLE XIII. Times required to perform the Clifford gates using the CUO and CO-II pulse sequences. The parameters used to determine
these sequence durations are those presented in the tables in Sec. II in the relevant sections.

Operation htcuo htcon Operation htcuo htco
I 15.462 12.384 R(X + y.71) 28.672 13.455
R(X +2Z.7) 14.381 12.326 R(X — y,m) 31.858 12.427
RG,—7/2) 16.243 12.139 R(Y +2.7) 33.166 13.331
RG,7/2) 20.688 11.816 R(—y +Z.7) 26.577 13.585
RG,m) 22.338 12.346 R(X +y +2,27/3) 25342 13.034
R(X,—m/2) 14.920 12.882 R(X + Y + 2,47/3) 35.566 14.129
R(X,m/2) 21.036 13.084 R(—=X — ¥ +2,47/3) 36.473 14.919
R(X,7) 14.049 13.161 R(—X — ¥ +2,21/3) 26.702 13.276
R(Y,—7/2) 28.168 20.434 R(X —y+2,21/3) 31.120 13.133
R(Y,7/2) 30.445 12.445 R(X —y +2,41/3) 32.738 14.080
R(Y,7) 28.312 13.260 R(=X + Y +2,27/3) 29.581 12.003
R(X —Z,m) 26.748 12.110 R(=X + Y +2,47/3) 35.956 17.133
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FIG. 10. Plots of average fidelity extracted from randomized
benchmarking simulations as a function of time for our uncorrected
sequence sets (UCUO, UCO-I, UCO-II) in the presence of quasistatic
noise. The left column [(a), (c), and (e)] represents a quantum
dot operated with barrier control [18,19], while the right column
[(b), (d), and (f)[ uses tilt control. These two methods of control
correspond to charge noise strengths of o, = 0.00426J and 0.0563J,
respectively [19]. The solid curves are data, and the dashed curves
are fits to Eq. (73). The top row (a, b) represents a system with
no field noise (e.g., isotopically purified Si) and magnetic field
gradient hy = 23 MHz, the middle row [(c) and (d)] a system with
o0, = 11.5 MHz and h(, = 40 MHz, and the bottom row [(e) and (f)] a
system with 0, = 23 MHz and h, = 40 MHz. For the UCO-II pulse
sequences, we use the naive versions of the corresponding CO-II
pulse sequences, with the same parameters. The values of o, that our
parameters correspond to are, assuming %h < J < 30h, 3.27 kHz
to 2.94 MHz (a), 5.68 kHz to 5.11 MHz [(c) and (e)], 43.1 kHz to
38.8 MHz (b), and 75.1 kHz to 67.6 MHz [(d) and (f)].

up of Clifford gates. The final result of the randomized
benchmarking is an average over 2000 runs with different
sets of gates and noise.

We now present our plots of the fidelity for the uncorrected
sequence sets as a function of time in Fig. 14 and as a function
of the number of gates in Fig. 15. We find from both sets of
plots that, in the absence of field noise, the UCUO sequences
both have the longest 7, and allow one to perform the longest
gate sequences of any of the sets. This also remains true even
in the presence of field noise if one uses tilt control. However,
if one uses barrier control in the presence of field noise, then
the UCO-II sequences are best.

We plot the corresponding fidelities for the corrected
sequence sets in Figs. 16 and 17, respectively. We see that, in all
four combinations of types of control (barrier versus tilt) and

PHYSICAL REVIEW B 96, 195424 (2017)
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FIG. 11. Plots of average fidelity extracted from randomized
benchmarking simulations as a function of time for our corrected
sequence sets (CUO, CO-II) in the presence of quasistatic noise. The
left column [(a), (c), and (e)] represents a quantum dot operated with
barrier control [18,19], while the right column [(b), (d), and (f)] uses
tilt control. These two methods of control correspond to charge noise
strengths of o; = 0.00426J and 0.0563J, respectively [19]. The solid
curves are data, and the dashed curves are fits to Eq. (73). The top row
[(a) and (b)] represents a system with no field noise (e.g., isotopically
purified Si) and magnetic field gradient iy = 23 MHz, the middle
row [(c) and (d)] a system with o, = 11.5 MHz and k¢ = 40 MHz,
and the bottom row [(e) and (f)] a system with o, = 23 MHz and
ho = 40 MHz. The values of o, that our parameters correspond to
are, assuming 3—'0h < J < 30h,3.27 kHz to 2.94 MHz (a), 5.68 kHz
to 5.11 MHz [(c) and (e)], 43.1 kHz to 38.8 MHz (b), and 75.1 kHz
to 67.6 MHz [(d) and (f)].

