
PHYSICAL REVIEW B 96, 195307 (2017)

Even-odd interference effect in a topological superconducting wire
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We study the nonlocal transport property of Majorana quasiparticle states (MQPs) in a normal lead–topological
superconducting wire–normal lead system. We find that the tunneling coefficient of the electron transmission
process displays an interesting even-odd interference behavior. However, this even-odd interference behavior
is difficult to observe in the tunneling coefficient of the crossed Andreev reflection process (CAR). We show
that this even-odd interference behavior is directly related to the self-Hermitian property of MQPs. Due to the
self-Hermitian property, the correction to the transport in the electron transmission process is in the first order
while the correction to the CAR process is in the higher order. Thus, the interference behavior is more significant
in the electron transmission process than in the CAR process. Such a unique transport property demonstrates the
nonlocal and self-Hermitian characteristics of MQPs.
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I. INTRODUCTION

Due to the unique non-Abelian braiding statistical property
of Majorana quasiparticle states (MQPs), they can form the
building blocks of a topological quantum computer [1–3].
Thus, realizing MQPs in a laboratory setting has become a
major focus in condensed-matter physics. Kitaev suggested
that MQPs can appear as quasiparticle end states in a
one-dimensional (1D) p-wave superconductor [4]. However,
because 1D p-wave superconductors are rare in nature, various
experimentally feasible proposals based on a hybrid of a
conventional superconductor and a low-dimensional system
have been put forward [5–14]. Among these proposals, a
semiconductor wire exposed to an external magnetic field and
with proximity-induced superconductivity has been singled
out as the most feasible device. Through the advancements
in nanotechnology, an experimental work towards this goal
was shown by Kouwenhoven’s group [15]. They successfully
fabricated a topological superconducting system based on
the semiconductor wire and observed the signal of zero
bias peak as indicated by the theory [16,17]. Following
Kouwenhoven’s work, many groups successfully fabricated
semiconductor-superconducting wires and observed a simi-
lar phenomenon [18–21]. In addition to the semiconductor
systems, a topological superconducting system consisting of
ferromagnetic atomic chains placed on a trivial superconductor
has been experimentally realized [22]. Although the results of
these experiments—in particular whether MQPs have really
been detected—have been hotly debated [23–27], significant
advancements in fabricating high-quality hybrid nanowire-
superconductor samples have been achieved lately, and the
renewed experiments demonstrate the plausibility of MQPs
[28–31]. For example, Kouwenhoven et al. constructed a
ballistic semiconductor superconducting wire and detected a
clear zero-bias peak [28]. Such a highly clean system can
eliminate the effect of disorder, making the results more
plausible. At the same time, great progress has also been made
in atomic chain topological superconducting systems, where
Yazdani’s group recently provided a high-resolution MQP

signal [32]. The more exciting achievement is the topological
insulator-superconductor hybrid system, which is another
theoretically proposed hybrid topological superconducting
system [5]. Several groups have successfully fabricated
superconductor-topological insulator-superconductor systems
and observed unusual Josephson effects in such a system
[33–38]. These improved results certainly demonstrate the
presence of MQPs.

Although huge advances have been achieved in experi-
ments, an admitted method for definitely distinguishing MQPs
in experiment is still an open question. Recent strategies can
be classified into two camps. One strategy is to combine
more topological superconducting wire together to realize
more exotic MQP properties. In such complex systems, the
fractional Josephson effect is another landmark of topological
superconductor. Quite recently, some fractional Josephson
effect signals [36–38] were observed in a topological insulator
system. However, the fractional Josephson effect has still
not been well observed in a semiconductor superconducting
wire system, although Kouwenhoven’s group and Marcus’
group successfully fabricated semiconductor superconducting
Josephson junctions [39–41]. In principle, the fractional
Josephson effect can be easily spoiled by quasiparticle poi-
soning, as shown in a series of theoretical works [42–49].
Another strategy is to uncover more unique properties of MQPs
in a single wire system. For example, by definition, a MQP’s
wave function must be self-Hermitian; such a property results
in the well-known equal-spin Andreev reflection [50], which
was recently verified by Jia’s group [51]. Another unique
MQP property is that MQPs must be nonlocally distributed
at both ends of the wire. Two MQPs can combine to form a
nonlocal state. Thus, two different nonlocal transport processes
can arise. One such process is the crossed Andreev reflection
(CAR), where two electrons from different ends can combine
to form a Cooper pair with the aid of two MQPs [52–55]. The
second process is electron teleportation, where a single elec-
tron can be teleported from one end to the other end with the aid
of two MQPs in the Coulomb blockade regime [56]. Recently,
the electron teleportation process has been demonstrated by
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Marcus’ group and used directly to demonstrate the existence
of MQPs [29]. However, further research by Marcus’ group
showed that quasiparticle poisoning can also lead to similar
electron teleportation phenomena [31]. Thus, uncovering more
unusual nonlocal transport properties of MQPs is essential for
further distinguishing MQPs.

Furthermore, two nonlocally distributed MQPs can consti-
tute the basis of a topological qubit. They combine to form a
nonlocal fermion state, which can be either empty or occupied.
These two states are characterized by an even or odd fermion
parity state. For a finite-sized wire, two MQPs at the two ends
of the wire can interact with each other through the wire. This
causes the energy spectra of the even and odd parity states to
oscillate with varying parameters, such as chemical potential
and Zeeman field. Because of this oscillatory behavior, the two
states cross each other at the zero point and thus switch the
fermion parity of the ground state correspondingly. This parity
switching behavior is quite useful. As shown in Ref. [57], the
ability to tune the parity of MQPs may provide a powerful way
to perform certain non-Abelian rotational operations. Thus,
revealing the parity of MQPs through transport properties
can further benefit quantum computing. Although the density
of states can distinguish the difference, it does not provide
a concrete transport-based method to reveal the parity of
MQPs, following the literature report [58]. Furthermore, recent
researches suggest that electron teleportation can be used for
non-Abelian braiding of MQPs [59,60], a significant milestone
towards topological quantum computing. Thus, combining
the parity information and electron teleportation properties of
MQPs can certainly result in more meaningful applications for
future quantum computing and would be beneficial to further
uncover the exotic nonlocal transport properties of MQPs in
finite-sized wire.

