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Removal of accidental degeneracy in semiconductor quantum dots
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We present a quantitative analysis of the energy levels and wave functions of carriers in a cubic quantum
dot of GaAs embedded in Ga(1−x)AlxAs with finite confining potential barriers at their interfaces. The energy
spectrum has substantially reduced degeneracies compared to the analytically determined energy levels of the
infinite-barrier quantum box of the same dimensions. The level degeneracy of states has been explained by group
representations of the point group Oh. Projection operators for the irreducible representations provide a way to
obtain the linear combinations of the degenerate wave functions which form a basis set for the representations.
Energy-level splittings in the presence of externally applied electric and magnetic fields are also studied.
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I. INTRODUCTION

In quantum mechanical systems, degeneracy in the energy
spectrum arises from symmetries of the system that are either
based on geometry or are internal symmetries. A classic exam-
ple of such degeneracy is given by the hydrogen atom with its
Coulomb potential −e2/(4πε0 r) that binds the electron to the
proton. Here, −e is the electron charge and ε0 is the permittivity
of free space. The spherical rotational symmetry [O(3)] of the
Coulomb potential leads to a degeneracy of states of the order
of (2� + 1), where � is the orbital angular momentum quantum
number. The surprise from spectroscopic observations was that
for a given principal quantum number n, the different allowed
orbital angular momentum states for � = 0,1, . . . ,n − 1 all
have the same energy [1]. This additional degeneracy, referred
to as “accidental degeneracy,” was explained by Pauli [2] by
identifying a new conserved vector, the Runge-Lenz vector.
Fock [3] showed that the hydrogen atom has a symmetry
higher than the three-dimensional (3D) rotational symmetry,
namely, O(4). This beautiful application of group theory to
the degeneracies of a physical system allows us to appreciate
the fundamental role of symmetries and hidden symmetries
in the quantum mechanics of a physical system. Further
developments by Barut and Kleinert [4] showed that the
dynamical symmetry group O(4,2) for the hydrogen atom
permits the algebraic evaluation of transition matrix elements
and provides a complete realization of the dynamics of this
problem in algebraic terms.

As early as 1990, Shertzer and Ram-Mohan [5] observed
that semiconductor quantum wires with a square cross section
exhibit the reduction of degeneracy associated with the infinite
square well potential. An electron in a GaAs quantum wire
embedded in Ga(1−x)AlxAs is confined in the transverse
direction by a “kitchen-sink” potential due to the finite band
offsets in the semiconductor heterostructure. Only some of
the doubly degenerate states labeled by the quantum numbers
(nx,ny) and their permuted partner (ny,nx) associated with
the infinite well are split in energy when the well height is
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made finite. The two dimensional (2D) potential well has C4v

symmetry. Seven years after our work was reported, the infinite
potential well was shown to have an additional symmetry
corresponding to the semidirect product of C4v and a 1D con-
tinuous group of transformations generated by the dynamical
operator (∂2

x − ∂2
y ), which commutes with the Hamiltonian [6].

This example of accidental degeneracy and its removal
provides a textbook example of the interplay between group
theory and particle dynamics. We can anticipate that the level
degeneracy in the 3D infinite well given by the permutations
of (nx,ny,nz) will be richer, since the Pythagorean constraint
E ∝ n2

x + n2
y + n2

z can be satisfied in many more ways. The
electron’s energy E = (h̄2π2/2m∗L2)(n2

x + n2
y + n2

z) corre-
sponds to the spherical surface of constant E over the positive
octant defined in the number index space, and the degeneracy
corresponds to the number of states that fall on such a surface
[7]. The larger the energy, the larger is the level degeneracy
[7]. Within the range of energies that we have explored, we
have observed degeneracies of ∼3000. The reduction in this
degeneracy for the cubic finite 3D potential well was already
anticipated [5].

In this paper, the phenomenon of accidental degeneracy and
its reduction for a physical system with point-group symmetry
is presented for a GaAs cubic quantum dot embedded in
GaAlAs. We note that the spatial confinement of charge
carriers in semiconductor quantum dots (QDs) has led to
several interesting electronic, optical, and transport properties
in such systems [8–10].

Here, we numerically obtain the energy levels of elec-
trons and holes in cubic quantum dots (QDs) of GaAs in
Ga(1−x)AlxAs. This is a prototypical system and our methods
apply to any of the II-VI or III-V semiconductor material pairs
with type-I interfaces.

Almost all previous studies reported in the literature assume
that the confining potential is infinite. Shertzer and Ram-
Mohan have shown that for heterostructure quantum wires,
the infinite-barrier approximation is not valid and, more im-
portantly, the confining potential is not separable. Here we find
that the findings from 2D carry over to 3D: for cubic QDs, the
energy levels for the finite potential are significantly lower than
those obtained with the infinite barrier. More conspicuous is the

2469-9950/2017/96(19)/195305(13) 195305-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.195305


BHARADWAJ, PANDEY, AND RAM-MOHAN PHYSICAL REVIEW B 96, 195305 (2017)

FIG. 1. The convergence of the relative errors in eigenvalues of (a)
the ground and (b) the first excited state in the QD for linear Lagrange,
quadratic Lagrange, cubic Hermite, and quintic Hermite interpolation
polynomials are shown for the case of an infinite quantum well of
dimensions 200×200×200 Å. By using quintic Hermite interpolation
polynomials, we can reduce the error to 10−8 with just 27 elements
and 2744 degrees of freedom (DoF), with further reduction in error
possible with mesh refinement. The total DoF corresponds to the
global matrix dimension.

lifting of the degeneracy of certain energy levels in the energy
spectrum of cubic QDs when a finite-well potential is used.

