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Spin angular momentum transfer and plasmogalvanic phenomena
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We show that spin angular momentum (SAM) of light is transferred to matter together with momentum and
energy, and obtain the expression for the corresponding torque. This can lead to appearance of spin forces, which
correspond to the discrepancy between the Lorentz and Einstein-Laub forces. In plasmonic metals these spin
forces result in a plasmogalvanic phenomenon, which is pinning of the plasmon-induced electromotive force to
an atomically thin layer at the metal interface.
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I. INTRODUCTION

The field of plasmonics studies surface plasmon polaritons
(SPPs), which are elementary collective excitations of metal
nanostructures that have attracted much attention and found
numerous applications over the past several decades. The
plasmon drag effect (PLDE), a new nonlinear phenomenon,
is the giant enhancement of photoinduced rectified electric
currents in metal films and nanostructures under surface
plasmon resonance conditions [1–13]. This phenomenon is
important for applications ranging from plasmonic-based
electronics to sensing and optoelectronics. PLDE is not fully
explained yet and is very interesting from the fundamental
point of view as an example of light-matter interaction in
strongly enhanced and specially structured plasmonic fields.
Here we discuss PLDE starting from general relationships
between the conserved quantities in electromagnetic field,
such as energy, momentum, angular momentum, and rectified
responses of materials (electric currents, emf), and apply them,
as a particular example, to SPPs in flat geometry.

The conserved quantities have been exhaustively studied in
classical mechanics and thermodynamics [14,15]. However,
the conservation laws for Maxwell equations are well estab-
lished only in free space for energy W = 1

8π
(E2 + H 2) [16–

18], momentum S = 1
8π

E × H [16–18], and angular momen-
tum J = r × S [18]. Recent studies of photonic conserved
quantities in free space demonstrate separation of light angular
momentum into orbital angular momentum (OAM) and spin
angular momentum (SAM) [19,20], conservation laws for
angular momentum [21], OAM, and SAM [22]. In interaction
with materials, the conserved quantities of electromagnetic
fields are not fully understood and are subjects of active debate
[23]. Transition from photonic conserved quantities in free
space to those in media is crucial and is equivalent to, for
example, introducing potential energy into the full energy of
a point particle E = mv2/2 + U (x) [14]. Here we introduce a
quantity � and show that it is a conserved quantity of Maxwell
equations in a generic material (including chiral, magnetic,
anisotropic media, etc.). We call this conserved quantity spin
since in free-space limit it becomes the electromagnetic spin
introduced in 2009 by Berry [19].

*mdurach@georgiasouthern.edu

Another aspect not present in free space is transfer of con-
served quantities between electromagnetic fields and matter,
which for point massive particles is equivalent to the presence
of Coulomb’s surface friction or fluid resistance. Directly from
the conservation laws we obtain here, one can see how the
SAM of light is transferred to matter, i.e., via the torques
provided by Eqs. (3) and (4) below. In classical metal, this
torque can be represented in the form of extra spin forces
applied to the material [see Fig. 1(d)]. These forces enter
the equation for transfer of the momentum [Eq. (7) below].
Note that our result brings more clarity into the Lorentz vs
Einstein-Laub forces debate [24–29] and the force distribution
paradox presented by Mansuripur et al. [30] by showing
that the discrepancy in the Lorentz and Einstein-Laub force
distributions corresponds to transfer of SAM of light.

The conserved quantities of electromagnetic fields are
bilinear forms of the field vectors. This means that the
conserved quantities of continuous-wave or narrow-bandwidth
pulsed fields are transferred to matter via rectified and
second-harmonic channels. The rectified part of the transfer
corresponds to the systematic changes in the materials induced
by light, and PLDE is a major example of such rectification.
In metal nanostructures with smooth surfaces the PLDE emf
is proportional to the momentum of the surface plasmon
polaritons (SPP) and absorbed SPP energy [4]. Irregular or
strongly nanostructured surfaces allow for additional con-
tributions into PLDE, which we call plasmogalvanic effects
[31–37]. Recently the subject of angular momentum of light
[38] and its transfer to matter [39,40] have been added to the
list of topics which can be studied via photoinduced electric
responses in metals, in particular by considering currents
induced by circularly polarized light off surface plasmon
resonance frequency [12,13].

