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In one spatial dimension, anyons in the original description of Leinaas and Myrheim are formally equivalent
to locally interacting bosons described by the Lieb-Liniger model. This allows an interesting reinterpretation of
interacting bosons in the context of anyons. We elaborate on this parallel, particularly including the many-body
bound states from the attractive Lieb-Liniger model. In the anyonic context these bound states are created solely
by quantum-statistical attraction and coined the quantum-statistical condensate, which is shown to be more robust
than the Bose-Einstein condensate. We introduce the second quantization formalism for the present anyons and
construct the generalized Jordan-Wigner transformation that connects them to the bosons of the Lieb-Liniger
model.
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I. INTRODUCTION

In modern mesoscopic systems, electronic excitations
are effectively confined to a lower-dimensional world. An
unexpected consequence of such a reduced spatial dimension
is the occurrence of particles that neither obey Fermi nor Bose
statistics. These are known as anyons [1–6]. Especially in
two dimensions, anyons have been theoretically extensively
studied [7–9] and indicated to exist in several experimental
systems [10–15]. The spatial exchange of two-dimensional
anyons and the accompanied, fixed unitary transformation of
the anyonic wave function could pave the way to topological
quantum computing [16]. Exchangeability is also apparent
in special one-dimensional systems, e.g, ringlike ones or
T structures [17,18]. Sparked by this idea, the interest in
lower-than-two-dimensional anyons has recently increased,
especially in conjunction with the possible detection of
Majorana bound states in quantum wires [19–23]. Those are
expected to be non-Abelian anyons, potentially applicable in
topological quantum computing [18,24] as well.

In this paper, we describe a first-principles theory of
one-dimensional anyons whose exchange is prohibited by the
geometry of the system, i.e., anyons on a line and in a box. To
this end, we employ the concepts introduced in the fundamen-
tal work of Leinaas and Myrheim [1] extended to many-particle
systems. Their approach follows one fundamental idea: to set
up the proper classical theory of indistinguishable particles
and subsequently quantize it. In two dimensions, this results
in “standard” Chern-Simons anyons, that can be interpreted
as bosons with an attached flux acquiring an Aharonov-Bohm
phase when physically exchanged [6,9]. This renders the work
of Leinaas and Myrheim [1] one of the standard references
in the field. Their theory is less frequently applied to one
spatial dimension. There, a manifold of different theories
exists [5,19,25–40], which also describe locally interacting
anyons [41–44]; see Appendix A for a brief summary. In
particular, Leinaas-Myrheim anyons have to be contrasted to
the emergent excitations of the Calogero-Sutherland model,
the Haldane-Shastry chain, and the fractional quasiparticles
in Tomonaga-Luttinger liquids [19,35–39] that are as well
called anyons [37]. The defining property of these kinds of

anyons is that the wave function acquires a fixed phase κ

when the coordinates of two anyons get permuted, in complete
analogy to the statistical angle in two spatial dimensions.
While this behavior is seen as natural, it conflicts with the
impenetrability of anyons, an essential ingredient to deriving
the two-dimensional theory of anyons in the framework of
Leinaas and Myrheim. The question arises how anyonic wave
functions can acquire a phase upon the exchange of coordinates
if the particles themselves cannot be exchanged. Interestingly,
corresponding theories are still described by the approach of
Leinaas and Myrheim with a proper continuation procedure
[37]. To strengthen the plausibility of Leinaas’ and Myrheim’s
approach, we furthermore want to stress its fundamental depth.
First, it does not require an underlying theory of additional,
constituting particles. Only the indistinguishability of the
considered particles, the validity of canonical quantization
for flat spaces, and the Hermiticity of the Hamiltonian is
assumed. Second, Leinaas-Myrheim anyons appear naturally
when two-dimensional Chern-Simons anyons are confined
to one dimension by a potential. In the process of the
dimensional crossover, the complete statistical angle gets
gradually absorbed and encoded into the scattering behavior
of the anyons [32], which eliminates the need for an additional
statistical phase in one spatial dimension. As a concrete
physical example, we can imagine a fractional quantum Hall
insulator [11] where anyonic bulk excitations are confined to
one spatial dimension by an electric potential.

