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Manipulating quantum Hall edge channels in graphene through scanning gate microscopy
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We show evidence of the backscattering of quantum Hall edge channels in a narrow graphene Hall bar, induced
by the gating effect of the conducting tip of a scanning gate microscope, which we can position with nanometer
precision. We show full control over the edge channels and are able, because of the spatial variation of the
tip potential, to separate copropagating edge channels in the Hall bar, creating junctions between regions of
different charge carrier density, that have not been observed in devices based on top or split gates. The solution of
the corresponding quantum scattering problem is presented to substantiate these results, and possible follow-up
experiments are discussed.
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I. INTRODUCTION

The quantum Hall effect has been studied extensively
since its discovery in 1980 [1,2] and is one of the few
quantum mechanical phenomena which are appreciable at
a macroscopic level. It arises in two-dimensional systems
as a consequence of gauge invariance [3], and its most
striking feature is the exact quantization of the transverse Hall
resistance, which is not sensitive to a moderate amount of
disorder.

Due to graphene’s Dirac-like dispersion, the cyclotron
frequency ωc, and by extension the Landau level energy,
scales with

√
B as opposed to B in classical Hall physics

[4,5]: E±(N ) = ±h̄ωc

√
N , where N = 0,1,2, . . . is a positive

integer and ωc = vF

√
2eB/h̄.

Every Landau level is fourfold degenerate—two times
for spin and two times for valley. The important exception
is the anomalous zero-energy Landau level, a consequence
of graphene’s nontrivial Berry phase of π at the Dirac
point, which is shared by electrons and holes, providing two
extra channels to either regime. This gives the “half-integer”
sequence of filling factors

ν = ±gsgv

(
N + 1

2

)
, (1)

with N = 0,1,2, . . ., and gs = gv = 2 the spin degeneracy and
valley degeneracy in graphene, respectively.

Graphene’s special bipolar nature further enriches its quan-
tum Hall physics [6–8]. Through local electrostatic gating,
junctions of opposite polarity can be created. Edge channels
corresponding to regions of different charge carrier polarity
[9–13] will flow in opposite directions; i.e., electrons will
flow clockwise, while holes will propagate counterclockwise
(or vice versa). At the interface between two regions of oppo-
site polarity, edge channels of both regions will copropagate,
and their chemical potential will equilibrate, assuming the
interface is sufficiently long [14]. Gating therefore allows
one to manipulate quantum Hall edge channels. Under suit-
able parameters, the branching, equilibration, and complete
backscattering of edge channels can be induced.
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These effects have been studied in graphene Hall bars with
a central top gate patterned on them [10,11,13]. Depending on
the filling factors on both sides of the junction, current can be
backscattered in several ways. One can distinguish between
three scenarios: partial, indirect, and complete backscattering,
and calculate the expected value of Rxx using the Landauer-
Büttiker formalism [15].

If the central region has the same polarity and a smaller
filling factor than the bulk (|ν ′| < |ν|), which gives a p/p′/p
or n/n′/n junction, some edge channels will be backscattered,
while others are transmitted; this is the partial backscattering
regime, and the longitudinal resistance is [13]

Rxx = h

e2

|ν| − |ν ′|
|ν||ν ′| . (2)

If the central region has the same polarity as the bulk, but
a higher filling factor (|ν ′| > |ν|), current will be transported
from one edge to another by edge channels which are localized
in the central region and equilibrate on both sides of the device.
This indirect backscattering manifests itself as [13]

Rxx = h

e2

|ν ′| − |ν|
|ν||ν ′| . (3)

When there are regions of different polarity, i.e., a p/n/p or
n/p/n junction, the backscattering will be direct and complete.
Due to equilibration between the n- and p-type channels at the
interface, current will still be transmitted. Now [13]

Rxx = h

e2

|ν| + |ν ′|
|ν||ν ′| . (4)

Hence, interactions between edge channels typically mani-
fest themselves as fractional values of the von Klitzing constant
RK = h

e2 . By controlling this process, one can explore the
interaction between channels and investigate their microscopic
structure. Studying these processes provides an opportunity to
investigate the elusive and long debated microscopic structure
of the edge channels.

