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Kondo physics in double quantum dot based Cooper pair splitters
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The Andreev transport properties of double quantum dot based Cooper pair splitters with one superconducting
and two normal leads are studied theoretically in the Kondo regime. The influence of the superconducting pairing
correlations on the local density of states, Andreev transmission coefficient, and Cooper pair splitting efficiency
is thoroughly analyzed. It is shown that finite superconducting pairing potential quickly suppresses the SU(2)
Kondo effect, which can however reemerge for relatively large values of coupling to superconductor. In the SU(4)
Kondo regime, a crossover from the SU(4) to the SU(2) Kondo state is found as the coupling to superconductor
is enhanced. The analysis is performed by means of the density-matrix numerical renormalization group method.
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I. INTRODUCTION

Creation, manipulation, and detection of entangled pairs
of electrons is an important requirement for engineering
quantum information and computation protocols in solid state
systems [1–3]. As a natural source of entangled electrons
one can consider superconductors, in which two electrons
with opposite spins form spin singlet states—the Cooper
pairs [4–6]. It has been demonstrated experimentally that it is
possible to extract and split Cooper pairs in a double quantum
dot (DQD) setup involving one superconductor (SC) and two
normal (N) leads, each attached to a different quantum dot
[7–14]. In such a Cooper pair splitter (CPS), when the bias
voltage eV applied between the SC and N leads is smaller than
the superconducting energy gap �, the current flows through
the system due to the Andreev reflection processes [15]. One
can generally distinguish two types of such processes: (i) direct
Andreev reflection (DAR), in which the Cooper pair electrons
tunnel through one arm of the device, and (ii) crossed Andreev
reflection (CAR), when the Cooper pair electrons become split
and each electron leaves the superconductor through a different
arm of the device [16,17]. Since the latter processes are crucial
for the creation of entangled electrons, it is important to
optimize the splitting efficiency η of the device, i.e., to enhance
the rate of CAR processes as compared to the DAR processes.
This can be obtained, for example, by tuning the position of the
DQD’s energy levels and setting the system in an appropriate
transport regime [7,10].

Transport properties of double quantum dots with super-
conducting contacts have been recently explored both experi-
mentally [7–14,18] and theoretically [19–27]. The theoretical
investigations were however mostly devoted to transport prop-
erties in a relatively weak coupling regime. Various geometries
of the system were considered, with the two dots attached to
the leads forming either serial [19], T-shaped [22], or CPS
fork configurations [24,25]. In particular, the emergence of the
triplet blockade and its influence on transport were analyzed,
as well as various Andreev bound states (ABS) splitting mech-
anisms [20,25]. Moreover, unconventional pairing [24] in the
presence of inhomogeneous magnetic field was predicted and
the role of the spin-orbit interaction on nonlocal entanglement
was demonstrated [26]. Other important aspects of transport
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in such systems, such as the current and noise correlations
[21,27] and spin dependence of transport controlled by means
of ferromagnetic contacts [23,25,27], were also thoroughly
discussed.

In this paper we extend those studies by focusing on
the Andreev transport in the strong coupling regime, where
electronic correlations can give rise to the Kondo effect
[28,29]. When a spin one-half impurity is coupled to the
conduction band of a metallic host, for temperatures T lower
than the Kondo temperature TK , the conduction electrons
screen the impurity’s spin and a delocalized singlet state is
formed. Its emergence results in the formation of an additional
peak at the Fermi energy in the local density of states [29].
For single quantum dots, in the case of spin SU(2) Kondo
effect, this leads to an enhancement of the conductance to its
maximum value of 2e2/h [30,31]. For double quantum dots,
depending on the DQD occupation, one can observe different
types of the Kondo effect. In particular, when both the spin and
orbital degrees of freedom are degenerate, an SU(4) Kondo
state is formed in the system [32,33].

When the leads are superconducting the situation becomes
much more interesting [34–38]. First of all, for dot coupled to
superconductor, the occurrence of the Kondo phenomenon is
conditioned by the ratio of the Kondo temperature to the super-
conducting energy gap TK/�, and a quantum phase transition
occurs as this ratio is varied [35,39–42]. Furthermore, for two-
terminal hybrid junctions involving quantum dot and N and SC
leads, the Kondo state can be formed by screening the dot’s spin
by the normal lead [34,35], while finite coupling to SC lead
can result in an enhancement of the Kondo temperature [43].

From the theoretical side, the accurate studies of transport
properties of nanostructures in nonperturbative regime require
resorting to sophisticated numerical methods. One of them
is the density-matrix numerical renormalization group (DM-
NRG) method [44,45], which allows for obtaining results of
very high accuracy on the transport behavior of the considered
system [46]. In these considerations we employ DM-NRG
to address the problem of the Kondo effect and Andreev
transport in double quantum dot based Cooper pair splitters.
In particular, we study the DQD energy level dependence of
the local density of states as well as the Andreev transmission
coefficient, together with the splitting efficiency of the device.
We then focus on the two transport regimes when the system
in the absence of coupling to superconductor exhibits either
the SU(2) or the SU(4) Kondo effect, and study the influence

2469-9950/2017/96(19)/195409(16) 195409-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.195409
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of superconducting pairing correlations on these two types of
Kondo state. We show that, contrary to single quantum dots
[43,47], the SU(2) Kondo state becomes quickly suppressed
by even small superconducting pairing potential. On the other
hand, the pairing correlations result in a crossover from the
SU(4) to the SU(2) Kondo effect.

The paper is organized as follows. In Sec. II we present
the model, Hamiltonian, and method used in calculations, and
describe the main quantities of interest. Section III is devoted to
numerical results and their discussion. In Secs. III A and III B
we analyze the DQD level dependence of the local density of
states and the Andreev transmission coefficient, together with
splitting efficiency, respectively. The SU(2) [SU(4)] Kondo
regime is thoroughly discussed in Sec. III C (Sec. III D).
Finally, the conclusions can be found in Sec. IV.

II. THEORETICAL DESCRIPTION

A. Model and parameters

The considered system consists of two single level quantum
dots attached to an s-wave superconductor (SC) and coupled
to two normal (N) electrodes; see Fig. 1. The Hamiltonian of
isolated double quantum dot has the form

HDQD =
∑
jσ

εj d
†
jσ djσ +

∑
j

Ujnj↑nj↓ +
∑
σσ ′

ULRnLσnRσ ′ ,

(1)

with d
†
jσ creating a spin-σ electron in dot j of energy εj .

The on-dot Coulomb correlations are denoted by Uj , with
njσ = d

†
jσ djσ , while the interdot Coulomb interactions are

described by ULR . The normal electrodes are modeled as free
quasiparticles by the Hamiltonian, HN = ∑

jkσ εjkc
†
jkσ cjkσ ,

where c
†
jkσ is the creation operator for an electron with spin

σ , wave number k, and energy εjk in the j th lead. The
BCS superconductor is modeled by HS = ∑

kσ ξka
†
kσ akσ +

�
∑

k (ak↓a−k↑ + H.c.), where a
†
kσ creates an electron with

momentum k, spin σ , and energy ξk. The superconducting
order parameter, assumed to be real, is denoted by �. The
double dot is coupled to external leads by the tunneling

FIG. 1. Schematic of the considered system. Two single-level
quantum dots, described by on-site energy εj (j = L for left and
j = R for right dot) and Coulomb correlations Uj are coupled to
a common s-wave superconductor (SC), with coupling strength �S

j ,
and attached to two separate normal (N) electrodes, with coupling
strength �j . The two dots are coupled capacitively by ULR .