In Sec. II, we use finite-element analysis (FEA) to solve the
Schrödinger’s equation in the effective-mass approximation.
Here, the emphasis is on getting high accuracy in the
eigenvalues and eigenfunctions. We show that the use of
Hermite interpolation polynomials delivers this; the interface
boundary conditions with the additional derivative degrees of
freedom (DoF) in the Hermite interpolation can lead to serious
bookkeeping issues while implementing jump conditions for
the derivatives of wave functions. This is readily overcome
by making the use of Fermi-function smoothing, described
later in this section. In Sec. III, we use group-representation
theory to predict which of the accidental degeneracies present
in the infinite cubic well are lifted when a finite barrier is

FIG. 2. (a) A histogram for the degree of degeneracy as a function
of energy for an infinite-barrier cubic quantum dot. Note that the
degeneracy increases without limit, with the largest value shown
being ∼3000 in the plot. As the radius of the constant energy surface
increases by 1 unit, the level degeneracy fluctuates considerably. The
red curve shows the degeneracy averaged over small bins. (b) The
calculated density of states (dots) is plotted along with the continuum
approximation (continuous curve) of the density of states obtained as
the local average of the density of states. We see that this evaluation
overestimates the density for the lowest of energies, but is found
to be an excellent approximation already for intermediate energies.
Here the energy is in units of h̄2π 2/2m∗L2 = 0.01413653 eV. This
corresponds to a conduction band electron in a L = 200 Å cubic
quantum dot.

used. In Sec. IV, we discuss results obtained through FEA
and investigate splitting of energy levels in the presence of an
external electric and magnetic field. With the level of accuracy
delivered for actual physical structures discussed here, we
mention further directions for research in the concluding
remarks of Sec. V. As a final note, FEA transcends geometrical
constraints rather cleanly, so that eventually QDs of any shape
may be considered for further applications.

II. FINITE-ELEMENT ANALYSIS OF CUBIC QDS

In the envelope-function approximation [11] (EFA),
the charge carrier’s envelope function ψ(x,y,z) satisfies
Schrödinger’s equation with a nonseparable potential V (x,y,z)
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TABLE I. Possible degree of degeneracies due to the per-
mutation of quantum numbers in cubic QDs with infinite-barrier
approximation. The level degeneracy can be substantial for large
energies, corresponding to the number of ways the Pythagorean sum
(n2

x + n2
y + n2

z) corresponds to the given energy. The level degeneracy
has no limit and increases with energy. We see in the table that the
degrees of degeneracy are already not in accord with the geometrical
symmetry group Oh in the low-energy states.

Degree of
degeneracy Example

1 (1,1,1)
3 (1,2,2), (2,1,2), (2,2,1)
6 (1,2,3), (3,1,2), (2,3,1), (2,1,3), (3,2,1), (1,3,2)

corresponding to a finite barrier height,[
− ∇

(
h̄2

2m∗ ∇
)

+ V (x,y,z)

]
ψ(x,y,z) = Eψ(x,y,z), (1)

where m∗ is the carrier effective mass m∗
w or m∗

b in the quantum
dot or the surrounding bulk barrier medium, respectively. The

potential is

V (x,y,z) =
{

0 for |x| � a/2, |y| � b/2, |z| � c/2,

V0 outside.
(2)

There is a discontinuity in the potential and the effective mass
of the charged carriers at the interface between materials. The
continuity of the probability current requires that the wave
function ψ(x) and the “mass derivative” of the wave function
(1/m∗)ψ ′(x) be continuous, as was shown by Ben-Daniels
and Duke [12]. The input parameters for the effective masses
and band offsets of conduction electrons, heavy holes, and
light holes in GaAs and in Ga(1−x)AlxAs are obtained from
Ref. [13]. The FEA employing the action integral formulation
[14] is used to evaluate the energies and eigenfunctions.
FEA is a generalized variational approach in which we
divide the physical domain of interest into several small
elements. Within each element, we express the envelope
function as a linear combination of interpolation polynomials
multiplied by as-yet undetermined coefficients that correspond
to the value of the wave function at the vertices (nodes) of
the elements that are usually tetrahedra or cubes in 3D. We use

TABLE II. Different possible even and odd combinations of quantum numbers and their corresponding irreducible representations for the
symmetry group Oh.

Quantum number Irreducible representation Basis function

(2n − 1,2n − 1,2n − 1) 1A1g ψ(2n−1,2n−1,2n−1)

(2n,2n,2n) 1A2u ψ(2n,2n,2n)

(2n − 1,2n − 1,2m) 1T1u ψ(2n−1,2n−1,2m),ψ(2n−1,2m,2n−1),ψ(2m,2n−1,2n−1)

(2n,2n,2m − 1) 1T2g ψ(2n,2n,2m−1),ψ(2n,2m−1,2n),ψ(2m−1,2n,2n)

1A1g

1√
3

(ψ(2n−1,2n−1,2m−1) + ψ(2n−1,2m−1,2n−1) + ψ(2m−1,2n−1,2n−1))

(2m − 1,2n − 1,2n − 1)

1Eg

1√
6

( − ψ(2n−1,2n−1,2m−1) + 2ψ(2n−1,2m−1,2n−1) − ψ(2m−1,2n−1,2n−1)),

1√
6

(2ψ(2n−1,2n−1,2m−1) − ψ(2n−1,2m−1,2n−1) − ψ(2m−1,2n−1,2n−1))

1A2u

1√
3

(ψ(2n,2n,2m) + ψ(2n,2m,2n) + ψ(2m,2n,2n))

(2m,2m,2n)

1Eu

1√
6

( − ψ(2n,2n,2m) + 2ψ(2n,2m,2n) − ψ(2m,2n,2n)),

1√
6

(2ψ(2n,2n,2m) − ψ(2n,2m,2n) − ψ(2m,2n,2n))

1T1u

1√
2

(ψ(2k,2m−1,2n−1) + ψ(2k,2n−1,2m−1)),

1√
2

(ψ(2m−1,2k,2n−1) + ψ(2n−1,2k,2m−1)),

1√
2

(ψ(2m−1,2n−1,2k) + ψ(2n−1,2m−1,2k))

(2n − 1,2m − 1,2k)

1T2u

1√
2

(ψ(2k,2m−1,2n−1) − ψ(2k,2n−1,2m−1)),

1√
2

(ψ(2m−1,2k,2n−1) − ψ(2n−1,2k,2m−1)),

1√
2

(ψ(2m−1,2n−1,2k) − ψ(2n−1,2m−1,2k))
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TABLE III. (Continued from Table II). Different possible even and odd combinations of quantum numbers and their corresponding
irreducible representations for the symmetry group Oh.

