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We study the effects of a truncated band structure on the linear and nonlinear optical response of crystals using
four methods. These are constructed by (i) choosing either the length or velocity gauge for the perturbation and
(ii) computing the current density either directly or via the time derivative of the polarization density. In the
infinite-band limit, the results of all four methods are identical, but basis truncation breaks their equivalence. In
particular, certain response functions vanish identically and unphysical low-frequency divergences are observed
for few-band models in the velocity gauge. Using a hexagonal boron nitride (hBN) monolayer as a case study,
we analyze the problems associated with all methods and identify the optimal one. Our results show that the
length-gauge calculations provide the fastest convergence rates as well as the most accurate spectra for any basis
size and, moreover, that low-frequency divergences are eliminated.

DOI: 10.1103/PhysRevB.96.195413

I. INTRODUCTION

The optical response of crystals is essential for countless
technological applications of solids as well as for charac-
terization of materials. In semiconductors and insulators,
optics provide access to important features of the band struc-
ture, including band gaps and transitions at high-symmetry
points [1,2]. The optical response can be characterized by
the linear response as well as various nonlinear responses,
e.g., second-/third-harmonic generation (SHG/THG), optical
rectification (OR), sum-/difference-frequency generation, etc.
[3]. Several nonlinear optical (NLO) phenomena have impor-
tant scientific and technical applications at energies ranging
from the terahertz to visible wavelengths such as in laser
technology, optical communication, biomolecular detection,
and surface characterization [3,4]. The interest in NLO
processes has recently grown dramatically due to the large
response and exotic phenomena observed in two-dimensional
(2D) materials such as graphene [5-10], hexagonal boron
nitride (hBN) [11-14], and transition-metal dichalcogenides
[15-19].

From a theoretical point of view, a reliable method for
the computation of linear and nonlinear optical response
functions based on the material band structure is crucial. For
the linear optical response, such calculations are now routinely
performed, and excellent agreement with experiments is
obtained (see, e.g., Ref. [2]). However, the calculation of the
NLO response of crystals remains an open subject as various
methods for calculation, e.g., the choice between length
and velocity gauges, frequently generate different results
[20-33]. An extreme example of these differences emerges
when considering systems whose electronic properties can be
captured accurately by a two-band Hamiltonian, e.g., hBN
[12,34] or the low-energy properties of biased bilayer graphene
[13,35,36]. In such systems, the evaluation of the second-order
(in fact, all even-order) response in the velocity gauge is
identically zero at all frequencies, whereas the equivalent

“ata@nano.aau.dk

2469-9950/2017/96(19)/195413(10)

195413-1

calculation using the length gauge leads to finite results
[12,14]. Moreover, computing the NLO response in the length
gauge is significantly more complex than in the velocity
gauge due to the appearance of generalized derivatives (GDs)
[12,23,24].

In spite of the above-mentioned complexity, the linear
and second-order conductivity expressions in the length-gauge
approach can be derived from the expressions in the velocity
gauge by a procedure explained in Ref. [22]. However, the
procedure is exact only for an infinite number of bands.
Identical length-gauge expressions were subsequently derived
using an elegant and simple commutator-based approach in
Ref. [23]. More recently, it has been shown that gauge
invariance is upheld for any order of perturbation if a complete
basis set is used for both calculations [32]. However, for many
practical reasons, both analytic and numerical approaches to
the calculation of the optical response rely on truncated basis
sets that break the gauge invariance. The influence of basis
truncation on the optical response in length and velocity gauges
was discussed recently in Ref. [32], where it was predicted
qualitatively that at low frequencies, the contributions from the
omitted bands in the velocity gauge could be considerable. The
gauge freedom, however, is not the only source of differences
between commonly used computational approaches. Hence,
different choices exist for the observable providing the optical
response. Moreover, the GD in length-gauge calculations can
be evaluated by its definition but also circumvented using an
approximate sum rule presented in Refs. [23,37].

In this paper, all of these alternatives will be examined,
emphasizing the effects of basis truncation for a real material
(hBN) and in a broad frequency range. Hence, we compare four
computational approaches to the optical response, including
the linear optical conductivity (OC), OR, SHG, and THG of
periodic systems, and study the convergence of each approach
as a function of basis size. The four methods consist of
the combinations of two choices of gauge, i.e., length and
velocity gauges, and two ways of computing the current-
density response: direct evaluation of the current density and
evaluation via the time derivative of the polarization density.
In addition, we investigate the effects arising from evaluating
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FIG. 1. (a)Illustration of a 2D honeycomb lattice with a two-atom
unit cell, i.e., a boron atom (green) and a nitrogen atom (blue), and
the primitive vectors a; and a,. (b) The first Brillouin zone (BZ) with
primitive reciprocal vectors b; and b,. The shaded region shows the
integration area used in this work, which is equivalent to the first BZ.