Hamiltonian

HT =
∑
jkσ

(
Vjkc

†
jkσ djσ + V S

jka
†
kσ djσ + H.c.

)
, (2)

where the tunnel matrix elements between the dot j and the
normal lead j (superconductor) are denoted by Vjk (V S

jk).
Assuming momentum independent tunnel matrix elements,
the coupling between the dot j and the corresponding normal
electrode is described by �j = π |Vj |2ρj , where ρj is the
density of states of lead j . On the other hand, the coupling
between the dot j and superconductor is given by �S

j =
π |V S

j |2ρS , with ρS the density of states of the superconductor
in the normal state.

In our considerations we focus on the Andreev transport
regime; therefore, to exclude the normal tunneling processes,
in the following we take the limit of infinite superconducting
energy gap. In this limit the double dot coupled to supercon-
ductor can be described by the effective Hamiltonian of the
form [20,25,48]

H eff
DQD = HDQD −

∑
j

�S
j (d†

j↑d
†
j↓ + dj↓dj↑) + �S

LR(d†
L↑d

†
R↓

+ d
†
R↑d

†
L↓ + dR↓dL↑ + dL↓dR↑). (3)

Now, the proximity effect is included through pairing potential
induced in the DQD, where the first term, proportional to �S

j ,
describes the direct Andreev reflection (DAR) processes, while
the last term, proportional to �S

LR =
√

�S
L�S

R , corresponds
to the crossed Andreev reflection (CAR) processes. In DAR
processes Cooper pairs are transferred through one arm of
the splitter. On the other hand, in CAR processes Cooper
pair electrons become split and each electron leaves the
superconductor through a different junction with normal lead.

The effective double dot Hamiltonian is not diagonal in
the local basis defined by the states |χLχR〉 = |χL〉|χR〉,
in which the left (right) dot is in state |χL〉 (|χR〉), with
χj = 0,σ,d, for empty, singly occupied, and doubly occupied
dot j . Because the effective Hamiltonian commutes with
the total spin operator, H eff

DQD has a block-diagonal form in
the corresponding spin quantum number. As we show in the
Appendix, the spin triplet space is quite trivial because it
is not affected by the superconducting correlations due to
symmetry reasons. In the spin doublet subspace we present a
general solution to the eigenproblem. However, in the singlet
subspace it is in general not possible to find simple analytical
formulas for the eigenstates and eigenenergies; therefore, in
this subspace we discuss the eigenspectrum only in some
limiting situations. The first one is the particle-hole symmetry
point of the model, ε = −U/2 − ULR , and the second one is
the fully symmetric SU(4) Kondo regime, ε = −ULR/2 with
ULR = U . The analytical formulas presented in the Appendix
will be crucial to understanding the complex behavior of the
system in the considered transport regimes. Moreover, the
eigenenergies will help to relate the position of peaks observed
in transport quantities to energies of Andreev bound states
(ABS), which can be inferred from excitation energies between
the corresponding molecular states of the double quantum dot
proximized by SC lead.

In our analysis we assume that the system is symmetric,
i.e., we set �L = �R ≡ � and �S

L = �S
R ≡ �S . For the two
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quantum dots we also assume UL = UR ≡ U and εL = εR ≡
ε. To perform the calculations, we set U ≡ 1 and take ULR =
U/2 and � = U/20. We note that since both the couplings
and the position of the DQD levels can be tuned individually
by applied gate voltages [33], the chosen set of parameter
is of relevance for current and future experiments. We also
notice that a weak left-right asymmetry would induce rather
quantitative changes to the results we present and discuss in
the following, while qualitatively we expect our predictions to
be relevant. However, the assumption of the superconducting
energy gap being the largest energy scale in the problem needs
to be treated with a certain care. While this assumption allows
us to focus exclusively on the behavior of Andreev reflection
processes, and for that reason it was adapted in many previous
theoretical works [19,20,24,25,49–59], from an experimental
point of view, the condition � > U does not need to be fulfilled
in any Cooper pair splitting device. Nevertheless, there are
superconductors, in which the gap is of the order of a couple of
meV [60]; consequently, experimental realizations of splitters
with large � should be possible.

B. Quantities of interest and method

The main quantity of interest is the transmission coefficient
for Andreev reflection processes, TA(ω), which can be written
as

TA(ω) = T DAR
A (ω) + T CAR

A (ω), (4)

where the first term describes the transmission due to DAR
processes, which is explicitly given by

T DAR
A (ω) = 4

∑
jσ

�2
j

∣∣〈〈djσ |djσ̄

〉〉r
ω

∣∣2
, (5)

while the last term denotes the transmission coefficient due to
CAR processes and is described by

T CAR
A (ω) = 4�L�R

∑
σ

[|〈〈dLσ |dRσ̄ 〉〉rω|2 + |〈〈dRσ |dLσ̄ 〉〉rω|2].
(6)

Here, 〈〈A|B〉〉rω is the Fourier transform of the retarded
Green’s function, 〈〈A|B〉〉rt = −i�(t)〈{A(t),B(0)}〉. The DAR
and CAR transmission coefficients can be used to define the
Cooper pair splitting efficiency of the device as

η = T CAR
A (ω)

T CAR
A (ω) + T DAR

A (ω)
. (7)

When η → 1, transport is exclusively due to CAR processes,
which means that each Cooper pair leaving the superconductor
becomes split into two separate leads. On the other hand, if
only DAR processes are responsible for Andreev transport,
η → 0.

With the Andreev transmission coefficient, it is possible to
determine the Andreev current flowing between the supercon-
ductor and the normal leads [23]

IA(V ) = e

h

∫
dω[f (ω − eV ) − f (ω + eV )]TA(ω), (8)

where f (ω) denotes the Fermi-Dirac distribution function
and it is assumed that the chemical potential of the left
and right lead is equal to eV , while the superconductor is
grounded. From the above formula it is easy to find the Andreev

differential conductance, which in the limit of vanishing
temperature can be approximated by

GA(V ) ≈ e2

h
[TA(ω = eV ) + TA(ω = −eV )]. (9)

Consequently, the measurement of differential conductance
allows one to probe the energy dependence of the Andreev
transmission coefficient.

Another interesting quantity is the local density of states,
which is given by the total normalized spectral function

A =
∑
ij

Aij = −
∑
ij

√
�i�j Im〈〈diσ |d†

jσ 〉〉rω. (10)

Thus Ai ≡ Aii corresponds to the local density of states
of one of the quantum dots, while Aij describes the cross
correlations between the two quantum dots generated by
proximity-induced interdot pairing potential �S

LR . Because we
consider a symmetric situation, AL = AR , and ALR = ARL.