Quantum number Irreducible representation Basis function

(2n,2m,2k − 1)

1T1g

1√
2

(ψ(2k−1,2m,2n) + ψ(2k−1,2n,2m)),
1√
2

(ψ(2m,2k−1,2n) + ψ(2n,2k−1,2m)),

1√
2

(ψ(2m,2n,2k−1) + ψ(2n,2m,2k−1))

1T2g

1√
2

(ψ(2k−1,2m,2n) − ψ(2k−1,2n,2m)),
1√
2

(ψ(2m,2k−1,2n) − ψ(2n,2k−1,2m)),

1√
2

(ψ(2m,2n,2k−1) − ψ(2n,2m,2k−1))

1A1u

1√
6

(ψ(2m,2n,2k) − ψ(2m,2k,2n) + ψ(2n,2k,2m)

(2m,2n,2k)

−ψ(2n,2m,2k) + ψ(2k,2m,2n) − ψ(2k,2n,2m))

1A2u

1√
6

(ψ(2m,2n,2k) + ψ(2m,2k,2n) + ψ(2n,2k,2m)

+ψ(2n,2m,2k) + ψ(2k,2m,2n) + ψ(2k,2n,2m))

2Eu

1√
6

(2ψ(2m,2n,2k) − ψ(2n,2k,2m) − ψ(2k,2m,2n)),

1√
6

(2ψ(2n,2k,2m) − ψ(2k,2m,2n) − ψ(2m,2n,2k))

1√
6

(2ψ(2m,2k,2n) − ψ(2k,2n,2m) − ψ(2n,2m,2k)),

1√
6

(2ψ(2n,2m,2k) − ψ(2m,2k,2n) − ψ(2k,2n,2m))

1A1g

1√
6

(ψ(2m−1,2n−1,2k−1) − ψ(2m−1,2k−1,2n−1) + ψ(2n−1,2k−1,2m−1)

(2m − 1,2n − 1,2k − 1)

−ψ(2n−1,2m−1,2k−1) + ψ(2k−1,2m−1,2n−1) − ψ(2k−1,2n−1,2m−1))

1A2g

1√
6

(ψ(2m−1,2n−1,2k−1) + ψ(2m−1,2k−1,2n−1) + ψ(2n−1,2k−1,2m−1)

+ψ(2n−1,2m−1,2k−1) + ψ(2k−1,2m−1,2n−1) + ψ(2k−1,2n−1,2m−1))

2Eg

1√
6

(2ψ(2m−1,2n−1,2k−1) − ψ(2n−1,2k−1,2m−1) − ψ(2k−1,2m−1,2n−1)),

1√
6

(2ψ(2n−1,2k−1,2m−1) − ψ(2k−1,2m−1,2n−1) − ψ(2m−1,2n−1,2k−1))

1√
6

(2ψ(2m−1,2k−1,2n−1) − ψ(2k−1,2n−1,2m−1) − ψ(2n−1,2m−1,2k−1)),

1√
6

(2ψ(2n−1,2m−1,2k−1) − ψ(2m−1,2k−1,2n−1) − ψ(2k−1,2n−1,2m−1))

Hermite interpolation polynomials, as opposed to Lagrange
polynomials, for which the expansion coefficients are function
values and their derivatives at the nodes [14]. The additional
derivative continuities required in this case substantially
increase the accuracy of the eigenvalues. The global envelope
function is constructed by summing contributions from all
elements and ensuring the function value and its derivatives
are continuous across the element. Further details from a
physical point of view may be seen in Ref. [14] and we refrain
from reporting more details of the method here. Since the
finite-element approach may be viewed as the discretization
of the action integral, we define the action from which Eq. (1)

is derivable to be

A/T =
∫

V

d3r ψ∗
[←−

∂ · h̄2

2m∗
−→
∂ + V (x,y,z)−E

]
ψ. (3)

We here solve the time-independent problem so that the time
integral over the range [0,T ] in the action is simply T . Dirichlet
boundary conditions are implemented at the periphery of the
physical region. In Fig. 1, we show the convergence of the error
in the eigenvalues of the ground and the first excited state for
different interpolation polynomials. Clearly, the Hermite inter-
polations yield more accurate results than the typical Lagrange
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TABLE IV. Conduction-electron energy levels in GaAs/Ga0.63Al0.37As QDs, with m∗
w = 0.0665m0 and m∗

b = 0.0858m0. The typical
simplification of using an infinite well to evaluate the energy levels is seen to be in significant error since the finite potential is not separable.

Energy (meV)

Quantum numbers Irreducible representation V = 276 V = ∞
(1,1,1) 1A1g 27.6398458 42.4094382

(1,1,2) 55.1963195 84.8188763
(1,2,1) 1T1u 55.1963195 84.8188764
(2,1,1) 55.1963195 84.8188766

(1,2,2) 82.5703718 127.2283147
(2,1,2) 1T2g 82.5703718 127.2283147
(2,2,1) 82.5703718 127.2283147

(1,1,3) + (1,3,1) + (3,1,1) 1A1g 100.9570475 155.5012738

−(1,1,3) + 2(1,3,1) − (3,1,1)
1Eg

101.0083349 155.5012739
2(1,1,3) − (1,3,1) − (3,1,1) 101.0083349 155.5012739

(2,2,2) 1A2u 109.7512732 169.6377529

(2,3,1) − (2,1,3) 128.0064988 197.9107120
(3,2,1) − (1,2,3) 1T2u 128.0064988 197.9107121
(1,3,2) − (3,1,2) 128.0064988 197.9107121

(2,3,1) + (2,1,3) 128.0462602 197.9107121
(3,2,1) + (1,2,3) 1T1u 128.0462602 197.9107121
(1,3,2) + (3,1,2) 128.0462602 197.9107121