the GDs by the above-mentioned sum rule for a truncated
basis set. We choose monolayer hBN as a test case due
to the simplicity of the band structure and the pronounced
two-band character of the material. In order to have access to
a variable-size basis set, we use an empirical pseudopotential
Hamiltonian [38,39] that reproduces the low-energy properties
of hBN monolayers [12,34]. We find that the length-gauge
approach generates the most accurate results among the
considered methods for any basis size. Moreover, we study
the effect of basis-set truncation on the unphysical zero-
frequency divergences plaguing velocity-gauge calculations
[21-23]. Thus, our results provide guidelines for choosing
the optimal computational method for the optical response
based on a truncated band structure. This is essential in cases
where the number of available bands is typically limited
such as tight-binding (TB) models. Similarly, many-body
calculations employing the Bethe-Salpeter equation frequently
rely on a truncated band structure (see, e.g., Ref. [17]) due
to the computational complexity. In both cases, an optimal
combination of gauge and observable is crucial.

This paper is organized as follows. First, we present the
pseudopotential approach for computing the electronic band
structure of hBN using the energy dispersion of a two-band
TB model for parametrization. Then, the dynamical equation
of motion is reviewed in Sec. III, and its perturbative solution
is derived up to the third order. Based on this solution, we
numerically compute and compare the linear, SHG, OR, and
THG conductivity spectra for the hBN monolayer using the
four above-mentioned approaches and analyze the influence of
basis truncation on the calculated spectra. Finally, a summary
of results is presented in Sec. V.

II. PSEUDOPOTENTIAL HAMILTONIAN

The hBN monolayer is a 2D crystal with a honeycomb
lattice consisting of two different atoms per unit cell as
depicted in Fig. 1(a), with primitive lattice vectors a; =
a(«/gex +e¢,)/2 and a; = a(\/§ex —e,)/2, where a is the
lattice constant related to the interatomic distance ag via a =
V3ag (ap = 1.45 A for the hBN [12,34]). The first Brillouin
zone (BZ), associated high-symmetric points, and primitive
reciprocal vectors b; and b, are illustrated in Fig. 1(b). It
should be noted that, throughout the text, all vectors are
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TABLE 1. Pseudopotential form factors (in eV) for monolayer
hBN obtained by fitting the band structure to a TB model [34]. The
reciprocal vectors G are normalized by 27 /a.

IG?
4/3 4 16/3
Ve 10.785 1.472 78
Ves 8.007 0 3.697

indicated by bold letters, and Greek subscripts and superscripts
denote the Cartesian components of vectors and tensors.

The characterization of the electronic properties of the
system is based on an empirical pseudopotential Hamiltonian
[38—40]. In this method, the real potential that governs the
motion of electrons in the system is replaced by a simple
effective potential, the pseudopotential, which lumps together
the effects of core electrons as well as crystal nuclei [2]. By
writing the Hamiltonian eigenstates as ¢(r) = exp(ik - r)u(r),
with a crystal momentum k and lattice-periodic function u(r),
the Schrodinger equation is transformed into an eigenvalue
problem in reciprocal space as [38]

hZ
) [%ﬂ( +G*s¢e + VG—G’:|MG’ =Eug, (1)
Py

where G and §g represent the reciprocal lattice vectors and
Kronecker delta, respectively. The Fourier coefficients of the
pseudopotential in the reciprocal space read Vg, while ug
and E denote the eigenvectors (the Fourier coefficients of u)
and eigenvalues, respectively. The Fourier coefficients of the
pseudopotential Vg can be decomposed into symmetric and
antisymmetric parts, the so-called form factors V(S; and V45,
as [38]

Vg = V(S; cos(G - 1)+ iVés sin(G - 1), )

where 27 = a/ ﬁex is the vector connecting the two atoms
in the unit cell.

We limit the calculation of the form factors to the first four
smallest |G| with squared magnitudes of 0, 4/3, 4, and 16/3
[normalized by (27r/a)?]. The value of V§ is not important
since it only shifts the energies, while the antisymmetric form
factors for |G|?> = 0 and 4(27/a)?> are not important since
G - T is zero or £, respectively. In addition, we adopt the
spherical approximation for the pseudopotential [38], which
reduces the total number of unknown form factors to five:
three symmetric and two antisymmetric form factors. The form
factors used for the hBN monolayer are presented in Table I.
These were determined by fitting the pseudopotential band
structure to the low-energy part, i.e., the vicinity of the K and
M k points, of the TB band structure for the hBN monolayer
[12,34,41] employing a nearest-neighbor hopping integral of
¥o = 2.33 eV and on-site energies of +3.9 eV.