As a twist of history, Leinaas’ and Myrheim’s theory
of one-dimensional anyons (1977) turns out to be formally
equivalent to the Lieb-Liniger model, describing locally
interacting bosons in one spatial dimension (1963) [45]. With
“formally equivalent” we mean that the equations appearing
in both theories are identical. However, the calculation of
physical observables is different. This leads to both systems
being described by the same equations but exhibiting different
phenomenologies (see Sec. II below). Lieb and Liniger derived
the solutions of their model by first rewriting it employing
boundary conditions, not knowing that these equations would
several years later be employed by Leinaas and Myrheim
to describe one-dimensional anyons. While the Lieb-Liniger
model has substantially advanced since 1963, the results

2469-9950/2017/96(19)/195422(9) 195422-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.195422


POSSKE, TRAUZETTEL, AND THORWART PHYSICAL REVIEW B 96, 195422 (2017)

have, to the best of our knowledge, not been carried over
to the theory of Leinaas-Myrheim anyons. In this work, we
close this gap. This includes the calculation of observables
[19,20,46–48] for confined anyons: the energy spectrum,
momentum density, and finite-size density oscillations. Our
results are applicable to quasiparticle excitations in quasi-one-
dimensional systems, such as interacting cold-atom/ion chains
and edge liquids of topological insulators, that potentially
carry anyonic excitations [19,20,40,49,50]. Additionally, the
interpretation of interacting bosons as anyons introduces a
fresh perspective into the established field of the Lieb-Liniger
model. For instance, the results for confined anyons also
describe Lieb-Liniger bosons in a box, where the Dirichlet
boundary conditions result in modified Bethe ansatz equations
[51,52]. Motivated by the anyonic interpretation, we develop
the second quantization formalism for Leinaas-Myrheim
anyons and, hence, an alternative second quantization for
the Lieb-Liniger model. While presenting the formalism, we
take particular care of including complex momenta, which, as
usual, describe spatially bound states. In the exact many-body
solutions, they build up a stable quantum phase, which we call
the quantum-statistical condensate. At first sight, the existence
of bound states is surprising in the anyonic interpretation, but
immediately becomes clear when interpreted as attractively
interacting bosons in the Lieb-Liniger model. Lieb and Liniger
have first disregarded this regime as unphysical and unstable
[45]. More recent work has albeit revealed its soundness
[53–58]. Furthermore, it has been pointed out that, within the
attractive regime, additional gaslike phases may exist [59,60].

The structure of the paper is as follows. In Sec. II, we
concisely review both relevant models, i.e., the Lieb-Liniger
model and the model of Leinaas and Myrheim for one-
dimensional anyons and state their formal equivalence. In
Sec. III, we construct the anyonic wave functions, which are
the basis of the second quantization formalism that we derive
in Sec. IV. We also provide the generalized Jordan-Wigner
transformation from Lieb-Liniger bosons to Leinaas-Myrheim
anyons. The Bethe ansatz equations for systems of finite size
are discussed in Sec. V, which are consequently, in Sec. VI,
applied to derive some properties of anyons in a box. The
case of a negative statistical parameter is covered in Sec. VII,
where we introduce the quantum-statistical condensate and the
interpretation of the clusters as individual anyons themselves.
We conclude our work in Sec. VIII.

II. MODEL

We start by reviewing the models of Lieb-Liniger and
Leinaas and Myrheim and highlight how their formal equiv-
alence still results in different phenomenology. The Lieb-
Liniger model [45] describes a number of n locally interacting
bosons in one dimension. In real space, the system is
represented by its totally symmetric wave function �, which
maps n real numbers to a complex one, and is governed by the
Hamiltonian

HLL = − h̄2

2m

n∑
j=1

∂2
xj

+ 2c
∑
i �=j

δ(xi − xj ). (1)

Here, m denotes the mass of the particles and c is the
real-valued interaction strength that has the dimension of
momentum. The δ functions can be directly implemented into
the wave function by demanding boundary conditions, which,
because of the symmetry of the wave function, turn out to be
the so-called Robin boundary conditions

(∂xj+1 − ∂xj
)�(x)|xj →xj+1

= c �(x)|xj →xj+1
, (2)

for each j between 1 and n − 1, and we restrict ourselves to the
region R = {x | x1 < x2 < · · · < xn} of the parameter space
[45]. In exchange for the boundary conditions, the Hamiltonian
on R becomes the one of free particles, i.e.,

HLL|R = − h̄2

2m

n∑
j=1

∂2
xj

. (3)

Let us now recapitulate and slightly extend the theory of
Leinaas and Myrheim [1] for indistinguishable quantum
particles. First, consider n classical particles on a line. The
spatial configurations of a system of distinguishable particles
would be described by tuples of positions x = (x1, . . . ,xn).
Because the particles are indistinguishable, however, using
tuples is ambiguous: For n = 2, (x1,x2) and (x2,x1) label the
same configuration. Instead, we employ the sets {x1, . . . ,xn}
of n distinct positions. The family of all these sets is called
configuration space R and inherits various properties by local
equivalence to Rn. Here, the notational correspondence of the
configuration space to the parameter region of the Lieb-Liniger
model is on purpose, since the real-space variables x1 < · · · <

xn parametrize R. To obtain the quantum-mechanical theory,
space and momentum variables get promoted to operators
acting on the wave functions � : R → C. We consider, for
concreteness, the particles to obey the free Hamiltonian of
Eq. (3) as well. However, electromagnetic potentials and
particle interactions can be added without changing the general
formalism. Finally, we demand the Hamiltonian H to be
Hermitian. Interestingly, Hermiticity is granted if and only
if � fulfills the Robin boundary conditions of Eq. (2) [32]. In
this context, the interaction strength c is called the statistical
parameter η ≡ c.