In this study, we focused on the nonlocal transport prop-
erties of MQPs in a normal lead–topological superconducting
wire–normal lead (NSN) system. Such an NSN system has
been extensively studied [52–54,61]. However, most previous
researches focused on the properties of the CAR process or
the nonlocal correlation between the two leads. Very limited
research has been carried out on the electron transmission
(ET) process where an electron can be transmitted from one
side to the other side with the aid of MQPs. Figure 1(a)
shows an experimental setup revealing both the ET and CAR
processes. We find that the nonlocal transport can be further
modified by the finite-size effect. In addition, the correction
to the ET process can directly manifest the information
of even-odd parity. The resonant peak value of the ET
tunneling coefficient is proportional to 1 + (−1)Nvb sin(kF L)
with Nv = 0/1, corresponding to the even/odd parity state
(here kF is the Fermi wave vector, L is the length of the
topological superconducting wire, and b is a small constant
determined by the finite-size effect). However, such parity-
related interference behavior is hard to observe in the CAR
process. We further investigated the underlying mechanisms
that drive the different transport behaviors for the two nonlocal
processes, and found that different transport behaviors are
directly related to the self-Hermitian property of MQPs.
Because of this self-Hermitian property, the correction to the
ET process is a first-order correction, while the correction to
the CAR process is a higher-order one. Thus, the even-odd

FIG. 1. (a) A schematic setup with two normal-metal leads
coupled to a superconducting wire to form an NSN system. (b)
Electron local density of states (LDOS) for odd parity states vs the
chemical potential and position. The MQPs are mainly localized at
the two ends of the wire. Another feature of MQPs is that the electron
LDOS of MQPs oscillates with the chemical potential. (c) The energy
spectra of two hybridized states of MQPs. They are even-odd parity
correlated and oscillate with the chemical potential. (d) The electron
LDOS of the two hybridized states also displays the even-odd parity
correlated interference pattern. Here red dashed line (blue solid line)
means even (odd) parity state. The LDOS locates at the position X =
1. The parameters are Nx = 100a, Ny = 5a, UR = 2�, Vx = 2�.

interference behavior is more significant in the ET process.
Such a unique transport property reveals the nonlocal and
self-Hermitian properties of MQPs.

The rest of this study is organized as follows: In Sec. II,
the Hamiltonian of a semiconductor superconducting wire
is introduced, and the formula for the nonlocal current is
presented. In Sec. III, the numerical and analytical results are
divided into four parts. In Sec. III A, we show numerically that
the local density of states is correlated to the parity and further
affects the nonlocal transport properties of the MQPs. In Sec.
III B, the analytical results and reasons for the unique nonlocal
transport properties of the MQPs are provided. In Secs. III C
and III D, the effect of Zeeman field and disorder is shown.
Finally, a brief summary is given in Sec. IV.

II. HAMILTONIAN OF SEMICONDUCTOR
SUPERCONDUCTING WIRE AND CURRENT FORMULA

Figure 1(a) shows the setup of an NSN system. The
topological superconducting wire used is a quasi-1D s-wave
superconductor with the Rashba spin-orbit coupling. The
tight-binding model based on Refs. [12,23] is as follows:

Hq1D =
∑

R,d,α

−t(ψ†
R+d,αψR,α + h.c.) − μψ

†
R,αψR,α

+
∑

R,d,α,β

−iURψ
†
R+d,αẑ · (�σ × d)αβψR,β

+
∑

R,α,β

ψ
†
R,α[(Vxσx)αβ + Vimp(R)δαβ]ψR,β

+
∑
R,α

�ψ
†
R,αψ

†
R,−α + H.c. (1)
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Here, R denotes the lattice sites, d denotes the two unit vectors
dx,dy which connect the nearest-neighbor sites in the x and
y directions respectively. α,β are the spin indexes, t is the
hopping amplitude, μ is the chemical potential, UR is the
Rashba coupling strength, and Vx is the Zeeman energy caused
by a magnetic field along the wire in the x direction. � is the
superconducting pairing amplitude and Vimp(R) is the on-site
random impurity.

To analyze the nonlocal transport property of MQPs,
the recursive Green’s-function method is used to calculate
the scattering matrix of the system. The recursive Green’s-
function method is a powerful method to study the transport
properties of the topological superconducting system [52,62].
The scattering matrix is related to the Green’s functions by

S
αβ

lk = −δl,kδα,β + i[�α
l ]1/2 ∗ Gr ∗ [�β

k ]1/2, (2)

where S
α,β

lk is an element of the scattering matrix that denotes
the scattering amplitude of the β particle from the kth lead
to the α particle in the lth lead. l,k = L or R. L and R

denote the left and the right lead, respectively. α,β ∈ {e,h}
denotes the electron (e) or hole (h) channels. Gr = [E −
Hq1D − ∑

l,α(	α
l )r ]−1 is the retarded Green’s function of the

superconducting wire. �α
l = i[(	α

l )r − (	α
l )a] is the linewidth

function of α particle in the lth lead, where (	α
l )r(a) is the

α particle retarded (advanced) self-energy for the lth lead.
The physical meaning of the scattering matrix is obvious:
S

e,h
ll means the Andreev reflection coefficient TA in the lth

lead, S
e,h
lk means the CAR coefficient TCAR from the lth lead

to the kth lead, and S
e,e
lk means the electron transmission

coefficient Te from the lth lead to the kth lead. For the
setup shown in Fig. 1(a), the bias V is applied at the
left lead while the superconducting wire and the right lead
are grounded. Thus, the relationships between the current
and tunneling coefficient are IL = e

h

∫
dE[TA(fLe − fLh) +

(Te + TCAR)(fLe − fR)] and IR = e
h

∫
dE(Te − TCAR)(fLe −

fR). Here, fLe/h = f (E ∓ V ) means the Fermi distribution
function of electrons/holes in the left lead and fR = f (E) =
[1 + exp(E/kBT )]−1 means the Fermi distribution function
in the right lead. At zero temperature, the differential con-
ductance is given by GR = ∂IR

∂V
= e2

h
(Te − TCAR). Thus, the

current at the right lead is mainly determined by the nonlocal
ET and CAR processes. In the following calculation, only
the tunneling coefficient of ET and CAR is shown, providing
clearer transport property information than the current.

III. NUMERICAL RESULTS AND DISCUSSION

With the given model and formulas, the nonlocal transport
property of MQPs is calculated. According to the experiment in
Ref. [15], the superconducting gap is approximately 250 μeV
and the spin-orbit coupling strength is 20 meV nm. Thus, � =
250 μeV was set as the unit energy, and the lattice constant a =
20 nm. Other parameters are t = 25�, UR = 2�, and Vx =
2�. The nontrivial region lies in the range −√

V 2
x − �2 <

μ − μN <
√

V 2
x − �2 (where μN is the chemical potential at

the bottom of the N th band).The nonlocal transport properties
of MQPs are present in a grounded superconducting wire when
the wire length is finite, as shown in the literature [52]. Wire
dimensions were chosen as Nxa ≈ 1 μm and Nya ≈ 100 nm.

The wire length is about twice the superconducting coherence
length ξ0 and about half the wire length used in the experiment
of Ref. [15].