In this article we demonstrate that we are able to locally
gate a region of choice of a graphene Hall bar, by applying a
potential to the tip of a scanning gate microscope (SGM); see
Fig. 1. The SGM setup consists of an atomic force microscope
(AFM) with a metallic (tungsten) tip. It is possible to gate a
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FIG. 1. A schematic representation of the SGM setup. By
applying a voltage to the metallic tip, we can locally gate a region of
choice.

region of the sample located underneath the tip, by applying
a voltage to the tip [16]. The SGM setup allows us to explore
the quantum Hall edge channel physics through a different
and rarely used, nonuniform gating potential and provides full
control over the edge channels, which can be made to interact,
equilibrate, and/or backscatter as one sees fit [17–20]. As a
consequence of the spatial variation of the tip potential, we
are able to spatially separate copropagating channels inside
the uniform Hall bar, which leads to new, intricate junctions
that have not been reported before. Finally, we demonstrate the
ability to accurately simulate our experiments through tight-
binding simulations.

The paper is organized in the following way: In Sec. II we
present our methods, which features a description of the SGM
setup and of the device. In Sec. III we present the experimental
results. Furthermore, in Sec. IV we present quantum transport
calculations, which add further support to our observations.
In Sec. V the results are discussed, and in Sec. VI we shift
our gaze forward and discuss how the work presented here is
an important stepping stone for further research, which takes
full advantage of the unique possibilities that scanning gate
microscopy offers.

II. METHODS

All measurements were performed at 4.2 K and in a
magnetic field of 8 T in the SGM cryostat. The electrical
resistances were determined using a constant ac current of
100 nA, using lock-in amplifiers in a four-probe configuration;
dc voltage sources are used to bias the back gate and the tip.

The SGM system consists of a modified commercial
Attocube tuning fork based AFM system. Tungsten tips are
prepared by chemical etching and glued to the tuning fork. The
AFM operates in noncontact mode and detects the reduction
of the oscillation amplitude that arises due to shear forces
between the tip and the sample. A stack of piezo elements
allows for both fine movement, within a range of 30 μm, and
course movement in a range of 5 mm. The entire system is
designed to be isolated from vibrations and noise.

A reference AFM scan of the central part of the device is
made before every measurement to compensate for possible
drift. Using this scan we can position and move the tip to
any desired position with great precision. Once the tip is in
position, the Hall resistances Rxx and Rxy are measured to

FIG. 2. A scanning electron microscope image of a device of the
same design as the one described in this paper. The distance between
the side contacts is 6 μm, while the width of the Hall bar is about
800 nm. The probes used to measure Rxx and Rxy are indicated, as
are the tip positions: left (L), center (C), and right (R).

determine the effect of the tip as a function of tip position and
bias.

The device (see Fig. 2) is fabricated from single-layer
graphene [21,22], exfoliated on a PVA/PMMA substrate and
transferred to a Si/SiO2 substrate with a 300 nm thick SiO2

layer, where the highly doped Si acts as a back gate. Using
standard nanofabrication technologies such as electron beam
lithography and reactive ion etching, the graphene is patterned
into a Hall bar with length L ≈ 6 μm and width W ≈ 800 nm.
These dimensions have been selected such that the Hall bar
is sufficiently wide to allow for the unobstructed flow of
edge channels in the absence of any intervention [23,24],
while being sufficiently narrow such that the channels can
be made to interact through the gating effect of the SGM.
To reduce the invasiveness and the screening effect of the
metal contacts (Cr/Au 10/60 nm thick) [25–27], the Hall bar
is connected through 1 μm long graphene leads.

The mobility of the device is estimated via a linear fit of
the slope of the conductivity σ versus back-gate voltage Vbg

[see Fig. 3(a)]. The conductivity is given by σ = ρ−1 = neμ,
where ρ is the resistivity of the graphene, n is the electron
(hole) density, e the electron (hole) charge, and μ the electron
(hole) mobility. The width and length of the Hall bar are
determined via scanning electron microscopy, and a mobility
of μ = 7.2 × 103 cm2 V−1 s−1 is found.