(1,2,4) − (1,4,2) 190.8111029 296.8660777
(2,1,4) − (4,1,2) 1T2g 190.8111029 296.8660777
(2,4,1) − (4,2,1) 190.8111029 296.8660777

(1,2,4) + (1,4,2) 191.3269094 296.8660777
(2,1,4) + (4,1,2) 1T1g 191.3269094 296.8660777
(2,4,1) + (4,2,1) 191.3269094 296.8660778

(2,2,4) + (2,4,2) + (4,2,2) 1A2u 216.6050003 339.2755159

−(2,2,4) + 2(2,4,2) − (4,2,2)
1Eu

217.5244549 339.2755160
2(2,2,4) − (2,4,2) − (4,2,2) 217.5244549 339.2755160

interpolation polynomials. In the case of finite barriers, there is
a discontinuity in the potential and effective mass of the charge
carriers at the interface between materials. Traditionally, while
using Hermite finite elements, the continuity of the effective
mass derivatives is ensured by patching the corresponding

row vectors [5]. But this is a computationally expensive and
slow process, especially in a parallel computing environment
in 3D. We tackle this problem by representing the step
function by a Fermi function. Thus the effective mass is given
by

m∗(x,y,z) = m∗
b − m∗

b − m∗
w{

1 + exp
[

(x+ a
2 )(x− a

2 )
δ2

]}{
1 + exp

[
(y+ b

2 )(y− b
2 )

δ2

]}{
1 + exp

[
(z+ c

2 )(z− c
2 )

δ2

]} . (4)

Similarly, the confining potential is defined by

V (x,y,z) = V0

⎛
⎝1 −

{
1 + exp

[(
x + a

2

)(
x − a

2

)
δ2

]}−1{
1 + exp

[(
y + b

2

)(
y − b

2

)
δ2

]}−1{
1 + exp

[(
z + c

2

)(
z − c

2

)
δ2

]}−1
⎞
⎠. (5)

Here, δ is the smoothing parameter or the “temperature” in the
Fermi function, which controls the smoothing of the interfaces.
By systemically decreasing the parameter δ, we mimic the
finite barrier potential with a discontinuity. The most important
benefit of this smoothing is that the properties of the function
are the same on either side of the interface at any energy so that

there are no jump conditions to implement in the calculations.
We have verified this and the accuracy obtained in several test
calculations. We note that the Fermi-function smoothing may
be argued as a more physical material interface, though here we
employ it for its simplicity in implementation for computation
with the Hermite interpolation polynomials.
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TABLE V. Light-hole energy levels in GaAs/Ga0.63Al0.37As QDs, with m∗
w = 0.0905m0 and m∗

b = 0.1107m0. The typical simplification of
using an infinite well to evaluate the energy levels is seen to be in significant error since the finite potential is not separable.

Energy (meV)

Quantum numbers Irreducible representation V = 184 V = ∞
(1,1,1) 1A1g 20.2151693 31.1627363

(1,1,2) 40.3461623 62.3254726
(1,2,1) 1T1u 40.3461623 62.3254727
(2,1,1) 40.3461623 62.3254728

(1,2,2) 60.3422579 93.4882091
(2,1,2) 1T2g 60.3422579 93.4882091
(2,2,1) 60.3422579 93.4882091

(1,1,3) + (1,3,1) + (3,1,1) 1A1g 73.6604738 114.2633670

−(1,1,3) + 2(1,3,1) − (3,1,1)
1Eg

73.7321914 114.2633670
2(1,1,3) − (1,3,1) − (3,1,1) 73.7321914 114.2633670

(2,2,2) 1A2u 80.1946351 124.6509455

(2,3,1) − (2,1,3) 93.4188421 145.4261033
(3,2,1) − (1,2,3) 1T2u 93.4188421 145.4261033
(1,3,2) − (3,1,2) 93.4188421 145.4261033

(2,3,1) + (2,1,3) 93.4736301 145.4261034
(3,2,1) + (1,2,3) 1T1u 93.4736301 145.4261034
(1,3,2) + (3,1,2) 93.4736301 145.4261034

(1,2,4) − (1,4,2) 138.6920158 218.1391620
(2,1,4) − (4,1,2) 1T2g 138.6920158 218.1391620
(2,4,1) − (4,2,1) 138.6920158 218.1391620

(1,2,4) + (1,4,2) 139.3460826 218.1391621
(2,1,4) + (4,1,2) 1T1g 139.3460826 218.1391621
(2,4,1) + (4,2,1) 139.3460826 218.1391621

(2,2,4) + (2,4,2) + (4,2,2) 1A2u 157.2405642 249.3018984

−(2,2,4) + 2(2,4,2) − (4,2,2)
1Eu

158.4166740 249.3018985
2(2,2,4) − (2,4,2) − (4,2,2) 158.4166740 249.3018985

Variation of the discretized action in Eq. (3) leads to a
generalized eigenvalue matrix equation of the form Av=EBv,
where A and B are sparse matrices of dimension equal to the
total DoF and v is the eigenvector corresponding to the eigen-
value E. We solve this equation within a parallel computing
environment [15–18]. We use the Krylov-Schur algorithm as
implemented in SLEPc [19]. Here, we employ a spectral trans-
formation by a shift-invert operator. The solver works with
an equation of the form (A − λB)−1Bv = θv, where λ is the
shift parameter. Energy eigenvalues are computed internally
from the relation E = λ + 1/θ . This procedure augments the
convergence of eigenvalues near λ since the eigenvalues θ

of the shift-invert operator are largest in magnitude for those
energies in the vicinity of λ [16]. In the case of linear Lagrange
interpolation polynomials, with 50 processors, matrices of
dimensions 27000×27000 are assembled in 0.6 minutes and
diagonalized in 2.9 minutes. On the other hand, using the
quintic Hermite interpolation polynomials, with the same
number of processors, matrices of the same dimensions are
assembled in 70.0 minutes and diagonalized in 10.2 minutes.
We pay the price for having to go through a larger number of
loops while using the Hermite interpolation polynomials. This
increase in time can be reduced by optimizing the number of
processors used for the calculation.

