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Andreev bound states (ABSs) are well-defined many-body quantum states that emerge from the hybridization
of individual quantum dot (QD) states with a superconductor and exhibit very rich and fundamental phenomena.
We demonstrate several electron transport phenomena mediated by ABSs that form on three-terminal carbon
nanotube (CNT) QDs, with one superconducting (S) contact in the center and two adjacent normal-metal (N)
contacts. Three-terminal spectroscopy allows us to identify the coupling to the N contacts as the origin of the
Andreev resonance (AR) linewidths and to determine the critical coupling strengths to S, for which a ground
state (or quantum phase) transition in such S-QD systems can occur. In addition, we ascribe replicas of the
lowest-energy ABS resonance to transitions between the ABS and odd-parity excited QD states, a process we call
excited state ABS resonances. In the conductance between the two N contacts we find a characteristic pattern of
positive and negative differential subgap conductance, which we explain by considering two nonlocal processes,
the creation of Cooper pairs in S by electrons from both N terminals, and a transport mechanism we call resonant
ABS tunneling, possible only in multiterminal QD devices. In the latter process, electrons are transferred via
the ABS without effectively creating Cooper pairs in S. The three-terminal geometry also allows spectroscopy
experiments with different boundary conditions, for example by leaving S floating. Surprisingly, we find that,
depending on the boundary conditions and the device parameters, the experiments either show single-particle
Coulomb blockade resonances, ABS characteristics, or both in the same measurements, seemingly contradicting
the notion of ABSs replacing the single-particle states as eigenstates of the QD. We qualitatively explain these
results as originating from the finite time scale required for the coherent oscillations between the superposition
states after a single-electron tunneling event. These experiments demonstrate that three-terminal experiments on
a single complex quantum object can also be useful to investigate charge dynamics otherwise not accessible due

to the very high frequencies.
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I. INTRODUCTION

Nanoscale electronic devices in contact with superconduct-
ing contacts (S) exhibit a large variety of fundamental physical
phenomena and play, for example, a central role in schemes
for quantum computation [1,2]. If S is in contact with the
many quantum channels of a normal metal (N), phase-coherent
Andreev reflections lead to electron pairing and an induced
superconducting gap in N. This proximity effect has recently
been demonstrated also for one-dimensional semiconducting
nanowires [3], where strong spin-orbit interactions can give
rise to Majorana bound states [4—6]. If S is strongly coupled to
a single-channel quantum dot (QD), new subgap eigenstates
form, which are known as Andreev bound states (ABS)
[7-10]. ABSs carry the supercurrent in Josephson junctions
[11-18], and thus constitute a model system to investigate the
superconducting proximity effect in QDs [19]. ABSs might
also be exploited as Andreev quantum bits [20,21] and have
recently attracted considerable attention in both theoretical
[19,22-30] and experimental work [8-10,21,31-37].

Previous experiments on ABSs were focused on QDs with
two contacts [8—10,31-35], and only few were possible in mul-
titerminal devices [36,37]. Three-terminal ABS devices allow
for new transport mechanisms, so that nonlocal processes like
Cooper-pair splitting [38—41] compete with local mechanisms
like Andreev tunneling [42]. Such mechanisms are expected to
resultin new effects like the triplet blockade [26], characteristic
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patterns in the electrical conductance [25,28], and other
nonlocal effects [29,30]. In addition, even the most basic ABS
characteristics are expected to be determined by the barrier
strengths, such as the ABS resonance broadening [9,35] and
whether a quantum phase transition in the S-QD many-body
ground state occurs as a function of the gate and bias
voltages. However, the coupling strengths can only be accessed
unambiguously in three-terminal geometries [43—46].

Here, we report experiments on three-terminal QD devices
fabricated on carbon nanotubes (CNTs) with one central
superconducting contact inducing ABSs on the QD. A
scanning electron microscopy (SEM) image is shown in
Fig. 1. We investigate three devices with different coupling
strengths I's to S to investigate several of these open questions
and demonstrate a series of new effects and measurement
configurations. We use Pb as superconductor, which results in
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FIG. 1. False-color SEM image of a typical device and schematic
of the measurement setup.

©2017 American Physical Society


https://doi.org/10.1103/PhysRevB.96.195418

J. GRAMICH, A. BAUMGARTNER, AND C. SCHONENBERGER

a large energy gap A and thus in a high relative spectroscopic
resolution [47], crucial for our experiments. The paper is
structured as follows: In Sec. II we summarize our intuitive
picture of ABSs and ABS-mediated electron transport in two-
terminal devices. Section III describes the sample fabrication
and measurement setup. Then, we characterize each of the
investigated devices by transport spectroscopy in Sec. IV, from
which we extract the tunnel coupling strengths to the individual
contacts and demonstrate that I's determines the system
ground state and ABS dispersion, while the coupling strengths
to the normal-metal contacts, I'; », determine the spectroscopic
width of the Andreev resonances (ARs) [19,28]. One device
shows replicas of the lowest-energy ABS resonance at higher
energies, which we ascribe to transitions to excited odd-parity
QD states in Sec. V. In Sec. VI, we analyze the transport
between the two normal-metal contacts mediated by ABSs,
in which competing local and nonlocal transport mechanisms
give rise to a characteristic pattern of positive and negative
differential conductance. These findings are well captured by
a simple rate-equation model, which allows us to identify
Cooper-pair splitting [38,40] and a three-terminal subgap
process we call resonant ABS tunneling. In Sec. VII, we show
that depending on the boundary conditions imposed in the
experiments, the measured conductance either exhibits ABS
or Coulomb blockade characteristics, or both at the same time,
which we tentatively attribute to finite-frequency coherent
oscillations between the single-particle basis states when an
ABS is excited by single-electron tunneling.

II. ABS-MEDIATED TWO-TERMINAL TRANSPORT

For illustration and to establish the terms used below, we
consider a QD with a single, spin-degenerate level strongly
tunnel coupled to a superconductor with a strength Ig,
and weakly to a normal contact. The former can couple
even-charge states of the isolated QD by exchanging Cooper
pairs to form new eigenstates of the S-QD system. For
A — oo (superconducting atomic limit), the emerging ABS
can be written as a superposition of the even (empty and
doubly occupied) charge states of the isolated QD, i.e., as
a singlet eigenstate |—) = u |0) — v* [1]), with u and v the
gate-dependent Bogoliubov—de Gennes (BdG) amplitudes and
E_ the corresponding eigenenergy. The orthogonal eigenstate
at higher energies reads as [+) = v |0) + u* |[1{). In contrast,
the odd-charge states remain unperturbed doublets |o), with
o ={1,]} and energies E, [19,22-24,27]. We note that a
similarly intuitive picture can be drawn in the limit of small A,
in which unpaired QD electrons can form Yu-Shiba-Rusinov
singlet states with quasiparticles in the superconductor at
energies below the gap and with transport processes formally
very similar to the ones discussed below [48,49]. Here, we
choose the large-A limit for the discussion because of its
simple analytical expressions.