In Fig. 2, we compare the energy dispersions of the
pseudopotential and TB Hamiltonians. The pseudopotential
Hamiltonian reproduces accurately the energy dispersion in
the vicinity of the K and M points but deviates from the TB
model at the BZ center, i.e., the I point, similar to the ab initio
calculations of Ref. [34]. In this paper, we have employed 43
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FIG. 2. Band structures of the hBN monolayer computed by the
two-r-band TB model (red) and the pseudopotential Hamiltonian
(blue). The TB parametrization follows Ref. [34], and the pseudopo-
tential Hamiltonian is parametrized according to the form factors
presented in Table I, using a total of 43 reciprocal lattice vectors
for the eigenvalue problem [Eq. (1)]. Three important transition
energies are defined: at the band gap E, = E,(K) — E(K), van
Hove (vH) singularity E\y = E,(M) — E{(M), and E3, = E;(M) —
E (M), where E; denote the energy of the ith band.

reciprocal lattice vectors, which generates a total of 43 bands,
41 of which have dispersions above the TB conduction band.
This large number of bands allows us to study the convergence
of the optical response as a function of basis size, i.e., the
number of bands used in the calculation. The band gap and van
Hove transition energies are £, = 7.78¢eV and E\y = 9.04 eV,
respectively, while the transition to the second conduction band
occurs at an energy of E3; = 20.4 eV (see Fig. 2).

III. CURRENT-DENSITY RESPONSE

Here, we briefly review the calculation of the optical
response of a periodic system in equilibrium under the
influence of an external electromagnetic field. The periodic
system is characterized by an unperturbed Hamiltonian H,
and an external time-dependent perturbation V(¢), such that
the total Hamiltonian reads H = Hy + V (¢). The unperturbed
Hamiltonian H, leads to the pseudopotential eigenvalue
problem (1). The form of the external potential depends on
the gauge choice, and in the length gauge V(t) = ef - &,
whereas in the velocity gauge, V,(t) = e(p - A + e.A?/2)/m.
Here, £ and A are the electric field and vector potential,
respectively. Both choices have their merits and shortcomings
in the context of periodic systems. The latter benefits from
the fact that the matrix elements of the momentum operator
are easily computed but is plagued by spurious divergences
since the electric field has to be mapped to the vector potential
via &€ = —9.A/9t. In contrast, the former requires a more
elaborate calculation of the optical response but circumvents
the unphysical divergences at zero frequency [23]. Throughout
this work, the external electromagnetic field is defined by its
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TABLE II. Four methods for computing the current-density
response and their respective labels. The methods arise from the
combination of gauge freedom and choice of physical observable
under consideration, i.e. direct evaluation of the current or the time
derivative of the polarization. Here, £, p, £, and A represent the
position operator, momentum operator, electric field, and vector
potential, respectively.

label V() J(t) o

A £-E tr{p 5(1)}

B A atr{d p(r)}/ot
C p-A+eA’)2 tr{(p + e A) p(1)}
D p-A+eA?/2 ate{E p(r)}/ot

decomposition into harmonic components,
E(t) =~ Z Z eaCalwp)e™ ", 3)

where the p summation is performed over both positive and
negative frequencies.

The optical response calculation relies on the eval-
uation of the time-dependent density operator, A(t) =
D m Pmn(®)|m)(n|, governed by the quantum Liouville
equation i/idp(t)/ot = [ﬁ,,é(t)]. This equation is solved
perturbatively (see the Appendix for details) to obtain the
optical response either by evaluating directly the expecta-
tion value of the current-density operator, J(t) = tr{J p(0)},
or by computing the time derivative of the expectation
value of the polarization-density operator, J(¢) = aP(¢)/0t =
atr{P o()}/ot [12,42]. Here, the current- and polarlzatlon-
density operators read J = —egp/(mA) and P = —egi/A,
respectively, where g =2 accounts for the spin degeneracy
and A is the crystal area. The combination of two gauges
and two ways of evaluating the current-density response leads
to a total of four approaches to compute the response, as
summarized and labeled in Table II. Below, we briefly discuss
the important details regarding the calculation of linear and
nonlinear current-density responses in these four approaches
using the perturbative expansion of the density matrix.

The evaluation of the density-matrix elements and direct
calculation of the current-density response in the velocity
gauge are a rather straightforward problem since the momen-
tum operator is a well-defined operator in periodic systems.
In contrast, both the perturbation evaluation in the length
gauge and the calculation of the polarization density involve
the ill-defined (in periodic systems) position operator f. In
spite of the prima facie problems associated with the position
operator, it has been shown in Ref. [23] (and references therein)
that the optical response can be computed in this gauge by
separating formally the interband and intraband parts of the
position operator as £ = £ + £,

r9) = (Gl Puie) = (1 = 8m) Sk Ry (4a)
r9) = (Gl 1Pmk) = Sum(Run + i Vi)Skk,  (4b)

where the generalized Berry connections are defined as

Sznm = (unklivk|umk> =
uc

/ wh Vimd®r,  (5)
uc

195413-3



ALIREZA TAGHIZADEH, F. HIPOLITO, AND T. G. PEDERSEN

with the cell-periodic functions u,x and unit-cell area A,.
To simplify the notation, we frequently suppress the explicit
dependence of quantities on the wave vector. The interband
matrix elements of position and momentum operators are
related by imR,,,, = Apum/Enm [43] for n £ m, where E,,,, =
E, — E,. In addition, the intraband part of the position
operator leads to the appearance of the GD, denoted typically
by (). [23,24]. For any simple operator (diagonal in k) O the
following expressions are then derived [23]:

(Durl BV, Ol i) = i 8kt (O (6a)
(Onm);k = Vk Onm - i[szrm - SZmm]Onm (6b)

In addition, by virtue of the canonical commutation relation,

e., [#%,pP] = iRdyp, and by separating the interband and

intraband parts of the position operator, a sum rule is derived
for the GD:

WPl Pl Db,
(Phn) g = FBapSoun + — Z[ Eml,l - Ez,i I ]

(N
where we introduce §,; = 1 — 8,,;. An equivalent procedure
was used for the GD evaluation in Refs. [23,24,37]. The
basis truncation breaks this sum rule, thus opening a door for
an additional convergence problem, as discussed in Sec. IV.
Making use of the perturbative solution of the density matrix,
Eq. (A2), and the above-mentioned results, we evaluate the
current density up to the third order in the electric field strength.

We begin by addressing in detail the four possible methods
to compute the linear response. Without loss of generality, the

first-order current density J;])(t) reads

J V@) = Z Z o D(wp)Ea(wp)e™ ", 8)

The different methods of calculation lead to four conductivity
tensors om , defined as

pnn Ofn

A _ pnmgmn
= C, — 9a
e kz ~ iy, 9k’ Oa)
n#m
B() _ pnmgmnhw[’ m 8En 8ﬁ1
=C. - C; , (9b
e kZ 2 o, 9 oke” O
n#m
A o . 82
ol =, Y PomSmn y IBE (9c)
e hwp, 2mAycwp
O_)Z(l) = O_A(l)_ (9d)
Here, f,., = f — fm, With f, = f(E,)being the Fermi-Dirac
g

distribution, and the summation over k implies an integral
over the BZ, ie., 2m)? Y, — A [, dk, with D being
the dimension (D = 2 for hBN). Also, the indices m,n,l €
{1,2, ...} run over all the bands, and the constant coefficients
C. and C; and variable g7 =~ are defined as
L) o

F_igeh o _ JwmPan g
m  2m*A° """ hw, — Eg,
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Similarly, the second- and third-order current-density re-
sponses are determined by

J20) = Z Z Umﬂ(wp’wq)ga(wp)gﬂ(wq)e—i(w,,w‘,)t7

rq ap
(11)
T0 =) ol (@p.0q,05)
P:q,s afy

x Eg(@p)Ep(wy)E, (wy)e  @reated (1)

Given their complicated form, the expressions for the quadratic
and cubic conductivity tensors can be found in Egs. (A3), (A6),
and (A7) in the Appendix.

To characterize the dependence of the optical response on
the number of bands (including both valence and conduction
bands) Nj, we define a convergence measure that quantifies the
difference with respect to the evaluation with a large number
of bands. In our calculations, the reference number was set
to Nies = 20. For the quantification, a fruncation inaccuracy
A(Ny) is defined as

’N - 9Nre 2
A(Ny) = <|0(a)<|:()w71\(;(3|2> )l )7 13)

where ([o(@)*) = [ |o(0)*do/(0; — »;), with w; and o
being the integration bounds.

IV. RESULTS AND DISCUSSION

In this section, we address the dependence of the optical
conductivity and several nonlinear processes on the basis
truncation. Given the symmetry properties of the honeycomb
lattice for hBN and restricting the external field to the in-plane
directions (the crystal plane), it is sufficient to consider the
diagonal components of the first-, second- [14], and third-order
[44] conductivity tensors, namely. o'l 0@ | and 0@ . It
should be noted that to ensure an adiabatic turn-on of the
field, a positive infinitesimal value, n = 0™, should be added
to the frequency, i.e., w, — wp, + in. Throughout the paper,
we set/in = 0.03 eV to account for line broadening. Regarding
the integration over the BZ, we discretize the rectangular
area of Fig. 1(b), which is equivalent to the first BZ, by
at least 140000 k points. We start by presenting results for
the linear response (optical conductivity), then proceed to
the second-order interactions SHG and OR and, finally, the
third-order response. At the end, we compare quantitatively
the truncation inaccuracy of the computed linear and nonlinear
spectra.

A. Linear response

From the onset, Egs. (92)—(9d) show that in the presence of
time-reversal symmetry the nondiagonal components vanish
[45]. The results obtained from methods D and A are
equivalent, and neither introduces unphysical divergences in
the evaluation of the current-density response of cold insulators
[23]. In addition, A" can be shown to be formally equivalent
to 0B regardless of the basis size. The intraband parts of
oA and oBD are identical simply due to the well-known
result mdE, /dk* = lip?, [46]. The interband part of oA
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FIG. 3. OC spectrum of the hBN monolayer obtained from
methods A (blue) and C (red) for N, =2 (solid lines), N, =5
(dashed lines), and N, = 10 (dotted lines). The values are normalized
to 07 = e*/4h = 6.0853 x 107> S. The black dotted lines indicate
ho = {E,, E}.