The SAM of SPPs has attracted considerable attention due
to the recent discovery of spin-momentum locking in SPP
waves [41–44]. Here, considering generalized fundamental
conservation laws for light in matter, we show that SAM of
SPPs is absorbed by the metal plasma together with energy
and momentum of SPPs [see Fig. 1(a)]. From the classical
point of view, as discussed below, the SAM absorption torque
corresponds to additional forces, and results in dramatic redis-
tribution of SPP-induced forces on electrons with localization
of those forces at the very surface of metal [Fig. 1(b)].
Note that in metals with strong spin-orbital interaction of
electrons such as gold, the SAM absorption may lead to
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FIG. 1. (a) Schematic of the absorption of a SPP quantum by an electron involving transfer of energy h̄ω, momentum h̄kx, and average
SAM h̄S3, where S3 is the Stokes parameter, characterizing the helicity. (b) Schematic of the plasmon drag pinning to the atomic layer at the
metal surface due to SAM absorption. The volume spin forces practically cancel SPP pressure and most of the SPP momentum is deposited by
the surface force at the metal interface. (c) Possible scenario when SAM absorption torque results in electron spin polarization instead of spin
forces. (d) Channels for electromagnetic momentum transfer in media and corresponding photoinduced electric effects.

electron spin polarization and corresponding magnetization
of the skin-depth layer. In this scenario, the effective force
will be represented by the pressure force distributed over the
skin-depth layer, without localization of forces on the metal
surface [Fig. 1(c)].

II. SAM ABSORPTION TORQUE

Let us start with the electromagnetic spin conservation law
in a lossy material. The conservation law in a lossless dielectric
was derived in Ref. [22]. Here, we adopt the following
dual-symmetric definition of the SAM of electromagnetic field
� = �e + �m, where �e = 1

4πc E × A and �m = 1
4πc H × C

[20,22,45], where we define the usual vector potential as B =
∇ × A and introduce a potential according to D = −∇ × C
(see also Refs. [46,47]), in both cases using the solenoidal
nature of D = E + 4π P and B = H + 4π M. Note that as
shown in Ref. [20], the requirement of the photonic spin
to be gauge-invariant corresponds to setting ∇ · A = 0 and
∇ · C = 0. The potentials are related to the fields as E =
− 1

c
∂ A
∂t

and H = − 1
c

∂C
∂t

. In monochromatic fields the average
over an optical period SAM is �̄e = − 1

8πω
Im{E × E∗} and

�̄m = − 1
8πω

Im{H × H∗}.
Consider the time derivative of the spin �

∂�

∂t
= 1

4πc

∂

∂t
(E × A + H × C)

= 1

4πc

(
∂ E
∂t

× A + ∂ H
∂t

× C
)

+ 1

4πc

(
E × ∂ A

∂t
+ H × ∂C

∂t

)

= 1

4πc

((
c∇ × H − 4π

∂ P
∂t

)
× A

+
(

−c∇ × E − 4π
∂ M
∂t

)
× C

)

= 1

4π
(−(∇ × E) × C + (∇ × H) × A)

− 1

c

(
∂ P
∂t

× A + ∂ M
∂t

× C
)

= −(∇ · δ̂) − τ .

This equation has the form of the continuity equation for
electromagnetic SAM

∂�

∂t
+ (∇ · δ̂) = −τ , (1)

where δ̂ is the tensor of SAM flux, analogous to Maxwell stress
tensor for the momentum flux (cf. Eq. (3.24) of Ref. [22])

δ̂ =
{

1

4π

(
C ⊗ E − (Cc · E)

2
Î

)

− 1

4π

(
A ⊗ H − (Ac · H)

2
Î

)}
, (2)

and τ = τ e + τ m is the torque volume density, which is com-
posed of the torques associated with the interaction between
polarization and the electric fields τ e and magnetization and
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the magnetic fields τ m,

τ e = 1

c

∂

∂t
(P × A) + P × E,

(3)

τ m = 1

c

∂

∂t
(M × C) + M × H .