The low-energy excitation spectrum of the S-QD system
in the large-A limit is depicted schematically in Figs. 2(a)
and 2(b), for the case of the doublet being the ground state
(GS) and the ABS the excited state (ES). Due to the different
parity of the doublet and the ABS, one can directly probe the
excitation spectrum by single-electron spectroscopy using a
weakly coupled normal-metal tunnel probe (N) in an N-QD-S
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FIG. 2. (a) Schematic of an ABS-mediated two-terminal transport
process: an electron at the energy ¢ excites the S-QD system (E)
and a subsequent electron at —¢ allows the system to relax again
(R), thereby adding a Cooper pair to S. (b) Energy diagram of the
excitation and relaxation processes. (c)—(e) ABS resonance energy ¢
for A — oo as a function of the level position ¢, for I's/U = 0.3,
0.5, and 0.7, respectively.

geometry [8,10,35,36]. A current through such a device is
only possible if the bias matches the Andreev addition energy
¢ =|E_ — E,|, i.e., if the electrochemical potential uyn of
N exceeds (lies below) the excitation energy +¢ (—¢) with
respect to the electrochemical potential in S, ug. As illustrated
in Figs. 2(a) and 2(b), charge is transported by an electron
tunneling from N into the |1 ) part of |—), which excites (E)
the S-QD system from the GS |o) to the ES |—). In a two-
terminal device, the system can relax (R) back to the GS only
by absorbing a second electron from N at a negative energy —¢
tunneling into the |0) part of |—), and the transfer of a Cooper
pair to S. The probability of this process cycle scales with ?v?
[36]. For a reversed bias, a Cooper pair is removed from S.
Since in this process two electrons are transferred from N to
S we call the resulting subgap conductance features Andreev
resonances (ARs), which can be seen as a generalization of
Andreev reflection found in noninteracting systems.

The ARs show a characteristic gate and bias dependence
in the shape of “loops” that directly reflect the competition
between superconducting pairing and the Coulomb repulsion
on the QD [19]. While deep in the even QD charge states,
the GS of the system is the singlet |—) (E_ < E,), in the
odd-charge state the charging energy U favors the doublet |o)
as GS (E, < E_), in competition with the pairing induced by
I's. As illustrated for the limit A — oo in Figs. 2(c)-2(e),
one finds for small enough I's [Fig. 2(c)] a gate-tunable
transition from |—) to |o) at gate voltages where the AR
loops intersect (¢ = 0). In contrast, for large I's the AR
loops do not intersect and the GS is always a singlet, as
shown in Fig. 2(e). In the large-gap limit A/ I's — oo, the
critical parameter is I's/U with a GS transition occurring
for I's/U < 0.5 [19,22-24,50,51] [see Fig. 2(d)]. The limit
for a phase transition should be reduced for finite A due
to a competition between the superconducting pairing and
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the formation of a Kondo singlet with the quasiparticles at
A [23,24]. In the strong-coupling limit with A/Ts < 0.5
theoretical results suggest the following relation for a GS
transition to occur:

ksTks/A S C, ()
where the Kondo temperature kgTks ~ v UTIS exp (—%
characterizes the coupling to S at the electron-hole symmetry
point. The number C varies considerably in the literature,
between C ~ 0.4 and C ~ 0.79 in Ref. [52], C = 0.6 in
Ref. [53], and C ~ 0.73 in Ref. [23] (values corrected for
different definitions of 7x). In the normal state we expect that
the Kondo temperature T is obtained by replacing I's by the
total coupling I' = I'y 4+ I'; 4 I's, where we already included
the coupling to a third normal-metal terminal. Although
not experimentally demonstrated, yet, our intuitive picture
suggests that the spectroscopic width of an AR line in the
superconducting state at a bias eV < A is determined by the
lifetime of the excited state and thus by the finite coupling
strength of the QD to all normal terminals I'y = I'y + I'; (see
also Refs. [9,28]).

III. DEVICE FABRICATION AND MEASURMENT SETUP

We have fabricated CNT three-terminal devices with
a lead (Pb) based central ~200nm wide Pd/Pb/In
(4.5-6/110/20 nm) S contact [47], two Pd N contacts and
two side gates (SGs) using close to residue free-electron
beam lithography [54]. The typical critical perpendicular field
for these S contacts is ~200 mT and we apply 400 mT for
our normal-state experiments. The highly p-doped Si/SiO,
substrate serves as a back gate (BG). An SEM image of a
typical device is shown in Fig. 1, which also illustrates our
measurement setup: a dc voltage Vs with a superimposed ac
modulation of 6 V,c = 10 uV is applied to S, while measuring
the variations 6/, » in the currents /; , through the normal
terminals N1 and N2 using standard lock-in techniques, which
results in the differential conductances G = 8112/8Vac.
In addition, we can set the potentials on N1 and N2 by
the voltages V| and V,, respectively (not shown), or leave
them floating individually by the switches Swj) outside the
cryostat. Similarly, we can also apply the bias to N1 while
measuring the current variations in S and N2, or while leaving
S floating. All measurements were performed in a dilution
refrigerator at a base temperature of ~35 mK.

We discuss three CNT devices A, B, and C, each exhibiting
subgap ARs. In device A, the Pd wetting layer was 4.5 nm
thick, while in the devices B and C it was 6 nm. The room-
temperature resistances between an N terminal and S were
~30-40 k2 (sample A) and ~20 k2 (samples B and C).

IV. S-QD GROUND STATE AND LIFETIMES

In this section, we investigate ABS-mediated transport
between N and S terminals in the three devices and take full
advantage of the three-terminal geometry. Primarily, we focus
on extracting the superconducting energy gap A, the charging
energy U, and the individual tunnel coupling strengths of
the three contacts to the QD and on relating them to the
observed AR resonance patterns and the AR broadening. The
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relevant data for device A are shown in Fig. 3, device B in
Fig. 4, and device C in Fig. 5 and will be discussed in the
following subsections. In all figures, we plot the differential
conductances G [left, figures (a) and (c)] and G, [right,
figures (b) and (d)] as a function of a gate voltage and the bias
applied to S, Vg, while keeping Vi = V, =0 and Vg = 0.
The top panels [figures (a) and (b)] show the data for S
in the normal state obtained by applying a magnetic field
of B = 0.4 T perpendicular to the substrate, and the bottom
panels [figures (c¢) and (d)] the measurements with S in the
superconducting state at B = 0. The relevant extracted and
derived device parameters are summarized in Table 1.

A. Device A

In Appendix A, we demonstrate in detail that the transport
between all three terminals of device A is governed by a single
QD. This is also evident in Figs. 3(a) and 3(b), which show
the same Coulomb blockade (CB) diamond pattern (dashed
lines) in G| and G as a function of the bias and the voltage
Vsci+2 = Vst = Vsg2 applied to both SGs, with an even-
odd shell-filling sequence in both simultaneously recorded
conductance maps. In the odd diamonds, we find horizontal
conductance ridges (K, white arrows) due to Zeeman-split
Kondo resonances [55,56]. For increasing magnetic fields
(not shown), we observe a Zeeman splitting of these ridges
with a g-factor of g &~ 2.1. Using additional measurement
configurations [44], e.g., with the bias applied to an N terminal,
we find that the Kondo resonance solely originates from the S
contact (not shown).