In conclusion, both theories use the same differential
equation and boundary conditions, which constitutes a formal
equivalence between them. The phenomenology of both
models, however, can differ significantly. The reason for this is
the differing calculation of physical observables. For the model
of Leinaas and Myrheim, given an operator A, its expectation
value is calculated by an integral over the configuration space
R only, according to

〈A〉LM =
∫ ∞

xn−1

dxn · · ·
∫ x3

x2

dx2

∫ x2

−∞
dx1�

∗(x)A�(x), (4)

while for the Lieb-Liniger model, the integration region is the
full real space, such that

〈A〉LL =
∫ ∞

−∞
dnx�∗(x)A�(x). (5)

In the latter equation, �(x) has been symmetrically continued
by �(x) := �(π (x)), where π is a permutation such that π (x)
is in R. The fact that Eqs. (4) and (5) can differ is known in
the context of impenetrable bosons, i.e., the Tonks-Girardeau
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gas, and free fermions. While the former is the limit of the
Lieb-Liniger theory at infinite repulsion c → ∞, the latter
is the limit of the Leinaas-Myrheim theory for η → ∞.
However, impenetrable one-dimensional bosons differ from
free fermions, for instance, by their momentum distribution
[61].

The twofold interpretation of Eq. (2) in combination with
Eq. (3) provides simple explanations of seemingly complicated
facts. For instance, if the bosons attract each other, i.e., c < 0,
they form clusters [58]. This intuitive property of the Lieb-
Liniger model seems surprising for Leinaas-Myrheim anyons,
where the attraction would be mediated by the statistics only
[62].

There is indication that the coincidentally looking formal
equivalence between locally interacting bosons and Leinaas-
Myrheim anyons is in fact not coincidental. To explain this,
we refer to the connection between bosons and anyons in two
spatial dimensions. There, anyons are equivalent to bosons that
acquire an Aharonov-Bohm flux when circling around each
other. Hence, also in two dimensions, anyons are equivalent to
particularly interacting bosons. The reason for this is that the
configuration space for two-dimensional anyons has holes, the
points where the position of a pair of particles would coincide.
The holes themselves are irrelevant concerning scattering since
particles can move around them by infinitesimally altering
their path. However, the holes potentially induce a holonomy
in the wave function, the Aharonov-Bohm phase. In one spatial
dimension, the holes no longer induce a holonomy because
particles cannot be exchanged. However, the holes themselves
become relevant as, by normal propagation, particles can
scatter off each other at some time. Then, the holes induce
the boundary condition of Eq. (2) and thereby again serve as
the origin of the bosonic interaction that connects bosons and
anyons.

In the remaining course of the paper, we present and
interpret the solutions to the equivalent models from the more
rarely employed anyonic point of view.

III. CONSTRUCTION OF THE WAVE FUNCTIONS

We next construct all wave functions that fulfill Eq. (2),
thereby combining the solutions of the attractive and the
repulsive Lieb-Liniger model [45,58], with the final aim to pro-
vide the second quantization formalism for Leinaas-Myrheim
anyons. To this end, we employ the ansatz [45] �(x) =∫

k∈Cn dnk α(k)eikx . Complex momenta k are explicitly in-
cluded. These are needed to describe anyonic bound states
that form for a negative statistical parameter. In momentum
space, the boundary conditions translate to

α(k) = e−iφη(kj+1−kj )α
(
σj k

)
if kj+1 − kj �= iη, (6)

α(k) = 0 if kj+1 − kj = iη. (7)

Here, σj denotes the elementary permutation which permutes
the j th and (j + 1)th element of a tuple and

φη(kj+1 − kj ) = 2 arctan
[
η/(kj+1 − kj )

]
(8)

is the statistical phase. By iteration, these conditions con-
nect coefficients of relatively permuted momenta α(k) =

FIG. 1. Examples of composite anyons described by clusters μ,
called strings in the context of the Lieb-Liniger model. These are
the fundamental building blocks of the anyonic wave functions and
can be conceived as individual particles. For clusters of more than
one anyon, η < 0 is implicit. (a) Single anyon; (b) two-anyon bound
state; (c) maximally bound cluster of n anyons: the quantum-statistical
condensate.

eiφP
η (k)α(P k). Here, P = σj1 · · · σjr

is a general permuta-
tion written with an r as small as possible and φP

η (k) =∑r
i=1 φη[(σj1 · · · σji

k)
ji

− (σj1 · · · σji
k)

ji+1]. The basis func-

tions are therefore of the form �k(x) ∝ ∑
P∈Sn

eiφP
η (k)ei(P k)x .