A second way to extract the field effect mobility is through
a fit of the Dirac peak [28,29]; see Fig. 3(b). For details, see
Appendix A. We obtain μ = 6.8 × 103 cm2 V−1 s−1, such that
both values of μ agree to a reasonable degree.

The Dirac peak shows only a small asymmetry, suggesting
that the doping influence of the metal contacts is small. The
sample exhibits a hysteresis when sweeping the back gate at
low temperatures, likely due to charge trapping [30]. Special
care is taken to guarantee consistency of the measured results.

The hole side of the sample exhibits well quantized Hall
plateaus in Rxy , which coincide with minima in Rxx , as shown
in Fig. 4. The corresponding filling factors are indicated in
the figure. Here negative (positive) filling factors correspond
to the hole (electron) side. Although hole and electron states
in graphene are in principle equivalent, a different behavior
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FIG. 3. (a) The conductivity of the device at T = 4.2 K and the
linear fit that is used to extract the field effect mobility. (b) The
four-probe resistance of the device at T = 4.2 K and the fit that is
used to estimate mobility and residual charge.

is observed in back-gate sweeps, an effect probably related to
the quality of the contacts. Since the hole side shows the most
clear behavior we will focus on this.

FIG. 4. The quantum Hall effect as measured in the device, while
sweeping the back gate at T = 4.2 K and B = 8 T.

FIG. 5. (a) Rxy vs Vbg with the tip placed at the right (R) side of
the device, in between the contacts used to measure Rxy . The data
show a strong dependence on the tip bias Vtip (indicated in the legend).
(b) Rxy with the tip placed at the center (C) of the Hall bar. Rxy is now
independent of Vtip, demonstrating that the tip effect is well localized.

III. EXPERIMENTAL RESULTS

To characterize the strength and the spatial extension of
the tip potential, we first place the tip between two transverse
contacts on the right side of the device, approximately 45 nm
above the graphene surface (as indicated by position R in
Fig. 2). The measured Hall resistance between these contacts
directly reflects the filling factor in between them—provided
that a region with a well-defined filling factor extends all the
way across the device—and is not sensitive to the filling factors
in other parts of the device. When a positive voltage is applied
to the tip, the filling factor underneath the tip is increased; i.e.,
it moves towards more positive values. An appreciable shift is
observed in the Rxy back-gate sweep, when gating through the
tip, as shown in Fig. 5(a), indicating that we can indeed change
the filling factor in the entire area between the contacts.

When the tip is instead placed at the center of the device (the
position marked with C in Fig. 2), no shift in Rxy is detected
at the right side; see Fig. 5(b). This confirms that the gating
effect of the tip is sufficiently local such that it does not extend
from the center of the Hall bar to the contacts at the side, while
being large enough to affect the entire width of the ribbon.
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FIG. 6. The longitudinal resistance Rxx with the tip positioned at
the center of the Hall bar, for various Vtip biases. Several plateaus are
indicated, which correspond to the backscattering of one or multiple
sets of edge channels.

We now look at the value of Rxx while the tip is at the
center of the Hall bar (Fig. 6). When no bias is applied to
the tip, Rxx has its usual shape; cf. Fig. 4. However, applying
+10 V to the tip has several effects. On the hole side, two
plateaus start to develop, one at Rxx = 8.7 k� and one at
25.8 k�. These plateaus can be understood using Eqs. (2)–(4).
Let us start with the plateau at Rxx = 8.7 k�. It develops
at a back-gate voltage which corresponds for Vtip = 0 V to
bulk filling factor ν = −6. Figure 5 shows that a positive
voltage on the tip moves the filling factor towards more
positive values. If we assume a filling factor ν ′ = −2 under the
tip, then Eq. (2) gives Rxx = 1/3 × h/e2 ≈ 8.6 k�, in good
agreement with the value of the measured plateau. Therefore,
this value corresponds to a p/p′/p junction with filling factors
p = −6 and p′ = −2. Similarly, the plateau at Rxx = 25.8 k�

corresponds to a p/n/p junction with filling factors p = −2
and n = +2. Then Eq. (4) gives Rxx = 1 × h/e2 ≈ 25.8 k�,
again in good agreement with the measured value.