A. Parity correlated energy states, local density of states, and
transport property in a short topological superconducting wire

In this section, we present the relation between the parity
and the energy spectrum, and show how to determine the
parity through the local density of states. In a short wire as
shown in Fig. 1(c), the energy of the in-gap states versus
the chemical potential exhibits an oscillatory behavior in
the topologically nontrivial regime because of the coupling
between the two MQPs. This differs from the long wire case,
where energy remains close to zero. In general, the coupling
energy of the two MQPs are EM ≈ kF

e−L/ξ

ξ
cos(kF L) [63–65],

where L is the length of the topological superconducting

wire and kF ≈
√√

V 2
x − �2 + μ is the effective Fermi wave

vector which is a function of the chemical potential μ and
the Zeeman field Vx . The coupling energy can be further
related to parity. As is known, a single MQP has just half
of the degree of a conventional fermion, and two MQPs can
combine to form a conventional fermion via the relationship
ψ = (γ1 + iγ2). When the two MQPs hybridize together, the
effective Hamiltonian in the conventional fermion basis can
be written as Heff = iEMγ1γ2 = 2EM (N̂ − 1/2), where N̂ =
ψ†ψ is the number operator. Then, Nv = 〈N̂〉 = 1 corresponds
to the odd-parity state where energy E = EM and Nv = 〈N̂〉 =
0 corresponds to the even-parity state where energy E = −EM

(the parity can be calculated through a more general method
via the Pfaffian of the transformation matrices in Ref. [57]).
Moreover, EM can be adjusted through the chemical potential
and the Zeeman field. Figure 1(c) shows the energy spectra
of these two states as a function of chemical potential. These
two states cross each other at the zero point. In this case,
the parity of the ground state will change with the crossing
of energy spectra at the zero point. Such a parity switching
process indicates that the parity of the system can be tuned
through modification of the chemical potential. As shown in
the literature [59,60], the non-Abelian braiding process can
be operated through a sequence of projective measurement
processes. However, to get a valid braiding through projective
measurement, the desired parity of MQPs should be fixed.
Thus, the ability to tune the parity of MQPs could benefit
the projective measurement process and further topological
computation and is essential to the further study of the parity
information.

The parity relationship can be further examined through
the local density of states (LDOS). Reference [58] showed
that the parity relationship is related to the difference between
the electron LDOS and the hole LDOS, while our calculations
go further and show that only the electron LDOS or hole
LDOS can manifest the parity information. In general, the
electron LDOS is proportional to (−1)1+Nv sin(kF L) and the
hole LDOS is proportional to (−1)Nv sin(kF L). Figure 1(b)
shows the contour plot of the electron LDOS of the odd parity
hybridized states versus the chemical potential μ and wire
position X, indicating the electron LDOS is mainly localized at
the two ends of the wire, consistent with the features of MQPs.

195307-3



JIE LIU, JUNTAO SONG, QING-FENG SUN, AND X. C. XIE PHYSICAL REVIEW B 96, 195307 (2017)

Furthermore, the electron LDOS shows an oscillating behavior
with the chemical potential μ. To better view this oscillation,
the LDOS at X = 1 was extracted, shown as the blue solid line
in Fig. 1(d). Note that it does oscillate with μ. We compare this
behavior to the electron LDOS of the even parity states at X =
1, which is shown as the red dashed line in Fig. 1(d). Indeed
the LDOSs of these two states are correlated to each other
and display the parity-related information; one is destructive
while the other is constructive. Furthermore, the oscillation
behavior of electron LDOS is proportional to sin(kF L) while
the oscillation behavior of energy states is proportional to
cos(kF L), there being a π/2 phase shift between the energy
and the electron LDOS. This phase shift can further help us
to distinguish the parity of the two states. When kF L = π/2,
the energy states are degenerate, hence difficult to distinguish.
However, the difference is clearly visible in the LDOS: the
LDOS is in its maximum or minimum as indicated by the
vertical dashed line in Fig. 1(d).

Figure 1 shows that the energy states and the LDOS
of two hybridized MQPs are parity correlated. Next, we
considered whether this parity-correlated information can
be manifested in transport properties. In previous studies,
researchers mainly focused on the AR or CAR properties of
MQPs [52,53,61,66,67]. Those results are difficult to connect
to parity. Recognizing that there is another ET process, an NSN
model as shown in Fig. 1(a) was considered to investigate
the interference information. Unlike the previous models,
here the voltage is applied only on the left lead; the voltage
on the right lead is set to zero. In this situation, the local
Andreev reflection process cannot occur at the right lead;
only the nonlocal transport process can occur. Figure 2(a)
shows the total tunneling coefficient at the right lead; it
displays a resonant peak when the incident energy equals
the coupling energy of MQPs. The peak positions of the
tunneling spectra vary exactly as the energy spectra in Fig. 1(c)
do. They oscillate and cross at the zero energy point as the
chemical potential varies. What is more, the peak values of
the tunneling spectra around the zero point are positive along
one species of the energy spectrum and negative along another
species of the energy spectrum. They exhibit a very strange
positive-negative exchange behavior as the chemical potential
is located in the topological region. To further distinguish the
strange behavior of the tunneling spectrum in the right lead, it
was divided into two parts: ET and CAR. Figure 2(b) shows the
contour plot of the ET tunneling coefficient Te as a function of
μ and E. The plot clearly shows the parity-related interference
pattern. According to the energy spectra of the system, the
resonant peak positions can be divided into two species: One
species follows the trace of cos(kF L) and the other follows
the trace of −cos(kF L). Interestingly, the peak values of the
resonant peaks also reflect the relationship with parity. The
peak value of the resonant peak along the spectrum of cos(kF L)
is proportional to 1 + bsin(kF L) and the peak value of the
resonant peak along the spectrum of −cos(kF L) is proportional
to 1 − bsin(kF L), where b is a small quantity determined by the
length of the wire. Therefore, the tunneling coefficient of the
ET process can directly reveal the parity related interference
information of MQPs. Figure 2(c) shows the contour plot of
the CAR tunneling coefficient TCAR versus μ and E. However,
the peak value of CAR varies slightly with the chemical
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FIG. 2. The even-odd interference behavior can be detected in the
right lead. (a) Contour plot of total tunneling coefficient Te − TCAR vs
chemical potential μ and incident energy E. Here, Top. Reg. means
the region for topological nontrivial region. (b) Contour plot of ET
tunneling coefficient Te vs chemical potential and incident energy E.
The even-odd interference behavior can be clearly observed through
ET process. (c) Contour plot of CAR tunneling coefficient TCAR vs
chemical potential and incident energy E. The even-odd interference
behavior is nonsignificant in CAR process. The parameters are Nx =
100a, Ny = 5a, UR = 2�, Vx = 2�.

potential and shows nearly no interference information related
to the parity. Thus, the total tunneling coefficient, Te − TCAR,
displays the positive-negative exchange behavior because of
the different behaviors in the two nonlocal transport processes.