We first analyze the normal-state data in Figs. 3(a) and 3(b).
From the CB resonances we deduce a lever arm aggi4o &
0.01 of the combined side gates, a charging energy of U ~
2.5 meV, and from excited state and inelastic cotunneling lines

(b) B=04T

V.

SG1+2

FIG. 3. (a)-(d) Differential conductances G, and G, of device
A as a function of the bias applied to S, Vs, and the voltage Vsgi42
applied to both side gates, for Vg = 0 and the external magnetic field
B =0.4T [(a), (b)] or B =0 [(c), (d)]. The white arrows in (a) and
(b) point out Zeeman-split Kondo resonances (K) and the numbers
indicate the zero-bias CB resonances used for fitting. Yellow and
orange arrows highlight excited state Andreev resonances.
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the lowest two orbital energies ~0.3 meV and ~0.5 meV. The
three-terminal geometry allows one to determine the coupling
strengths I'; of the individual contacts to the QD by fitting
a Breit-Wigner line shape [57] to different two-terminal con-
ductances [43]. This procedure is explained in more detail in
Appendix A. From these fits, we obtain ' ="'} + ', + I's =
204 peV,I's = 150 peV,I'y = 1 peV,andI', = 53 pueVand
thusI'y = I} + I’y = 54 peV forresonance 1 in Fig. 3(a). For
resonance 2 we obtain I' = 220 ueV, I's = 173 peV, I'y =
1 neV, and I'y =46 peV and thus I'y = 47 eV, and for
resonance 3 I' = 151 weV,I's = 118 ueV, ') =3 ueV, and
', =30 peV, so that 'y = 33 pweV. We note that generally
I's > I'n. We estimate the Kondo temperature using kg Tx &

@ exp (—’g—ll.]) at the electron-hole symmetry point in the
middle of the odd diamonds [8,32,58], which, for example,
results for resonance 2 in kgTx ~ 6 ueV (Tx ~ 70 mK),
expected to be dominated by the temperature broadening [59].

If S is superconducting, as shown in Figs. 3(c) and 3(d), G,
and G, both exhibit a gap A & 0.95 meV, with pronounced
subgap resonances for |eVs| < A. Also here, we find the
same conductance features (though of differing amplitudes)
in G| and G,. We discuss the higher-energy replicas of the
low-energy AR pointed out by yellow and orange arrows
in Figs. 3(c) and 3(d) in Sec. V. The subgap features are
fully consistent with ARs: for even spin states (no Kondo
ridge in the normal state) we observe large loops, while for
odd occupation the loops are smaller and intersect inside the
normal-state CB diamonds. This dispersion is characteristic
for ARs with a relatively small coupling to S. For example,
comparing the extracted system parameters for resonance
2 results in A/T's &~ 5.5, i.e., the large-A limit, in which
I's/U =~ 0.07 « 0.5 suggests a gate-tunable GS transition,
consistent with the loop structure observed in the experiments.
We note that also the strong-coupling expression predicts
a GS transition kgTks/A ~ 1.7 x 1073 « C for all C in
the literature. Similar results for the other resonances are
summarized in Table I and are also consistent with the observed
loop structures.

The full width at half the maximum (FWHM) of the three
ARs in this device is ~50-70 peV, much smaller than the total
coupling strength I' ~ 0.2 meV (see Fig. 13 in Appendix A),
but consistent with the coupling I'y & 50 ueV to the two
normal leads. This demonstrates that I'y = I'y + Iy fully
accounts for the ABS excitation lifetime, as expected for
I'v < A, which holds for all devices investigated here.

B. Device B

In device B, a single QD is formed mainly between S and
N1, while the CNT segment between S and N2 shows an
essentially gate-independent conductance in an open regime
and can be viewed as a contact to the QD. This is shown in more
detail in Appendix A. In Fig. 4 we therefore plot G; and G, as
afunction of Vg and Vg to keep the other side unperturbed. In
the normal state of S, G in Fig. 4(a) exhibits a pattern typical
for a QD strongly coupled to the leads, with an even-odd
filling that can still be deduced from cotunneling lines. The CB
diamonds are outlined by dashed lines. In contrast, G, plotted
in Fig. 4(b) shows only a small conductance modulation,
as expected for highly transparent barriers. In G; we find
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FIG. 4. G, and G, of device B as a function of V5 and Vs, at
V] = V2 = VBG = VSGZ = 0, forB=04T [(a), (b)] and B =0 [(C),
(d)]. The white arrows in (a) label Kondo (K) ridges, and dashed lines
qualitatively sketch the CB diamonds, where small (large) diamonds
correspond to odd (even) occupation. GS denotes the QD ground state
in (c), and the white arrow points to a second Andreev resonance
visible at a higher bias | Vs|.

Kondo ridges in the odd-charge states (K, arrows), which are
strongly broadened so that the Zeeman splitting cannot be
resolved. The horizontal lines at Vg ~ +0.2 mV in the middle
of the conductance map (yellow arrows) do not agree with
the expected Zeeman splitting of a (spin) Kondo resonance
and g = 2 and are probably due to inelastic cotunneling, or
due to the valley Kondo effect [60]. From the charge stability
diagram in Fig. 4(a) we estimate a lever arm of agg; = 0.05,
a charging energy of U =~ 3.0 meV, and a level spacing of
~2.5 meV, consistent with a QD smaller than in device A
and located between S and N1. Due to the pronounced Kondo
resonances and the strong coupling to the leads, it is difficult
to extract the tunnel coupling constants directly. We therefore
estimate the coupling strength I from the half-width at half
maximum (HWHM) of the Kondo ridges K1 and K2 [8,32,61].
We obtain kgTk; =~ 0.24 meV (Tx; =~ 2.8 K) for K1, and
estimate I'g; =~ 0.8 meV from kg Tk ~ @exp (—%) [32].
Similarly, for K2 we find kg7x» ~ 0.8 meV (T, ~ 9.3 K)
and ', ~ 1.7 meV. These values are consistent with the CB
resonance width at finite bias and show that the Zeeman
splitting of the Kondo resonance can be neglected in this
estimate.

G and G, for S in the superconducting state are plotted
in Figs. 4(c) and 4(d), where we find pronounced ARs in G,
for bias voltages Vs below the superconducting transport gap
A = 0.65 meV. A weak modulation at the same voltages can
also be found in G,. The AR loop in the leftmost odd state (K1
in the normal state) is considerably smaller than the loops in
device A, and the rightmost AR loop (K2 in the normal state)
does not exhibit a GS transition at all. The AR between K1
and K2 (arrow) exhibits two resonances related to QD excited
states and consistent with normal-state cotunneling lines, as
discussed in more detail in Sec. V.