To determine the relevant correlation functions we use
the density-matrix numerical renormalization group method
[44–46]. This nonperturbative method allows for obtaining
very accurate results on the static and dynamic properties of
the system. In NRG, the initial Hamiltonian is transformed
to an NRG Hamiltonian, in which the leads are modeled
as tight-binding chains with appropriate hopping integrals
[44]. The calculations are performed in an iterative fashion
by keeping an assumed number NK of the lowest-energy
eigenstates. Here, we exploited the full spin symmetry of the
system and kept at least NK = 2000 states per iteration. The
imaginary parts of the Green’s functions were determined from
discrete NRG data by performing appropriate broadening [61]
and averaging over Nz = 2 shifted discretization meshes [62].
The real parts of the Green’s functions were obtained from the
Kramers-Kronig relation.

C. Stability diagram and transport regimes

The linear Andreev conductance plotted as a function of
the position of each dot level assuming a weak coupling
between the double dot and normal leads is shown in Fig. 2.
The numbers in brackets indicate approximate expectation
values of the occupation number of each dot, (〈nL〉,〈nR〉),
with nj = ∑

σ njσ . The conductance was calculated using the
rate equations within the sequential tunneling approximation
[25]. We note that although this method is not suitable for
capturing the correlation effects studied here, it allows us
to indicate the considered transport regimes in the phase
diagram of the device. In this paper we in particular focus
on the symmetric case, εL = εR ≡ ε, a cross section of Fig. 2
marked with a dashed line. By sweeping ε, which can be
experimentally done with gate voltages [33], the device can
be tuned from the empty or fully occupied orbital regime to
the SU(4) and SU(2) Kondo regimes, respectively.1 The SU(4)

1Note that the SU(2) and SU(4) Kondo regimes can be greatly
modified by finite coupling to superconductor, such that the Kondo
effect can even become fully suppressed. Therefore, referring to the
appropriate Kondo regime should be considered as a guide to estimate
the corresponding parameter space in the phase diagram of the device
in the limit of weak coupling to superconductor.
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FIG. 2. Linear Andreev conductance Glin
A calculated as a function

of the position of each dot level, εL and εR , using the rate equations.
The parameters are U = 1, ULR = U/2, � = U/100, and �S =
U/10. The numbers in brackets indicate the average occupation of
each dot, (〈nL〉,〈nR〉), with nj = ∑

σ njσ .

Kondo regime is marked with a thick dashed line, while the
SU(2) Kondo regime is surrounded by dotted lines in Fig. 2.
These transport regimes will be studied in detail in the next
sections, and the influence of the proximity-induced pairing
potential on the corresponding Kondo states will be thoroughly
analyzed.

III. RESULTS AND DISCUSSION

In this section we present and discuss the main results
on the local density of states and the Andreev transmission
coefficient. We will first study the general gate voltage
dependence of transport characteristics assuming εL = εR ≡
ε, i.e., along the dashed line marked in Fig. 2. Then, we shall
focus on some more relevant transport regions, including the
SU(2) and SU(4) Kondo regimes.

A. Local density of states

The normalized spectral function plotted as a function of
energy ω and DQD level position εL = εR ≡ ε is shown in
Fig. 3. This figure is calculated for different values of the
coupling to superconductor, as indicated, and it demonstrates
the evolution of local density of states with increasing �S .
When �S = 0, one observes the transport behavior typical
for a double quantum dot system [63]; see Fig. 3(a). When
the position of the DQD energy levels is lowered, the DQD
becomes consecutively occupied with electrons. For ε � 0
(ε � −U − 2ULR), the DQD is empty (fully occupied). When
−ULR � ε � 0 (−U − 2ULR � ε � −U − ULR), the double
dot is singly occupied (occupied with three electrons), while
for −U − ULR � ε � −ULR , the DQD is occupied by two
electrons, each located on a different quantum dot. The
above energies also specify when the charge on the DQD

FIG. 3. Total normalized spectral function A of DQD-based
Cooper pair splitter plotted as a function of energy ω and double
dot level position, εL = εR ≡ ε, calculated for different values of
coupling to superconductor �S , as indicated. The parameters are
U = 1, ULR = U/2, � = U/20, and T = 0.

changes and the local density of states exhibits a resonance.
In between those resonant energies, the system’s spectral
function exhibits an enhancement due to the Kondo effect.
In the odd occupation regime, i.e., when DQD hosts either
one or three electrons, the system exhibits the SU(4) Kondo
effect resulting from orbital and spin degeneracies [32,33].
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One can estimate the SU(4) Kondo temperature, T
SU (4)

K , from
the half width at half maximum (HWHM) of the Kondo
peak in the total spectral function for ε = −ULR/2, which
for assumed parameters yields T

SU (4)
K /U ≈ 0.017. On the

other hand, when the DQD is occupied by two electrons,
each dot exhibits the spin SU(2) Kondo resonance [29,30].
The corresponding Kondo temperature, T SU (2)

K , estimated from
HWHM of the Kondo resonance in the spectral function
for ε = −U/2 − ULR , is equal to T

SU (2)
K /U ≈ 10−4. Note

that for the parameters assumed in calculations T
SU (2)

K �
T

SU (4)
K . This is why in Fig. 3(a) the SU(2) Kondo peak

is much less pronounced as compared to the SU(4) Kondo
resonance.

When the coupling to superconductor becomes finite, the
behavior of the spectral function starts changing. First, one
observes the suppression and splitting of the Kondo resonance
in the doubly occupied transport regime; see Figs. 3(b)–3(d).
This splitting increases with �S ; however, when �S � U/2,
a single resonance starts forming; see Figs. 3(e) and 3(f).
This resonance is again due to the Kondo effect, since for
�S � U/2, the doublet state becomes the ground state of
the system. On the other hand, the SU(4) Kondo resonance
looks much less affected, at least for small values of coupling
to superconductor. This is, however, not entirely true, since
with increasing �S , the SU(4) Kondo resonance merges with
resonance resulting from the formation of Andreev bound
states. A thorough discussion of the influence of strength
of coupling to superconductor on the corresponding Kondo
resonances will be presented in the next sections.

Let us now analyze the behavior of separate contributions,
AL and ALR , to the total spectral function A. Their energy
and DQD energy level dependence is shown in Fig. 4 for �S =
U/10. At first sight, one can notice that the qualitative behavior
of A is mainly determined by the spectral function of single
quantum dot AL. For the considered value of �S , AL exhibits
a pronounced split Kondo resonance for −U − ULR � ε �
−ULR and the SU(4) Kondo resonance when −ULR � ε � 0
(−U − 2ULR � ε � −U − ULR), similar to the total spectral
function; cf. Figs. 4(a) and 4(b).

On the other hand, the off-diagonal spectral function, which
accounts for the cross correlations between transport processes
through the two dots, behaves in a clearly different manner.
First of all, we note that finite value of ALR results solely
from proximity-induced interdot pairing, and it vanishes if
CAR processes are not allowed in the system. One can see
that ALR takes considerable values for energies corresponding
to resonances in A; cf. Figs. 4(a) and 4(c). Moreover, if on
one side of the resonance ALR is positive, on the other side it
changes sign. This effect is most pronounced for −ULR � ε �
0 (−U − 2ULR � ε � −U − ULR), i.e., when DQD hosts an
odd number of electrons; see Fig. 4(c). Positive sign ofALR can
be associated with processes that occur in the same direction
through both normal junctions, while negative sign of ALR

indicates that the two processes are anticorrelated [27].