B. Reason for different behaviors of CAR process
and ET process

In Sec. III A we showed that the even-odd parity correlated
interference information can be seen in the ET process, but is
hardly visible in the CAR process. Why do these two processes
exhibit distinctive behaviors? Here we try to understand the
difference through the even-odd parity interference of LDOS.
For a general in-gap state, the wave function can be set
as ψ = (u,υ)T . Here, u is the electron component of the
wave function and υ is the hole component of the wave
function. In general, they are independent of each other,
whereas for MQPs, the self-Hermitian property dictates that
u = υ∗. The two degenerate wave functions of MQPs can be
given as ψ1 = (u1(x),u1(x)∗)T , which lies at the left end, and
ψ2 = (iu1(x − L), − iu1(x − L)∗)T , which lies at the right
end. According to Ref. [64], u1 = u0e

ikF x−|x|/ξ , where u0 is
a general form which containing spin information. Thus, the
excited wave functions formed by two MQPs are represented
by the following equation:

ψ±(x) = ψ1(x) + (−1)Nvψ2(x)

=
(

u1(x) + i(−1)Nvu1(x − L)
u1(x) − i(−1)Nvu1(x − L)

)
=

(
u±(x)
υ±(x)

)
, (3)
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where, ± corresponds to Nv = 0 and 1, representing the even
and odd parity states of the system, respectively. Thus, for a
hybridized state caused by MQPs, the LDOS of electron com-
ponent at the ends is |u±,end|2 = 1 − (−1)Nve−L/ξ sin(kF L)
and the LDOS of hole component at the ends is |υ±,end|2 =
1 + (−1)Nve−L/ξ sin(kF L). The LDOS oscillation is caused by
the interference of two MQPs.

After the interference information of LDOS has been given,
the LDOS can be related to the nonlocal transport properties
of MQPs. The nonlocal transport of MQPs through scattering
matrices in a topological superconducting wire system has
been investigated [52,53]. However, the interference of MQPs
has not been considered in these two references. To overcome
this flaw, an effective Hamiltonian, Heff = HN + HM + HT ,
is suggested as follows:

HN = −ivf

∑
l∈L/R

∫ +∞

−∞
ψ

†
l (x)∂xψl(x)dx,

HM = iEMγ1γ2,

HT =
∑

l

−i[γ1(t̃l,1ψ
†
l,end + t̃∗l,1ψl,end)

+ γ2(t̃l,2ψ
†
l,end + t̃∗l,2ψl,end)]. (4)

Here, HN is the Hamiltonian of the left and right normal
leads, ψl denotes the fermion operator of the lth normal
lead, l = L/R means the left/right normal lead, respectively.
vf is the corresponding Fermi velocity of the leads. HM

is the Hamiltonian of the two coupled MQPs, where EM

is the coupling strength between the two MQPs, γ1 and γ2.
The coupling between the leads and the MQPs is described
by HT , and the coupling strengths are denoted by t̃l,1 and t̃l,2.
In this model, HT contains a nonlocal coupling term with a
coupling strength of t̃L,2 (t̃R,1) between the left (right) lead and
γ2 (γ1). The nonlocal coupling terms must go through the bulk
wire to connect the leads with an exponential decay and phase
shift, kF L. Through the transfer wave function of MQPs, the
relationship between the nonlocal coupling term and the local
coupling term can be given by t̃L,2 = (−1)Nve−L/ξ eikF Lt̃L,1 and
t̃R,1 = (−1)Nve−L/ξ eikF Lt̃R,2. They are parity related because
the coupling term is affected by the interference of MQPs.
Considering that a single MQP is just half of the ordinary
fermion state, the MQP representation can be changed into
fermion representation given by γ1 = d + d†, γ2 = i(d − d†),
As a result, HM and HT will change to

H̃M = EMd†d,

H̃T =
∑

l

[t̃l,eψ
†
l (0)d + t̃l,hψ

†
l (0)d† + H.c.], (5)

with

t̃l,e = −it̃l,1[1 + i(−1)Nve−L/ξ e−ikF L],

t̃l,h = −it̃l,1[1 + i(−1)Nve−L/ξ eikF L].

Here, t̃l,e exhibits the same interference pattern as u±,end, and
t̃l,h exhibits the same interference pattern as υ±,end. Thus, the
effective couplings between the leads and the TS wire are
renormalized by the interference of MQPs. The scattering
matrix can be written in a model-independent form:

S(E) = 1 − 2πiW †(E − H̃M + iπWW †)−1W, (6)

where W is the matrix that describes the coupling of the
scattering to the leads:

W =
(

t̃L,e t̃R,e t̃L,h t̃R,h

−t̃∗L,h−t̃∗R,h−t̃∗R,e−t̃∗R,e

)
.

In the weak-coupling regime, the coefficients related to the
ET and CAR process can be given as

See
LR = i π

vF
t̃L,et̃

∗
R,e(

E − EM + i	l,α
π
vF

|t̃l,α|2)
+ i π

vF
t̃L,ht̃

∗
R,h(

E + EM + i	l,α
π
vF

|t̃l,α|2) ,

Seh
LR = i π

vF
t̃L,et̃

∗
R,h(

E − EM + i	l,α
π
vF

|t̃l,α|2)
+ i π

vF
t̃L,ht̃

∗
R,e(

E + EM + i	l,α
π
vF

|t̃l,α|2) . (7)

When EM 
 	l,α
π
vF

|t̃l,α|2, the coefficients can be fur-

ther simplified as S
αβ

lk = −δl,kδα,β + i

√
�̃l,α�̃k,β/(E − EM +

i	l,α�̃l,α), where �̃l,α = π
vF

|t̃l,α|2 is the effective linewidth
function of the α part in the lth lead. The scattering matrices
lead to the following relationships:

TCAR = |Seh
LR|2 ∝ |t̃Let̃Rh|2 ∝ 1 − e−2L/ξ sin(kF L),

Te = |See
LR|2 ∝ |t̃Let̃Re|2 ∝ 1 + (−1)Nv 4e−L/ξ sin(kF L),

TCAR is proportional to the joint LDOS of both the electron
and the hole at the ends of the wire, and Te is proportional to
the electron LDOS at the ends. We can see that the correction
of the finite-size effect is a first-order correction to the ET
process, and is a second-order correction to the CAR process.
The ET process is more sensitive to the phase difference and
exhibits a parity-related oscillation behavior. What is more,
since the correction factor is in the order of e−L/ξ , the length
of the wire plays an important role in the interference pattern
strength. To observe a clear interference pattern of MQPs, the
length of the wire should be one to three times the coherence
length.

We have shown that interference in the ET process is a
first-order correction while it is a second-order correction
in the CAR process. We stress that the insensitivity of the
CAR process directly manifests the self-Hermitian property
of MQPs. Because of the self-Hermitian property of MQPs,
for a hybridized state caused by MQPs, self-Hermitian requires
|uend|2 = 1 + bsin(φ/2) and |υend|2 = 1 − bsin(φ/2). No such
restrictions hold for usual in-gap states; the electron LDOS
is not related to the hole LDOS. In general, |uend|2 =
1 + bsin(φ/2) and |υend|2 = 1 − b′sin(φ/2) can be taken for
usual in-gap states. Thus, TCAR ∝ 1 + (b − b′)sin(φ/2). The
first-order interference effect caused by trivial states can be still
observed in the CAR process. Indeed, Fig. 2(c) shows that TCAR

exhibits some oscillation behavior when the chemical potential
lies in the trivial region. Thus, in such a short semiconductor
superconducting wire, both the ET and the CAR processes
manifest the nonlocal property of MQPs as well as their
self-Hermitian property.
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FIG. 3. The Zeeman field can also adjust effective Fermi wave
vector well. (a) Contour plot of the total differential conductance from
left lead to right lead with incident energy E and Zeeman field Vx . (b)
Contour plot of the electron transmission coefficient Te. (c) Contour
plot the crossed Andreev reflection TCAR as a function of incident
energy E and Zeeman field Vx . Here the chemical potential lies in
μ = −95�, other parameters are the same as before.