We now use the AR linewidth to estimate the remaining
tunneling parameters. Equating the AR linewidths with I'y =
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I'y + I'; as established for device A, we find for resonance
K1 T'E! ~ 100 eV and T'§! = 'y — TE! 2~ 0.7 meV, with
a corresponding Kondo temperature for the S contact of
kBTIg ~ 190 neV. With A/l"é<l ~ 0.93, this resonance is
neither in the large-A nor in the strong-coupling limit. How-
ever, both expressions still correctly predict a GS transition:
I's/U ~0.23 < 0.5 in the large-A limit and kBTlfSI/A ~
0.29 < C for all mentioned C in the strong-coupling limit.
Similarly, we find for resonance K2 I'K? & 200 pueV and
& ~ 1.5 meV, with kg7 = 680 ueV. Here, A/TE* ~
0.4, on a scale on which the use of expression 1 is still
acceptable. This yields kgTe/A ~ 1.1 > C for all men-
tioned C, consistent with a suppression of the GS transition.
We note that with A/T'§? ~ 0.5 the large-A limit would
predict touching AR loops, on the boundary of the phase
transition, in contradiction to the experiment. Qualitatively,
the larger coupling of the K2 state results in the suppres-
sion of the GS transition, whereas a transition is expected
for K1.

C. Device C

In contrast to the devices A and B, device C shows
clear characteristics of a double QD with strong interdot
coupling (see Appendix A for details). By only varying
side gate 1 and keeping Vsg; = 0, we mostly tune QDI
between N1 and S, while the conductance through QD2
between N2 and S is varied only around the maximum of
a QD resonance (Appendix A). For this reason, QD2 can
essentially be seen as a contact to QD1. Figures 5(a) and 5(b)
show G; and G, as a function of Vg and Vsg; for S in
the normal state, with strong cotunneling lines and Kondo
resonances in the odd-charge states (K1 and K2). From the
charge stability diagram interpolated in Fig. 5(a), we estimate
a lever arm of SGI1 to QD1 of asg; ~ 0.01, a charging
energy of U ~ 2.4 meV and a level spacing of ~1.3 meV
for QD1. Similar as for device B, we estimate I" from the
HWHM of the Kondo resonance and obtain kg Tx; ~ 0.3 meV
(Tx1 ~ 3.5 K) and I'g; =~ 0.8 meV for the resonance K1. For
resonance K2 we find kgTk, ~ 0.35 meV (Txx ~ 4 K) and
I'ko =~ 0.88 meV.

For S in the superconducting state, G; and G, plotted in
Figs. 5(c) and 5(d) both show pronounced ARs. In contrast
to the previous devices, we find fwo horizontal conductance
maxima, one at A; &~ (0.42 meV most prominent in Gy,
and A, ~ 0.75 meV more clearly visible in G,, which we
tentatively interpret as two superconducting transport gaps in
the individual CNT arms. Surprisingly, the ABS loops connect
smoothly, but the rightmost loops are bounded by A, while
the leftmost clearly reaches up to A,. Currently, we do not
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FIG. 5. G, and G, of device C as a function of Vs and Vsg; at
Vi =V, = Vg = Vsg» =0, for B=0.4T[(a),(b)]and B = 0 [(¢c),
(d)]. The black arrows in (a) label Kondo (K) ridges, and dashed lines
sketch the CB diamonds. A highlight the two superconducting
transport gaps.

have a good explanation for these findings, but speculate that
the QD wave function might be coupled inhomogeneously
to S, e.g., at two separate places with two distinct effective
coupling constants. For the present investigation, the relevant
findings are that the ABS loops exactly touch for the K1 state
and that for K2 the loops are slightly separated in energy, i.e.,
that the K1 parameters correspond to the critical values of the
ABS phase transition and that the GS transition is suppressed
for K2.

The latter observations compare well to the extracted
tunnel couplings: For device C, we find an AR linewidth
of 'y &= 0.1 meV for both resonances and estimate Fgl ~
0.7 meV at the position of the Kondo resonance K1 and
ng ~ 0.78 meV for K2. Using A; as the relevant energy
gap, we find A1/ TRl ~ 0.60 for K1 and A;/T'§ ~ 0.54 for
K2, both in a range for which it is acceptable to use Eq. (1).
The latter results in kg Txs1 /A1 = 0.57 for K1, consistent with
a “touching” of the AR loops if C ~ 0.6 in Eq. (1), and
kgTks2/ A1 ~ 0.69 for K2, suggesting a close but avoided
AR loop crossing and no GS transition. We note that the
ratios used for the large-A limit, ! /U 2 0.29 for K1 and
Fé‘z /U =~ 0.33 for K2, would wrongly predict a GS transition
for both charge states.

The results of this section are collected in Table I and
compared to the AR loop structures found in the experiments.
Our experiments clearly suggest a GS transition limit of
C =~ 0.6 when using Eq. (1). In addition, we find that the

TABLEI. Extracted parameters and observed ABS loop structure for devices A, B, and C. The values for different resonances are separated
by a dashed line. Yes is abbreviated by Y, no by N, and crit. means that the AR loops touch.

Device A (meV) U (meV) I'n (neV) I's (ueVv) A/Tg I's/U kgTxs/A GS transition
A 0.95 2.5 54/47/33 150/173/118 6.3/5.5/8.1 0.06/0.07,/0.05 <2 x 1073 Y/YIY

B 0.65 3.0 100/200 700/1500 0.93/0.43 0.23/0.50 0.29/1.05 Y/N

C 0.42 24 100/100 700/780 0.60/0.54 0.29/0.33 0.57/0.69 crit./N
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AR broadening is consistent with the coupling to both normal
contacts.

V. EXCITED STATE ANDREEV RESONANCES

In Sec. IV we found multiple replicas at higher energies
for all ARs in device A and one replica in the central AR of
device B. The spacings of ~0.2-0.3 and ~0.5 meV between
these replicas are very similar to the spacings of the lowest
excited states in the normal-state measurements of this device.
We find no such replicas for device C, for which the orbital
energies are larger than the superconducting gap, §E > A. We
note that the replicas are not consistent with inelastic Andreev
tunneling [42] because they show a clear gate dependence
following the lowest AR, we find no negative differential
conductance between the resonances, and they are broadened
with increasing temperature. In the following, we exploit the
third QD terminal to show that the replicas are caused by
ABS-mediated transport via excited states of the doublet |o)
in the odd QD state, a process we call excited state ARs.

To experimentally identify the origin of these replicas,
we performed conductance measurements in a configuration
different to the one in Sec. IV. Here, we keep the dc parts
Vi = Vs = 0 and apply the dc bias V, to N2, while modulating
Vs by the ac voltage §V,. (see also Fig. 1 for orientation).
We again define the conductances G, = 81;2/d V. from the
current modulations in the normal terminals 1 and 2. Figure 6
shows G and G, as a function of Vsgi42 and V;. Intuitively,
one might expect that G, is independent of V,, which is the
case for local processes when neglecting gating effects by V,.
Surprisingly, we find both ABS-mediated (“curved lines”) and
standard QD resonances (“straight lines”) in these data sets.
In the picture of A — oo this is not trivial and we will discuss
this finding in more detail in Sec. VII.