can be rewritten as

fgmg;(qu Ce lfltmg;):’ll’l
C E —_— = = E — + M m
¢ En 2 E (n )

k,n,m k,n,m

n#m n#m

fl1m|pf:m hwp
ce Z Enn  (hw,)? — E

| 2

. (14)

k,n,m mn

n#m

where in the first line (n <> m) indicates that the preceding
term should be written with exchanged dummy indices n and
m. By the same token, the interband part of o5 can be
rewritten as Eq. (14). With respect to the result derived with
method C, it has been shown in Ref. [22] that the expression
of method A, Eq. (9a), can be derived from the expression for
method C, Eq. (9c), by means of a sum rule. This sum rule is
exact if and only if a complete basis set is used [32].

The truncation of the basis set breaks the equivalence
between A and C, leading to deviations between the optical
response computed in these two methods. In Fig. 3, we
compare the frequency dependence of the OC magnitude
computed with methods A and C for three basis sets, N, =
{2,5,10}. The variation of the length-gauge results is quite
small and not visible on the scale of Fig. 3. In contrast, the
velocity-gauge response oV is strongly dependent on the
number of bands. In particular, the zero-frequency divergence
is strongly suppressed with increasing N;,. Notwithstanding
this strong suppression, the zero-frequency divergence remains
present for any finite basis set. In addition, the features
associated with the band gap and van Hove (vH) singularity
also converge to the results computed using the length gauge.

PHYSICAL REVIEW B 96, 195413 (2017)

6
hw (eV)

FIG. 4. SHG spectrum of the hBN monolayer obtained from
methods A (blue), C (red), and D (green) for N, = 2 (solid lines)
and N, =5 (dashed lines). The values are normalized to o, =
e3a/8yoh = 3.2797 x 107 Sm VL. The black dotted lines from
left to right mark 2hw = E,, 2hw = Ey, iw = E,, and fiw = Ey,
respectively.

B. Second-order response

The conductivity tensors for the four methods are shown in
Eq. (A3). Based on these expressions, we numerically demon-
strate the equivalence of Eqs. (A3a)-(A3d) for a large basis
set. It should be mentioned that one can derive the expression
of method A from method C by a procedure that includes
separating the interband and intraband terms as demonstrated
in Ref. [22]. However, the procedure is exact only if an infinite
number of bands is employed. Figure 4 illustrates the SHG
conductivities 0 (w,w) for two representative sizes of the
basis set, namely, N, = {2,5}. The results obtained by method
B are numerically identical to those of method .A and hence
are omitted. Considering the response in the vicinity of the
lower-energy features, i.e., 2w < E,g, our results show that
the calculation based on method A exhibits a small dependence
on the basis size. In striking contrast, both methods C and D
present highly different results. The former is identically zero
for all frequencies since, for a two-band model, the integrand
of Eq. (A3c) is an odd function of k due to time-reversal
symmetry. It should be emphasized that the zero response
of method C for the two-band model is a consequence of
an oversimplification rather than a physical symmetry of the
problem. Regarding the response in method D, it is nonzero but
exhibits a zero-frequency divergence and does not reproduce
the SHG features associated with 2/iw ~ {E,, E\y}. At higher
energies, fiw ~ {E,, E\u}, the responses computed with the
four methods show strong variations with the increase of N,.
Itis important to note that this variation arises from interactions
between the valence band and the second conduction band, i.e.,
2hw ~ E3; (see Fig. 2). Hence, the deviation of the spectra in
this frequency range should not be considered a convergence
issue. Rather, it is a consequence of the limited frequency
range, for which the two-band model is applicable.
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FIG. 5. OR spectrum of the hBN monolayer obtained from
methods A (blue), C (red), and D (green) for N, = 2 (solid lines)
and N, = 5 (dashed lines). The values are normalized to o, (see the
Fig. 4 caption). The dotted lines from left to right indicate 2/iw = E,,
2hiw = Ey, hw = Ey, and iw = Ey, respectively.

The basis truncation also affects the calculation of other
second-order processes such as OR, 02 (w, —w), as illustrated
in Fig. 5. The OR results are similar to those obtained for SHG,
but given the fact that the OR conductivity does not contain
a 2hiw — E., term in the denominator, the response starts at
hw ~ E,. In this case, the most significant differences appear
in method C, where, similar to the SHG process, the two-band
calculation yields a zero response regardless of the external
photon frequency. Moreover, the results generated by method
D feature once more a spurious zero-frequency divergence,
which is suppressed gradually by including more bands in the
calculations.

For the results in Figs. 4 and 5, we evaluate the GDs
appearing in Eqs. (A3) by employing the definition, Eq. (6).
However, as pointed out in Sec. III, one may employ the sum
rule, Eq. (7), for evaluating the GDs present in the intraband
parts of 04?, ¢B@_and ¢P®. Following this substitution,
up to machine precision, all three methods generate SHG and
OR spectra identical to those of method C for any size of
basis set. This means that, for a two-band model, the length-
gauge approach produces identically zero response similar to
the velocity gauge if one uses the sum rule for evaluating
the GD. Thus, the choice between exact and approximate
implementations of the GD is of considerable importance for
a truncated basis set.