C. Zeeman-field-tuned interference effect

In a semiconductor superconducting wire system, a Zeeman
field is an essential tool to induce topological transition. MQPs
emerge only in the condition of Vx >

√
μ2 + �2. Thus, study-

ing the effect of a Zeeman field is necessary. In prior sections,
we demonstrated that the parity related interference effect
can be observed in a short topological superconducting wire
through the gate voltage. Herein, we show that the Zeeman
field can induce a similar interference effect. Figure 3(a) shows
the contour plot of the total tunneling coefficient Te − TCAR

versus the incident energy E and Zeeman field Vx . As the
Zeeman field increases, the system enters into a nontrivial
region. After the system enters this topological region, the
current exhibits a similar positive-negative exchange behavior
with increasing magnetic field. We further divided it into two
parts: ET and CAR. Figure 3(b) shows the contour plot of the
ET tunneling coefficient Te as a function of μ and E. The
plot clearly shows the interference information. In one region,
the interference effect is constructive and Te is large, while
in another region, the interference effect is destructive and Te

is very small. As for the CAR process, Fig. 3(c) shows the
contour plot of TCAR versus μ and E, and the interference
pattern can hardly be detected here. The Zeeman field can
also induce similar even-odd interference effects, just as the
chemical potential. The reason is that the Zeeman field can
also modulate the effective Fermi wave vector of the system.

In prior sections, we showed that kF ≈
√√

V 2
x − �2 + μ.

Thus, the Zeeman field can play the same role as the chemical
potential; both can modulate the phase by varying the Fermi
wave vector. Interestingly, the nonlocal conductance in an NSN
junction was studied recently [68]. The authors also displayed
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FIG. 4. The disorder effect in our model. The even-odd inter-
ference effect is not destroyed by moderate disorder. (a) Contour
plot of total differential conductance from left lead to right lead
with incident energy E and chemical potential μ. (b) Contour plot
of electron transmission coefficient Te. In this case, the interference
effect in the ET process can be well observed. (c) Contour plot of
crossed Andreev reflection TCAR as a function of incident energy E

and chemical potential μ. Other parameters are Nx = 100a, Ny =
5a, UR = 2�, Vx = 2�, Vimp = 4�.

the even-odd relation at the topological phase transition point,
which are consistent with our results at the transition point as
shown in Fig. 3(a).

D. Effect of disorder

We have discussed the interference effect of MQPs and
related it to the transport properties in a short wire in the
absence of disorder. However, disorder is unavoidable in a real
system. In general, MQPs are robust to disorder [69], but the
effect of disorder on the interference of two MQPs still requires
further study. Interference needs both the state stability and
phase coherence. The interference pattern is usually sensitive
to disorder and may shifts entirely with small amounts of
disorder.

Interestingly, weak disorder does not destroy the even-odd
interference effect, on the contrary, it actually seems to
enhance it. Figure 4 shows the results in the presence of
disorder. We consider the case with on-site disorder that
is uniformly distributed over the range [−Vimp/2,Vimp/2]
with Vimp = 4�. Figure 4(a) shows the contour plot of total
differential conductance from the left lead to the right lead with
incident energy E and chemical potential μ. The information
of the interference effect is clearly observed. Figure 4(b) shows
the contour plot of Te versus the chemical potential and the
incident energy while Fig. 4(c) shows the contour plot of
TCAR versus the chemical potential and the incident energy.
The interference information is also easily observed in the Te

case, but not in the TCAR case. Compared to the results in
Fig. (2), the even-odd interference information is even clearer
in Fig. 4. We speculate that this is because of the protection of
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topology. The MQPs are not destroyed by the weak disorder
and neither is the interference information of MQPs. Other
transport processes in the topological superconductor system
may be easily destroyed by the disorder. Thus, the even-odd
interference effect is clearer in the presence of moderate
disorder. The numerical results show an enhanced interference
region when Vimp < 6�.

IV. CONCLUSION

We have shown that the tunneling coefficient of the electron
transmission process displays a very interesting even-odd
interference behavior. In addition, We have also shown that
observing the same behavior in the tunneling coefficient
of the CAR process is difficult. The underlying reasons
have been further investigated, indicating that the anomalous
interference behaviors are directly related to the self-Hermitian
property of MQPs. Because of the self-Hermitian property, the

interference correction in the electron transmission process is
a first-order one, while the correction in the CAR process is a
higher-order one. Thus, it is more significant in the ET process
than in the CAR process. Such a unique transport property
of MQPs demonstrates both the nonlocal and self-Hermitian
characteristics of MQPs.

ACKNOWLEDGMENTS

We gratefully acknowledge the support from NSF-China
under Grants No. 11574245 (J.L.), No. 11204065 (J.T.S.),
No. 11474085 (J.T.S.), No. 11574007 (Q.-F.S.), and No.
11534001 (X.C.X.), National Key R and D Program of
China (Grant No. 2017YFA0303301), and NBRP of China
(Grant No. 2015CB921102). J.L. was also supported by the
China Post-doctoral Science Foundation under Grant No.
2015M580828 and the China Fundamental Research Funds
for Central University with Grant No. xjj2015059.

[1] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).
[2] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das

Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[3] J. Alicea, Y. Oreg, G. Refael, F. Von Oppen, and M. Fisher, Nat.

Phys. 7, 412 (2011).
[4] A. Kitaev, Phys. Usp. 44, 131 (2001).
[5] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[6] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys.

Rev. Lett. 104, 040502 (2010).
[7] S. Fujimoto, Phys. Rev. B 77, 220501(R) (2008).
[8] M. Sato, Y. Takahashi, and S. Fujimoto, Phys. Rev. B 82, 134521

(2010).
[9] J. Alicea, Phys. Rev. B 81, 125318 (2010).

[10] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett.
105, 077001 (2010).

[11] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105,
177002 (2010).

[12] A. C. Potter and P. A. Lee, Phys. Rev. B 83, 094525 (2011).
[13] S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and A. Yazdani,

Phys. Rev. B 88, 020407 (2013).
[14] J. Klinovaja, P. Stano, A. Yazdani, and D. Loss, Phys. Rev. Lett.

111, 186805 (2013).
[15] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M.

Bakkers, and L. P. Kouwenhoven, Science 336, 1003 (2012).
[16] K. T. Law, P. A. Lee, and T. K. Ng, Phys. Rev. Lett. 103, 237001

(2009).
[17] M. Wimmer, A. R. Akhmerov, J. P. Dahlhaus, and C. W. J.