Here, we exploit that the width of both types of transport
resonances between N1 and N2 is determined by I'y 4+ I',
only, and not by I' =T'; +I'; + I's as in the normal state
(see Sec. IV). This allows us to resolve also excited state
resonances between the two N contacts. In Fig. 6 we find
both straight lines (labeled by white arrows) and AR with a
curved dispersion (orange arrows), best visible in G,. The
straight excited state resonances have a similar spacing as the

V=V=0 G, (2e%/h) G, (2¢’/h)

0.6

v

VSG1 +2

FIG. 6. G, and G, of device A at Vegg =V, =Vs =0 as a
function of V, and a combined side-gate voltage Vsgi42 at Vs gc = 0.
The labels S and C denote partially overlapping straight Coulomb
blockade resonances and curved (excited state) ARs, respectively.
The horizontal dashed line marks the condition V, = V| [62].
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(a)

SE]

FIG. 7. (a), (b) Expected low-energy charge transitions, including
two spin-degenerate single-particle states |o') and |o*) with a level
spacing of 6 E and the transition energies ¢ and ¢*. TR abbreviates
thermal relaxation. Fig. (a) shows the processes for |—) being the GS,
(b) the ones for |—) set between |o) and |6*). (¢) ¢ and ¢* as a
function of g/ U for U = 3 meV,'s = 1 meV,and §E = 0.3 meV.
n denotes the different charge states.

corresponding excited state ARs and sometimes even originate
from the same position in these plots.

Excited state ARs can be understood on the same footing
as the GS ARs in the A — oo limit (Sec. II). In addition
to the odd-electron ground state |o), we also consider the
corresponding excited state |0 *), separated in energy by SE.
As depicted in Fig. 7(a) for |—) being the GS, the system can
now also be excited to |o*) (blue arrows) in addition to |o)
(red arrows). The corresponding transition energies ¢* (blue
lines) and ¢ (red lines) are plotted in Fig. 7(c). ¢ * replicates the
shape of ¢ at higher energies, as observed in the experiments.
We call the resonances ¢* excited state Andreev resonances
because they correspond to a first-order transition between an
ABS and an excited odd-electron state. This situation of |—)
being the GS results in the excited state AR highlighted by
yellow arrows in the experiments of Figs. 3(c) and 3(d). Also
consistent with the experiment is that the expected ¢ * line ends
at the intersection with ¢ in Fig. 7(b), best visible in the central
resonance of Fig. 4(c). This can be understood qualitatively
by introducing a (fast) energy relaxation from |o*) to |o),
which we call “thermal relaxation” (TR) to distinguish it from
the parity-changing relaxation by single-electron tunneling. If
|—) is the GS, this results only in a second relaxation channel
from |o*) to the GS, as illustrated in Fig. 7(a). However, if
|o) is the GS and |—) lies energetically midway between o *
and o or higher, as shown in Fig. 7(b), o* can be excited by
single electrons at ¢*, but the system relaxes fast to |o), from
where the energy ¢ > ¢* is required to reach |—) to close the
charge transport cycle. Therefore, we expect for these gate
voltages only one resonance at e Vs = ¢, but with an increased
amplitude because the additional transport channel via |o*) is
allowed for eVs > ¢.

VI. ABS-MEDIATED TRANSPORT BETWEEN
TWO N CONTACTS

In three-terminal QD devices, one can expect novel subgap
transport mechanisms due to “nonlocal” transport processes
that require two N and one S terminal, and their interplay
with local effects involving only two terminals [25,28]. In
particular, transport between two N contacts can be mediated
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FIG. 8. Gs and G, as a function of the applied bias V; and the
gate voltage Vsqi, for (a), (b) device B and Vs = 0, (¢), (d) device C,
and Vs = +0.4 mV. Arrows and dashed rectangles mark regions of
pronounced conductance sign changes.

by ABSs [28]. To perform this type of experiment, we use
a different measurement configuration than in the previous
sections, with the ac bias §V,. and the dc bias V| applied to
N1, while measuring the current variation § I, in N2. This can
be done while also recording the current variation /s in S at a
fixed potential Vg, or while leaving S floating (see Sec. VII).
We again define the differential conductances G; = 61; /6 V.

In Figs. 8(a) and 8(b) we plot Gs and G, of device B as
a function of V) and the gate voltage Vsgi, with Vs = 0. In
addition to the typical AR pattern in Gg already discussed
for Fig. 4, we find in G, pronounced resonances at the same
gate and bias voltages. This illustrates again that N2 is a third
terminal to the QD with ABSs. In contrast to the ARs in
G, the AR amplitudes in G, show pronounced sign changes,
from positive to negative differential conductance with similar
magnitudes ~=40.1 x 2e?/h at positions symmetric around the
electron-hole (e-h) symmetry points. The sign is inverted at
the e-h symmetry point, at the singlet-doublet GS transitions,
and for a reversed bias. This is best visible in the regions R1
and R2 marked by rectangles in Fig. 8(b). The central GS
transition deviates from this description, most likely due to
the overlapping second AR (see Sec. IV), but also exhibits
systematic sign changes. For the devices A and C we find
similar characteristics as for device B. As an example, we plot
Gs and G, of device C in Figs. 8(c) and 8(d), where we added a
dc bias Vg = +0.4 mV to S. This bias results in an offset of the
features in Gg and G,, where we again find the characteristic
sign changes in G, labeled by white arrows in Fig. 8(d),
identical to region R2 in Fig. 8(b). From these and a series of
other measurements with different Vs we conclude that the sign
changes are robust against Vg and that all measurements can
be understood considering potentials relative to the one on S.

Rate-equation model

To describe the transport through an S-QD system, we
introduce a rate-equation model similar to Ref. [36], using the
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FIG. 9. (a) Two-level rate-equation model with excitation (relax-
ation) rate f. (¢,). (b) Schematic of the three-terminal N-QD-S system,
with a faint superimposed S contact, and a negative bias voltage V;
applied to N1. Transport is only considered through the AR =+¢,
with color-coded rates tel(g)“_). I, I,, and I5 denote the technical
current direction in the respective contacts (arrows). (c), (d) Intuitive
diagrams of the possible excitation [(c), red] and relaxation [(d), blue]
processes and non-vanishing transition matrix elements, if |o) is the
GS. We consider only first-order transitions (+1e/ — le) with the
energy conditions AE = +¢.

A — oo limit to describe the ABSs and the doublet states, as
shown in Fig. 9(a). The excitation and relaxation rates depend
on the transport processes, illustrated in Fig. 9(b). In contrast
to the two-terminal case, we now consider a coupling to a
third normal-metal terminal N2 with a strength Iy, in addition
to the terminal S (I's) and N1 (I';). For E < A we need to
consider only transport mediated by the ABS. The bias V; is
applied to N1 as in the experiment, while S and N2 are kept at
us = p2 = 0.

The excitation and relaxation rates f. and ¢, denote the total
rates by which the system is changed from the GS to the
excited state (ES) and back, and will be determined below. The
steady-state occupation probabilities Pgs and Pgs = 1 — Pgs
of the GS and ES are then found by setting

— Pgs =t Pgs — t,Pgs = 0, ()

dt

which yields Pgs = t,/(t; + t.) and Pgs = t./(t; + to).