On physical grounds, divergent elements of this set need to
be excluded. This is done by only permitting special values
of k. These are build up by tuples μ of complex momenta
where the difference between adjacent momenta μj+1 − μj

is −iη. These tuples are called strings in the context of
the Lieb-Liniger model [58]. Within the anyonic context,
we call them clusters. Examples of clusters are sketched in
Fig. 1.

Physically, clusters with more than one element represent
composite anyons whose constituents move collectively, sep-
arated by a characteristic length scale of 1/η. They can be
conceived as individual particles themselves. For positive η,
clusters only consist of single particles, and hence describe
free (unbound) anyons. In order to uniquely label the basis
functions, we introduce the cluster ordering O. This is done
in direct analogy to the ordering that needs to be introduced to
label fermionic basis states in standard quantum many-body
theory [63]. To apply O to a tuple D of clusters, first take
the union of the clusters’ momenta. Then sort all momenta
by their real parts (smaller values first). If there are momenta
with equal real parts, sort them by their imaginary parts (again,
smaller values first).

In conclusion, the basis functions are given by momenta
that describe composite and free anyons in momentum space.
Given an ordered tuple O(D) of clusters, the corresponding
basis function obtains the form

�(k=O(D))(x) = Nk

∑
P∈Sn

eiφP
η (k)ei(P k)x, (9)

where Nk is the normalization [64] and eiφP
η (k) plays the role

of a generalized Slater determinant.

IV. SECOND QUANTIZATION

An advantage of the anyonic interpretation of Eqs. (2)
and (3) is that a second quantization of the solution is
reasonably motivated. In contrast, this endeavor seems to
be discouraged in the bosonic picture of the Lieb-Liniger
model, where the bosons are already given in their second
quantized form. The formalism can facilitate the calculation of
various properties, similar to the original second quantization
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of bosons and fermions. Details on the formalism are presented
in Appendix B. Given the basis wave functions of Eq. (9),
second quantization amounts to defining creation operators to
construct all basis states from a vacuum state [65]. For a cluster
μ, we define its creation operator by

a†
μ�O(D) =

√
M(μ) + 1 ei�

μ
η (D)�O({μ}∪D) (10)

and linear continuation to all states. Here, M(μ) is the
number of clusters μ in D. The phase �μ

η (D) = ∑
μ̃<μ ϕμ̃,μ

η

is composed of the cluster-cluster exchange phases ϕμ̃,μ
η =∑N(μ)

i=1

∑N(μ̃)
i=j φη(μ̃j − μi). Here, μ̃ < μ if μ̃ is ordered to the

left of μ by cluster ordering and N (μ) denotes the number of
anyons in μ. Employing Eq. (10), the algebra of the cluster
creation operators is

a†
μ1

a†
μ2

= eiϕ
μ1 ,μ2
η a†

μ2
a†

μ1
. (11)

To be concrete, we consider the case of unbound anyons,
described by clusters with exactly one element. Here,

a†
pa†

q = eiφη(p−q)a†
qa

†
p,

apa†
q = e−iφη(p−q)a†

qap + δ(p − q), (12)

where the annihilation operator ap is the Hermitian conjugate
of a

†
p, which is the shorthand notation for a

†
(p).

It is striking that the one-dimensional anyonic algebra
depends on the relative momentum instead of providing a fixed
statistical phase as familiar from two-dimensional anyons [1]
and the different types of one-dimensional anyons mentioned
in the Introduction [19,35–39].

Employing the anyonic second quantization, the Hamilto-
nian of Eq. (3) becomes

H =
∑
μ

εμa†
μaμ, (13)

and describes free anyonic clusters. In Eq. (13), the sum runs
over all possible clusters μ, which have the energy

εμ = h̄2

2m

(
nμK2

μ − 1

12
η2(nμ − 1)nμ(nμ + 1)

)
. (14)

The latter equation is derived in Appendix C. Here, Kμ is the
real-valued center-of-mass momentum (see Fig. 1) and nμ is
the number of bare anyons forming the cluster. One can see
that the contribution of clusters to the energy separates, which
further motivates their interpretation as individual particles
themselves. Furthermore, each cluster contributes by its kinetic
energy and its internal binding energy. This is reflected in the
first and second summand of Eq. (14), respectively.