Beenakker, New J. Phys. 13, 053016 (2011).
[18] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and

H. Q. Xu, Nano Lett. 12, 6414 (2012).
[19] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H.

Shtrikman, Nat. Phys. 8, 887 (2012).
[20] H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen, M. T. Deng,

P. Caroff, H. Q. Xu, and C. M. Marcus, Phys. Rev. B 87, 241401
(2013).

[21] L. P. Rokhinson, X. Liu, and J. K. Furdyna, Nat. Phys. 8, 795
(2012).

[22] S. Nadj-perge, l. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A.
H. MacDonald, B. A. Bernevig, and A. Yazdani, Science 346,
602 (2014).

[23] J. Liu, A. C. Potter, K. T. Law, and P. A. Lee, Phys. Rev. Lett.
109, 267002 (2012).

[24] D. Bagrets and A. Altland, Phys. Rev. Lett. 109, 227005 (2012).
[25] D. I. Pikulin, J. P. Dahlhaus, M. Wimmer, H. Schomerus, and

C. W. J. Beenakker, New J. Phys. 14, 125011 (2012).
[26] G. Kells, D. Meidan, and P. W. Brouwer, Phys. Rev. B 85,

060507(R) (2012).
[27] S. Tewari, T. D. Stanescu, J. D. Sau, and S. Das Sarma, Phys.

Rev. B 86, 024504 (2012).
[28] H. Zhang, O. Gul, S. Conesa-Boj, K. Zuo, V. Mourik, F. K.

de Vries, J. van Veen, D. J. van Woerkom, M. P. Nowak,
M. Wimmer, D. Car, S. Plissard, E. P. A. M. Bakkers, M.
Quintero-Prez, S. Goswami, K. Watanabe, T. Taniguchi, and
L. P. Kouwenhoven, Nat. Commun. 8, 16025 (2017).

[29] S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth,
T. S. Jespersen, J. Nygård, P. Krogstrup, and C. M. Marcus,
Nature (London) 531, 206 (2016).

[30] M. T. Deng, S. Vaitiekenas, E. B. Hansen, J. Danon, M. Leijnse,
K. Flensberg, J. Nygård, P. Krogstrup, and C. M. Marcus,
Science 354, 1557 (2016).

[31] S. M. Albrecht, E. B. Hansen, A. P. Higginbotham, F.
Kuemmeth, T. S. Jespersen, J. Nygård, P. Krogstrup, J. Danon,
K. Flensberg, and C. M. Marcus, Phys. Rev. Lett. 118, 137701
(2017).

[32] B. E. Feldman, M. T. Randeria, J. Li, S. Jeon, Y. Xie, Z. Wang,
I. K. Drozdov, B. A. Bernevig, and A. Yazdani, Nat. Phys. 13,
286 (2017).

[33] S. Hart, H. Ren, T. Wagner, P. Leubner, M. Mülbauer, C. Brüne,
H. Buhmann, L. W. Molenkamp, and A. Yacoby, Nat. Phys. 10,
638 (2014).

[34] V. S. Pribiag, A. J. A. Beukman, F. Qu, M. C. Cassidy, C.
Charpentier, W. Wegscheider, and L. P. Kouwenhoven, Nat.
Nanotechnol. 10, 593 (2015).

[35] Y. Pang, J. Shen, J. Wang, J. Feng, F. Qu, Z. Lyu, J. Fan, G. Liu,
Z. Ji, X. Jing, C. Yang, Q. Sun, X. C. Xie, L. Fu, and L. Lu,
arXiv:1503.00838.

[36] J. Wiedenmann, E. Bocquillon, R. S. Deacon, S. Hartinger,
O. Herrmann, T. M. Klapwijk, L. Maier, C. Ames, C. Brune,
C. Gould, A. Oiwa, K. Ishibashi, S. Tarucha, H. Buhmann, and
L. W. Molenkamp, Nat. Commun. 7, 10303 (2016).

195307-7

https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1038/nphys1915
https://doi.org/10.1038/nphys1915
https://doi.org/10.1038/nphys1915
https://doi.org/10.1038/nphys1915
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevB.77.220501
https://doi.org/10.1103/PhysRevB.77.220501
https://doi.org/10.1103/PhysRevB.77.220501
https://doi.org/10.1103/PhysRevB.77.220501
https://doi.org/10.1103/PhysRevB.82.134521
https://doi.org/10.1103/PhysRevB.82.134521
https://doi.org/10.1103/PhysRevB.82.134521
https://doi.org/10.1103/PhysRevB.82.134521
https://doi.org/10.1103/PhysRevB.81.125318
https://doi.org/10.1103/PhysRevB.81.125318
https://doi.org/10.1103/PhysRevB.81.125318
https://doi.org/10.1103/PhysRevB.81.125318
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevB.83.094525
https://doi.org/10.1103/PhysRevB.83.094525
https://doi.org/10.1103/PhysRevB.83.094525
https://doi.org/10.1103/PhysRevB.83.094525
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1103/PhysRevLett.111.186805
https://doi.org/10.1103/PhysRevLett.111.186805
https://doi.org/10.1103/PhysRevLett.111.186805
https://doi.org/10.1103/PhysRevLett.111.186805
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1103/PhysRevLett.103.237001
https://doi.org/10.1103/PhysRevLett.103.237001
https://doi.org/10.1103/PhysRevLett.103.237001
https://doi.org/10.1103/PhysRevLett.103.237001
https://doi.org/10.1088/1367-2630/13/5/053016
https://doi.org/10.1088/1367-2630/13/5/053016
https://doi.org/10.1088/1367-2630/13/5/053016
https://doi.org/10.1088/1367-2630/13/5/053016
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1103/PhysRevLett.109.267002
https://doi.org/10.1103/PhysRevLett.109.267002
https://doi.org/10.1103/PhysRevLett.109.267002
https://doi.org/10.1103/PhysRevLett.109.267002
https://doi.org/10.1103/PhysRevLett.109.227005
https://doi.org/10.1103/PhysRevLett.109.227005
https://doi.org/10.1103/PhysRevLett.109.227005
https://doi.org/10.1103/PhysRevLett.109.227005
https://doi.org/10.1088/1367-2630/14/12/125011
https://doi.org/10.1088/1367-2630/14/12/125011
https://doi.org/10.1088/1367-2630/14/12/125011
https://doi.org/10.1088/1367-2630/14/12/125011
https://doi.org/10.1103/PhysRevB.85.060507
https://doi.org/10.1103/PhysRevB.85.060507
https://doi.org/10.1103/PhysRevB.85.060507
https://doi.org/10.1103/PhysRevB.85.060507
https://doi.org/10.1103/PhysRevB.86.024504
https://doi.org/10.1103/PhysRevB.86.024504
https://doi.org/10.1103/PhysRevB.86.024504
https://doi.org/10.1103/PhysRevB.86.024504
https://doi.org/10.1038/ncomms16025
https://doi.org/10.1038/ncomms16025
https://doi.org/10.1038/ncomms16025
https://doi.org/10.1038/ncomms16025
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1103/PhysRevLett.118.137701
https://doi.org/10.1103/PhysRevLett.118.137701
https://doi.org/10.1103/PhysRevLett.118.137701
https://doi.org/10.1103/PhysRevLett.118.137701
https://doi.org/10.1038/nphys3947
https://doi.org/10.1038/nphys3947
https://doi.org/10.1038/nphys3947
https://doi.org/10.1038/nphys3947
https://doi.org/10.1038/nphys3036
https://doi.org/10.1038/nphys3036
https://doi.org/10.1038/nphys3036
https://doi.org/10.1038/nphys3036
https://doi.org/10.1038/nnano.2015.86
https://doi.org/10.1038/nnano.2015.86
https://doi.org/10.1038/nnano.2015.86
https://doi.org/10.1038/nnano.2015.86
http://arxiv.org/abs/arXiv:1503.00838
https://doi.org/10.1038/ncomms10303
https://doi.org/10.1038/ncomms10303
https://doi.org/10.1038/ncomms10303
https://doi.org/10.1038/ncomms10303