In monochromatic fields the first terms in Eqs. (3) result
in zero time-average torque; the time-averaged torque density
applied to matter is

τ̄ = 1
2 Re{P × E∗ + M × H∗}. (4)

Now let us discuss the electromagnetic torque in dispersive
transparent media, which can be considered in a similar manner
to the Brillouin internal energy stored in electromagnetic
field in media or Abraham force [17]. The second terms
in Eqs. (3) have the same form as in the monochromatic
fields, and we focus on the first terms, which are zero in
monochromatic fields but play a role in a narrow-bandwidth
pulse. In this case ∂ P

∂t
= −iωχe(ω)E + d(ωχe)

dω

∂ E0
∂t

e−iωt and
∂ M
∂t

= −iωχm(ω)H + d(ωχm)
dω

∂ H0
∂t

e−iωt , and E0(t) and H0(t)
are slowly varying amplitudes of the fields. In this situation

τ = 1

c

∂

∂t
(P × A + M × C) = 1

4c

(
∂ P∗

∂t
× A + ∂ P

∂t
× A∗ + ∂ M∗

∂t
× C + ∂ M

∂t
× C∗

)
− 1

2
Re{P × E∗ − M × H∗}

= 1

4c

d(ωχe)

dω

(
∂ E∗

0

∂t
×

(
−i

c

ω
E0

)
+ ∂ E0

∂t
×

(
i
c

ω
E∗

0

))
+ 1

4c

d(ωχm)

dω

(
∂ H∗

0

∂t
×

(
−i

c

ω
H0

)
+ ∂ H0

∂t
×

(
i
c

ω
H∗

0

))

= − 1

4ω

d(ωχe)

dω

∂

∂t
Im{E × E∗} − 1

4ω

d(ωχm)

dω

∂

∂t
Im{H × H∗} = 2π

d(ωχe)

dω

∂�e

∂t
+ 2π

d(ωχm)

dω

∂�m

∂t
,

which means that in narrow-bandwidth pulses in dispersive transparent media, with electric and magnetic susceptibilities χe and
χm, Eqs. (3) lead to torque according to

τ = 2π
d(ωχe)

dω

∂�e

∂t
+ 2π

d(ωχm)

dω

∂�m

∂t
.

Below we focus on monochromatic fields. In monochromatic fields both expressions for electric and magnetic torques in
Eq. (4) can be understood as torques acting on dipole moments in electric and magnetic fields. The expression for the torque τ e

applied to polarized matter has been used in the proposal of optical torque wrench devices [40], but the role of SAM absorption
in matter has never been previously discussed (see also Refs. [48–52]). To show the relation of torque and SAM absorption
explicitly, let one assume the material relationship of the form P = χe E + ξe H and M = χm H + ξm E, and the torque in Eq. (4)
turns into

τ̄ = 4π [ωχ
′′
e �e + ωχ

′′
m�m + (ξ ′

m − ξ ′
e)S̄ + (ξ

′′
e + ξ

′′
m)S̃], (5)

where S̄ = 1/(8π )Re{E × H∗} is the Poynting vector averaged over the optical period and S̃ = −1/(8π )Im{E × H∗}.
Additionally, it appears that loss in bianisotropic media, or ξm �= ξ ∗

e [53], can result in torque. This fact is of interest due
to recent investigations of optical forces applied to bianisotropic particles [54–57].

Consider SPP propagation along a flat metal-dielectric interface with μ = 1. The complex fields of a SPP in the metal (z > 0)
are

H = ŷ e−ξzei(kx−ωt), E = 1

k0εm

(−ẑkx + x̂iξ )e−ξzei(kx−ωt),
ξ

εm

= −κd

εd

. (6)

The last equation is the condition of SPP existence, ensuring
the matching of longitudinal electric fields at the metal-
dielectric interface, which leads to the dispersion kSPP(ω) of
SPPs (see Fig. 2(a) and Ref [58]).