Given the momentum-space operator algebra of Eq. (12),
we can address the algebra of the real-space operators �†(x) =∫ ∞
−∞ dp eipx√

2π
a
†
p. We obtain

{�(x),�†(y)} = δ(x − y)

+
∫ ∞

0
dz

2e
− z

|η|

|η| �†(y − z)�(x − z),

{�†(x),�†(y)} =
∫ ∞

0
dz

2e
− z

|η|

|η| �†(y − z)�†(x + z), (15)

where {. . . , . . . } denotes the anticommutator. Here,
limη→0

∫ ∞
0 dz 1

|η|e
−z/|η|f (z) = f (0) yields the bosonic com-

mutation algebra, while the fermionic anticommutation re-
lations for η → ∞ are trivially contained. If we set x = y,
we arrive at a smeared anyonic Pauli principle in real space
represented by

[�†(x)]2 =
∫ ∞

0
dz

1

|η|e
−z/|η|�†(y − z)�†(x + z). (16)

In one dimension, there exist ways to transform between
different statistics regarding bosons, fermions, and spins, e.g.,
by bosonization, refermionization, and the Jordan-Wigner
transformation [19,66]. Likewise here, there is a generalized
Jordan-Wigner transformation from the present anyons to the
bosons of the Lieb-Liniger model. Ultimately, this reflects the
fact that the Fock space of anyons is naturally isomorphic to
the one of the Lieb-Liniger model (if η �= ±∞). To this end,
consider the bosonic operators bl with the algebra [bk,b

†
l ] =

δ(k − l) and [bk,bl] = 0 with k,l ∈ R. For η �= ±∞, we define
the generalized Jordan-Wigner transformation,

ã(j ) = lim
ε→0+

ei
∫ j−ε

−∞ dk b
†
kbkφη(k−j )b(j ). (17)

Calculating the algebra of ã, we find ãj ãk = ãkãj e
iφη(k−j )

and ãj ã
†
k = ã

†
kãj e

−iφη(j−k) + δ(j − k), which is exactly the
anyonic algebra described in Eq. (12). As an apparent
peculiarity, we have ã

†
kãk = b

†
kbk , which results, for η > 0,

in the same free Hamiltonian, Eq. (3), using either the bosonic
or the anyonic description. One would naively expect that the
transformation should generate the interacting Hamiltonian
of Eq. (1) instead. However, since the theory of Leinaas
and Myrheim is intrinsically constrained to the region R,
defined at the beginning of Sec. II, it makes sense that the
transformation yields Eq. (3). The information about the
interactions remains encoded in the boundary conditions rather
than in the Hamiltonian.

V. SYSTEMS OF FINITE SIZE

When anyons are confined to the length L, one would
expect the Dirichlet boundary conditions �(0,x2, . . . ,xn) =
�(x1, . . . ,xn−1,L) = 0 to quantize the allowed momenta,
similar to the particle-in-a-box problem. In fact, the conditions
translate to

α(−k1, . . . ,kn) = − α(k),

α(k1, . . . , − kn) = − e2iknLα(k). (18)

These constraints of Eq. (18) are only consistent with Eqs. (6)
and (7) if the system of transcendental equations

Lkj +
∑

1�(i �=j )�n

[φη(ki − kj ) − φη(ki + kj )]/2 = πzj (19)

is fulfilled for j between 1 and n. Here, the zj are positive
integers. The momenta that solve Eq. (19) are discrete and
readily numerically obtainable. In the context of the Lieb-
Liniger model, these equations are very similar to the so-called
logarithmic Bethe ansatz equations [59,67]. Note, however,
that the Lieb-Liniger Bethe ansatz equations originally de-
scribe particles that are confined to a ring, while Eq. (19)

195422-4



SECOND QUANTIZATION OF LEINAAS-MYRHEIM ANYONS . . . PHYSICAL REVIEW B 96, 195422 (2017)

is adjusted to the case of particles in a box. Although no
differences in the thermodynamic limit are to be expected,
these Bethe ansatz equations should give more reasonable
finite-size results for confined particles (see Refs. [51,52]
for the discussion in the context of the Lieb-Liniger
model).