B. Andreev transmission and splitting efficiency

The energy and DQD level dependence of the Andreev
transmission coefficient calculated for different values of

FIG. 4. Normalized spectral function: (a)A, (b)AL, and (c)ALR ,
plotted versus energy ω and double dot energy level position ε. The
parameters are the same as in Fig. 3 with �S = U/10.

coupling to superconductor is presented in Fig. 5. When
the coupling �S is relatively small, one can see that TA(ω)
becomes finite in the low-energy regime and it is considerably
enhanced for ε ≈ −ULR and ε ≈ −U − ULR; see Fig. 5(a).
The area when the maximum occurs grows with increasing �S

and, at the same time, the maximum value slightly decreases.
Moreover, for �S = U/5, TA(ω) becomes finite in almost the
whole energy range considered in the figure, with maximum
values occurring still for ε ≈ −ULR and ε ≈ −U − ULR; see
Fig. 5(c). Note that TA(ω) exhibits a similar split structure as
that visible in the local density of states; cf. Figs. 3(d) and 5(c).
Further increase of the coupling strength results in a decrease
of the size of the Coulomb blockade regime, which is seen
as merging of the two maxima at the particle-hole symmetry
point ε = −U/2 − ULR [Fig. 5(d)]. For even larger �S the
transmission coefficient drops and the energy range where
TA(ω) is enhanced shrinks; see Fig. 5(e).

The different contributions to the transmission coefficient
coming from DAR and CAR processes are presented in Fig. 6
for �S = U/10. The first general observation is that the
total Andreev transmission is mainly determined by crossed
Andreev reflection processes. This can be expected because
the rate of direct Andreev reflection is conditioned by the
value of on-site Coulomb correlations, while the rate of
CAR processes depends on the interdot correlations. Because
ULR < U , as in typical experimental realizations [7], one
finds more CAR processes compared to DAR ones. This
is in fact a very desired situation for Cooper pair splitting
experiments, in which one would like to suppress DAR
processes and maximize CAR ones.

From the application point of view, it is thus interesting to
analyze the Cooper pair splitting efficiency η of the device.
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FIG. 5. Andreev transmission coefficient plotted versus energy ω

and double dot energy level position ε, and calculated for different
values of �S , as indicated. The other parameters are the same as in
Fig. 3.

This is presented in Fig. 6(d). One can see that the splitting
efficiency, depending on DQD energy level position ε and
energy ω, takes values ranging from very low (η ≈ 0.2) to its
maximum value of η = 1. We recall that for η = 1 transport
is exclusively due to CAR processes, while for η = 0, only
DAR processes contribute to Andreev conductance; cf. Eq. (7).
Clearly, large splitting efficiency is observed at low energies
and for −U − 2ULR � ε � 0; see Fig. 6(d). Moreover, a
region of enhanced η is present in the Coulomb blockade
regime with two electrons. Then, mainly CAR processes are
responsible for Andreev transport. Note also that there are
transport regimes where the splitting efficiency is rather poor
and mainly DAR processes are responsible for transport; see
the transport regime with odd number of electrons for elevated
energies |ω| in Fig. 6(d).

FIG. 6. (a) Total Andreev transmission coefficient and its contri-
butions due to (b) CAR and (c) DAR processes, as well as (d) Cooper
pair splitting efficiency η plotted as function of energy ω and double
dot energy level position ε. The parameters are the same as in Fig. 3
with �S = U/10.

The splitting efficiency greatly depends on the strength
of coupling to superconductor. This dependence is explicitly
demonstrated in Fig. 7, which shows the energy and DQD
level dependence of η calculated for different values of �S

corresponding to those considered in Fig. 5. In this figure
one can identify optimal parameters, for which the process
of Cooper pair splitting is most efficient in the considered
transport regime.

Finally, we would like to emphasize that the splitting
efficiency also strongly depends on the ratio of interdot and
intradot Coulomb correlations U/ULR . In typical experimental
realizations, U � ULR , which is desired to enhance CAR
processes and suppress DAR ones, obtaining thus large values
of η. The splitting efficiency however generally decreases
when the ratio of U/ULR becomes smaller. In particular, the
amount of DAR and CAR processes becomes equal when
U = ULR , such that η = 1/2 in the whole parameter space.

C. SU(2) Kondo regime

We now focus in greater detail on the SU(2) Kondo regime,
where for �S = 0 the DQD is occupied by two electrons,
each on a different quantum dot; see Fig. 2. To simplify the
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FIG. 7. Splitting efficiency η calculated for different values of
coupling strength to superconducting lead, as indicated, and for
parameters the same as in Fig. 3.

discussion, we consider the particle-hole symmetry point of
the model, ε = −U/2 − ULR . Nevertheless, the conclusions
drawn here shall apply to the whole two-electron Coulomb
blockade regime where the spin SU(2) Kondo effect can
develop.

The total normalized spectral function in the SU(2) Kondo
regime, together with its contributionsAL andALR , calculated
as a function of �S for ε = −U/2 − ULR , is shown in Fig. 8.
The dashed lines indicate the energies of the Andreev bound
states, while the insets present the zooms into the low-energy
behavior of the spectral function, where the suppression of the
Kondo resonance with increasing �S is clearly visible. The
general behavior is as follows: finite coupling to supercon-
ductor results in the splitting and suppression of the Kondo
resonance, which, however, emerges again for �S ≈ U/2. In
fact, for this value of �S , the system exhibits a phase transition

FIG. 8. Energy dependence of (a) the total normalized spectral
function A and its contributions: (b) AL and (c) ALR calculated as a
function of the coupling to superconductor �S and for ε = −U/2 −
ULR . The insets show the zoom into the suppression of the SU(2)
Kondo resonance with increasing �S . The dashed lines indicate the
energies of the Andreev bound states, cf. Eq. (12), while the dotted
lines present the excitation energies between corresponding singlet
and triplet states; cf. Eq. (13). The other parameters are as in Fig. 3.

and the ground state changes from spin singlet to spin doublet.
Consequently, the Kondo resonance develops once �S � U/2;
see Fig. 8.