When the bias on the tip is increased to +20 V, the
aforementioned plateaus develop further. Moreover, a new
plateau with Rxx = 36 k�, which is close to 4/3 × h/e2 ≈
34.5 k�, appears. There is little difference between the values
of Rxx for +20 V and +30 V on the tip, indicating that the
observed plateaus are robust features. The development of
plateaus can be better seen in Fig. 7, which shows back-gate
sweeps taken at many values of Vtip in 2 V intervals.

The plateaus on the right (electron) side of the curve,
that would correspond to indirect backscattering in a n/n′/n

junction such as n = +2 and n′ = +6 with Rxx ≈ 8.7 k� =
1/3 × h/e2, are notably absent. It is possible that these
would-be plateaus are obscured by disruptions at the electron
side as seen in Fig. 4.

The 2D plot reveals an interesting feature: the development
of a new plateau with a longitudinal resistance value of Rxx ≈
4/3 × h/e2 which was also seen in the Rxx traces shown in
Fig. 6. In order to understand this feature we used a quantum
transport model which is discussed in the following section,
Sec. IV.

FIG. 7. A 2D map, showing the value of Rxx as a function of
back-gate voltage Vbg and tip voltage Vtip. The data were collected by
sweeping the back gate from −30 to +30 V, while increasing the tip
bias in steps of 2 V in between sweeps, at T = 4.2 K and B = 8 T.
The global filling factors νbg and the filling factors underneath the
SGM tip νtip are indicated.

IV. QUANTUM TRANSPORT MODELING

For the calculations we solve the Laplace equation for the
device and the SGM tip (for details, see Appendix B), and
for the obtained potential landscape we solve the quantum
transport problem numerically. We use the tight-binding
formalism, with the Hamiltonian

H =
∑
〈i,j〉

(tij c
†
i cj + H.c.) +

∑
i

V (ri)c
†
i ci , (5)

where the first sum runs over nearest neighbors, and V (ri) is
the external on-site potential at the position ri of the ith atom.

Modeling of the real devices with the atomistic Hamiltonian
has a large computational cost. In order to minimize it, we
use the scaling approach [31], with the scaled lattice constant
a = a0sf and tij = t0

ij /sf , where the scaling parameter is
taken as sf = 4, and the unscaled parameters are t0 = −2.7
eV and a0 = 2.46 Å. For the scaled system, we use tij =
t exp( 2πi

φ0

∫ rj

ri
A · dl), with the hopping parameter t and the flux

quantum φ0 = h
e
.

We model the Hall bar device as a nanoribbon, with vertical
armchair and horizontal zigzag edges. The zigzag nanoribbon
has a length of 980 nm and a width of 200 nm (470 atoms
across the ribbon) and is connected to narrow armchair-type
leads used as voltage probes, of width 69 nm (140 atoms across
the ribbon) and length 122 nm, which are labeled 2–3 and 5–6
in Fig. 8. The model system is obtained by scaling down the
experimental device by another factor of ∼4. We therefore use
B = 32 T.

A representative potential profile obtained from the numeri-
cal solution of the Laplace equation is presented in Figs. 10(a)
and 10(b). The width d at half maximum of this potential
is 30 nm, and the diameter of the induced n-p junction
is 200.4 nm which is comparable to the nanoribbon width
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FIG. 8. A schematic illustration of the system with six leads
and four Büttiker probes. The tip is positioned at the center of the
ribbon, and the strength of the tip potential is indicated by the blue
circle. The tip induces a bipolar junction in the nanoribbon. The
equilibration is along the edge between channels ν > 0 as marked by
green rectangles, and along the n/p junction between channels ν > 0
and ν < 0, as marked by pink rectangles.

200 nm, whereas the magnetic length for the modeled system

is lB =
√

h̄
eB

= 4.5 nm. The Laplace equation scales linearly
with the system size, and we can estimate that in the real
sample, which is about 4 times bigger, for the gate voltages
that result in same filling factors, the width at half maximum
is 120 nm, whereas for B = 8 T used in experiment the
magnetic length is 9 nm. In comparison, the typical extent
of the smoothed potential induced by a standard top gate in
graphene lying on SiO2 substrate is of the order of several tens
of nanometers [32].

