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Periodically driven (Floquet) systems have been under active theoretical and experimental investigations. This
paper aims at a systematic study in the following aspects of Floquet systems: (i) a systematic formulation of
topological invariants of Floquet systems based on the cooperation of topology and symmetries. Topological
invariants are constructed for the ten symmetry classes in all spatial dimensions, for both homogeneous Floquet
systems (Floquet topological insulators and superconductors) and Floquet topological defects. Meanwhile, useful
representative Dirac Hamiltonians for all the symmetry classes are obtained and studied. (ii) A general theory
of Floquet topological defects, based on the proposed topological invariants. (iii) Models and proposals of
Floquet topological defects in low dimensions. Among other defect modes, we investigate Floquet Majorana
zero modes and Majorana Pi modes in vortices of topologically trivial superconductors under a periodic drive. In
addition, we clarified several notable issues about Floquet topological invariants. Among other issues, we prove
the equivalence between the effective-Hamiltonian-based band topological invariants and the frequency-domain
band topological invariants.
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I. INTRODUCTION

Many phases and phase transitions of condensed matter can
be understood by the unifying concepts of local order param-
eters and broken symmetries. Nevertheless, the discovery of
quantum Hall (QH) effects demonstrated convincingly that this
paradigm is incomplete [1–3]. The quantized Hall conductance
in the integer QH effects is proportional to the Thouless-
Kohmoto-Nightingale-den Nijs (TKNN) number [4] (a Chern
number), which, as a topological invariant, depends only on the
global topology of Bloch wave functions in the entire Brillouin
zone. The recent discoveries of topological insulators and
topological superconductors [5–10] have renewed the interests
in topological matters, which are now among the central
concepts of condensed matter physics. In the noninteracting
limit, the interplay of topology and symmetry gives rise to the
tenfold way classifications of topological phases [7,11–14].

The most salient and ubiquitous feature of topological
phases is the existence of robustly gapless boundary states,
which are immune to disorders. Among the well known
examples are the chiral edge states of the quantum Hall
insulators, the helical liquids [15,16] at the edge of two-
dimensional (2d) time-reversal-invariant topological insula-
tors, the surface Dirac cone of 3d topological insulators [17],
and the half-integer spin at the end of integer-spin Haldane
chain [18,19]. From a more general perspective, the boundary
of a material is a topological defect sandwiched between the
material and vacuum, and the gapless boundary modes are
examples of topological defect modes. There are many other
types of topological defects, and various potential applications
of topological materials rely on these defects; for instance,
as a point defect, a vortex core of a 2d chiral topological
superconductor carries a Majorana zero mode (MZM) [20,21],
whose braiding obeys non-Abelian statistics [22–26], which is
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potentially important for Majorana-based topological quantum
computation [27,28]. Topological defects have remarkably
regular patterns, and a systematic tenfold way classification
of topological defects in all spatial dimensions have been put
forward by Teo and Kane [29].

The topological invariants are usually material constants,
with rather limited tunability for a given sample. Recently,
periodic driving has been explored as a promising approach to
create and engineer topological materials with high tunability
[30–38], potentially offering a new fruitful platform for
topological phenomena. In solid-state systems, a laser beam
provides a periodic driving by its time-dependent electromag-
netic potential A(t). Among many other interesting proposals,
it has been predicted that monochromatic light can drive
graphenelike Dirac bands to Floquet Chern bands [30,39–
42], trivial insulators and semimetals to Floquet topological
insulators [31,43–48], and nodal lines to Weyl points [49–52]
or multi-Weyl points [53,54]. Experimentally, Floquet-Bloch
bands have been observed at the surface of topological
insulators [55–57]. In cold atom systems, periodic driving can
be implemented by shaking the optical lattice [58–66], which
has enabled the experimental realization of the Haldane model
[59]. Photonic and acoustic materials are also platforms of
Floquet topological materials [67–70]. Recently, periodically
driven topological1 systems have attracted widespread atten-
tions [71–98].