Let us shed more light on the system’s behavior by using
some analytical arguments. For the particle-hole symmetry
point, it is easy to find the eigenspectrum of the effective
Hamiltonian (3). We will consider the lowest-energy singlet
(|S〉), doublet (|Dσ 〉), and triplet (|Tδ〉) states. The first two
states have the following explicit form:

|S〉 = α(|dd〉 − |00〉) − β(|↑↓〉 − |↓↑〉),
|Dσ 〉 = 1

2 (|σ0〉 + |0σ 〉 + |σd〉 + |dσ 〉),
where the coefficients are given by α =√

(γ − U − ULR)/(4γ ), β = 2�S/
√

γ (γ − U − ULR), and
γ =

√
(U + ULR)2 + 16�2

S . Note that these states correspond
to the states |D2

σ 〉 and |S4〉 presented in the Appendix.
The triplet state is threefold degenerate with components
|T+〉 = |↑↑〉, |T−〉 = |↓↓〉, and |T0〉 = (|↑↓〉 + |↓↑〉)/√2. The
energies of the above states are given by

ES = − 1
2

[
U + ULR +

√
(U + ULR)2 + 16�2

S

]
,

ED = − 1
2 (U + 2ULR + 4�S),

ET = −U − ULR, (11)
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respectively. Note that the energy of the triplet state does not
depend on �S . This is to be expected since the triplet state does
not match the symmetry of the s-wave superconductor. The
excitation energies between singlet and doublet states define
the relevant ABS’s energies

EABS = ±ULR

2
± 2�S ∓ 1

2

√
(U + ULR)2 + 16�2

S, (12)

which are marked with dashed lines in Fig. 8.
In the case of �S = 0, the singlet and triplet state are

degenerate and the system exhibits the SU(2) Kondo effect
on each quantum dot; see the insets in Figs. 8(a) and 8(b).
However, when �S becomes finite, the induced interdot pairing
relevant for crossed Andreev reflection results in the singlet-
triplet splitting and causes the singlet state |S〉 to be the ground
state of the system. Because of that, the Kondo resonance gets
very quickly suppressed when �S increases and only split
Kondo peaks are visible; see the insets in Fig. 8. The position
of the split Kondo peaks is determined by the excitation energy
between the singlet and triplet states, such that the peaks occur
for

ω ≈ ± 1
2

[
U + ULR −

√
(U + ULR)2 + 16�2

S

]
. (13)

Thus, for small values of �S , the position of side peaks depends
in a parabolic way on the coupling to superconductor, ω ≈
±4�2

S/(U + ULR). This parabolic dependence can be seen in
Figs. 8(a) and 8(b) and the corresponding insets.

The value of �S at which the Kondo resonance becomes
suppressed can be estimated by comparing the characteristic
energy scales, i.e., the Kondo temperature and the singlet-
triplet excitation energy. One can then find the value of the
coupling to superconductor, �T S

S , at which the suppression of
the Kondo resonance develops

�T S
S ≈ 1

2

√
T

SU (2)
K (U + ULR). (14)

For assumed parameters and recalling that T
SU (2)

K /U ≈ 10−4,
one gets �T S

S /U ≈ 0.006. This estimate is validated by NRG
calculations of the total normalized spectral function for small
values of �S , which is plotted as a function of energy on
logarithmic scale in Fig. 9(a). One can clearly see the Kondo
peak for �S � �T S

S and a gradual decrease of its height with
increasing �S , until the peak becomes completely suppressed
for �S � �T S

S . The vertical dashed lines in Fig. 9(a) mark the
energy of the side Kondo peak as estimated from Eq. (13). The
agreement between this analytical formula and full numerical
calculations is quite satisfactory.

For �S � �T S
S and such values of �S that the ground state

is spin singlet, the system does not exhibit the Kondo effect
at all. The spectral function reveals then just peaks at energies
corresponding to the Andreev bound states; see Fig. 8. When,
however, the energies of Andreev bound states cross the zero
energy for �S ≈ �SD

S , with

�SD
S = U (U + 2ULR)

8ULR

(15)

(for assumed parameters this happens when �SD
S = U/2), the

doublet state |Dσ 〉 becomes the ground state of the system.
Then, one observes the reemergence of the Kondo resonance.
This is explicitly presented in Fig. 9(b), which shows the total

FIG. 9. Total normalized spectral function A plotted vs energy
on logarithmic scale for selected values of �S . Panel (a) presents
the suppression of the Kondo resonance with �S , which occurs for
the critical value of �S = �T S

S ≈ 0.006U ; cf. Eq. (14). The vertical
dashed lines in (a) show the excitation energies between the singlet
and triplet states for given �S ; cf. Eq. (13). At these excitation energies
side Kondo peaks occur. Panel (b) presents the restoration of the
Kondo effect when �S � �SD

S . The parameters are the same as in
Fig. 8.

normalized spectral function plotted on logarithmic energy
scale for the corresponding values of �S . Note that the Kondo
temperature is now clearly larger compared to the case of
�S = 0; cf. Figs. 9(a) and 9(b). This basically results from
the difference in excitation energies to virtual states allowing
for spin-flip processes driving the Kondo effect. For �S = 0,
the energy is given by the charging energy of each dot, while
for �S � �SD

S , it is given by the doublet-singlet excitation
energy, which is smaller than U . Consequently, there is a larger
exchange interaction in the latter case, which explains the
observed difference in Kondo temperatures.

It is also interesting to notice that the maximum value
of A at ω = 0 is comparable for �S = 0 and �S = U , and
approaches 2; see Fig. 9. In the former case this limit can
be easily understood since each of the two quantum dots
contributes with the Kondo resonance, such that AL = AR →
1. In the latter case, on the other hand, one finds AL = AR →
1/2 and ALR = ARL → 1/2, cf. Fig. 8, which implies that
the off-diagonal spectral function, that encompasses cross
correlations between the two dots, contributes 1/(π�) to the
height of the Kondo peak in the total spectral function.
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FIG. 10. Excitation energies �E between the singlet, doublet,
and triplet states plotted as a function of the coupling to supercon-
ductor for parameters the same as in Fig. 8. The excitation energies
are measured relative to the ground state energy, which is set to zero.
The evolution of the ground state from the singlet (|S〉) to the doublet
(|D〉) state is clearly visible. The values of �S at which the Kondo
effect becomes suppressed or emerges are indicated. T

SU (2)
K denotes

the SU(2) Kondo temperature for �S = 0. Note that for �S = 0 the
singlet and triplet (|T 〉) states are degenerate.

The low-energy behavior of the system in the two-electron
transport regime is summarized in Fig. 10, which shows the
evolution of the excitation energies �E between the relevant
states, cf. Eq. (11), when �S is varied. For two indicated values
of �S , the transport behavior of the system greatly changes.
When �S � �T S

S , the Kondo singlet is the ground state of the
system and the electrons experience a π/2 phase shift [29]. At
�S ≈ �T S

S , there is a crossover, such that for �T S
S � �S � �SD

S ,
the interdot pairing-induced singlet becomes the ground state
of the system. Consequently, there is no Kondo effect (phase
shift is equal to zero). On the other hand, when �S ≈ �SD

S ,
the system exhibits a phase transition and for �S � �SD

S the
doublet state becomes the ground state of the splitter. This
results in the reemergence of the Kondo effect.

Note that the system’s behavior as a function of �S is
completely different from the case of a single quantum dot. In
single quantum dots attached to superconducting and normal
leads, in the subgap transport regime, the increase of �S results
in an enhancement of the Kondo temperature [43]. Since in
the case of DQD for �S = 0 the Kondo effect develops on
each quantum dot, one could naively expect that for finite
�S the behavior will be qualitatively the same as in the
single quantum dot case. The above-presented analysis clearly
demonstrates that such conjecture is completely unjustified.
The proximity-induced interdot pairing potential spoils this
picture and, once �S � �T S

S , it immediately results in the
suppression of the Kondo resonance on both quantum dots.
Thus the coupling to superconductor has a strong destructive
influence on the SU(2) Kondo effect in DQD-based Cooper
pair splitters. Note also that a very large value of the coupling
�S , i.e., �S � �SD

S , can induce the Kondo effect again.