The matrix bandwidth is defined as the sum of sub-
and supradiagonal arrays together with the main diagonal.
For a total of 27000 DoF, the linear Lagrange polynomials

FIG. 3. Wave function for the (2,2,2) state of the cubic QD which
is in the representation A2u. Notice that the wave function is odd with
respect to inversion about the center. Darker regions correspond to
wave-function valleys (blue) and peaks (red), and lighter regions
(green) correspond to values close to zero.
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TABLE VI. Heavy-hole energy levels in GaAs/Ga0.63Al0.37As QDs, with m∗
w = 0.3774m0 and m∗

b = 0.3865m0. The typical simplification
of using an infinite well to evaluate the energy levels is seen to be in significant error since the finite potential is not separable.

Energy (meV)

Quantum numbers Irreducible representation V = 184 V = ∞
(1,1,1) 1A1g 5.6339074 7.4727812

(1,1,2) 11.2717888 14.9455624
(1,2,1) 1T1u 11.2717888 14.9455624
(2,1,1) 11.2717888 14.9455625

(1,2,2) 16.9084279 22.4183437
(2,1,2) 1T2g 16.9084279 22.4183437
(2,2,1) 16.9084279 22.4183437

(1,1,3) + (1,3,1) + (3,1,1) 1A1g 20.6978832 27.4001979

−(1,1,3) + 2(1,3,1) − (3,1,1)
1Eg

20.7001304 27.4001979
2(1,1,3) − (1,3,1) − (3,1,1) 20.7001304 27.4001979

(2,2,2) 1A2u 22.5438146 29.8911249

(2,3,1) − (2,1,3) 26.3330823 34.8729792
(3,2,1) − (1,2,3) 1T2u 26.3330823 34.8729792
(1,3,2) − (3,1,2) 26.3330823 34.8729792

(2,3,1) + (2,1,3) 26.3345962 34.8729792
(3,2,1) + (1,2,3) 1T1u 26.3345962 34.8729792
(1,3,2) + (3,1,2) 26.3345962 34.8729792

(1,2,4) − (1,4,2) 39.6765282 52.3094705
(2,1,4) − (4,1,2) 1T2g 39.6765282 52.3094705
(2,4,1) − (4,2,1) 39.6765282 52.3094705

(1,2,4) + (1,4,2) 39.6883222 52.3094705
(2,1,4) + (4,1,2) 1T1g 39.6883222 52.3094705
(2,4,1) + (4,2,1) 39.6883222 52.3094705

(2,2,4) + (2,4,2) + (4,2,2) 1A2u 45.3002293 59.7822517

−(2,2,4) + 2(2,4,2) − (4,2,2)
1Eu

45.3181042 59.7822517
2(2,2,4) − (2,4,2) − (4,2,2) 45.3181042 59.7822517

(1,3,5) − (1,5,3) + (3,5,1) − (3,1,5) + (5,1,3) − (5,3,1) 1A1g 67.0254522 87.1824696

(1,3,5) + (1,5,3) + (3,5,1) + (3,1,5) + (5,1,3) + (5,3,1) 1A2g 67.0857917 87.1824696

2(1,3,5) − (3,5,1) − (5,1,3)

2Eg

67.0311478 87.1824696
2(3,5,1) − (5,1,3) − (1,3,5) 67.0311478 87.1824696

2(3,1,5) − (1,5,3) − (5,3,1) 67.0805808 87.1824696
2(1,5,3) − (3,1,5) − (5,3,1) 67.0805808 87.1824696

utilize a bandwidth of 53987, while the quintic Hermite
interpolation polynomials occupy a comparable bandwidth of
53903. The occupancy of a matrix is defined as the percentage
of nonzero entries in the matrix. While going from the linear
Lagrange to quintic Hermite polynomials, there is only a
nominal increase in the matrix occupancy from 0.214% to
0.929% for the B matrix and 0.06% to 0.928% for the A

matrix. The increase in computational time with the Hermite
interpolation calculations is compensated considerably by the
higher accuracy delivered, as seen in Fig. 1.

III. DEGENERACY AND THE POINT-GROUP SYMMETRY

Degeneracies in the energy spectrum arise from symmetries
associated with the geometry. They are equal to the dimensions
of the irreducible representations of the corresponding

symmetry group [20,21]. Any other additional degeneracy
which cannot be explained by the obvious geometrical
symmetry of the system is labeled as accidental degeneracy.
Accidental degeneracies are rendered normal by identifying
the hidden covering group.

We know that for a three-dimensional infinite barrier cubic
QD of length L, the energy eigenvalues are given by

E(n1,n2,n3) =
(

h̄2π2

2m∗L2

)(
n2

1 + n2
2 + n2

3

)
, (6)

where n1,n2,n3 ∈ N. Energy eigenvalues reside on the first
octant of the number sphere. From Fig. 2(a), we see that the
degree of degeneracy increases with increase in energy; within
the exploration done by us, it reaches fairly large values.

In the continuum limit, the density of states is equal to the
area of positive octant in the number sphere which goes as

√
E.
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FIG. 4. Wave functions for (a) the state (1,1,3) + (1,3,1) +
(3,1,1) belonging to the representation A1g , which has full Oh

symmetry, and (b) the state −(1,1,3) − (1,3,1) + 2(3,1,1) and (c) the
state −(1,1,3) + 2(1,3,1) + (3,1,1), which are in the representation
Eg of the group Oh. These two states are related by a C4 rotation about
the x axis. Darker regions correspond to wave-function valleys (blue)
and peaks (red), and lighter regions (green) correspond to values close
to zero.