The rates f. and ¢, contain all excitation and relaxation
processes, which can be viewed in the simplified picture
of sequential individual tunneling events, as illustrated in
Fig. 9(b). In the corresponding rates we use the superscript
1 (2) to denote the contacts N1 (N2) and + (—) to state whether
an electron is added (removed) from the S-QD system. The
excitation and relaxation rates can then be calculated using
Fermi’s golden rule [27,36,63]. For example, if |o) is the GS
and |—) the ES [see Figs. 9(c) and 9(d)], the rate te“r for the
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excitation by an electron tunneling in from N1 is

o) =5 =) it =Ty (=ldlo) P o), @)
—————

v2

where fi2)(E) is the Fermi distribution in contact N1 (N2), dl
(d,) the creation (annihilation) operator for an electron on the
QD with spin o (opposite spin &), and v and u are the BdG
amplitudes of the ABS. Similarly, we find for the relaxation
rate caused by electrons leaving to N2

—le

=) —> o) 7 =Ta|(olds| ) PLL = o1 (4)
—

We note that this latter process is possible only in a three-
terminal device. All such excitation and relaxation processes
are depicted schematically in Figs. 9(c) and 9(d), which allows
to intuitively deduce all tunnel rates. The total excitation and
relaxation rates then read as

te = T f1(Q) + Tav? /()
—_———— ———
+ T’ [1 = fi(=O1+ D1 = fo(=0)],

A 5

tr = T0°[1 = fi(O]+ oo’ [1 = f(2)]

- 12

+Tyu? fi(=¢) + Tou® fo(=0) . 5

trl + tr2+

For the singlet | —) being the GS, all rates can be obtained from
Eq. (5) by replacing u by v because the initial and final states
in the transition matrix elements are interchanged. The total
currents into N1 and N2 are then given by

o= L =) Pos 4 (1 = 1) Pas],

b= (25 = 1)Pos+ (7 =17 ) Pis]. (©)
and Is = —(I, + ). The differential conductance measured
at contact i = {1,2,S5} can then be obtained as G; = dI;/dV;
for the experiments described in this section.

An example of such a calculation is shown in Fig. 10
for parameters that result in the familiar ABS loop structure
and positive conductance values in the two-terminal local
conductance Gg. This is plotted in Fig. 10(b) as a function of
V) and the normalized gate-tunable QD orbital energy &9/ U
and corresponds, for example, to the resonances in the leftmost
region in Fig. 8(a). More importantly, Fig. 10(c) shows G, for
the same parameter range, which should be compared to the
leftmost region R1 in Fig. 8(b). We find that the model at least
qualitatively reproduces the experimental findings, with sign
changes at the e-h symmetry point (g9/U = —0.5) and for
a reversed bias, and clearly highlighting the GS transition.
Similarly, for large I's and |—) being the GS for all gate
voltages, we find sign changes only at the e-h symmetry point,
consistent with the resonances in the rightmost region R2 in
Figs. 8(b) and 8(d). The corresponding plots are shown in
Appendix B in Fig. 16. In addition, the sign changes in the
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FIG. 10. (a)-(c) Model calculation of the differential conductance
according to Egs. (6) and (5) in the A — oo limit, for I's = 1 meV,
U=3meV, and I'y =T, =0.1 meV. (a) G, (b) Gs, and (c) G,
as a function of V; applied to N1 and the QD orbital energy &,/ U,
for V, = Vg =0, as in the experiment. To simulate a broadening of
the AR, a small finite temperature of 7 = 0.5 K was assumed. (d)
Schematic of the “nonlocal” transport processes for @ > +¢. The
red arrow depicts “resonant ABS tunneling”, i.e., a direct transfer of
one electron from N1 to N2 via the ABS, whereas the blue arrows
show an inverse CPS process, i.e., the “nonlocal” creation of a Cooper
pair in S.

model are independent of the applied voltages Vs or V5, as in
the experiment.

Due to the Fermi functions, the only nonvanishing rates
at low temperatures are #17, t1*, 127 and t>* for a forward
bias @ > us > U2, as depicted in Fig. 9. For example, the
local Andreev processes between N1 and S scale with ] ¢!+
More interestingly, the sign changes in G, are caused by the
competition between processes comprising the two relaxation
processes t>~ and #2*, which remove or add an electron from
the system at different energies, respectively. In this case,
the current in N2 is proportional to the difference between the
BdG amplitudes I, o (u?> — v?), with a sign change at the
GS transition (transition from u> > v? to u?> < v?), or for a
reversed bias V). The conductance G, thus reflects directly
the gradual charging of the ABS with decreasing gate voltage,
which evolves from an excess charge of 0 in the n = 0 state
to an average charge of 2e¢ in the n =2 state. In a more
coherent picture, the process combining an electron tunneling
into the system from both N1 and N2 (¢} combined with #>*)
corresponds to the “nonlocal” creation of a Cooper pair in S,
often called (inverse) Cooper-pair splitting (CPS). Similarly,
the coherent tunneling into and out of the system at the same
energy (t!* combined with t27) corresponds to the direct
transfer of one electron from N1 to N2, mediated by the
ABS. This process we call “resonant ABS tunneling”. These
nonlocal transport processes involve all three terminals and
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are illustrated in Fig. 10(d). For these processes we expect the
rates ficps o 1112+ for inverse CPS and faps, o #1112~ for
resonant ABS tunneling. This interpretation is also supported
by recent more fundamental calculations [25,28], all in good
agreement with our experiments and the simple model. We
point out that to account for the similar magnitudes of the posi-
tive and negative differential conductance in G, itis necessary
that CPS and resonant ABS tunneling are of similar strength.

VII. COHERENT OSCILLATIONS IN THE ABS

In this section, we present and compare measurements
with different boundary conditions imposed to the QD ter-
minals. For example, Figs. 11(a)-11(c) show the differential
conductance G between the two normal-metal contacts (see
also in the previous section) with the superconductor S left
floating. The data for the devices A, C, and B are plotted as a
function of the bias and gate voltage in the same gate-voltage
intervals as discussed in the previous sections. The data sets
are ordered according to increasing I's, as found in Sec. I'V.
Such experiments are equivalent to Ref. [37], where ABSs in
a proximitized S-QD InAs nanowire were investigated in the
context of Majorana bound states.

For device A, with a weak coupling to S and a small
I's/ U ratio, we find CB diamonds very similar to the normal
state. Specifically, there are no ARs, nor a suppression of G
related to a superconducting gap. ARs were, however, clearly
observed when the superconductor was grounded (see Fig. 3),
and both types of resonances were found in the experiments
of Fig. 6. In contrast, devices C and B, both with a larger
coupling to S, show clear signatures of ARs and the energy
gap. However, in these experiments no sign changes in G occur
and we observe only positive differential conductance features,
in stark contrast to S being on a fixed potential (Fig. 8). For
device B, this experiment results in essentially the same AR
gate and bias dispersion as when measured between an N and
the S contact (Fig. 4), whereas for device C we find additional
curved resonances at higher energies (cf. Fig. 5). We note that
the ARs are centered around zero bias, which suggests that
s either follows pun; or unz due to the different coupling
strengths to the normal-metal terminals.