VI. APPLICATION

Equipped with the developed formalism, we next consider
observables of experimental interest. First, we calculate the
spectrum of two confined anyons numerically by solving
Eq. (19). The result is depicted in Fig. 2(a). The anyonic
spectra interpolate between the familiar bosonic and fermionic
particle-in-a-box spectra for positive η. For instance, setting
E0 = h̄2π2/(2mL2), the bosonic level with an energy of
2E0 continuously evolves to the fermionic level with 5E0.
At negative η, a two-anyon bound state forms with an
energy proportional to −η2 in the infinite-size limit L →
∞. Energetically higher anyonic bound states correspond to
kinetic excitations of this composite anyon in analogy to
the behavior of a single particle in a box. Some anyonic
levels refuse to form bound states and instead converge to
fermionic energies as η → −∞. These levels ensure that
the finite-size spectrum coherently converges to the infinite-
size spectrum. Energy spectra could be a viable observ-
able in systems with few anyons, such as interacting cold-
atom chains [19,20,40], and are detectable by spectroscopic
techniques.

Turning to systems containing many anyons, as possibly
being the case in solid state systems, unavoidable level
broadening renders an accurate measurement of the discrete
spectrum unfeasible. Yet, the momentum distribution could
uncover the character of the anyons [19]. We depict the
momentum density nk at zero temperature in Fig. 2(b). This
function gives the number of anyons with momentum between
k1 and k2 by

∫ k2

k1
dk nk . For bosons and fermions, it is pro-

portional to the Bose-Einstein and Fermi-Dirac distribution,
respectively. Anyons with a positive statistical parameter
transform these distributions into each other, still preserving a
sharply defined chemical potential reflected by a discontinuity
in nk . This has to be seen in contrast to the behavior of a
Tomonaga-Luttinger liquid. The depicted momentum density

is well known from the Lieb-Liniger model [45]. Because
of the difference between Eqs. (4) and (5), however, the
momentum density is not the physically measurable one of
the interacting bosons [61].

If the spectral properties of a system are inaccessible,
the statistics is still inferable via local properties, e.g., the
finite-size density fluctuations [20,48]. While bosons condense
to the middle of the system, fermions distribute equally spaced
(by Pauli repulsion), resulting in oscillations of the particle
density. Figure 2(c) depicts the scenario for four anyons in
the ground state. Unbound anyons suppress the fermionic
peaks and broaden the bosonic one, which is characteristic
of intermediate statistics [20,48].

VII. THE QUANTUM-STATISTICAL CONDENSATE

For η < 0, the anyonic ground state is a cluster of the
form μj = i

η

2 (nμ − 2j + 1) as depicted in Fig. 1. We call this
cluster the quantum-statistical condensate since, in the anyonic
picture, its origin is solely based on the quantum statistics. It
can be conceived as a single composite anyon and corresponds
to the bound state of bosons that forms in the Lieb-Liniger
model [54,55] for an attractive interaction. Therefore, its local
density is similar to the one of a single quantum particle,
which, in turn, is the same as the one of the Bose-Einstein
condensate [cf. Fig. 2(c)]. In fact, the Bose-Einstein conden-
sate can be interpreted as the limit of the quantum-statistical
condensate as η → 0−. Besides this, both condensates differ
profoundly: Bosons condense into their single-particle ground
state, but anyons into an inseparable many-body ground
state.

Let us derive further characteristics of the quantum-
statistical condensate. First, we obtain its ground-state
energy

εGS = − h̄2

24m
η2(n − 1)n(n + 1) (20)

by Eq. (14). The proportionality to n3 reveals an exceptional
stability of the condensate [68]. Let us for a moment regard
charged anyons exhibiting Hubbard repulsion, which has an
associated energy proportional to n2. Then, providing a suffi-
ciently large number of anyons, the negative statistical energy
outperforms the positive one created by charge repulsion.

FIG. 2. Observables for confined anyons. The anyonic properties for 0 < η < ∞ continuously interpolate between bosons (η = 0) and
fermions (η = ∞). The statistical condensate forms at η < 0. (a) Discrete energy spectrum of two anyons. To depict the full range of η, we plot
against φη(1/L). The two-anyon bound state and its excitations emerge for negative η. (b) Momentum density at zero temperature in the limit
of infinitely many particles (numerical calculations for n = 512 anyons, where the curves almost converge to the limit n → ∞). (c) Finite-size
oscillations of the particle density ρ for four anyons.
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The quantum-statistical condensate is hence stable against the
introduction of charge. We conjecture that this property could
lead to anyon superconductivity [69–71]. In fact, in the context
of the Lieb-Liniger model, a phase of pairwisely bound bosons
has been predicted [59].

A cluster behaves as an individual anyon, the energy of
which separates into a kinetic and an internal part. Addition-
ally, by Eq. (11), clusters acquire different statistical phases
than their constituents. For instance, clusters of two anyons
behave as anyons with the statistical phase 2φη + φ2η (see
Appendix D for details). In the vocabulary of topological field
theories for two-dimensional anyons [9,16,72], the formation
of clusters is linked to anyon fusion.