This semiclassical evaluation overestimates the true density
[see Fig. 2(b)] for low energies. However, the theoretical
continuum approximation is in excellent agreement already for

intermediate energies. The averaging procedure to obtain the
density of degenerate states is done as follows. For this prob-
lem, the states lie in the positive quadrant of the number space.
The degeneracy is sorted by distributing the n values into bins
of thickness dn2 = 2ndn, where dn = 1 or any suitable small
number. The degeneracies of all states in this shell are added,
and divided by the size of the bin which equals dn2. The
density of states versus energy is directly obtained by noting
that n2 ∝ E. The analytical curve plotted in Fig. 2 is nπ/4.

Note that there are two kinds of degeneracies present. The
first kind is due to the exchange of quantum numbers that are
listed in Table I. The second kind is less transparent, occurring
when the following relation is satisfied:

n2
1 + n2

2 + n2
3 = m2

1 + m2
2 + m2

3, (7)

with ni �= mj , for i,j = 1,2,3. Cubic QDs have geometrical
octahedral symmetry (Oh). The character table for the point
group Oh is given in Ref. [21]. We see that Oh has only
one-, two-, and three-dimensional representations. The energy
spectrum with infinite barrier approximation, on the other
hand, displays degeneracies of higher order (see Fig. 2). The
accidental degeneracies due to the permutation of quantum
numbers can be accounted for by finding the covering group,
which is a semidirect product of the geometrical symmetry
group Oh and a two-dimensional compact continuous group
[22]. The dynamical operators (∂2

x − ∂2
y ) and (2∂2

z − ∂2
x −

∂2
y ) connect the accidental degeneracies generated by the

permutation of the quantum numbers [23].
For finite barriers, the potential is nonseparable and the ac-

cidental degeneracy present in the infinite barrier case is lifted.
However, it suffices to use the infinite barrier quantum numbers
for labeling the eigenstates. For the finite barrier, the states can
be labeled with quantum numbers (n1,n2,n3), as products of
sine functions. We require degenerate symmetry-adapted lin-
ear combinations of wave functions to form the basis for their
irreducible representations. We shall thus classify the wave
functions into their corresponding irreducible representations
under Oh. Our approach is similar to that of Ref. [23]. Let G

be a group of the order of g and 
(i) be an li-dimensional
representation of G. For a group element R in G, its
representation is given by an li × li square matrix 
(i)(R). Then
the projection operator [20] corresponding to 
(i) is given by

P (i) = li

g

∑
R

χ (i)(R) · PR, (8)

where χ (i)(R) is the character and PR is the operator
corresponding to the element R. The projection operator
P (i) projects out a function F onto a part f (i) belonging to
the representation 
(i). Let {ψi}ni=1 be a basis set of Hilbert
space H which is in a representation 
. In general, 
 is a
reducible representation of the symmetry group of H. Let F

be a general function in H. Consider

P (i)F = f (i) =
n∑

j=1

c
(i)
j ψj , (9)

where the coefficients are given by

c
(i)
j =

∫
V

d3r ψ
†
j (P (i)F ). (10)
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TABLE VII. Lowering of symmetry and splitting of degeneracy in the presence of 1 and 20 kV/cm electric fields, in the conduction and
valence bands.

Energy (meV)

Conduction electron Light hole Heavy hole

Oh C2 E = 1 kV/cm E = 20 kV/cm E = 1 kV/cm E = 20 kV/cm E = 1 kV/cm E = 20 kV/cm

A1g A1 30.6325979 84.8862722 23.2051825 76.5630495 8.6034888 33.1401019

58.1889961 112.4161376 43.3360671 96.6588056 14.2413581 38.7771958
T1u

E
58.1889961 112.4161376 43.3360671 96.6588056 14.2413581 38.7771958

A1 58.1984405 115.9042693 43.3490347 101.1657821 14.2809973 41.6810315

B2 85.5629672 139.7615889 63.3320451 116.6166870 19.8779849 44.4130404

T2g
E

85.5725060 143.2800955 63.3451447 121.1595178 19.9176394 47.3175751
85.5725060 143.2800955 63.3451447 121.1595178 19.9176394 47.3175751

A1g A1 103.9521350 158.1420019 76.6536618 129.9254484 23.6681493 48.2026497

Eg
A1 104.0008677 158.1774663 76.7218842 129.9759093 23.6696783 48.2041586

B1 104.0069928 161.4718371 76.7302898 134.3320494 23.7051839 51.2423583

A2u B2 112.7534207 170.4624429 83.1975354 141.0083372 25.5530291 52.9528650

E 131.0028179 185.1617222 96.4137044 149.6430428 29.3033586 53.8370547
T2u 131.0028179 185.1617222 96.4137044 149.6430428 29.3033586 53.8370547

B1 131.0086546 188.7178983 96.4217482 154.2270192 29.3422989 56.7420587

E
131.0435892 188.5047413 96.4698984 154.0608113 29.3396284 56.8769143

T1u 131.0435892 188.5047413 96.4698984 154.0608113 29.3396284 56.8769143

A1 131.0484164 188.7579213 96.4765378 154.2830307 29.3438128 56.7435743

B2 193.8032019 247.8271711 141.6809651 194.6891392 42.6460290 67.1775006

T2g
E

193.8123939 251.1427793 141.6935107 198.9264968 42.6825840 70.0747385
193.8123939 251.1427793 141.6935107 198.9264968 42.6825840 70.0747385

A2 194.3190594 248.3613205 142.3351739 195.3932421 42.6578243 67.1893760

T1g
E

194.3283039 251.8995372 142.3478390 199.9665636 42.6954763 70.0932419
194.3283039 251.8995372 142.3478390 199.9665636 42.6954763 70.0932419

A2u B2 219.6064854 276.9942886 160.2421359 212.1353850 48.3073497 75.7013152

Eu

A2 220.5255529 277.9842400 161.4179343 216.6605758 48.3241968 75.7200343

B2 220.5266410 278.2286577 161.4195642 218.4187036 48.3273319 75.7267123

Similarly, for a basis function ψk , we write

c
(i)
jk =

∫
V

d3r ψ
†
j (P (i)ψk). (11)

If the coefficient is nonzero, the wave function ψk has a
component in the ith representation and ψj is a partner. Once
we determine all coefficients, from Eq. (9) we obtain a new
basis function f (i) which is exclusively in the ith represen-
tation. Using this procedure, we list out all basis functions
and irreducible representations for different combinations of
quantum numbers in Tables II and III. These new functions
that are listed in the third column of Tables II and III are a more
natural choice for the basis set as they are compatible with the
symmetry of irreducible representations. For instance, a basis
function for A1g , the symmetric irreducible representation,
should have total symmetry of the group under consideration.