presence/absence of field noise, we obtain the best 7, using the
CUO pulse sequences. This result is likely due to the fact that,
in this case, significant high-frequency components are present
in the charge noise due to the low exponent or; = 0.7; the fact
that we set J to larger values in the CO-II sequences than in the
CUO sequences results in a larger amount of noise. However,
we see that, in the case of barrier control in the presence of
field noise, we can perform roughly the same number of gates
with either set of pulse sequences. This is because the CO-IL
sequences are shorter in duration than the corresponding CUO
sequences, so that, even though 7, may be shorter for the CO-II
sequences, we can perform as many gates in that time span as
we can with the CUO sequences within their longer 7,. The
fitting parameters for results shown in Figs. 14 through 17 are
summarized in Table XV in Appendix C.

We now consider 7> and ng as functions of «;, and «;.
We will treat three cases here, one in which there is no field
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FIG. 12. Plots of average fidelity extracted from randomized
benchmarking simulations as a function of number of gates for our
uncorrected sequence sets (UCUQO, UCO-I, UCO-II) in the presence
of quasistatic noise. The left column [(a), (c), and (e)] represents a
quantum dot operated with barrier control [18,19], while the right
column [(b), (d), and (f)] uses tilt control. These two methods of
control correspond to charge noise strengths of o, = 0.00426J and
0.0563J, respectively [19]. The solid curves are data, and the dashed
curves are fits to Eq. (74). The top row [(a) and (b)] represents a system
with no field noise (e.g., isotopically purified Si) and magnetic field
gradient iy = 23 MHz, the middle row [(c) and (d)] a system with
o0, = 11.5 MHz and h(, = 40 MHz, and the bottom row [(e) and (f)] a
system with o, = 23 MHz and h(, = 40 MHz. For the UCO-II pulse
sequences, we use the naive versions of the corresponding CO-II
pulse sequences, with the same parameters. The values of o that our
parameters correspond to are, assuming ;—Oh < J < 30h, 3.27 kHz
to 2.94 MHz (a), 5.68 kHz to 5.11 MHz [(c) and (e)], 43.1 kHz to
38.8 MHz (b), and 75.1 kHz to 67.6 MHz [(d) and (f)].

noise and we vary o, one in which we fix o, = 2.6 and
vary oy, and one in which we take o = oy = o and vary
o. We give our results for 7, and n( in the first case in
Figs. 18 and 19, respectively. The results that we obtain here
are relatively simple; by both metrics, the UCUO sequences
outperform the other uncorrected sequences and the CUO
sequences outperform the CO-II sequences.

We present our plots of 75 as a function of «; with o, = 2.6
in Fig. 20 and the corresponding plots of ny in Fig. 21. We
notice that, for barrier control, we see two points at which we
transition from one sequence set being better to a different
set being superior. For o; < 0.5, we find that the UCUO
sequences result in the longest 7. Above this value, we instead
find that the UCO-II sequences give the longest 7,. Another
transition occurs around «; = 1.5, above which the UCO-I
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FIG. 13. Plots of average fidelity extracted from randomized
benchmarking simulations as a function of number of gates for our
corrected sequence sets (CUO, CO-II) in the presence of quasistatic
noise. The left column [(a), (c), and (e)] represents a quantum
dot operated with barrier control [18,19], while the right column
[(b), (d), and (f)] uses tilt control. These two methods of control
correspond to charge noise strengths of o; = 0.00426J and 0.0563J,
respectively [19]. The solid curves are data, and the dashed curves
are fits to Eq. (74). The top row [(a) and (b)] represents a system
with no field noise (e.g., isotopically purified Si) and magnetic field
gradient hy = 23 MHz, the middle row [(c) and (d)] a system with
o0, = 11.5 MHz and hy = 40 MHz, and the bottom row [(e) and (f)]
a system with o, = 23 MHz and hy = 40 MHz. The values of o,
that our parameters correspond to are, assuming %h < J < 30h,
3.27 kHz to 2.94 MHz (a), 5.68 kHz to 5.11 MHz [(c) and (e)],
43.1 kHz to 38.8 MHz (b), and 75.1 kHz to 67.6 MHz [(d) and (f)].