JIE LIU, JUNTAO SONG, QING-FENG SUN, AND X. C. XIE PHYSICAL REVIEW B 96, 195307 (2017)

[37] E. Bocquillon, R. S. Deacon, J. Wiedenmann, P. Leubner, T. M.
Klapwijk, C. Brüne, K. Ishibashi, H. Buhmann, and L. W.
Molenkamp, Nat. Nanotechnol. 12, 137 (2016).

[38] R. S. Deacon, J. Wiedenmann, E. Bocquillon, F. Domínguez,
T. M. Klapwijk, P. Leubner, C. Brüne, E. M. Hankiewicz, S.
Tarucha, K. Ishibashi, H. Buhmann, and L. W. Molenkamp,
Phys. Rev. X 7, 021011 (2017).

[39] D. J. van Woerkom, A. Proutski, B. van Heck, D. Bouman,
J. I. Väyrynen, L. I. Glazman, P. Krogstrup, J. Nygárd,
L. P. Kouwenhoven, and A. Geresdi, Nat. Phys. 13, 876
(2017).

[40] K. Zuo, V. Mourik, D. B. Szombati, B. Nijholt, D. J. van
Woerkom, A. Geresdi, J. Chen, V. P. Ostroukh, A. R. Akhmerov,
S. R. Plissard, D. Car, E. P. A. M. Bakkers, D. I. Pikulin, L. P.
Kouwenhoven, and S. M. Frolov, Phys. Rev. Lett. 119, 187704
(2017).

[41] M. F. Goffman, C. Urbina, H. Pothier, J. Nygård, C. M. Marcus,
and P. Krogstrup, New J. Phys. 19, 092002 (2017).

[42] L. Fu and C. L. Kane, Phys. Rev. B 79, 161408 (2009).
[43] J. Cayao, arXiv:1703.07630 (2017).
[44] J. Cayao, E. Prada, P. San-Jose, and R. Aguado, Phys. Rev. B

91, 024514 (2015).
[45] P. San-Jose, J. Cayao, E. Prada, and R. Aguado, New J. Phys.

15, 075019 (2013).
[46] P. San-Jose, E. Prada, and R. Aguado, Phys. Rev. Lett. 108,

257001 (2012).
[47] F. Domínguez, F. Hassler, and G. Platero, Phys. Rev. B 86,

140503(R) (2012).
[48] F. Crepin and B. Trauzettel, Phys. Rev. Lett. 112, 077002

(2014).
[49] M. Houzet, J. S. Meyer, D. M. Badiane, and L. I. Glazman,

Phys. Rev. Lett. 111, 046401 (2013).
[50] J. J. He, T. K. Ng, P. A. Lee, and K. T. Law, Phys. Rev. Lett.

112, 037001 (2014).
[51] H.-H. Sun, K.-W. Zhang, L.-H. Hu, C. Li, G.-Y. Wang, H.-Y.

Ma, Z.-A. Xu, C.-L. Gao, D.-D. Guan, Y.-Y. Li, C. Liu, D. Qian,

Y. Zhou, L. Fu, S.-C. Li, F.-C. Zhang, and J.-F. Jia, Phys. Rev.
Lett. 116, 257003 (2016).

[52] J. Liu, F.-C. Zhang, and K. T. Law, Phys. Rev. B 88, 064509
(2013).

[53] J. Nilsson, A. R. Akhmerov, and C. W. J. Beenakker, Phys. Rev.
Lett. 101, 120403 (2008).

[54] P. Wang, J. Liu, Q.-f. Sun, and X. C. Xie, Phys. Rev. B 91,
224512 (2015).

[55] Y.-T. Zhang, Z. Hou, X. C. Xie, and Q.-F. Sun, Phys. Rev. B 95,
245433 (2017).

[56] L. Fu, Phys. Rev. Lett. 104, 056402 (2010).
[57] S. S. Hegde and S. Vishveshwara, Phys. Rev. B 94, 115166

(2016).
[58] G. Ben-Shach, A. Haim, I. Appelbaum, Y. Oreg, A. Yacoby, and

B. I. Halperin, Phys. Rev. B 91, 045403 (2015).
[59] S. Vijay and L. Fu, Phys. Rev. B 94, 235446 (2016).
[60] T. Karzig, C. Knapp, R. M. Lutchyn, P. Bonderson, M. B.

Hastings, C. Nayak, J. Alicea, K. Flensberg, S. Plugge, Y. Oreg,
C. M. Marcus, and M. H. Freedman, Phys. Rev. B 95, 235305
(2017).

[61] A. M. Lobos, and S. Das Sarma, New J. Phys. 17, 065010 (2015).
[62] A. Zazunov, R. Egger, and A. L. Yeyati, Phys. Rev. B 94, 014502

(2016).
[63] E. Prada, P. San-Jose, and R. Aguado, Phys. Rev. B 86,

180503(R) (2012).
[64] S. Das Sarma, J. D. Sau, and T. D. Stanescu, Phys. Rev. B 88,

220506(R) (2013).
[65] D. Rainis, L. Trifunovic, J. Klinovaja, and D. Loss, Phys. Rev.

B 87, 024515 (2013).
[66] J. J. He, J. Wu, T.-P. Choy, X.-J. Liu, Y. Tanaka, and K. T. Law,

Nat. Commun. 5, 3232 (2014).
[67] A. Yamakage and M. Sato, Physica E 55, 13 (2014).
[68] T. Ö. Rosdahl, A. Vuik, M. Kjaergaard, and A. R. Akhmerov,

arXiv:1706.08888.
[69] O. A. Awoga, K. Björnson, and A. M. Black-Schaffer, Phys.

Rev. B 95, 184511 (2017).