IV. RESULTS AND DISCUSSIONS

We have used the infinite-barrier quantum dot to deter-
mine the degeneracy of levels and how well the continuum

approximation reproduces the discrete degeneracies. More
importantly, we have determined the level of accuracy achieved
in our numerical calculations with the infinite-barrier QD
for which the eigenvalues are known analytically. We expect
that the eigenvalues obtained with a finite well will have
almost the same level of accuracy given that the finite-well
QD calculations are not altering the input numerical values
in any significant way. In Tables IV–VI, we list the calcu-
lated eigenvalues for conduction electrons, light holes, and
heavy holes in GaAs/Ga0.3Al0.37As cubic QDs of dimensions
200×200×200 Å.

We represent each eigenstate by a symmetry-adapted linear
combination of quantum numbers (n1,n2,n3) associated with
the infinite well. For comparison, we include energy values
obtained using the infinite-barrier approximation. Note that all
of the energy levels are lowered from the values obtained with
infinite barriers. Additional accidental degeneracies observed
in the case of an infinite barrier are lifted. Clearly, the
infinite-barrier approximation is invalid in this case. States
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TABLE VIII. Lowering of symmetry and splitting of degeneracy in the presence of 1 and 5 T magnetic fields, in the conduction and valence
bands.

Energy (meV)

Conduction electron Light hole Heavy hole

Oh C2 E = 1 kV/cm E = 20 kV/cm E = 1 kV/cm E = 20 kV/cm E = 1 kV/cm E = 20 kV/cm

A1g A 26.4932919 -4.8840368 19.3877141 -3.6434403 5.4796057 0.2583186

A 53.2169808 20.1339720 38.9058124 14.6228892 10.9697672 5.3887369

T1u 2B
54.0533223 22.7498785 39.5211104 16.5374219 11.1174958 5.8963006

54.8778163 28.5790951 40.1276664 20.8389901 11.2641614 6.8571786

A 80.5974595 47.6065125 58.9062332 34.6836094 16.6064203 11.0255338

T2g 2B
81.2683771 50.2308227 59.3984048 36.6027622 16.7298280 11.4770314

82.2530234 56.0301517 60.1245542 40.8857484 16.9008023 12.4939400

A1g A 99.8112184 68.6822477 72.8334077 49.9887205 20.5430893 15.3240647

Eg 2A
99.8679240 69.8135450 72.9084944 50.8177405 20.5456429 15.5922676

100.0224376 73.9183335 73.0238855 53.8911239 20.5715086 16.1463884

A2u A 108.4532026 77.5113507 79.2532896 56.5196614 22.3652178 17.1125332

A 125.2321307 90.1747291 91.4051820 65.6532810 25.8860778 19.8888774

T2u 2B
126.0649696 93.2403029 92.0177721 67.9066859 26.0318545 20.4512219

126.8611243 96.9336933 92.5916335 70.6069265 26.1780867 21.2266782

A 127.0645735 101.0549274 92.7682625 73.6991187 26.2059804 21.7809729

T1u 2B
127.7112690 101.6253733 93.2303424 74.0832072 26.3262177 21.9195661

128.4123280 104.9692553 93.7436684 76.4960686 26.4558632 22.6043168

A 189.0605140 156.5853517 137.4743812 113.6789607 39.3802735 33.8002305

T2g 2B
189.6253297 160.8458778 137.8324884 116.6043714 39.5216559 34.7197963

189.9392687 161.5775929 138.1083802 117.3658824 39.5322679 34.8313813

A 190.0764546 161.7920168 138.3869186 117.7610849 39.5658830 34.9417166

T1g 2B
190.5608435 162.9376707 138.8011010 118.3459505 39.6026739 35.1853338

190.8418389 164.3101030 138.9635594 119.4525947 39.6751075 35.2686268

A2u A 215.3905447 185.3730561 156.3601221 134.4008619 45.1302652 39.8812443

Eu 2A
216.2796612 187.1525114 157.5121694 135.8308242 45.1545845 40.3494853

216.7630847 193.1348911 157.8743777 139.9227037 45.2324644 41.7345863

with a symmetric combination of quantum numbers are
more bound than others. For example, states corresponding
to A1g and A2u have lower energies than that of Eg and
Eu, respectively. As expected, we see only one-, two-, and
three-level degeneracies. States that were six-level degenerate
in the case of infinite-barrier approximation are split into two
triplet states for (two even and one odd) or (two odd and one
even) combinations of quantum numbers. For all three different
odd or even combinations, states will split into two singlets and
two doublets as expected (see Table III). In Fig. 3, we have
shown the wave function for the (2,2,2) state projected along
three perpendicular planes. We see that the wave function is
odd with respect to the inversion center, since it is in the
representation A2u. The wave functions of (1,1,3), (1,3,1),
and (3,1,1) states split into a singlet and a degenerate doublet.
In Fig. 4(a), we see that the singlet, which is in the A1g

representation, has the complete Oh symmetry. The doublets
belonging to the Eg representation are related by a proper C4

rotation around the x axis [see Figs. 4(b) and 4(c)].
We can induce level splitting by having an additional per-

turbation. Thus the symmetry is reduced to one of the subgroup
of Oh. The original Hamiltonian H0 belongs to the irreducible
representation A1 of Oh. The additional perturbation H ′ may
not have the complete Oh symmetry. We determine the new
symmetry by finding the subgroup G of maximum dimension
in which all the terms of H ′ form a basis for the irreducible
representation A1 in G. For example, consider an external
constant electric field H ′ = −eE0z applied to a cubic QD.
We note that C4v is the subgroup of maximum dimension
in which z is a basis of the representation A1. Hence, Oh

symmetry is reduced to C4v symmetry. We decompose all
irreducible representations of Oh through direct products of
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FIG. 5. Probability densities for the states (1,1,3), (1,3,1), and
(3,1,1) of the cubic QD in a 5 T magnetic field along the ẑ axis.
The magnetic field splits all states into singlets whose symmetry is
reduced to the group C2. Darker regions correspond to wave-function
nodes (blue) and antinodes (red), and lighter regions correspond to
values in between.