For the solution of the transport problem, we use the
Landauer-Büttiker approach [33] and calculate the resistance
of the sample from the solution of the quantum scattering
problem. For details, see Appendix B. We assume zero
temperature. In the numerical model, equilibration is obtained
with the dephasing introduced by virtual Büttiker probes [34].
We place the Büttiker probes in two locations: (1) At the n/p

junctions present in the system. They are located in the two
spots marked by pink rectangles in Fig. 8. (2) At the sides
of the central part of the nanoribbon, one at the upper edge
and one at the bottom edge of the ribbon, indicated in green in
Fig. 8. For details on the Büttiker probes, see Appendix B. The
probes (1) induce equilibration of the copropagating channels
along the bipolar junction, while the probes (2) mix the Landau
levels at the edge of the ribbon.

The color map in Fig. 9(a) presents the calculated results
for the longitudinal resistance of the device as a function of
back-gate voltage Vbg and tip voltage Vtip obtained with the
method described above. The white box indicates the area
to be compared with the experimental results of Fig. 7. A
very good agreement is obtained for the resistance values
at the plateaus. The filling factors under the tip, νtip, and
far from it, νbg , obtained from the simulations, are given
in Fig. 9(a). For example, for the case of νbg = −6 and
νtip = −2, we obtain Rxx = 1/3 × h/e2 ≈ 8.6 k�, in good
agreement with the interpretation of the value of the measured
plateau in Fig. 6. Similarly, for νbg = −2 and νtip = +2,
we obtain Rxx = 1 × h/e2 ≈ 25.8 k�. This good agreement
allows us to index the filling factors also for the experimental
data shown in Fig. 7. There and in Fig. 9(a) we find that
the plateau with the resistance value close to 4/3 × h

e2 ≈
34.5 k� that in the experiment has started to develop
corresponds to a configuration of filling factors νbg = −6 and
νtip = +2.

The calculated current density plot obtained by solving the
scattering problem for this particular condition is presented in
Fig. 10(c). One can see two distinct current branches belonging
to hole Landau levels number 0 (the circular branch) and
1 (the leftmost branch) that are separated by an area of an
intermediate filling factor ν ′ = −2. The intermediate region
results from the fact that the potential profile of the pointlike
tip is smooth. Due to the smoothness of the potential, the
LLs with |N | > 0 are spatially separated from the 0th LL;
thus along the n/p junction the equilibration takes place only

FIG. 9. (a) The simulated Rxx as a function of back-gate voltage Vbg and tip voltage Vtip. The dashed white lines show where the global
filling factor νbg changes, and the solid black lines where the filling factor under the tip νtip changes. (b) Rxx values calculated from Eqs. (6)–(8).
The factors label the resistance values at the plateaus.
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FIG. 10. (a) A representative potential map of the system for
νbg = −6, νtip = +2. The dashed circles show where the potential
equals the Fermi energy (inner circle) and the energy of the first LL
(outer circle). The solid circle indicates the potential at half maximum.
(b) Horizontal cross section through the center of the Hall bar in (a),
showing how the potential varies with position. (c) An exemplary
current density in the system for the potential profile in (a).

between the lowest Landau level channels [35,36], in contrast
to sharp bipolar junctions where the equilibration is between
all modes.

Beyond the range covered in the experiment, we find also
a plateau of similar Rxx for νbg = −2 and νtip = +6. Other
new plateaus occur, e.g., Rxx ≈ 1.4 × h

e2 at νbg = −10 and
νtip = +2. Generally, the resistance values are symmetric with
respect to the simultaneous exchange of νbg → −νtip and
νtip → −νbg .

V. DISCUSSION

The newly observed plateaus deserve a discussion. We use
the following notation: ν ′ is used for a filling factor outside
the bipolar junction, which is different from νbg . ν ′′ is used
to refer to a filling factor inside the bipolar junction, which
differs from vtip.