C. Third-order response

Here, we limit our analysis to the effects of truncation
in the calculation of THG, ¢&) (w,w,w), via methods A
and C. In Fig. 6(a), we compare the THG conductivity
computed by both methods for three values of N,. The
THG results follow the trends observed in the linear and
quadratic responses. First, the results computed via method
A display only a weak dependence on the size of the truncated
basis. Second, the velocity-gauge results exhibit strong zero-
frequency divergences that decrease, although slowly, with the
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FIG. 6. (a) THG spectrum of the hBN monolayer obtained from
methods A (blue) and C (red) for basis sets with a size of N, = 2 (solid
lines), N, = 5 (dashed lines), and N, = 10 (dotted lines). The val-
ues are normalized to o3 = e*a?/16y2k = 1.7675 x 1072 Sm? V-2,
The black dotted lines from left to right mark 3/iw = E,, 3hiw = Ey,
2hw = E,, and 2liw = E,jy, respectively. (b) THG spectrum of the
hBN monolayer (on a log scale) obtained from method A by the
direct evaluation of GD [Eq. (6); dark blue solid line] for N, = 2 or
by employing the sum rule [Eq. (7); light blue lines], labeled as A,
for N, =2 (solid line), N, = 3 (dashed line), and N, = 5 (dotted
line).

increasing number of bands. Compared to the linear response,
the divergence at zero frequency in method C in the third-order
spectrum is stronger, i.e., as 0> vs @~

In Fig. 6(b), we compare the THG spectra obtained with
method A either by calculating the GDs directly using
Eq. (6) or by employing the sum rule (7), labeling the latter
approach as A’. The spectra are plotted on a log scale to
be more illustrative. For N, = 2, the results show that the
approximate GD from Eq. (7) overestimates the response in the
frequency range of 3fiw ~ {E,,Eyu} and 2fiw ~ {E4, Eyy}.
By increasing N, to 3 and then 5, however, the 2-5 eV
features of method A’ converge to those of method A. Even so,
the low-frequency response in A’ still deviates considerably
from method 4, which demonstrates the need for a large
basis set. As in the SHG case, it should be noted that the
high-frequency (fiw > 5 eV) deviation can be attributed to
transitions involving higher conduction bands and hence is of
less importance.

195413-6



LINEAR AND NONLINEAR OPTICAL RESPONSE OF ...

wr
(a) (b) (©
107! 107"
! 4
= 3 = 3 ;Q
4 10 4 10 =
X -
107 107 !
2 4 6 8 10 2 4 6 8 10
Nh Nb

PHYSICAL REVIEW B 96, 195413 (2017)

Y (d)
107! 107!
| 4
——A
) = C
103’ 4 103 -
< —~-D
A/
107 107
X
2 4 6 8 10 2 4 6 8 10
Nh Nb

FIG. 7. Truncation inaccuracy A(N,), defined in Eq. (13), for the four processes under consideration, namely, (a) OC, (b) SHG, (c) OR, and
(d) THG, obtained by employing methods A (blue), C (red), and D (green). Method A’ (light blue) indicates the modified A, for which the GDs
are approximated by Eq. (7). Reference results are computed with N, = 20. The lower spectral limit for the analysis is set at iw; = 0.1E,,

and the upper limits read (a) hiw; = 1.5E,, (b) iwy = 0.7E,, (c) hiwy

D. Convergence analysis

Figures 7(a) to 7(d) show the truncation inaccuracy A(Np)
defined in Eq. (13) as a function of basis size N, for
linear, SHG, OR, and THG responses of monolayer hBN,
respectively. Since the two length-gauge approaches 4 and
B generate numerically identical spectra for all linear and
nonlinear processes, the truncation inaccuracy of method
B is omitted. Note, however, that method B typically re-
quires additional efforts compared to A in its numerical
implementation due to the additional position operator. The
convergence behavior of all four investigated linear and
nonlinear processes is qualitatively similar. For instance, the
length-gauge approaches with the direct evaluation of GDs
converge faster with respect to the basis set size than the
velocity-gauge methods, i.e., C and D, in all cases. If the
sum rule of Eq. (7) is employed to evaluate the GD appearing
in methods A, B, and D, the truncation inaccuracies will be
identical to that of method C for the second-order responses.
Moreover, the truncation inaccuracy computed in the velocity
gauge, method C, increases significantly for the third-order
response due to the strong zero-frequency divergence. Also,
for the third-order responses, the modified A method, A,
generates more accurate spectra than method C when at
least three bands are used in the calculation. Nevertheless,
it underperforms when compared with the original method .4
for all basis sizes considered.