irreducible representations of C4v [24]. In Table VII, we list
out numerically obtained eigenvalues for the cubic QD in
an electric field. Level splitting is in accordance with group
theoretical predictions. For an applied magnetic field B and
corresponding vector potential A, the perturbing Hamiltonian

FIG. 6. The dependence of heavy-hole energy levels on the
barrier height in a 200×200×200 Å cubic QD for (a) the first 10
energy levels and (b) a selected few higher states in which level
crossing is observed.

is given by

H ′ = e

m
A. p + e2

2m
|A|2 − μ · B, (12)

where μ = −(e/m)S and S is the spin angular momentum.
For a constant field B = B0ẑ, within the Landau gauge, the
vector potential is given by A = B0 x ŷ. Hence, H ′ has terms
that transform as xy and x2. The spin-orbit-coupling term
contributes only up to a constant value and it has the complete
Oh symmetry. By inspection, we see that only the subgroup
C2 has all these terms belonging to its trivial representation A.
We verify from Table VIII that all energy levels are split into
nondegenerate states as the group C2 has only one-dimensional
representations. In Fig. 5, we see that in an applied magnetic
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field, the probability distribution of electrons retains only C2

symmetry.
Finally, we study the dependence of level splitting on barrier

height for heavy holes in GaAs/Ga(1−x)AlxAs cubic QDs
of dimensions 200×200×200 Å. As expected, level splitting
between energy levels decreases [see Fig. 6(a)] and approaches
that of an infinite barrier in the limit V → ∞. In some
cases, there is a level crossing between states of different
quantum numbers. In Fig. 6(b), we see that energy of the
state (5,5,3) + (5,3,5) + (3,5,5) reduces below the energy of
state 2(3,3,7) − (3,7,3) − (7,3,3) for well depth � 173 meV.
Hence, even the ordering of energy levels is a function of well
depth.

V. CONCLUSIONS

We have developed a formalism based on FEA which
provides accurate energy spectra and symmetry-adapted wave
functions for a cubic quantum dot. Such accuracy is pivotal to
study linear and nonlinear optical, electrical, and magnetic
properties of a quantum dot. It is clear that the infinite-
barrier approximation leads to serious errors and additional
(accidental) degeneracies. The group-representation theory
provides a robust method to predict degeneracies in the
energy spectrum and symmetry-adapted wave functions by
just knowing the symmetries of the associated Hamiltonian.
We have derived a coefficient formula which determines the
basis for all irreducible representations of the symmetry group.
Our method is general and can be easily extended to find the
energy spectrum for a quantum dot of any shape and size.

In layered semiconductor structures, FEA allows us to treat
the issue of self-consistently solving the Schrödinger-Poisson
equations to derive the changes in the band-edge profile for
arbitrary doping with impurities in arbitrary layers [25]. The
ionized impurities are held in place while the carriers that
are freed are distributed in a self-consistent manner in the
heterostructure. In modulation-doped cubic QDs, the impurity
concentration, typically in the barrier, leads to a self-consistent
reconfiguration of the band edges. Lee et al. [26] proposed
a numerical method to obtain self-consistent solutions to
the Schrödinger-Poisson equations in cubic QDs with finite
barriers. However, their expansion of wave functions in terms
of separable global orthogonal periodic functions are expected
to give inaccurate results since the finite potential itself is
not separable. Extension of our method should provide a
highly reliable solution, as we can systematically increase
the accuracy through mesh-size refinement (h-refinement)

or by the use of higher-order interpolation polynomials
(p-refinement) for convergence within the FEA. Such freedom
is lost when using global basis functions.

In II-VI semiconductors, the inclusion of a dilute distribu-
tion of magnetic ions such as Mn leads to a dramatic change
in the magnetic properties of the material. In CdMnTe, for
example, the acceptor bound magnetic polarons are formed
by the presence of the magnetic ions within the Bohr radius
of the impurity state, which leads to a large change in the
binding energy of the acceptor. The hydrogenic acceptor state
has a magnetic exchange contribution that leads to a highly
nonlinear Schrödinger equation. This is readily solved to
obtain the new binding energy of the bound magnetic polaron
[27]. A similar doping with Mn of a GaAs quantum well
has the Mn entering the crystal as a p-type impurity, and
releasing a very large number of holes in the well even for
small stoichiometric concentrations. This has been calculated
by us using FEA [28]. We note that doping dilutely with Mn
ions in the GaAs QDs again leads to a release of a large number
of holes in the QD region. Such a structure also requires a
self-consistent solution.

The optical second-order susceptibility in asymmetric
quantum wells has been well studied [29], and the third-order
optical susceptibility in checkerboard superlattices of quantum
wires was investigated by us earlier [30]. In the literature,
typically for QDs, the second- and third-order nonlinear
optical susceptibilities are obtained using the infinite-barrier
approximation [31,32]. It will be of interest to examine the
influence of finite barriers in the presence of external electric
and magnetic fields, as delineated in this paper, in view of the
more accurate solutions we obtain within our framework.

Our method can be adapted to study both spatial and spin
entanglement of two or more electrons in double quantum dots.
We require special techniques to evaluate computationally
demanding Coulomb integrals. These calculations will be
presented elsewhere.

Lastly, we note that our method is well suited to study
correlation and quantum confinement of excitons in QDs. FEA
can be easily extended to solve the Schödinger equation in six
dimensions.
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