FIG. 11. (a) Total Andreev transmission coefficient and its
contributions due to (b) CAR and (c) DAR processes, as well as
(d) the Cooper pair splitting efficiency η plotted as function of
energy ω and the strength of coupling to superconductor �S . The
dashed lines indicate the energies of the Andreev bound states given
by Eq. (12), while the dotted lines present the excitation energies
between corresponding singlet and triplet states given by Eq. (13).
The parameters are the same as in Fig. 8.

Let us now analyze the behavior of the Andreev trans-
mission, its contributions due to DAR and CAR processes,
and the splitting efficiency in the SU(2) Kondo regime. The
dependence of these quantities on energy and strength of
coupling to superconductor is presented in Fig. 11. First of
all, one can see that the transmission coefficient achieves
considerable values mainly in the low-energy regime, in
between the Andreev bound states. Moreover, an enhancement
of transmission can be also seen along the energies of Andreev
bound states; see Fig. 11. Interestingly, we note that for
small values of �S and low energies, mainly CAR processes
dominate transport, which results in almost perfect splitting
efficiency; see Fig. 11(d). We recall that this is the regime
of suppressed and split Kondo resonance, which now we can
clearly associate with the interdot pairing generated by crossed
Andreev reflection. Note that despite suppression of the Kondo
effect, in this transport regime T CAR

A (ω) is still considerable
and extends to energy regions greater than T

SU (2)
K . When
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FIG. 12. Energy dependence of (a) the total normalized spectral
function A and its contributions: (b) AL and (c) ALR calculated as a
function of the coupling to superconductor �S and for ε = −ULR/2.
The dashed and dotted-dashed lines indicate the energies of the
Andreev bound states, while the dotted line shows the splitting of
the doublet states, as given by Eq. (18). The other parameters are as
in Fig. 3.

�S � �SD
S , at low energies the splitting efficiency is smaller

and it indicates that CAR and DAR processes contribute to
Andreev transport on an equal footing. On the other hand, for
larger energies, η first becomes suppressed and then increases
again. However, in this transport regime the total transmission
is relatively low; see Fig. 11.

D. SU(4) Kondo regime

In this section we consider more thoroughly the behavior of
the spectral function and Andreev transmission in the SU(4)
Kondo regime; see also Fig. 2. For �S = 0 and when the
DQD is singly occupied, the system exhibits the SU(4) Kondo
effect resulting from the spin and orbital degeneracies. For the
present analysis we thus assume ε = −ULR/2. The normalized
spectral function calculated as a function of energy and the
strength of coupling to superconductor is shown in Fig. 12.
At first sight, one can deduce that for relatively low values
of �S , i.e., �S � U/5, the SU(4) Kondo resonance is hardly
affected by the superconducting proximity effect. Only when
the coupling to superconductor becomes larger (�S � U/5)
does the Kondo phenomenon get suppressed—the resonance
in the spectral function becomes then broadened and departs
to larger energies. In fact, for �S ≈ U/5, the ground state
of the system changes from the spin doublet to spin singlet
state, and this is the reason for vanishing of the Kondo effect.
For �S � U/5, A exhibits only resonances at larger energies

FIG. 13. (a) Total Andreev transmission coefficient and its con-
tributions due to (b) CAR and (c) DAR processes, as well as (d) the
Cooper pair splitting efficiency η plotted as function of energy ω

and the strength of coupling to superconductor �S for parameters the
same as in Fig. 12. The dashed and dotted-dashed lines indicate the
energies of the Andreev bound states, and the dotted line shows
the splitting of the doublet states, as described by Eq. (18).

corresponding to the Andreev bound state energies; see the
dashed and dotted-dashed lines in Fig. 12, which mark the
energies of Andreev bound states. The ABS’s energies were
determined from the excitation energies between appropriate
singlet and doublet states obtained from numerical solution
of the eigenvalue problem. The resonances associated with
excitations due to Andreev bound states are also clearly visible
in the spectral function of individual quantum dots AL as well
as in ALR , shown in Figs. 12(b) and 12(c), respectively.

At energies corresponding to Andreev bound states, the
Andreev transmission coefficient also becomes enhanced. This
can be seen in Fig. 13, which presents the energy ω and
�S dependence of TA(ω) and its contributions due to CAR
and DAR processes, together with the splitting efficiency
η. We again notice that generally T CAR

A (ω) > T DAR
A (ω) [cf.

Figs. 13(b) and 13(c)], which leads to large splitting efficiency,
especially visible for low energies [Fig. 13(d)]. In fact, for
�S ≈ U/5, i.e., when the doublet-singlet transition occurs,
the total transmission coefficient has a local maximum, which
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FIG. 14. Energy dependence of (a) the total normalized spectral
function A, its contributions (b) AL and (c) ALR , and (d) the total
Andreev transmission coefficient TA(ω) plotted as a function of
energy ω and �S in the SU(4) Kondo regime for the symmetric
case with ULR = U . The dotted-dashed (dashed) lines indicate the
energies of the Andreev bound states E1

ABS (E2
ABS), cf. Eq. (22),

while the dotted lines show the doublet splitting energy; cf. Eq. (18).
The other parameters are the same as in Fig. 3.

results mainly from CAR processes; see Fig. 13. Consequently,
the splitting efficiency becomes then very close to unity. On
the other hand, there are also transport regimes where η is
very much suppressed, which indicates that DAR processes
are dominant; see the transport region for |ω| ≈ U/5 and
low values of �S (�S ≈ U/10) in Fig. 13(d). The trans-
mission coefficient in these transport regimes is however
relatively low.

To shed more light on the influence of superconducting
pairing correlations on the SU(4) Kondo regime, let us now
assume a fully symmetric situation, namely ULR = U . For
this case, the dependence of the relevant spectral functions
and the total Andreev transmission coefficient on ω and �S

is shown in Fig. 14. In the symmetric case, one can find
the eigenenergies and eigenstates in the spin singlet subspace
explicitly. These are presented in Table III in the Appendix,
while the eigenspectrum in the doublet subspace can be found
in Table I. Note that in the doublet subspace we can find
the eigenspectrum for arbitrary parameters; therefore, if only

TABLE I. Eigenvalues and unnormalized eigenvectors of the
effective DQD Hamiltonian in the doublet subspace. Here,

�D = [(2ε + 2ULR + U )2 + 16�2
S]

1
2 and α = (2ε + 2ULR + U +

�D)/(4�S).