VIII. CONCLUSIONS

On the basis of the general assumptions of Leinaas
and Myrheim [1], we derive an exact quantum many-body
formalism for one-dimensional anyons including the exact
wave functions, the second quantization, and the momentum
discretizing equations for anyons in a box. The formalism is
based on the equivalence to the Lieb-Liniger model of locally
interacting bosons for which an interpretation in the anyonic
context is established. We numerically calculate characteristic
observables, namely, the energy spectrum, the momentum
statistics, and the finite-size density fluctuations. For a negative
statistical parameter, anyons attract each other with a force
purely induced by their quantum statistics and form the
quantum-statistical condensate. This genuine quantum many-
body phase is shown to be more robust than the Bose-Einstein
condensate. In particular, the statistical condensate is stable
against the introduction of charged anyons. The clusters
themselves should be conceived as individual anyons and
obtain a different statistical phase than their constituents. Our
work shows that one-dimensional anyons exhibit original and
interesting physics even in the absence of spatial exchange.
Furthermore, it emphasizes the link between anyons and
interacting bosons and thereby opens possibilities of syn-
thesizing either physical system by its formally equivalent
partner.
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APPENDIX A: NOTIONS OF INTERMEDIATE STATISTICS
IN ONE SPATIAL DIMENSION

There exists a variety of formalisms describing particles of
intermediate statistics in one dimension, which are expected
to be applicable to different physical situations. Although they
differ in their phenomenology, these particles are all called
anyons. For clarity, we briefly introduce some prominent
theories that are applicable to one spatial dimension.

If the occupation number of a single-particle quantum
state is restricted to maximally assume a given integer,
the particles can be described as parafermions, which are
closely related to Potts and clock models [26,27] and Gentile
statistics [25]. Such particles are, among others, expected
to exist as magnetic excitations [28,29]. Another kind of
intermediate statistics considers the representations of the
local current algebra (the commutation relations between
the particle density and the particle currents in all spatial
dimensions) [5,30] or the quantization of the algebra of
allowed observables of indistinguishable particles. The latter
has been applied to superconducting vortices [31] and two-
dimensional anyons effectively confined to one dimension by
a strong magnetic field [32]. Yet another notion of anyons in
one dimension can be derived from Haldane’s generalization
of the Pauli principle [33], which is, for instance, applicable
to spinon excitations in spin chains. In this approach, the
single-particle Hilbert space dimension depends on the total
number of particles in the system. Finally, the term anyons is
used in one dimension to describe low-energy quasiparticle
excitations of interacting fermionic systems [34] linked to
the Calogero-Sutherland model [35,39], the Haldane-Shastry
chain, and the fractional excitations in Tomonaga-Luttinger
liquids [19,36–38]. It is known that these particles (considering
each channel separately in the case of a Tomonaga-Luttinger
liquid) break time-reversal symmetry on the fundamental
level of their operator algebra, reflected by an asymmetric
momentum distribution [19,40].

APPENDIX B: DETAILS ON THE CONSTRUCTION OF
THE SECOND QUANTIZATION

In this Appendix, we give details on the construction of
the second quantization formalism in the main text. First,
we define the Fock space based on the valid wave functions
in momentum space, given by linear combinations of the
basis functions in Eq. (9), together with an auxiliary vacuum
state, and construct the creation and annihilation operators in
momentum space.

The n-particle anyonic Hilbert space Hn in a real-space
representation is formed by the wave functions described in
Eq. (9) acting on the n dimensional configuration space Rn =
{x ∈ Rn | x1 < x2 < · · · < xn}.

These functions form an orthonormal basis. It is worth
noting in this regard, that although we generally would
take an overcomplete set of basis functions into account
by this approach, the constraints of Eq. (6), however, filter
out a complete set of mutually orthogonal functions if only
properly ordered vectors k are considered. For most of the
pairings, the orthogonality can be deduced by noticing that
eigenfunctions of the Hermitian Hamiltonian with different
eigenvalues are orthogonal. It is worth mentioning here that
the scalar product in a real-space representation is an integral
restricted to the configuration space as opposed to running
overRn. For two wave functions �1,�2 : Rn → C their scalar
product is

(�1,�2) =
∫

x∈Rn

�∗
1 (x)�2(x). (B1)
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The Fock space is constructed by F = ⊕
n∈N0

Hn. Here, H0

is the auxiliary vacuum space, isomorphic to C. The scalar
product of Eq. (B1) is extended to act on F by demanding
(�,� ′) = 0 if � and � ′ are states with a different particle
number. We now define the action of the linear creation
operators a

†
μ : Hn → Hn+1 for a cluster μ as in Eq. (10) of

the main text by its action on the basis function and linear
continuation to all states, i.e.,

a†
μ�O(D) =

√
M(μ) + 1 ei�

μ
η (D)�O({μ}∪D), (B2)

where M(μ) is the number of clusters μ in D. It is straightfor-
ward to show by virtue of Eq. (9) that a