V. SUMMARY

In summary, we have investigated the effects of basis
truncation on several linear and nonlinear optical response
functions, including the OC, SHG, OR, and THG. The
conductivity tensors were derived and compared using four
computationally different approaches. These result from com-
bining two choices of gauges and two ways of evaluating
the current density, i.e., directly or via the polarization.
For the OC, the equivalence of all four methods has been
demonstrated analytically provided a complete basis set is
used, whereas for the NLO response, we have demonstrated it
numerically by employing a large basis set in calculations.
The length-gauge approaches, i.e., tensors labeled with A

= 1.5E,, and (d) fiw; = 0.7E,.

or 3, generate the most accurate spectra, compared to the
velocity-gauge approaches, particularly for small basis sets.
In addition, it has been shown that the choice of method to
compute the GD is crucial as the evaluation based on the sum
rule, Eq. (7), may result in degrading convergence. Finally,
although the well-known zero-frequency divergences in the
velocity-gauge responses vanish by increasing the size of basis
set, the calculated spectra are far less accurate than the ones
generated by the length-gauge methods. Our results shed light
on the source of the differences arising from several commonly
used computational approaches to the linear and nonlinear
optical responses.
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APPENDIX: NONLINEAR CONDUCTIVITY TENSORS

1. Perturbative density matrix

The equation of motion can be solved by employing a
perturbative approach and expanding the solution as a power
series of the perturbation: p,,(1) = Y %o oM (1), where
pN(1) at order N is determined iteratively from the previous
order via

1
(N)t = —
Py (1) l.h/

—0Q

t

V"), pN D) e B0y (A1)

In the absence of any perturbation, the system is at equilibrium,
and its density-matrix elements are determined by p¥) =
Omn fn. Hence, by integrating Eq. (Al) for a set of time-
harmonic perturbations, V(t) =1/2 Zp V(w,,) exp(—iwpt),
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the first three terms read [3]

mn(w ) _1(1)
(@) = Z Fum e, (A2a)
mn
@ (1) = Z Z e tenten Jat Vi (@) Vin(@p) — fim Vit (@p) Vin(@,) azb)
Pmn Fl(a)p + C()q) — mn ﬁa)p — Eln hwp _ Eml s

p(3)(t) — l Z Z e—l(wp-i—wq-‘rwj)t { ij(wp) |:fnlvjl(wq)vln(ws) . fljvjl(ws)vln(wq)i|

Py hw, + w; + ws) — E h(wg +w;) — E hog — Ep, hos — Ej

Vln(wp) I:fjmvmj(a)s)vjl(wq) _ fljvmj(a)q)vjl(ws):H (A2¢)
Eml ’

h(wy + wy) — hog — Ey;j hog — Ej

where V,,,,, are the matrix elements of the perturbation, i.e., V,,,(w) = (m| V(w)|n). Two choices of gauge are employed for the
perturbative Hamiltonian V, i.e., V; and V), as defined in Sec. IIL.

2. Second-order tensors

Here, we show the tensor expressions derived for the four methods in Table II using Eq. (A2b). The expression for method
C is obtained straightforwardly since it contains only the matrix elements of the well-defined momentum operator. For methods
A, BB, and D, the position operator has to be separated into its interband and intraband parts, and it should be treated carefully,
as outlined briefly in Sec. III and in detail in Ref. [23].

A a B _ou B A o
J}fx(;)(wpswq) =C,, Z - Pum (ghlnpml gmlpln) +C, Z . Pum <gmn )
K.nm.l mi Einl (wP + wq) — E, Ko (wp + wq) — Epn \ Emn kb
n#l#m n#m
A B A 2
- mn 3 nm nn a n
+ Ci. Prm Pmn fa + C;; Z P ﬁf 2’ (A3a)
o Epplli(wp + wg) — Epyl hw, 0k — h(wp, + wg)(iw,) 0kPOk
n#m
BQ2) _ fi(wp + ©g) Py (gz{ipiz - grovlzlplﬁn) —i(@p + @) Py 8mn
Orap (@p,@q) = Coe Z E EE.h I + Ci. 5 h £ E
Konm.l mntmi ln[ (U)p + wq) - mn] Kom mn[ (wp + a)q) - ] mn /J kP
n#Em#l#n n#m
—h(w, + o )g,‘fm(me).kx —h(w, + o, )p}‘ me 0fum
+ Cie P2 q 5 X Z > P q/Fnm =, (A3b)
o 2E; hwg + Epy E; [h(w, + w,) — Ep,] ho, 0k
n#m n#m
UACoE/ZS)(wP"“q) = Cee 1 Pan (gzll’ﬁl - gfrtllp;i)’ (A3c)
(hwp)(liwy) N hwp + wg) — Epn
o o o /3
D(2) _ o oyt ) Phm (81,.17511 - gmlplﬂn) o, + w,) 8mn(l’nm);kx
Tiap (Pp:0g) = Cee pom ™ h(w, + wg) — E Ce o) 2= T + Epy’ (A3d)
P 4 k,n,m,l p 4 mn 4 q k,n,m 9q mn
n#m
where g% has been defined in Eq. (10) and the constants C,,, C;., and C;; read
i h2 3h2
Cee = Cro = Ciimy = 2 (A4)
m m?2  4m3A

The expression for tensor om(ﬂz) consists of four terms: one purely interband contribution, two mixed interband-intraband

contributions, and one purely intraband contribution. By the same token, similar interband and intraband contributions in o, (ﬂ)

can be identified. In contrast, the interband and intraband contributions are not separated in the expression for Gmﬂ , and they
are only partly divided in o,, ﬂ) due to the presence of # in the current-density operator. For a cold, intrinsic semiconductor,

the terms including derivatives of the band population f, vanish, e.g., the last two terms of o A( ) and the last part of B(Z).