sequences give the best 7». If we use tilt control, on the other
hand, then we find that 75 is shorter for all values of «; for
any given sequence set than for barrier control, consistent with
our previous results. We also find only one transition around
ay = 2.2, below which the UCUO sequences give the longest
T,, and above which the UCO-II sequences are best. For the
corrected sequences, we see that there is a transition atee = 0.9
for barrier control and around « = 1.7 for tilt control, below
(above) which the CUO (CO-II) sequences give a longer 7.
We find similar results in the plots of g, but the transitions
happen at different values of «, than in the plot of T,—the
UCUO to UCO-II transition for barrier control now happens
around «; = 0.2 and the UCO-II to UCO-I transition around
oy = 1.4. We also see that the UCUO-to-UCO-II transition
has shifted to around o = 1.5. This helps to emphasize our
earlier point that a longer 7, will not necessarily mean that
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FIG. 14. Plots of average fidelity extracted from randomized
benchmarking simulations as a function of time for our uncorrected
sequence sets (UCUO, UCO-I, UCO-II) in the presence of 1/f* noise.
The solid curves are data, and the dashed curves are fits to Eq. (73).
The left column [(a) and (c)] represents a quantum dot operated with
barrier control [18,19], while the right column [(b) and (d)] uses
tilt control. The top row [(a) and (b)] represents a system with no
field noise (e.g., isotopically purified Si) and magnetic field gradient
ho = 23 MHz, and the bottom row [(c) and (d)] a system with field
noise and iy = 40 MHz. For the UCO-II pulse sequences, we use the
naive versions of the corresponding CO-II pulse sequences, with the
same parameters.

we can perform more gates; the time required to execute the
individual pulse sequences matters as well. This indicates that,
for example, for 0.2 < o; < 0.5, while T, is shorter for the
UCO-II sequences than for UCUO, the fact that the UCO-
II sequences take less time to perform means that we can
actually perform more gates reliably if we were to use the
UCO-II sequences. We see similar behavior for the corrected
sequences; now the CO-II sequences outperform the CUO
sequences for « = 0.7 when using barrier control and for « =
1.5 for tilt control.

Now let us turn to the case o) = oy = . We plot our
results for 7, as a function of & in Fig. 22 and for n in Fig. 23.
For the uncorrected sequence sets, we find that, in the case
of barrier control, there is a transition around o = 0.6, below
which the UCUO sequences have the longest 7, and above
which the UCO-I sequences do. In the case of tilt control, we
again find that the UCUO sequences give the longest 7, below
this transition, but it is the UCO-II sequences that have the
longest T, above it. We see a similar transition in our plots
of ny, but it happens around o = 0.5. For the corrected gates,
we find a transition around o = 1.1, below which we find that
the CUO gates have a slightly longer 7, than the CO-II gates,
and above which the CO-II gates have a longer 7. In our
data for ng, we find that the CO-II sequences do better for all
values of @ when using barrier control; when using tilt control,
the CUO sequences overtake the CO-II sequences for a small
range of o around 0.5. Overall, we see very little difference,
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FIG. 15. Plots of average fidelity extracted from randomized
benchmarking simulations as a function of number of gates for our
uncorrected sequence sets (UCUO, UCO-I, UCO-II) in the presence
of 1/f% noise. The solid curves are data, and the dashed curves are
fits to Eq. (73). The left column [(a) and (c)] represents a quantum dot
operated with barrier control [18,19], while the right column [(b) and
(d)] uses tilt control. The top row (a, b) represents a system with no
field noise (e.g., isotopically purified Si) and magnetic field gradient
ho = 23 MHz, and the bottom row [(c) and (d)] a system with field
noise and iy = 40 MHz. For the UCO-II pulse sequences, we use the
naive versions of the corresponding CO-II pulse sequences, with the
same parameters.
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FIG. 16. Plots of average fidelity extracted from randomized
benchmarking simulations as a function of time for our corrected
sequence sets (CUO, CO-II) in the presence of 1/f“ noise. The left
column [(a) and (c)] represents a quantum dot operated with barrier
control [18,19], while the right column [(b) and (d)] uses tilt control.
The top row (a, b) represents a system with no field noise (e.g.,
isotopically purified Si) and magnetic field gradient sy = 23 MHz,
and the bottom row [(c) and (d)] a system with field noise and
ho = 40 MHz.
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FIG. 21. Plots of n extracted from randomized benchmarking
simulations in the presence of 1/f* noise for (a) the uncorrected
sequence sets and (b) the corrected sets with o, = 2.6 and as functions
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FIG. 22. Plots of T, extracted from randomized benchmarking
simulations in the presence of 1/f* noise for (a) the uncorrected
sequence sets and (b) the corrected sets as functions of o, = oy = «x.