(a) 0 0.1 (b) 0 0.1

1
V... (V) Vv

SG1+2

Device A

0.2

= G, 2e/h)

-1.8 -1.4

SG1

Device C
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The experiments on devices B and C are straightforward
to understand qualitatively based on our previous picture of
ABSs: we assumed that the CNT segment between N1 and N2
forms a QD in the normal state of S. In the superconducting
state, the eigenstates of the segment are ABSs that determine
all subgap transport. If S is at a fixed potential, it can take up
(or emit) Cooper pairs, which allows Cooper-pair splitting as a
process and, in unison with resonant ABS tunneling, results in
the pattern of positive and negative differential conductance. If
S is floating, the experiments show that g is fixed, and since
CPS and the local Andreev processes both add charges to S,
which would change the electrical (though not the chemical)
potential of S, these processes exactly compensate to satisfy
the boundary condition Is = 0. This leaves only resonant ABS
tunneling as a subgap transport process between N1 and N2,
which does not change the charge on S and results in a positive
G, mapping out the ABS excitation energy. Additional features
and different amplitudes compared to the traditional ARs are
to be expected since here only electrons at one energy are
involved and we expect that the balance between the processes
that change the charge on S depend on the bias.

The interpretation of the experiments on device A is less
obvious. We find in the conductance between N1 and N2
the standard QD resonances when S is floating, while if S
is at a fixed potential modulated by the ac voltage, ABS
signatures occur simultaneously with the standard QD features
(see Fig. 6 in Sec. V). In the two-terminal measurements
between N and S, we only find ABS-related signals. These
experiments seem quite contradictory since one would expect
that the eigenstates of the S-QD system do not depend on
the boundary conditions of the measurement. As discussed
for samples B and C, the different processes are combined to
satisfy the different boundary conditions, but the simultaneous
observation of standard Coulomb blockade and ABS features
cannot be resolved with such arguments alone.

This suggests that our picture of ABS-mediated transport
is not complete and only holds for a strong enough coupling
to S. In this picture, we assume that the QD develops new
eigenstates due to the coupling to the unperturbed supercon-
ductor and one might expect that a continuous lowering of the
coupling strengths results in a continuous transition from the

© 0 02 04
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FIG. 11. Conductance between the two normal contacts N1 and N2 with the S contact floating. (a) G(V,,Vsgi+2) for device A,
(b) G2(V1,Vsa1) for device C, and (c) G,(Vy,Vsg1) for device B. The measurements are ordered according to increasing coupling

strengths Is.
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ABS to the bare QD states. In contrast, our results seem to
suggest that in some parameter regime, both sets of states are
available for different transport processes.

We speculate that for low enough I's the tunneling of an
electron on and off the QD from an N terminal is faster than
the exchange of Cooper pairs with S, which is necessary
for the hybridization of the QD with S. Right after the
first tunneling event, the system is in the state |1 ), which
is a coherent superposition of the system eigenstates |—)
and [+),1.e., [T} = —v|=) +u[+) (10) = u™ | =) +v" |+)).
Therefore, we expect coherent oscillations between |0) and
[1{) in an ABS excited by single-electron tunneling events,
with a characteristic frequency essentially determined by I's.
This oscillation is expected to result in a suppression of the
waiting time distribution for short times [64], and might be
responsible for our findings here: in a three-terminal device,
an excitation cannot only be absorbed by forming a Cooper
pair, as in a two-terminal device, but also by tunneling out into
the third terminal (resonant ABS tunneling). If this happens
faster than half a coherent oscillation, the tunneling electron
stays in the bare QD state during the time it resides on the
CNT segment. Assuming that an oscillation by half a period
is required to transfer a Cooper pair to S, we find the relation
I'ny > I's/m as a necessary condition to observe the bare QD
resonances, in good agreement with device A, but not for the
other two devices with considerably larger I's and a faster
oscillation rate relative to I'yp. Our results demonstrate that
a three-terminal QD can give access to the fast electron dy-
namics, in our example of the ABS coherent oscillations with
frequencies I's/ & in the range between ~30 GHz (device A)
to ~370 GHz (device B), by the implicit comparison to the
tunnel rate to the third terminal.

VIII. CONCLUSIONS

In summary, we investigate electronic transport mediated
by Andreev bound states in a three-terminal S-QD device and
identify the coupling to the normal-metal leads as the main
source for the spectroscopic broadening of the Andreev reso-
nances, and establish how the coupling to the superconductor
determines the ground state of the system. In addition, we
present “excited state Andreev resonances” at higher energies,
with transitions between ABSs and odd-parity excited QD
states. We also report pronounced sign changes in the ABS-
mediated transport between the two normal-metal contacts,
which we explain in an intuitive rate-equation model as
resulting from the competition between the nonlocal creation
of a Cooper pair in S and a process we call “resonant ABS tun-
neling”, i.e., the subgap transport of single electrons through
the S-QD system, only allowed in multiterminal devices.
Surprisingly, we find that depending on the imposed boundary
conditions in the experiments, it is possible to observe either
ABSs or Coulomb blockade resonances, or both in the same
experiment, which we tentatively attribute to the competition
between coherent oscillations in the ABS (exchange of Cooper
pairs with S) and the relaxation of the system by single-electron
tunneling into the second normal terminal.

We believe that experiments on complex quantum systems
using multiple terminals provide a novel and clear experi-
mental probe for many old and new phenomena, here for
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example the onset of the superconducting proximity effect
on a QD and the formation of many-body quantum states.
Such experiments also give direct access to the strength
of the coupling between S and the QD, and a way to
probe time-dependent phenomena such as the finite-frequency
coherent oscillation between superposition states, without
resorting to high-frequency and time-domain experiments. In
particular, we envisage experiments in similar structures with
gate-tunable tunnel barriers [65] to investigate in more depth
the presented physical mechanisms.
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APPENDIX A: ADDITIONAL DATA FOR
DEVICES A, B, AND C

In this Appendix, we analyze additional data of devices A,
B, and C. In particular, we discuss the electronic configuration
of each device, using conductance maps as a function of both
side-gate voltages.