If we substitute the SPP fields [Eq. (6)] into Eq. (5), which
describes SAM absorption, the corresponding torque turns
into τ̄ = −χ ′′Im{ExE

∗
z } ŷ. It is important to compare this

torque with the energy absorption rate Q̄ = −ω
2 Im{PαE∗

α}
as was done in Ref. [4] for momentum. We show in
Supplemental Material 1 [59] that the relationship between
the torque and energy absorption rate is τ̄ = h̄S3

h̄ω
Q̄, where

S3 = 2ξkx

(k2
x+ξ 2) is the Stokes parameter, characterizing the helicity

(or the degree of circular polarization) in the electromagnetic
field [42,44,60]. Considering the results of Ref. [4], this
means that with absorption of SPP energy quantum h̄ω

and momentum quantum h̄kx electrons gain h̄S3 amount of

angular momentum on average due to absorption of SAM
[see Fig. 1(a)].

Electrons have two degrees of freedom, which can ac-
cumulate angular momentum: orbital (translational) motion
and electron spin. Induction of orbital motion of electrons
via absorption of SAM of SPPs corresponds to photoinduced
electric currents. At the same time, SAM absorption can lead
to change of electron spin and result in spin polarization as
shown in Fig. 1(c). Despite large spin-orbit coupling ∼1 eV
[61] and a relatively long spin-relaxation time ∼50 ps [62],
spintronic effects in plasmonic materials are not studied.
Simultaneous measurement of SPP-generated emf and spin
polarization (via, for example, pump-probe magneto-optical
experiments) in different plasmonic materials could show how
angular momentum of light is distributed between the spin of
electrons and their translational motion.
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FIG. 2. (a) SPP dispersion in the local model [continuous curves, Eq. (12)] and the ENZ-ENP metasurface model (dots). (b) Comparison of
the field distributions in the local model (shown in yellow and blue) and metasurface approximation (dashed cyan and purple) on the nanoscopic
scale. (c) The fields and surface charges in the atomic metasurface region. The metal fraction function f (z) is shown in red. The normal to the
interface component of the electric field Ez is shown in blue (metasurface model) and dashed magenta (local model). The surface charge density
σ (z) is shown in green (metasurface model) and dashed orange (local model). (d) The effect of the spin force (blue) on the total momentum
transfer from SPP to electrons (dashed green) as compared to considering only the plasmon pressure force (red). For comparison the surface
force in the local model is shown in orange. Note that Fig. 2(d) has an axis break separating the surface shown on the angstrom scale from
−0.5 to 2.2Å and the skin-depth layer in the metal volume shown on the nanometric scale. All of the forces are multiplied by 50 to the right of
the axis break on the nanometric scale.

III. SPIN FORCES

Below, we consider the implications of the SAM transfer
from the electromagnetic field exclusively into the orbital
motion of electrons. We start with the momentum transfer,
which is described by (see Supplemental Material 2 [59])

∂ p
∂t

+ ∇ · σ̂ = − f ,

where p = 1/(4πc)(E × H) is the momentum, σ̂ is the
Maxwell stress tensor [16], and f is the volume density
of the effective force acting in the medium. The effective

force is reminiscent of both Lorentz and Einstein-Laub forces
[23–30,50–52,63–66], and is identical to the Lorentz force for
M = 0, which was previously applied to PLDE (considering
only electric responses) in Refs. [2,4]. Considering separately
volume and surface contributions, the volume density of the
force f is

f = −(∇ · P)E + 1

c

∂ P
∂t

× H − (∇ · M)H − 1

c

∂ M
∂t

× E

= f A + f e
orb + f m

orb + f ve
spin + f vm

spin, (7)

where

(Abraham force) f A = 1

c

∂

∂t
(P × H − M × E + 4π P × M), (7a)