Under the assumption that equilibration takes place only
between the lowest Landau level channels, we can derive
expressions for the resistance in the case of ideal equilibration,
using the Landauer-Büttiker approach. By analysis of the
filling factors, we find two regimes of backscattering. In
the first case, presented schematically in Fig. 11(a), only
equilibration along the n/p junction is present. In this
case, the longitudinal resistance, as calculated analytically in
Appendix B 2, is

Rxx = h

e2

(
2

|ν ′| + 1

|νtip| − 1

|νbg|
)

. (6)

FIG. 11. (a) A schematic illustration of the backscattering sce-
nario of the lowest Landau level channels only. The tip is positioned
at the center of the ribbon, and the strength of the tip potential is
indicated by the blue circles. In this scenario the outermost channels
νbg (here νbg = −6) are backscattered and do not equilibrate with the
innermost channels (νtip = +2). (b) Backscattering of two sets of edge
channels. In this scenario the innermost channels (ν = +6) do not
equilibrate with the outermost channels (ν = −2). The equilibration
takes place along the edge between channels ν = +6 and ν = +2,
marked by green rectangles, and along the n/p junction between
channels ν = −2 and ν = +2, as marked by pink rectangles. (c) A
schematic illustration of the general backscattering scenario. Here,
the channels ν ′ and ν ′′ equilibrate along the n/p junction, whereas
the outermost channels νbg are backscattered and the innermost ones
νtip undergo an indirect equilibration along the edge.

Assuming that only |ν ′| = 2 and |νtip| = 2 equilibrate, we
obtain for |νbg| = 6,10,14, . . . a series of fractions Rxx =
4
3 , 7

5 , 10
7 , · · · × h

e2 . In particular, for νbg = −6 and νtip = +2,
the fraction Rxx = 4

3 × h
e2 is clearly close to the value obtained

in the experiment and in the transport calculations. Also, for
νbg = −10 and νtip = +2, there is Rxx = 7

5 × h
e2 , in perfect

agreement with the modeled Rxx = 1.4 × h
e2 .

The second case is schematically presented in Fig. 11(b),
with equilibration both along the n/p junction and along the
edges between channels ν ′′ and νtip. In this case, the resistance
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reads

Rxx = h

e2

(
2

|ν ′′| − 1

|νtip| + 1

|νbg|
)

, (7)

which, for the case |νbg| = 2 and |ν ′′| = 2, for |νtip| =
6,10,14, . . . gives Rxx = 4

3 , 7
5 , 10

7 , . . . × h
e2 .

The generalization of the two cases is a scenario presented
schematically in Fig. 11(c). In this case, the resistance
is

Rxx = h

e2

(
2

|ν ′| + 2

|ν ′′| − 1

|νtip| − 1

|νbg|
)

. (8)

Here the equilibration is between the channels ν ′ and ν ′′ along
the n/p junction, the outermost channels νbg are backscattered,
and the innermost ones νtip equilibrate with the channel
ν ′′ along the edge. In particular, for the example given in
Fig. 11(c), νbg = −6 and νtip = +6, ν ′ = −2 and ν ′′ = +2,
Eq. (8) gives Rxx = 5

3 × h
e2 , which is close to the simulated

value [see Figs. 9(a) and 9(b)].
The parallelogram of the analytical values of longitudinal

resistances is shown in Fig. 9(b), with several plateaus
labeled by fractions which equal the analytically derived
Rxx . It shows good agreement with the modeled values
in Fig. 9(a). This confirms our hypothesis that the higher
channels are well separated and backscattered without being
equilibrated.

For graphene encapsulated in hBN, due to the suppression
of disorder, in high magnetic field spin-splitting can be
observed, which gives rise to suppression of interchannel
scattering at filling factor |ν| = 1 [37,38]. In our study, the
Zeeman splitting is 0.92 meV, no spin-splitting is observed,
and only plateaus at even filling factors are resolved in
Fig. 4. The would-be odd filling factor plateaus are obscured
by the smooth transition between the even plateaus due to
the substrate-induced disorder. Accordingly, in the numerical
calculations we assume spin degeneracy for all Landau
levels.

VI. SUMMARY

We have demonstrated backscattering of quantum Hall edge
channels in graphene through local gating achieved by the tip
of a scanning gate microscope. Moreover, due to the potential
generated by the SGM, we observe a gradual change of the
filling factor along the device, which culminates in a fractional
value of Rxx that has not been reported before. The underlying
processes are well understood, and these results are supported
by tight-binding simulations.