State Eigenenergy Eigenvector

|D1
σ 〉 ε |σ0〉 − |0σ 〉

|D2
σ 〉 2ε + ULR + U−�D

2 α(|σ0〉 + |0σ 〉) + |σd〉 + |dσ 〉
|D3

σ 〉 2ε + ULR + U+�D

2 |σ0〉 + |0σ 〉 − α(|σd〉 + |dσ 〉)
|D4

σ 〉 3ε + 2ULR + U |σd〉 − |dσ 〉

the doublet states are considered we will present the analytical
formulas for the general case of ULR �= U . From the inspection
of the spectrum of H eff

DQD one can see that for �S → 0 the
ground state is indeed fourfold degenerate and given by the
doublet states

∣∣D1
σ

〉 = 1√
2

(|σ0〉 − |0σ 〉) (16)

with energy E1
D = −ULR/2 and

∣∣D2
σ

〉= 1√
16�2

S +α2
[α(|σ0〉+|0σ 〉) + 4�S(|σd〉+|dσ 〉)],

(17)
with α = U + ULR +

√
(U + ULR)2 + 16�2

S , and the energy,
E2

D = U/2 −
√

(U + ULR)2 + 16�2
S/2. With increasing �S ,

the two doublet states become split and the ground state is
given by the state |D2

σ 〉. The doublet splitting energy is given
by

ω = ± 1
2

[
U + ULR −

√
(U + ULR)2 + 16�2

S

]
. (18)

This energy difference is marked with dotted lines in Figs. 12,
13, and 14. It coincides with the resonances in the spectral
function AL obtained from NRG calculations. These reso-
nances are however not visible in the total spectral function,
since the peak in AL is counterbalanced by an associated
minimum in ALR; see, e.g., Figs. 12(b) and 12(c). Pronounced
maxima can be also observed in the Andreev transmission
coefficient shown in Figs. 13 and 14(d). Note that while around
the Fermi energy both the spectral function and Andreev
transmission show features at the doublet-doublet excitation
energy [Eq. (18)], for larger ω, the resonances occur at energies
corresponding rather to the Andreev bound states.

The influence of the superconducting pairing correlations
on the SU(4) Kondo state can be better resolved in the spectral
function plotted versus energy on logarithmic scale. This
is presented in Fig. 15. Now, one can clearly see that the
maximum in the spectral function strongly depends on �S . For
very small pairing correlations, A exhibits a resonance at finite
ω; see Fig. 15. Now for assumed parameters and �S = 0 one
finds T

SU (4)
K /U ≈ 0.004. However, with increasing �S , this

resonance becomes suppressed and moves towards the Fermi
energy. This is a clear indication of a crossover from the SU(4)
to the SU(2) Kondo effect. Finite pairing correlations break the
fourfold degeneracy of the ground state and reduce it to twofold
degeneracy due to only the spin degrees of freedom. Because
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FIG. 15. (a) Total spectral function plotted vs energy on logarith-
mic scale and (b) the temperature dependence of the linear-response
normal conductance for different values of �S , as indicated in the
legends. The inset in (b) presents the crossover of the universal
scaling of the conductance vs T/TK from the SU(4) to the SU(2)
Kondo regime. The other parameters are the same as in Fig. 14. For
�S = 0 and assumed parameters T

SU (4)
K /U ≈ 0.004.

of that, the SU(4) Kondo effect becomes suppressed. One can
estimate the strength of coupling �S when this crossover takes
place (�DD

S ) by comparing the doublet splitting energy with
the corresponding Kondo temperature. This leads to

�DD
S ≈ 1

2

√
T

SU (4)
K (U + ULR). (19)

For parameters assumed in Fig. 15 one then finds �DD
S ≈

0.045U . This estimate agrees reasonably well with the
numerical data shown in Fig. 15(a).

Moreover, we corroborate the SU(4)-SU(2) crossover by
calculating the temperature dependence of the normal con-
ductance, which for potential drop between the left and right
leads in the linear response regime can be expressed as [23,64]

G = 2e2

h

∫
dω

(
−∂f (ω)

∂ω

)
A, (20)

where f (ω) is the Fermi-Dirac distribution function. We note
that, since the total conductance may contain contributions
from Andreev reflection processes, the normal conductance G

should be considered as a theoretical tool to gain information
about the type of scaling and, thus, the type of the Kondo

effect in the system. The temperature dependence of G is
shown in Fig. 15(b). For �S = 0, G(T ) exhibits the SU(4)
universal scaling; see the inset in Fig. 15(b). However, with
increasing �S , e.g., for �S = 0.05U � �DD

S , the scaling does
not collapse onto the SU(4) universal function any more.
Instead, for �S > �DD

S , one finds that the SU(2) Kondo effect
becomes responsible for the conductance enhancement. The
conductance reveals the SU(2) universal scaling for �S up to
�S ≈ 3U/10 (not shown), since for larger �S the doublet is
not the ground state of the system any more and the Kondo
effect is not present in the system.

Note also that the maximum value of the low-temperature
conductance, which corresponds directly to A at ω = 0,
depends in a nonmonotonic fashion on �S . For �S = 0, G =
2e2/h, while for �DD

S � �S , G is clearly larger than 2e2/h

and approaches almost 4e2/h; see Fig. 15(b). This can be
understood by realizing that finite coupling to a superconductor
leads to an enhancement of the average occupation of each dot,
such that the occupation of the double dot becomes larger than
one. Moreover, finite coupling to a superconductor results in
a large enhancement of ALR , such that the total conductance
reaches G ≈ 4e2/h.

When the coupling to superconductor is enhanced further,
a doublet-singlet transition occurs for �S = 3U/8. For �S >

3U/8, the ground state of the system is given by the following
singlet state (cf. state |S2〉 in Table III):

|S〉= 1√
2

[
|00〉 + 1

2
(|d0〉+|0d〉) + 1

2
(|↑↓〉−|↓↑〉)

]
, (21)

with the energy ES = −2�S . The excitations between the
singlet and the two doublet states allow us to estimate the
analytical formulas for the energies of the relevant Andreev
bound states, which are given by

E1
ABS = ±U

2
∓ 2�S,

E2
ABS = ±U

2
± 2�S ∓

√
U 2 + 4�2

S. (22)

The energies of those Andreev bound states are presented in
Fig. 14 with dotted-dashed and dashed lines, respectively. In
fact, for �S > 3U/8, the resonances present in the spectral
function for positive energies are exactly due to the Andreev
bound states; see Fig. 14. At the ABS energy E1

ABS an
enhancement of the Andreev transmission is also clearly
present; see Fig. 14(d).

Summing up, in the SU(4) Kondo regime, i.e., for ε =
−U/2 with ULR = U , the SU(4) Kondo effect is present
for �S � �DD

S . At �S ≈ �DD
S , there is an SU(4)-SU(2)

crossover, and for �DD
S � �S � 3U/8 the system exhibits the

SU(2) Kondo resonance. When �S ≈ 3U/8, there is a phase
transition and the ground state changes from the spin doublet
to the spin singlet state, such that for larger values of �S

the system does not exhibit the Kondo effect any more. These
findings are schematically summarized in Fig. 16, which shows
the evolution of the ground state when the strength of coupling
to superconductor increases.
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FIG. 16. Excitation energies �E between the corresponding
singlet and two doublet states plotted as a function of the coupling to
superconductor for parameters the same as in Fig. 14. The excitation
energies are measured relative to the ground state energy, which is set
to zero. The values of �S at which the symmetry of the Kondo state
or the ground state of the system changes are indicated.