(orbital electric force) f e
orb = ∇E(Pc · E), (7b)

(orbital magnetic force) f m
orb = ∇H (Mc · H), (7c)

(spin-electric volume force) f ve
spin = −∇ · (P ⊗ E), (7d)

(spin-magnetic volume force) f vm
spin = −∇ · (M ⊗ H). (7e)
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The surface density [after integration of the volume density
Eq. (7) across the metal interface] is given by

f s = (P · n̂)E + (M · n̂)H = f se
spin + f sm

spin, (8)

(spin-electric surface force) f se
spin = (P · n̂)E, (8a)

(spin-magnetic surface force) f sm
spin = (M · n̂)H . (8b)

Please notice the symmetry of the force equations (7) and
(8) with respect to the electric and magnetic responses of
materials. The Abraham force [Eq. (7a)] is zero in monochro-
matic fields, similarly to the first terms in Eq. (3) or to the
electromagnetic energy in media [17], and for pulses in M = 0
media was considered in Ref. [67]. The forces in Eqs. (7b)
and (7c) can be viewed as responsible for momentum transfer
and change in the OAM [19–22] (i.e., OAM transfer with
torque τ orb = r × f orb) and can be referred to as the orbital
force f orb = ∇E(Pc · E) + ∇H (Mc · H) [see Fig. 1(d)]. The
rectified part of the orbital force can be represented as the sum
of striction and pressure forces [2]

f e
orb = 1

2 Re{∇E(Pc · E∗)}
= 1

4χ ′
e∇(|E|2) − 1

2χ
′′
e Im{∇E(Ec · E∗)}, (9a)

f m
orb = 1

2 Re{∇H (Mc · H∗)}
= 1

4χ ′
m∇(|H|2) − 1

2χ
′′
mIm{∇H (Hc · H∗)}. (9b)

The pressure force [the terms with χ ′′ in Eqs. (9a) and (9b)]
is proportional to the wave vector of the electromagnetic field
and is the source of the PLDE emf. Note that in the orbital
force only the pressure force is doing work on electrons while
striction is a potential force and is responsible for redistribution
of electron density [4]. In Ref. [4] it was demonstrated that the
pressure force is directly related to energy absorption, which
is manifested in PLDE experiments [1,3].

The remaining contributions in Eqs. (7) and (8), which are
in the focus of this paper, can be classified as the spin force
[see Fig. 1(d)], whose volume density is f v

spin = f ve
spin + f vm

spin

and surface density is f s
spin = f s = f se

spin + f sm
spin. As was

shown in Ref. [2], the force densities in (7d) and (8a) sat-
isfy

∮
f se

spin · ds − ∫
f ve

spin · dV = 0. Similarly,
∮

f sm
spin · ds −∫

f vm
spin · dV = 0. This means that the spin force does not

directly contribute to the total force acting on metal electrons
and PLDE emf. Instead, these forces are associated with the
torque [see Eqs. (4) and (5)], which can be presented as

∫
(P × E)dV =

∮ (
r × f se

spin

)
ds +

∫ (
r × f ve

spin

)
dV,

(10a)∫
(M × H)dV =

∮ (
r × f sm

spin

)
ds +

∫ (
r × f vm

spin

)
dV.

(10b)

Indeed, one can write an identity

∂j (r × x̂iEiAj ) = (x̂j × x̂i)EiAj + r × x̂i(∂jEi)Aj

+ r × x̂iEi(∂jAj )

= A × E + r × {(A · ∇)E}

+ r × {E · (∇ · A)}
= A × E + r × {∇ · (A ⊗ E)}.

From this P × E = ∂j (r × x̂iEiPj ) − r × {∇ · (P ⊗ E)}
and after integration we get (10a).