PHYSICAL REVIEW B 96, 195424 (2017)

8
(a) 10 T T
== UCUO-Barrier
6] UCUO-Tilt
10 - o
= UCO-I-Barrier
= = = UCO-I-Tilt
o104 X
S 10— vco-i-Bamier 0 05 1

UCO-II-Tilt

(b) 1 08 J ' Tos—1 .

= CUO-Barrier

100k = = cvo-Tiie s ”/ |
e CO—1I—-Barrier = =

= = CO-II-Tilt

FIG. 23. Plots of ng extracted from randomized benchmarking
simulations in the presence of 1/f“ noise for (a) the uncorrected
sequence sets and (b) the corrected sets as functions of o, = a; = .

either qualitatively or quantitatively, between barrier and tilt
control in this situation.

V. CONCLUSION

We have presented a two-pronged approach to improving
gate performance in singlet-triplet semiconductor double
quantum dot spin qubits. First, we reviewed existing sets of
pulse sequences found in the literature and introduced new sets.
Two of the existing sets do not incorporate dynamical error cor-
rection, while the third does via the SUPCODE technique [40].
We introduced one new uncorrected set as well as a corrected
set based on these new sequences. The existing uncorrected
sets are the “uncorrected unoptimized” (UCUQO) sequence,
which implements z rotations via a sequence introduced by
Guy Ramon [56], and the “uncorrected optimized, type I”
(UCO-I) sequence, which instead uses a generalization of
the Hadamard-x-Hadamard sequence, a “6-20-6” sequence
[58]. Both utilize the z-x-z sequence to implement rotations,
although UCO-I additionally makes use of the Hadamard-
z-Hadamard sequence to perform the x rotation to avoid
requiring that the exchange coupling be completely switched
off. The new uncorrected sequences introduced in this work
are dubbed the “uncorrected optimized, type II” (UCO-II)
sequences. The z rotations are implemented using the same
sequence as in the UCO-I set, but we also introduced new
sequences for implementing the other rotations, all of which
are shorter in terms of the number of single-pulse rotations that
they use. We show that, furthermore, these new sequences can
be made up to twice as fast in terms of the time required
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to perform them than the other two sets. Similarly, the
corrected sets are as follows. The existing set is the “corrected
unoptimized” (CUO) set, which assumes that x rotations may
be done with a single pulse, i.e., it is possible to set the
exchange coupling exactly to zero. The z rotation is then
implemented via the Hadamard-x-Hadamard sequence, and all
others using an x-z-x decomposition. These sequences are then
corrected for noise-induced error using the SUPCODE method,
in which one inserts a sequence of pulses that, ideally, would
perform an identity operation and is arranged in such a way
that the error in this “identity” exactly cancels the error in the
base pulse sequence to first order. We then introduce a new
set of corrected sequences, the “corrected optimized, type II”
(CO-II) set, which we obtained by applying the same idea to
the UCO-II sequences. We demonstrated that these sequences,
similarly to the corresponding uncorrected set, are up to three
times faster than the CUO sequences.

We then evaluated the performance of these sets in the pres-
ence of (magnetic) field and charge noise using randomized
benchmarking [59,60]. This procedure consists of determining
the state-averaged fidelity of random sequences of gates of
a given length, allowing one to determine the fidelity as a
function of the number of gates or of time. We did exactly
this for two different models of noise, quasistatic (Gaussian)
and 1/f%, and for two types of control of the qubit, barrier
and tilt, which correspond to having two different amounts
of charge noise [19]. We then performed fits to this data to
determine the effective decoherence time 75 and an analogous
parameter n( characterizing how quickly the fidelity decays
with the number of gates performed. In the case of quasistatic
noise, we found that, in the complete absence of field noise,
the UCUO sequences give the longest 7, and the highest
values of ny. However, in the presence of field noise, we
found that the “optimized” sequences do better—in the case
of barrier control, the UCO-I sequences do best, while all of
the sequences have roughly equal performance for strong field
noise and for tilt control. We note that the UCO-II sequences
that are used in these simulations are not the fastest versions
of these sequences, but rather the sequences that the CO-II
sequences are based on, some of which have no segments
during which the exchange coupling is set to its (experimental)
largest possible value. It turns out that attempting to correct the
fastest versions of the UCO-II sequences via SUPCODE requires
us to insert uncorrected identities with segments during which
the exchange coupling exceeds its maximum value or becomes
negative. We believe that, if we were to use the fastest versions
of the UCO-II sequences, then they would likely yield the best
results among the uncorrected sequences. We found similar
results from the corrected sets; if there is no field noise, then
the CUO sequences outperform the CO-II sequences, having
longer 7, and a higher ny. However, once we introduce field
noise, the CO-II sequences are better.