195307-8

https://doi.org/10.1038/nnano.2016.159
https://doi.org/10.1038/nnano.2016.159
https://doi.org/10.1038/nnano.2016.159
https://doi.org/10.1038/nnano.2016.159
https://doi.org/10.1103/PhysRevX.7.021011
https://doi.org/10.1103/PhysRevX.7.021011
https://doi.org/10.1103/PhysRevX.7.021011
https://doi.org/10.1103/PhysRevX.7.021011
https://doi.org/10.1038/nphys4150
https://doi.org/10.1038/nphys4150
https://doi.org/10.1038/nphys4150
https://doi.org/10.1038/nphys4150
https://doi.org/10.1103/PhysRevLett.119.187704
https://doi.org/10.1103/PhysRevLett.119.187704
https://doi.org/10.1103/PhysRevLett.119.187704
https://doi.org/10.1103/PhysRevLett.119.187704
https://doi.org/10.1088/1367-2630/aa7641
https://doi.org/10.1088/1367-2630/aa7641
https://doi.org/10.1088/1367-2630/aa7641
https://doi.org/10.1088/1367-2630/aa7641
https://doi.org/10.1103/PhysRevB.79.161408
https://doi.org/10.1103/PhysRevB.79.161408
https://doi.org/10.1103/PhysRevB.79.161408
https://doi.org/10.1103/PhysRevB.79.161408
http://arxiv.org/abs/arXiv:1703.07630
https://doi.org/10.1103/PhysRevB.91.024514
https://doi.org/10.1103/PhysRevB.91.024514
https://doi.org/10.1103/PhysRevB.91.024514
https://doi.org/10.1103/PhysRevB.91.024514
https://doi.org/10.1088/1367-2630/15/7/075019
https://doi.org/10.1088/1367-2630/15/7/075019
https://doi.org/10.1088/1367-2630/15/7/075019
https://doi.org/10.1088/1367-2630/15/7/075019
https://doi.org/10.1103/PhysRevLett.108.257001
https://doi.org/10.1103/PhysRevLett.108.257001
https://doi.org/10.1103/PhysRevLett.108.257001
https://doi.org/10.1103/PhysRevLett.108.257001
https://doi.org/10.1103/PhysRevB.86.140503
https://doi.org/10.1103/PhysRevB.86.140503
https://doi.org/10.1103/PhysRevB.86.140503
https://doi.org/10.1103/PhysRevB.86.140503
https://doi.org/10.1103/PhysRevLett.112.077002
https://doi.org/10.1103/PhysRevLett.112.077002
https://doi.org/10.1103/PhysRevLett.112.077002
https://doi.org/10.1103/PhysRevLett.112.077002
https://doi.org/10.1103/PhysRevLett.111.046401
https://doi.org/10.1103/PhysRevLett.111.046401
https://doi.org/10.1103/PhysRevLett.111.046401
https://doi.org/10.1103/PhysRevLett.111.046401
https://doi.org/10.1103/PhysRevLett.112.037001
https://doi.org/10.1103/PhysRevLett.112.037001
https://doi.org/10.1103/PhysRevLett.112.037001
https://doi.org/10.1103/PhysRevLett.112.037001
https://doi.org/10.1103/PhysRevLett.116.257003
https://doi.org/10.1103/PhysRevLett.116.257003
https://doi.org/10.1103/PhysRevLett.116.257003
https://doi.org/10.1103/PhysRevLett.116.257003
https://doi.org/10.1103/PhysRevB.88.064509
https://doi.org/10.1103/PhysRevB.88.064509
https://doi.org/10.1103/PhysRevB.88.064509
https://doi.org/10.1103/PhysRevB.88.064509
https://doi.org/10.1103/PhysRevLett.101.120403
https://doi.org/10.1103/PhysRevLett.101.120403
https://doi.org/10.1103/PhysRevLett.101.120403
https://doi.org/10.1103/PhysRevLett.101.120403
https://doi.org/10.1103/PhysRevB.91.224512
https://doi.org/10.1103/PhysRevB.91.224512
https://doi.org/10.1103/PhysRevB.91.224512
https://doi.org/10.1103/PhysRevB.91.224512
https://doi.org/10.1103/PhysRevB.95.245433
https://doi.org/10.1103/PhysRevB.95.245433
https://doi.org/10.1103/PhysRevB.95.245433
https://doi.org/10.1103/PhysRevB.95.245433
https://doi.org/10.1103/PhysRevLett.104.056402
https://doi.org/10.1103/PhysRevLett.104.056402
https://doi.org/10.1103/PhysRevLett.104.056402
https://doi.org/10.1103/PhysRevLett.104.056402
https://doi.org/10.1103/PhysRevB.94.115166
https://doi.org/10.1103/PhysRevB.94.115166
https://doi.org/10.1103/PhysRevB.94.115166
https://doi.org/10.1103/PhysRevB.94.115166
https://doi.org/10.1103/PhysRevB.91.045403
https://doi.org/10.1103/PhysRevB.91.045403
https://doi.org/10.1103/PhysRevB.91.045403
https://doi.org/10.1103/PhysRevB.91.045403
https://doi.org/10.1103/PhysRevB.94.235446
https://doi.org/10.1103/PhysRevB.94.235446
https://doi.org/10.1103/PhysRevB.94.235446
https://doi.org/10.1103/PhysRevB.94.235446
https://doi.org/10.1103/PhysRevB.95.235305
https://doi.org/10.1103/PhysRevB.95.235305
https://doi.org/10.1103/PhysRevB.95.235305
https://doi.org/10.1103/PhysRevB.95.235305
https://doi.org/10.1088/1367-2630/17/6/065010
https://doi.org/10.1088/1367-2630/17/6/065010
https://doi.org/10.1088/1367-2630/17/6/065010
https://doi.org/10.1088/1367-2630/17/6/065010
https://doi.org/10.1103/PhysRevB.94.014502
https://doi.org/10.1103/PhysRevB.94.014502
https://doi.org/10.1103/PhysRevB.94.014502
https://doi.org/10.1103/PhysRevB.94.014502
https://doi.org/10.1103/PhysRevB.86.180503
https://doi.org/10.1103/PhysRevB.86.180503
https://doi.org/10.1103/PhysRevB.86.180503
https://doi.org/10.1103/PhysRevB.86.180503
https://doi.org/10.1103/PhysRevB.88.220506
https://doi.org/10.1103/PhysRevB.88.220506
https://doi.org/10.1103/PhysRevB.88.220506
https://doi.org/10.1103/PhysRevB.88.220506
https://doi.org/10.1103/PhysRevB.87.024515
https://doi.org/10.1103/PhysRevB.87.024515
https://doi.org/10.1103/PhysRevB.87.024515
https://doi.org/10.1103/PhysRevB.87.024515
https://doi.org/10.1038/ncomms4232
https://doi.org/10.1038/ncomms4232
https://doi.org/10.1038/ncomms4232
https://doi.org/10.1038/ncomms4232
https://doi.org/10.1016/j.physe.2013.08.030
https://doi.org/10.1016/j.physe.2013.08.030
https://doi.org/10.1016/j.physe.2013.08.030
https://doi.org/10.1016/j.physe.2013.08.030
http://arxiv.org/abs/arXiv:1706.08888
https://doi.org/10.1103/PhysRevB.95.184511
https://doi.org/10.1103/PhysRevB.95.184511
https://doi.org/10.1103/PhysRevB.95.184511
https://doi.org/10.1103/PhysRevB.95.184511