Note that despite the fact that the SAM absorption torque
is only proportional to χ ′′ [see Eq. (5)], the corresponding
rectified spin forces f spin have both χ ′ and χ ′′ contributions,

f ve
spin = − 1

2 Re{∇ · (P ⊗ E∗)}
= 1

4χ
′′
e Im{∇ × (E × E∗)}

− 1
2χ ′

eRe{∇ · (E ⊗ E∗)}, (11a)

f vm
spin = − 1

2 Re{∇ · (M ⊗ H∗)}
= 1

4χ
′′
mIm{∇ × (H × H∗)}

− 1
2χ ′

mRe{∇ · (H ⊗ H∗)}. (11b)

The first terms of Eq. (11), 1
4χ

′′
e Im{∇ × (E × E∗)}

and 1
4χ

′′
mIm{∇ × (H × H∗)}, can be understood as ab-

sorption of the spin part of the Poynting current P3sp =
Im{∇ × (E × E∗)} from Ref. [19].

The spin forces represent the SAM transfer from the
electromagnetic field into the orbital motion of electrons in
the absence of electron spin polarization. If SAM of SPPs
is entirely absorbed to induce electron spin polarization, the
volume density of the effective force acting on electrons is only
the orbital force f̄ = f orb. But, if the spin polarization is not
produced, the effective force acting on electrons and inducing
the translational motion is a combination of the orbital and spin
forces f̄ = f orb + f spin. Note that the difference between the
effective force in Eq. (7), which for M = 0 is equal to the
Lorentz force, and the Einstein-Laub force is f spin. Therefore,
coupling to an internal angular momentum degree of freedom,
such as electron spin, determines which force drives the orbital
motion of electrons.

In SPP fields [Eq. (6)] the spin electric volume and surface
force densities according to Eqs. (7d) and (8a) are

f ve
spin = − 1

2 Re{∇ · (P ⊗ E∗)}
= − 1

2 Re{∂z(Pz E∗)} − 1
2 Re{∂x(Px E∗)}, (12a)

f se
spin = 1

2 Re{Pz E∗}|z=0. (12b)

The first term in the f ve
spin integrated over the cross section

of the metal perpendicular to SPP propagation gives the exact
opposite of the surface force f se

spin. The second term integrated
over the cross section of the metal in the direction of SPP
propagation is equal to zero assuming fields decay out for
x → ±∞. If the fields do not fully decay, this part of the
spin force is opposite to the surface force created at the ends
of the metal in the x direction. In any case the second term
is due to the decay of SPPs in the direction of propagation
and does no overall work on electrons in the case of laminar
current [4]. Below we consider only the spin force f ve

spinz
=

− 1
2 Re{∂z(Pz E∗)} and disregard f ve

spinx
= − 1

2 Re{∂x(Px E∗)}.
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IV. SURFACE PINNING OF PLDE FORCE

The surface part of the spin force f se
spin [Eq. (12b)] is

localized at the surface charge layer of metal, i.e., in a 2d layer
with thickness on the order of angstroms. The study of the
surface charge layer between metal and dielectric has been a
major research direction of metal nonlocality in the continuous
model [68–70]. Much debate was generated by the proposal
that nonlocal effects at the metal-dielectric interface can be
approximated by introduction of an anisotropic transition layer
[71–73]. Here we do not pursue the goal of modeling the
nonlocality as such, but would like to propose a toy model of
a transitional metal surface layer, which gives a visual idea
of how the SAM-absorption torque affects the momentum
transfer from SPPs to metal plasma.

We first note that at a metal-dielectric interface the
tangential component of electric field Ex is continuous, while
Dx is not continuous and changes sign through the interface
due to negativity of the dielectric permittivity of metal εm.
This implies that the dielectric permittivity passes through
an epsilon-near-zero (ENZ) transition at the metal-dielectric
interface in the longitudinal direction. At the same time the
normal component of the electric field Ez has a discontinuity
at the interface, such that Dz is continuous corresponding
to epsilon-near-pole (ENP) transition. We assume that at
the boundary the metal fraction f (z) is gradually changing
from 0 to 1 within a d = 2 Å layer [see Fig. 2(c)], which
corresponds to the typical thickness of the surface charge
layer [68–73]. This way the surface charge layer becomes
a distributed ENZ-ENP metasurface [74], which has dielectric
permittivities εx(z) = εmf (z) + εd [1 − f (z)] and ε−1