†
μ is well defined, i.e.,

Eq. (9) results in a unique representation of a
†
μ in the given basis

functions. Its adjoint counterpart, the annihilation operator, is
correspondingly defined employing the scalar product(

�1,a
†
μ�2

) = (
aμ�1,�2

)
. (B3)

These definitions result in the operator algebra described in
the main text [see Eqs. (11) and (12)], by standard algebraic
manipulations, i.e.,

a†
μ1

a†
μ2

= eiϕ
μ1 ,μ2
η a†

μ2
a†

μ1
. (B4)

Applied to clusters of single particles, we have

a†
pa†

q = eiφη(p−q)a†
qa

†
p,

apa†
q = e−iφη(p−q)a†

qap + δ(p − q). (B5)

Finally, we want to mention that the anyonic algebra for any
values of the statistical parameter but η = ±∞ results in
bosonic relations for equal momentum: [ap,ap] = 0, and, if
p → q, [ap,a

†
q] → δ(p − q). However, for η = ±∞, we, by

notation, strictly set e−iφ±∞(p−q) = −1, which results in the
familiar fermionic anticommutation algebra.

APPENDIX C: DERIVATION OF EQ. (14)—CLUSTER
ENERGY

The eigenvalues of Eq. (3) determine, as usual, the energy
of an eigenstate. Inserting an eigenstate [Eq. (9)] defined by
a vector k into Eq. (3), the eigenenergy assumes the familiar
form ε = h̄2

2m

∑nk
j=1 k2

j , where nk is the number of elements of
k. To derive the energy of a single cluster, Eq. (14), we insert
the general form of a momentum vector describing a single
cluster,

μ =
(

Kμ + i
η

2
(nμ − 2j + 1)

)
|nμ

j=1, (C1)

into the mentioned equation to obtain

εμ = h̄2

2m

⎛
⎝nμK2

μ + iηKμ

nμ∑
j=1

(nμ − 2j + 1)

−η2

4

nμ∑
j=1

(nμ − 2j + 1)2

⎞
⎠, (C2)

where nμ is the number of elements of μ. Using
∑nμ

j=1 j =
nμ(nμ+1)

2 and
∑nμ

j=1 j 2 = 1
6nμ(nμ + 1)(2nμ + 1), we see that

the imaginary part vanishes and obtain Eq. (14) with

εμ = h̄2

2m

(
nμK2

μ − 1

12
η2(nμ − 1)nμ(nμ + 1)

)
. (C3)

APPENDIX D: INTERPRETATION OF ANYON CLUSTERS
AS INDIVIDUAL ANYONS

We want to show how the exchange phase of clusters can
be interpreted as the statistical phase of a composite species of
anyons reaching further than the interpretation supported by
Eq. (11). To this end, we consider two clusters of anyons μ1 =
(K1 + iη/2,K1 − iη/2) and μ2 = (K2 + iη/2,K2 − iη/2),
the cluster structures of which are depicted in Fig. 1(b). We
introduce the center-of-mass coordinates X1 = (x1 + x2)/2
and X2 = (x3 + x4)/2, as well as the relative coordinates Z1 =
(x2 − x1)/2 and Z2 = (x4 − x3)/2. Under the assumption that
the two clusters are sufficiently far away from each other, i.e.,
X2 − X1 → ∞ and Z1,Z2 finite, we obtain

�(μ1,μ2)(X1,X2,Z1,Z2)

∝ [e2i(K1X1+K2X2) + eiϕ
μ1 ,μ2
η e2i(K2X1+K1X2)]eη(Z1+Z2).

(D1)

This wave function resembles a wave function of two compos-
ite anyons with an altered statistical phase of ϕμ1,μ2

η , especially
if we recall that Z1 and Z2 are of the order of 1/η. This can be
physically interpreted as the fusion of anyons to clusters which
themselves behave as a composite anyon species. Interestingly,
the combined statistical phase is

ϕμ1,μ2
η = 2φη(K2 − K1) + φ2η(K2 − K1), (D2)

where φη is the statistical phase defined in Eq. (8). This has an
appealing geometric interpretation, which we depict in Fig. 3.

FIG. 3. Geometric interpretation of the statistical phase of two
clusters, each consisting of two anyons. The radius of the circle
denotes the relative momentum between clusters K2 − K1. The
statistical angle is obtained by adding up three summands. Two of
these summands are the normal statistical angle φη, and the third
summand is the statistical angle of the doubled statistical parameter
φ2η. The statistical parameter η appears in the lengths of the drawn
tangential segments.
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