1. Device A

Figures 12(a) and 12(b) show the differential conductances
G, and G, of device A as a function of the side-gate
voltages Vsg; and Vsgp, for the ac bias applied to S, but
with Vg = Vgg = 0, and in the normal state of the device
at B =0.3T. These data are consistent with a single QD
[66-68], for example, because we observe the same resonance

G, 2e?/h)
0.6

G, (2e?/h)

-1
Vg, V)

FIG. 12. (a), (b) Differential conductances G and G, of device A
as a function of the side-gate voltages Vsg; and Vsgy, for Vs = V| =
V, = Vg = 0, at an external magnetic field of B = 0.3 T applied out
of plane. The orange (dashed yellow) line in (b) indicates the studied
gate voltages in the main text [in (c)]. The inset in (a) sketches the
assumed electronic QD configuration of the device. (c) G| and G, as
function of Vs and Vsg, only, at B=03T and Vs =V, =V, =
VBG =0.
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FIG. 13. Differential conductances G; (a) and G, (b) of reso-
nance 1 (main text) as a function of the combined side-gate voltage
VSG1+2’ at Vs = V1 = V2 = VBG =0and B=0.4 T, i.e,, when S
is in the normal state. Red (blue dashed) lines represent the best
fit obtained for a Breit-Wigner (BW) [43,57] line shape (thermally
broadened) CB resonance. (c) G, of resonance 1 at B = 0, i.e., when
S is superconducting. In addition to fits with a BW and thermally
broadened line, we also show the fit to a two-terminal expression for
resonant Andreev tunneling (RAT) [42].

lines in both N1 and N2, and when we apply the ac bias to S.
In addition, we find one dominant slope of the CB resonances
that react similarly to both side gates. There are only vague
hints at a more complex confinement potential, possibly due
to disorder or potential fluctuations on the substrate, e.g., a
slight conductance modulation with some features stronger
(weaker) in one (the other) arm, and slight changes in the
slopes or the spacing between neighboring resonances. The
electronic configuration we qualitatively deduce from these
findings is sketched in the inset of Fig. 12(a). In particular, in
the region studied in the main text, marked by an orange line
in Fig. 12(b), the assumption of a single QD is justified. In
Fig. 12(c), we plot the differential conductance in the normal
state of S along the yellow dashed line of Fig. 12(b), as a
function of the Vs and one side-gate voltage only. Here, we
also clearly observe the same diamond structure in both arms
of the device, further supporting this claim.

Next, we briefly demonstrate the fitting procedure to
determine the individual I'; of the contacts. In Fig. 13, the
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FIG. 14. (a), (b) G| and G, of device B as a function of the
side-gate voltages Vsg; and Vs, for Vs =V, =V, = Vg =0, at
B = 0.4 T. The orange line in (a) indicates the studied gate-voltage
region in the main text. Inset in (b): assumed electronic configuration
of the CNT device.

simultaneously measured zero-bias conductance G| = Gs
and G, = Gs of resonance 1 (main text) is plotted as a
function of the gate voltage Vsgi+2 in the normal state of the
device. Fits with a Breit-Wigner line shape for a three-terminal
device in the lifetime-broadened limit (kg7 < I') and in
the single-level transport regime (kg7 < U,8E) with the
gate-tunable position E of the resonance [43,57],

62 F,F]

Gi(E)=— ,
=7 (T1 4+ T2+ Ts)?/4 + (E — Ep)?

(AD)

agree very well with the data, and yield ' =T + T +
['s &~ 205 eV, I'sTy ~ 198 ueV?, and I'sT", &~ 7945 peV2.
From these equations, all parameters are determined for
I's > I';,I'>. This assumption can be directly justified from
a similar analysis of measurements with the bias applied to
N1, while measuring Gs = Gs; and G, = G, (not shown).
In addition, we show in Fig. 13(c) the zero-bias cross section
of resonance 1 at B = 0, i.e., for S being superconducting. As
described in more detail before [42], the resonance is more
narrow and better described by resonant Andreev tunneling
(RAT). However, the expression used in Fig. 13(c) [42] is
meant for two-terminal devices, and accordingly the extracted
parameters do not correspond in an obvious way to the ones
in the normal state.

2. Device B

Figures 14(a) and 14(b) show G and G, of device B as a
function of the side-gate voltages Vs and Vsgy, for the ac bias
applied to S, but with V5 = Vg = 0, and in the normal state
of the device at B = 0.4 T. In the conductance map of G, we
observe a single dominant slope which is tuned mostly with
Vsa1, suggesting a QD located between S and N1. In contrast,
G, plotted in Fig. 14(b) shows a very high conductance
with a weak and slow amplitude variation as function of
Vsaa, characteristic for a more open CNT regime with highly
transmissive contacts. In particular, G, never approaches zero.
Imprints of the resonances from G; can be observed in G,
which we ascribe to resistive and capacitive crosstalk [38,40].
Hence, we assume an electronic configuration of the CNT
device as schematically depicted in the inset of Fig. 14(b),
with a larger QD on the left side of the device mostly tunable
by Vsgi, and an “open” CNT lead to the right.
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FIG. 15. G, and G, of device C as a function of the side-gate
voltages Vs(‘,] and Vs(}z, for VS = V] = V2 = VBG = 0, atB=04T
[(a), (b)] and at B = 0 [(c), (d)]. White dashed arrows in (a) and (b)
denote different slopes consistent with resonances of QD1 or QD2.
The white rectangle marks the region studied in (c) and (d). In (c), the
orange line corresponds to the gate-voltage region studied in the main
text, and dashed lines denote the charge states of QD2 (even/odd).

3. Device C

In Fig. 15, G and G, of device C are plotted as a function
of the side-gate voltages Vsg; and Vsgy, for the ac bias applied
to S, but with Vg = Vg =0, for S in the normal state at
B = 0.4 T [Figs. 15(a) and 15(b)] and in the superconducting
state at B = 0 [Figs. 15(c) and 15(d)].

In contrast to devices A and B, a charge stability diagram
with anticrossings characteristic for a double quantum dot with
strong interdot coupling and hybridization is observed in the
normal state of S. In Figs. 15(a) and 15(b), the dominant
conductance lines with different slopes in G| and G, are
consistent with resonances of QD1 or QD2. An apparent
smearing of the resonances in every other charge state, both
for QD1 and QD?2, is due to pronounced Kondo ridges. In
particular, the broad resonances in Fig. 15(a) which we ascribe
to QDI indicate an odd-charge state with a Kondo ridge. This

PHYSICAL REVIEW B 96, 195418 (2017)

-1 -05 0 -1 -05 0
e /U e /U

FIG. 16. Model calculation for I's = 2 meV, U = 3 meV, and
I'y =T, =0.1 meV. (a) Shows Gg and (b) G, as a function of V;
applied to N1 and the QD orbital energy ¢/ U, for V, = Vs =0, as
in the experiment. To simulate a broadening of the AR, a temperature
of T = 0.5 K was assumed.

is more obvious when one closely inspects the region indicated
by a dashed rectangle in Fig. 15(a) in the superconducting state
of S, which is plotted in Fig. 15(c). Here, one observes a pair
of Andreev resonance lines in the even-charge state of QD2
(yellow arrow), corresponding to the two singlet-doublet GS
transitions observed in the odd-charge states of QD 1. These GS
transitions vanish close to the boundary and in the odd-charge
state of QD2, which can for example be seen by following
the Andreev resonances marked with a yellow arrow. In the
main text, we focus on Andreev states in QD1 for a fixed
even-charge state of QD2, but close to its charge degeneracy
point. The corresponding gate-voltage region is indicated by
an orange line in Fig. 15(c).

APPENDIX B: MODEL RESULTS FOR LARGE T'g

Figure 16 shows the model calculation of the differential
conductance according to Egs. (5) and (6) in the A — o0
limit for the same parameters as in Fig. 10, but with a twice as
large I's. This calculation reproduces at least qualitatively the
measurements in region R2 of Fig. 8(b), which shows the data
for a large-I's AR.
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