z (z) =
ε−1
m f (z) + ε−1

d [1 − f (z)].
For the ENZ-ENP model we use the following

metal fraction function: f (z) = 1
2 + 1

2αd
[ln(cosh αz) −

ln(coshα(d − z))] which is shown in Fig. 2(c) (we use

d = 2 Å and α = 10 Å
−1

). The TM polarized fields of SPP
wave at the metal-dielectric boundary with such a metasurface
can be written as Hy = Hy(z)ei(kx−ωt), where function Hy(z)
satisfies the following equation in the transition layer:

− 1

εx

H
′′
y − H ′

y · ∂z

(
1

εx

)
=

(
k2

0 − k2

εz

)
Hy.

We solve this equation and match the results at the
boundaries of the ENZ-ENP metasurface to get the wave
vector of the resulting SPPs [see the dots in Fig. 2(a), which
follow very closely the dispersion of SPPs in the local model,
Eq. (6)]. We find the electric field according to Ez = − kHy

k0εz

and Ex = − i
k0

H ′
y

εx
.

The magnetic-field distribution Hy given by the yellow line
in Fig. 2(b) follows the local model (cyan dashed line) as
well. The electric-field distribution is shown in Figs. 2(b) and
2(c). The normal to the surface component Ez is shown on
the nanometric scale in Fig. 2(b) in blue and matches the local

model (magenta dashed curve). In Fig. 2(c) one can see the
gradual transition of Ez from the metal value to the value in
the air within the 2-Å metasurface (blue curve) and compare
it to the abrupt jump in the local model. In the metasurface
model the oscillating surface charge in the SPP excitation
σ (z) ≈ −Pz(z = 0)/d is distributed over the metasurface as
seen in Fig. 2(c) in green. Its value corresponds to the local
model with σ = −Pz (dashed orange).

The results in Fig. 2(d) clarify the possible outcomes of the
absorption of the SAM of SPPs on the electronic system of
the metal. If the absorption results in spin polarization then
the force driving the orbital motion of electrons is the pressure
force [red in Fig. 2(d)]. It is localized on the skin-depth scale.
In case the absorption of SAM drives exclusively the orbital
motion of electrons, the spin force should be included [blue in
Fig. 2(d)]. It has a large contribution within the surface charge
layer which is consistent with the value of surface force f s in
the local model ( f s/d is shown as an orange dashed line). In
the skin-depth layer, outside of the surface charge layer, the
spin force becomes considerably lower and is comparable to
the pressure force, but is opposite in sign. Integration of the
spin force over z results in no overall force. The total force on
electrons including the spin force is shown as a green dashed
line and closely follows the surface component of the spin
force in the atomic metasurface region, but is 4 times weaker
than the pressure force in the metal volume. This shows that
absorption of SAM pins the PLDE force to the surface charge
layer, making the force in the skin-depth layer very small.

V. CONCLUSION

To conclude, we have introduced and studied a quantity,
photonic spin, which is a conserved quantity of macroscopic
Maxwell’s equations in a generic material (including chiral,
magnetic, anisotropic media, etc.). We showed that this spin is
absorbed by media and derived the expression for the torque
corresponding to photonic spin absorption. We demonstrated
that this torque corresponds to spin forces applied to material,
and that the spin forces correspond to the discrepancy between
the Lorentz vs Einstein-Laub forces. In metals the SAM
transfer can lead to modifications in the orbital motion of
electrons and/or electron spin polarization. If the orbital
channel is prevailing, the action of the spin force in the fields of
SPPs at metal-dielectric interface leads to pinning of the PLDE
forces to the atomically-thin surface charge layer at the metal
interface. The approach developed in our paper for estimation
of photonic spin transfer can bring ideas and directions, such
as plasmonic effects in materials with spin orbital interaction,
where transfer of SAM from light to carriers can result in
electron spin polarization.
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