Being able to move the tip freely gives great freedom
in manipulating the edge channels, which can be done by
changing the tip position, tip-sample distance, and the applied
voltage. Second, not having to fabricate additional split,
buried, or top gates simplifies the fabrication process and
avoids possible detrimental effects on the quality of the
graphene.

The work presented here paves the way for future exper-
iments in which one takes full advantage of the flexibility
of the SGM, by illustrating that this type of experiment is
within experimental reach. An interesting extension to this
work would be, among others, to study the transition from

well separated via interacting to (fully) backscattered edge
channels, by gradually approaching the device from the side
with a biased tip.

We believe that such an experiment can shed light on the
elusive microscopic structure of the quantum Hall edge chan-
nels and the process of electrostatic reconstruction [39–42].
Furthermore, one can further study such dynamics by
combining the SGM with a split gate. Such a device
would also offer the possibility of conducting interference
experiments.
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APPENDIX A: FIT OF THE DIRAC PEAK

The induced charge is estimated by treating the graphene
as one plate of a parallel plate capacitor, and the back gate
as the other. In this case the dielectric filling between the two
plates is the 300 nm thick layer of SiO2, with ε ≈ 3.9. Given
the capacitance C, the induced charge is

n = C

e

∣∣Vbg − Vcnp

∣∣ = 11.5

1.6 × 10−19

μF/cm2

C

= 7.2 × 1010(V−1 cm−2) × |Vbg − Vcnp|, (A1)

which leads to the following expression for the resistance R
which is used to fit the data:

R = L

W

(
eμ

√
n2

0 + [7.2 × 1010 × (Vbg − Vcnp)]2
)−1

. (A2)

n0 is called the “leftover” or residual charge and represents
the charge inhomogeneity at the charge neutrality point.
From the fit, the parameters μ = 6.8 × 103 cm2 V−1 s−1

and n0 = 1.5 × 1011 cm−2 are extracted. At zero back-gate
voltage, the carriers are p type and have a density of
n ≈ 8.7 × 1011 cm−2.

APPENDIX B: DETAILS OF THE QUANTUM
TRANSPORT MODEL

The electrostatic potential V (x) is obtained by solving the
Laplace equation on a three-dimensional mesh of dimensions
in x × y × z given by 1972 × 820 × 2404 nm3. We assume
the SiO2 spanning between z = 0 and z = 84 nm, graphene
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lying on top of the dielectric, and the tip at z = 96 nm. The tip
is modeled as a point charge at the center of the Hall bar, 12 nm
above the graphene. We assume boundary conditions given by
V = Vbg at the bottom of the computational box, V = Vtip at
one point of the mesh (12 nm above the graphene, in the central
x-y position), and the condition for zero normal component of
electric field at all the computational box walls except the
bottom one. At the interface between SiO2 (dielectric constant
ε1 = 3.9) and vacuum (ε1 = 1) we use the boundary condition
ε1E1 = ε2E2, where E1 (E2) is the electric field below (above)
the graphene.

Once the Laplace equation is solved for the system, we
obtain a potential landscape which allows us to determine
the filling factor in the area under the tip and farther
away from the tip, given the energies of Landau levels in
the nanoribbon. The latter is determined from the solution
for the modes in a nanoribbon in the external magnetic
field.

In the fully coherent transport problem, equilibration
[10,11,13] of the channels does not occur, and no resistance
plateaus similar to the experimental ones can be obtained. In
the numerical model the equilibration is introduced with the
dephasing by virtual Büttiker probes [34]. In these probes a
zero net current is set, i.e., electrons which enter the probe,
equilibrate in the reservoir, and reenter the system with a
random phase. We obtain an agreement with the experimental
Rxx diagram setting the Büttiker probes in two locations: (1) At
the n/p junctions whenever present within the system. We use
the probes connected vertically to the interior of the graphene
sheet, similarly to Ref. [29]. The probes consist of 45 zigzag
chains, aligned in a rectangle of width Wy = 48 nm and length
Wx = 20 nm. They are located in two spots marked by pink
rectangles in Fig. 8, with the y position in the middle of the
nanoribbon and the x position chosen at the bipolar junction,
at the point where the potential is equal to the Fermi energy.
(2) At the sides of the central part of the nanoribbon we put
halfway along the ribbon two narrow leads, one at the upper
edge and one at the bottom edge of the ribbon, which are
semi-infinite in the y direction, armchair ribbons of the width
of 68 atoms.