We then considered the case of 1/f* noise. We first
considered the experimentally relevant case [16,62] for which
the exponent for the field noise is o, = 2.6 and that for
the charge noise is a; = 0.7. Among the uncorrected pulse
sequences, we find that the UCUO sequences once again do
best in the absence of field noise, and even in its presence when
tilt control is used. When we use barrier control instead of tilt
control in the presence of field noise, however, the UCO-IL
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sequences do best. In the case of the corrected sequences, we
similarly find that the CUO sequences are better in most cases,
except when using barrier control in the presence of field noise,
in which case the number of gates that can be performed is
roughly the same for both the CUO and CO-II sequences. We
then considered 7, and n( as we vary the exponents for two
cases, one in which we fix o, = 2.6 and vary «, and another
in which we set o, = o; = « and vary «. The results for the
latter case are relatively simple. In the absence of field noise,
we find that the “unoptimized” sequences always do better,
regardless of the value of «. When we turn on field noise, on
the other hand, then we find that there is a transition from
the “unoptimized” sequences being best to an “optimized” set
being best (UCO-I for the uncorrected sequences, CO-II for
the corrected sequences). The results from the first case, in
which we fix oy, are more complex, featuring two transitions
among the three uncorrected sequences; again, we see that
“unoptimized” sequences do best for small « and “optimized”
sequences tend to be best when « is small.

‘We should note here that we assumed throughout this work
that one can generate perfect square pulses. However, in actual
experiments, this is, strictly speaking, impossible—there is a
finite rise time in such pulses. This is another potential source
of error, one which we do not address here. However, it is
addressed in the previous work on dynamical error correction
[40], and the effects of this finite rise time are found to be
small for the CUO pulse sequences. We expect that this will
continue to be the case for our new CO-II sequences as well.

Overall, our results imply that which set of pulse sequences
will work best depends on how much, and what type of, noise
is present in the system and, in the case of power law noise,
the exponent characterizing the frequency dependence. We see
that, for example, the “unoptimized” sequences, both corrected
and uncorrected, seem to do best when there is little field noise,
such as in isotopically purified Si [65], and in situations in
which there are significant high-frequency components to the
noise, even if it is only in the charge noise. The “optimized”
sequences, however, do best in cases that better approximate
the quasistatic limit and in the presence of field noise, and
thus they would perform better in, for example, natural Si or
GaAs. Our results suggest two avenues that one may pursue
to improve control of singlet-triplet qubits. One would be
to achieve exactly zero exchange coupling. Existing results
suggest that this may be possible in high magnetic fields or
when we introduce more than two electrons into the quantum
dots [54,66,67]; it is found that the exchange coupling could
become zero or negative in these situations. Another would
be to reduce the high-frequency components present in the
charge noise. We find that, if this were to be done, then one
can achieve a longer 7, and perform a larger number of gates
with sufficiently high fidelity using the CO-II pulse sequences
in this situation. In general, one must have some information
about the type of noise prevalent in the system in order to best
optimize the required pulse sequences for singlet-triplet spin
qubit gate operations in semiconductor quantum dots.
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APPENDIX A: GENERALIZED RAMON SEQUENCE
FOR Z ROTATIONS

We note one major problem with the Ramon sequence—it
requires one to perform an x rotation. This, in turn, requires
that we be able to completely turn off the exchange coupling
between the electrons, which is experimentally challenging.
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We therefore consider a generalized version of this sequence,
in which the x rotation is replaced by one about an axis at an
angle 6’ to the z axis:

R(Z,¢) = R0, x)R©® ,a)R (O, X).