IV. CONCLUSIONS

We have analyzed the transport properties of double
quantum dot based Cooper pair splitters strongly coupled
to external electrodes, focusing on the Kondo regime. The
two dots were attached to a common s-wave superconductor
and each dot was coupled to a separate metallic electrode.
The considerations were performed in the subgap transport
regime, where transport was driven by direct and crossed
Andreev reflection processes. By using the density-matrix
numerical renormalization group method, we determined the
behavior of the local density of states of DQD and the Andreev
transmission coefficient, together with Cooper-pair splitting
efficiency. First, we have analyzed the dependence of the
transport properties on the position of the DQD energy levels
and then we have focused on the SU(2) and SU(4) Kondo
regimes.

We have shown that the superconducting pairing correla-
tions can greatly influence the Kondo effect in the system. In
the SU(2) Kondo regime, we predict a very quick suppression
of the Kondo resonance with increasing the strength of cou-
pling to superconductor. This effect is in stark contrast to the
single quantum dot case, where increase of pairing correlations
resulted in an enhancement of the Kondo temperature [43,47].
The disappearance of the SU(2) Kondo peak is directly
associated with the formation of a spin singlet state between
the two quantum dots triggered by proximity-induced interdot
pairing potential. With increasing the strength of coupling
to superconductor further, we demonstrate that the system
undergoes a transition to the doublet state. In this transport
regime, the Kondo effect reemerges and the total spectral
function shows a pronounced Kondo peak. The occurrence
of this resonance is associated with contributions coming
from both individual quantum dots Ai , as well as from cross

correlations described by the off-diagonal part of the spectral
function Aij .

In the SU(4) Kondo regime, on the other hand, the impact of
superconducting pairing correlations on the Kondo state is less
abrupt and now the Kondo effect persists for larger couplings
to superconductor as compared to the SU(2) case. More
specifically, we predict that, in the fully symmetric situation,
the SU(4) Kondo effect becomes first reduced to the SU(2)
Kondo effect, which becomes then fully suppressed once
�S > 3U/8. For this value of coupling to superconductor, the
ground state changes from the spin doublet to the proximity-
induced singlet state and, consequently, there is no Kondo
effect. The spectral function exhibits then only resonances at
energies corresponding to energies of Andreev bound states.
Interestingly, in the SU(4) Kondo regime, when ULR < U , we
find that the Andreev current is mainly due to CAR processes,
which yields almost perfect Cooper pair splitting efficiency.

Finally, we would like to note that most of our findings, and
especially the suppression or reemergence of the Kondo state
as the coupling to superconductor is varied, could be tested
with the present-day experimental technology. We hope that
our research will stimulate further efforts in this direction.
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APPENDIX: SPECTRUM OF THE EFFECTIVE
DOUBLE DOT HAMILTONIAN

Here we present the eigenvalues and eigenvectors of
isolated double quantum dot with proximity-induced pairing
potentials, as modeled by the effective Hamiltonian (3). Be-
cause the Hamiltonian possesses the full spin SU(2) symmetry,
we can write H eff

DQD in blocks labeled by the spin quantum
number. Moreover, it is enough to use 10 spin multiplets
instead of 16 local states. Let us first start from the trivial
triplet subspace. The triplet state |Tδ〉 has the components:
|T+〉 = |↑↑〉, |T−〉 = |↓↓〉, |T0〉 = (|↑↓〉 + |↓↑〉)/√2, and the
energy ET = 2ε + ULR .

The Hamiltonian block in the spin doublet subspace is
explicitly given by

H
eff,S= 1

2
DQD =

⎛
⎜⎝

ε 0 −�S −�S

0 ε −�S −�S

−�S −�S ε3 0
−�S −�S 0 ε3

⎞
⎟⎠, (A1)

with ε3 = 3ε + 2ULR + U . This matrix is written in the
following states: |σ0〉, |0σ 〉, |σd〉, and |dσ 〉, respectively, and
its eigenvalues together with unnormalized eigenvectors are
listed in Table I.

Now, let us consider the singlet subspace which is spanned
by the following five states: |00〉, |d0〉, |0d〉, |S0〉 = (|↑↓〉 −
|↓↑〉)/√2, and |dd〉. The effective DQD Hamiltonian in this
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TABLE II. Eigenvalues and unnormalized eigenvectors of the
effective DQD Hamiltonian in the singlet subspace for the particle-

hole symmetry point, ε = −U/2 − ULR . Here, �S = (U 2
LR + 4�2

S)
1
2 ,

α = (ULR + �S)/(2�S), and �̃S = [(U + ULR)2 + 16�2
S]

1
2 .

State Eigenenergy Eigenvector

|S1〉 −2ULR |d0〉 − |0d〉
|S2〉 −ULR − �S |dd〉 + |00〉 + α(|d0〉 + |0d〉)
|S3〉 −ULR + �S α(|dd〉 + |00〉) − |d0〉 − |0d〉
|S4〉 −U+ULR+�̃S

2 |dd〉 − |00〉 + U+ULR+�̃S

2
√

2�S
|S0〉

|S5〉 −U+ULR−�̃S

2 |dd〉 − |00〉 + U+ULR−�̃S

2
√

2�S
|S0〉

subspace is given by

H
eff,S=0
DQD

=

⎛
⎜⎜⎜⎜⎝

0 −�S −�S

√
2�S 0

−�S 2ε + U 0 0 −�S

−�S 0 2ε + U 0 −�S√
2�S 0 0 2ε + ULR −√

2�S

0 −�S −�S −√
2�S ε4

⎞
⎟⎟⎟⎟⎠,

(A2)

TABLE III. Eigenvalues and unnormalized eigenvectors of the
effective DQD Hamiltonian in the singlet subspace in the SU(4)
Kondo regime, that is for ε = −U/2 and ULR = U . Here, �S =
(U 2 + �2

S)
1
2 and α = (U + �S)/(2�S).

State Eigenenergy Eigenvector

|S1〉 0 |d0〉 − |0d〉
|S2〉 −2�S |S0〉 − √

2|00〉 − 1√
2
(|d0〉 + |0d〉)

|S3〉 2�S |S0〉 + √
2|00〉 − 1√

2
(|d0〉 + |0d〉)

|S4〉 2U − 2�S α(|d0〉 + |0d〉 + √
2|S0〉) + |dd〉

|S5〉 2U + 2�S α|dd〉 − (|d0〉 + |0d〉 + √
2|S0〉)

where ε4 = 4ε + 2U + 4ULR is the energy of the fully
occupied double dot. The first eigenstate is |S1〉 = (|d0〉 −
|0d〉)/√2 and its eigenenergy reads 2ε + U . The next eigenen-
ergies are given by polynomials of various Hamiltonian param-
eters and do not have simple analytical structure; therefore,
we will not present them here. Instead, let us consider some
limiting situations. The first one is relevant to the SU(2) Kondo
regime, ε = −U/2 − ULR , and the second one is associated
with the SU(4) Kondo regime, when ε = −ULR/2 and U =
ULR . The eigenspectrum in the former case is presented in
Table II, while the states and energies in the latter case are
listed in Table III.
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