1. Landauer-Büttiker formula

We use the Landauer-Büttiker formalism for both quantum
transport calculation and derivation of the analytical formulas
for longitudinal resistance. For the scattering problem, we use
wave function matching. For the details of the method refer
to Ref. [43]. The transmission probability from terminal l to
mode m in the terminal k is

T m
kl =

∑
n

∣∣t kl
mn

∣∣2
, (B1)

where t kl
mn is the probability amplitude for the transmission

from the mode n in terminal l to mode m in terminal
k. Then the conductance from lead l to k is given by

Gkl = G0

∑
m

T m
kl , (B2)

where G0 = 2e2

h
is the conductance quantum.

FIG. 12. A schematic drawing of the system for the calculation of
longitudinal resistances, with the numeration of the leads. The pink
and green rectangles mark the Büttiker probes which absorb all the
current flowing through the rectangles.

In the general case of N terminals, one constructs the G
matrix that satisfies I = GV . The diagonal elements are

Gii =
N∑

j=1,j 	=i

Gij (B3)

and the off-diagonal ones

Gij = −Gij . (B4)

Due to Kirchhoff’s law, the currents in all N leads are not
independent; thus one eliminates IN and assumes VN = 0.
The final matrix is of dimension (N − 1) × (N − 1). One
calculates the resistance matrix as R = G−1. Assuming that
the current flows between two chosen terminals i and j ,
and zero net current in all other terminals, from the voltage
measured between the terminals k and l one can obtain the
resistance as Rij,kl = Rk−Rl

Ii
|Ij =−Ii

.
Figure 8 shows the labeling of the terminals. The longitu-

dinal resistance Rxx = R14,65, with current flowing between
leads 1 and 4, and voltage drop measured between leads
6 and 5, is calculated by constructing the conductance
matrix G [44]. For the numeration of terminals shown
in Fig. 8 we can calculate the longitudinal resistance as
R14,65 = R54 − R51.

2. Derivation of longitudinal resistance values

To account for the channels’ equilibration, we use addi-
tional Büttiker probes. In the system shaped into a Hall bar
there are 6 contacts, and the Büttiker probes are located along
the current paths where the channels mix, as marked by pink
and green rectangles in Fig. 12. Four probes are sufficient
to accurately model the equilibration in the system. In total
there are 10 terminals. In Fig. 12 the numeration of the
terminals used for the calculation of the analytical formulas
for longitudinal resistance is shown. The matrix calculated for
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the case shown in Fig. 12 is

G = e2

h

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|νbg| 0 −|νbg| 0 0 0 0 0 0
0 |νbg| 0 0 0 0 0 0 −|νbg|
0 0 |νbg| 0 0 0 −|ν ′| 0 0
0 −|νbg| 0 |νbg| 0 0 0 0 0
0 0 0 0 |νtip| −|νtip| + |ν ′′| −|ν ′′| 0 0
0 0 0 0 −|νtip| + |ν ′′| |νtip| 0 −|ν ′′| 0
0 0 0 0 0 −|ν ′′| |ν ′| + |ν ′′| 0 0
0 0 0 −|ν ′| −|ν ′′| 0 0 |ν ′| + |ν ′′| 0
0 0 0 −|νbg| + |ν ′| 0 0 0 −|ν ′| |νbg|

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B5)

Given the matrix elements of the inverse R = G−1, we can calculate the longitudinal resistance as

Rxx = R12,10 9 = −V9

I1
= R92 − R91. (B6)

This gives formula (8) for Rxx . For the special case ν ′ = νbg shown in Fig. 11(b), we obtain Eq. (7), and for the case shown in
Fig. 11(a) with ν ′′ = νtip, the formula (6).
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