If we now multiply out the right-hand side and set both sides
equal as before, we once again find two solutions for «,

(AD

X = arccos

. sin @ [
o = —2arcsin | ————sin | — (A2)
sin(6’ — 0) 2
and
27 + 2 arcsi Sinb o (2 (A3)
=2n arcsin| ————sin | = | |.
* sin@ —0) "\ 2
The solutions for x are
J
+ cos (%)\/Sinz(e’ — ) —sin? (%) sin? 0 — sin? (%) cos(8’ — 6) sin6 cos O
, (A4)
[cos? () + sin2 () cos? 6] sin(0’ — 0)
[
equations for the Ramon sequence if we set 6" = 7. Looking at

where, once again, our choice of sign for = depends on which
solution for & we use; we choose the plus sign if we use
Eq. (A2) and the minus sign if we use Eq. (A3). We use the
first set of solutions, i.e., we choose the plus sign in Eq. (A4)
and use Eq. (A2) to obtain «, if ¢ is positive, while we use the
second set if ¢ is negative. One may verify that we recover the
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FIG. 24. Plots of « (left) and x (right) for the “generalized Ramon
sequence” with 8’ = % (top row), g (middle row), and % (bottom
row) and for positive values of ¢.

our solution for «, we see that we can only obtain a real-valued
solution for any value of ¢ if 6 < %9’. ‘We note that, with this
restriction on 6 in place, Eq. (A2) will always give us a negative
value of «. In this case, we may, as with the Ramon sequence,
add 2m to the solution, at the cost of introducing an overall
minus sign to the rotation. The time required to perform this
sequence may be determined similarly to that of the Ramon
sequence, and is given by

hto,g = X sin® + Josin6’. (A5)

We will consider solutions to these equations for the same
values of ¢ as before, starting with the positive values. In this

0 #/32 n/16 31/32 /8 0 n/64 n/32 3x/64 n/16
12
2.0
1.0
15 4 ¢
3 — 7/16 =z 0.8 — n/16
=210 — 8 £ 06 —
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. 0.4 — 716
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0.2 — m4
0.1 — 2

0.0
0 n/128 n/64 37/128 n/32
0

FIG. 25. Plots of times required to execute the 6-20-6 sequence,
Eq. (13) (solid lines), and the “generalized Ramon sequence”,
Eq. (A1) (dashed lines), with 6’ = 7 (top left), % (top right), and
1z (bottom) and for positive values of ¢.
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0 /32 n/16 37/32 n/8 0 /32 n/16 37/32 n/8

6.0) 3.0
—¢ —¢
— 76 28 — w6
355 — a8 = —ng
— 4 2.6 — 4
5.0 — 2 — 2

2.4

0 n/32 /16 3n/32 /8 n/32 n/16 3m/32 /8
[4 0
0 /64 n/32 3m/64 n/16 n/64 /32 3m/64 /16

S

=}

6.0 3.0

—¢ -0

— 716 — 16

< 55 — = 28 — s

— /4 2.6 — 4

5.0 — 72 — 2
2.4

0  7n/64 n/32 3n/64 n/16 0 n/64 /32 3n/64 n/16

0 (4

0 n/128 m/64 37/128 m/32 0  n/128 n/64 37/128 m/32
6.0 3.0
—¢ % —¢
— 76 2.8 — 716
355 s | = — 8
— w4 2.6 —m4
5.0 — 72 — 2

24

=}
<)

/128 7/64 37/128 m/32 n/128 m/64 31/128 /32
0 0

FIG. 26. As Fig. 24, but for negative values of ¢.

case, we also choose different values of 6’; here we use 7 /4,
/8, and /16. We provide plots for each case of o and
in Fig. 24 and the total time in Fig. 25. We see that even
this “generalized Ramon sequence” is slower than the 6-26-6
sequence for a given value of 6, regardless of the value of 6.
This is also the case when we consider negative values of ¢; we
plot the values of « and y in Fig. 26 and the total time in Fig. 27.
We also see that, similarly to the Ramon sequence, the total
execution time of the z rotation is the same for both the 9-20-6

. h
sequence and the “generalized Ramon sequence” when 6 = %;
0 /32 w16 3x/32 78 0 m/64 n32 3n/64 716
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FIG. 27. As Fig. 25, but for negative values of ¢.
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FIG. 28. (Top left) Plot of the time required to execute the
sequence, Eq. (B1), for all possible values of 6, namely, 7/4 < 0 <
7 /2. The remaining plots compare the times required to execute the
sequence, Eq. (B1) (solid lines), with the time required to execute the
“modified Ramon sequence,” Eq. (17) (dashed lines), for 6’ = 7 (top
right), T (bottom left), and % (bottom right). All plots shown here
are for positive values of ¢.

this is because the “generalized Ramon sequence” reduces to
the 6-20-6 sequence in this limit.