The conductivity expressions in Eqgs. (A3) can be symmetrized with respect to the frequenmes and indices by performlng a
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permutation [24]. In deriving the conductivity tensors, the following useful expressions that can be derived from Eq. (6) have been
used:

lgin’ll’(fnk - fmk’)r,(;;)n = i8ankfnv (ASa)

[rgzlr)l - rgriz)m]pgm = iSkk’ (pgm);k' (ASb)

Finally, the GDs appearing in Eqs. (A3a), (A3b), and (A3d) can be computed either directly from the definition (6) or by using
the sum rule (7). For the latter, the chain-rule property of the GD and an additional expression, (E,,,)xe = A(pS,, — D&,)/m, are
utilized [23].

3. Third-order tensors

The third-order conductivity tensor components af,? , are derived by inserting the length- and velocity-gauge perturbative

Hamiltonian into the density-matrix elements of Eq. (A2c). Here, we present only the conductivity tensors obtained in methods

A and C. As in the case of the second-order tensor, O’fo([;)y is obtained straightforwardly as

Yy B Y B
Pin (gmjpjl - gjlpmj’)
hwy — Eny

vy B y B
O'C(3) (CU w, a)_y) = Cee€ 1 pim |:pf(”] (gl”pjl _ gjlpln)
e (wp)(hwg)hey) | o= oy — Ep | han — Ejy

} . (A6

where we introduce the coefficient C,,, = ge4h3 /(i8m*A) and auxiliary variables wr = w; + wy, w3 = W, + w0y + w;, Sin =
FumPhon/(hewg — E,.y). On the other hand, the calculation of crfx(;’}), requires dividing the ill-defined position operator into interband
and intraband parts. The resulting eight different combinations of interband and intraband terms, denoted by eee, eei, eie, eii,

iee,iei,iie,and iii, are given by

A3 (3,eee) 3,eei) (3,eie)

(B.eii) 3

(3,iie) (3,iii)

) — ( Jiee) (.iei)
Glaﬂy(wp’wq’wS) = Okaﬂy + Uxaﬂy + OAaﬂy + Okaﬁy + Uxa/fl};)/e + Gxaé(; + Okaﬂy + G)Laﬂy ’ (A7a)
B B B B
oo, Y P pei el —eiph)  pi(eh Pl — &hph;) (ATH)
hapy T eee i hiws — Epp | EmjEj1En(han — Ej)  EpjEjiEpp(hwy — Ep) |
nFl#j#Fm
. 1 _ a B af a B af
(3,eei) =C., Z Pum PmiPin nl PinPmi ml (A7C)
rapy " R, & EnEn(hiws — Eyy) [ hwy — Eyy 9k Tiwy — Eyy 0k7 ’
sh,m,
n#l#m
. A o /E 14 o /E 14
0_(3,616) =C Z Pum Pt ml gi _ Pin In M (A7d)
rapfy e X ! ha)S - Emn ha)Z - Eln Eln kB th - Eml Eml kB '
Jn,m, i ?
n#l#+m
(3,eii) — C 1 p;){mp;xnn/Emn 82fnm (A7€)
reBy = o Y (an) = (hws = Eyn) okBaky’
n,;é'm
A y B y B
3,iee) __ Pum 8inPmi — 8miPin
o =(; , A7
repy e kZl |:hw3 - Emn:|.ku EEy(hwy — Epp) (ATD
Ln,m, >
n#l#m
U(3,iei) — C L Z _p;){m p}’f’m/Emn afmn (A7g)
T T heg e hws = By iy — By 9k7 ]
Jn,m E
n#m
A 14
3.ii p -1 g
oy, = Cite o — ) (ATh)
o haws — Eypn ke hawy = Eyn \ Enn b
n’yﬁ’m
1 2 f,
(3,iii) __ A n :
o =Cjj — M — S ATi
s’ = Cit oo Syt 2 o) Siegisas (A7

k,n

where Cj.fi/m = Ci;joh*/m* = C;;;h*/m> = C,.. and integration by parts has been used in the X summation when deriving
Egs. (A7f) and (A7h). It should be noted that Eqs. (A6) and (A7) have not been symmetrized with respect to the frequencies and
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indices, which can be performed by permutation of frequencies and component indices [47]. For a clean, cold semiconductor

only the eee, eie, iee, and iie terms are nonzero.
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