APPENDIX B: MODIFIED 6-26-6 SEQUENCE
FOR X ROTATIONS

We will discuss here the following sequence for performing
x rotations, which is a modified version of our 6-20-6
sequeance for performing z rotations:

A T
RG.¢) = —R(e,n)R(ze _ E,q&)R(e,n). (B1)

n/4  5r/16 3nm/8 Tm/16  m/2
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FIG. 29. As Fig. 28, but for negative values of ¢.
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We thus realize a x rotation (with an overall minus sign) by an
angle ¢ via the following sequence:

(1) Rotate by r about an axis at an angle 6 with respect to
the z axis.

(2) Rotate by ¢ about an axis at an angle 26 —
respect to the z axis.

(3) Repeat the first rotation.

The restriction on angles of rotation axes with respect to
the z axis requires that <6 < 5

We now give the values of J needed for each type of
rotation. Taking J; to be the value of J used for the rotations
by 7, then the value of J needed for the rotation by ¢, which
we denote by Js, is

- .
5 with

2J1h?

. B2
TEps (B2)

2 =

We now compare the timing of this sequence to the modified
Ramon sequence. The total time required to execute this
sequence is

it = 7 sin® — 1 cos 26, (B3)
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We will now consider four positive values of ¢, namely,
%, %, and f—é, as well as the corresponding negative values,
and 0" =7, %, and . We plot the gate times for both
sequences, Eqs. (B1) and (17), for positive values of ¢ in
Fig. 28. We see that, unlike for the analogous sequences for
performing z rotations, the generalized Ramon-like sequence
for performing an x rotation is always faster than the modified
0-260-6 sequence.

Now let us consider rotations by negative angles. In this
case, because rotations by negative angles are impossible, we
must add 27 to the rotation by ¢ in Eq. (B1). We plot the total
times required to execute the two sequences in Fig. 29. In this
case, the modified Ramon sequence is once again the faster
sequence. We thus see that, for both positive and negative
rotation angles, the modified Ramon sequence is faster, in
contrast to the analogous sequences for performing z rotations.

T
2

APPENDIX C: FITTING PARAMETERS FOR
RANDOMIZED BENCHMARKING SIMULATIONS

We present here the parameters for the curves that we fit to
our randomized benchmarking simulations.

TABLE XIV. Fitting parameters for quasistatic noise.

T, (x 103 ns) no
Pulse Barrier Tilt Barrier Tilt
h =23 MHz, 0, = 0 MHz UCUO 733 6.81 9.35 x10° 270
UCO-1 17.6 0.16 1.03 x10° 12.1
UCco-11 22.1 0.87 1.49 x10° 63.9
CUO 15.9 x 10° 215 1.12 x107 1.39 x10°
CO-II 7.85 x 10° 734 1.64 x 10° 0.817 x10°
h =40 MHz, o, = 11.5 MHz UCUO 0.0522 0.0451 4.10 3.59
UCO-1 0.183 0.0500 21.6 5.80
UCco-11 0.0815 0.0676 14.6 9.00
CuUO 0.618 0.471 7.16 5.74
CO-I1 3.01 1.81 62.0 44.2
h = 40 MHz, 0, = 23 MHz UCUO 0.0223 0.0222 2.00 2.00
UCO-1 0.0584 0.0278 7.16 3.33
UCO-1I 0.0306 0.0290 4.71 4.11
CUO 0.112 0.114 1.94 1.94
CO-1I 0.280 0.286 7.49 6.44
TABLE XV. Fitting parameters for 1/f* noise with o, = 2.6 and or; = 0.7.
T, (x10° ns) no
Pulse Barrier Tilt Barrier Tilt
Sh=0 UCUO 91.5 1.15 2.22 x10° 42.3
UCO-1 3.00 0.0420 0.20 x10° 2.92
UcCo-11 14.8 0.124 1.17 x10° 9.17
CuO 175 1.92 764 11.3
CO-II 39.5 0.296 415 3.68
8h #0 UCuo 1.74 0.372 109 24.0
UCO-1 1.17 0.0221 135 2.70
UCo-11 2.38 0.0628 298 8.46
CUO 45.1 0.947 439 9.98
CO-II 18.2 0.157 344 3.39
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