In addition to providing a controllable tool for engineering
topological phases, periodic driving can also create funda-
mentally new topological states without static counterparts
[36,70,71,99–101]. For instance, robust chiral modes can
appear at the edge of a 2d driven system even though all
the Chern numbers of the bulk bands are zero [36,71], which

1Other interesting aspects of driving-induced physics, such as light-
induced superconductivity [193,194], will not be discussed here.
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suggests topological classifications and topological invariants
beyond the static systems [71].

Topological invariants are central tools in the study of
topological matters. The value of a topological invariant
unambiguously tells the topological class to which a system
belongs. For Floquet systems, although topological invariants
have been constructed for a few symmetry classes and spatial
dimensions [71,72,102,103], a complete list (in the sense of
the tenfold way classification) of topological invariants has
so far been lacking. Recently, a periodic table of Floquet
topological insulators has been obtained [95] via the K-theory,
which nevertheless does not rely on topological invariants. The
first purpose of our present paper is to put forward a complete
and unified formulation of topological invariants of Floquet
systems. The symmetries constrain the forms and possible
values of topological invariants, leading to a systematic
treatment for all the tenfold-way symmetry classes in all spatial
dimensions. We also address and clarify several subtle points
of topological invariants of Floquet systems. One of them
is the equivalence between the effective-Hamiltonian-based
band topological invariants and the frequency-domain band
topological invariants (see Appendix E).

The second purpose of this paper is to put forward a general
theory of topological defects in Floquet systems. In addition
to the intrinsic theoretical interest, Floquet topological defects
may potentially offer highly tunable devices for applications.
In solid-state systems, Floquet topological defects may be
created optically, which can be controlled with high speed.
There have been a few scattered studies of topological defects
in Floquet systems [104–106]; for instance, it has been shown
that a light beam with a vortexlike phase modulation can
generate a Floquet zero mode in a 2d system [104], and a
spatially modulated driving can create a Floquet line defect
hosting chiral modes in 3d Dirac semimetals [106], even
though the static system is defect-free. However, a systematic
study of Floquet topological defects is lacking. Our general
theory fills this gap.

This general theory of Floquet topological defects is based
on our unified formulation of topological invariants, which
are defined not only for Floquet topological insulators and
superconductors with translational symmetry, but also for
Floquet topological defects. The topological invariants are
formulated in terms of the time evolution operator defined
on certain parameter space (to be explained in details in the
following sections). We provide a systematic classification of
Floquet topological defects in all spatial dimensions, and a
complete list of topological invariants for these defects. The
dimensions of defects, the dimensions of space in which the
defects live, and the symmetries of the system, jointly impose
constraints on the forms and possible values of the topological
invariants. We prove that the defect topological invariants
reduce to the Teo-Kane topological invariants [29] in the static
limit. The bulk topological invariants of homogeneous Floquet
systems are obtained as special cases (the D = 0 cases, see
below) of our formulation. We also study representative Dirac
Hamiltonians for general spatial dimensions, which are useful
in model construction of Floquet topological insulators and
Floquet topological defects.

The third purpose of this paper is to study a number of
interesting examples of Floquet topological defects, some

of which may have potential applications. In particular, we
show that Majorana Pi modes (MPMs), which are Floquet
versions of the MZMs, can be created inside vortices of
driven topologically trivial superconductors, which host no
MZM in the static case. We apply our topological invariants
to study genuine Floquet topological defects without static
counterparts.

The rest of this paper is organized as follows. We first
introduce the basic concepts of Floquet systems and topo-
logical defects, and briefly explain our scheme, followed by
a discussion on symmetries in Floquet systems. We then put
forward the explicit constructions of topological invariants and
discuss their numerical implementation (including simplified
algorithms). Finally, exploiting these topological invariants
at hand, we study a number of low-dimensional examples
of Floquet topological defects and discuss their physical sig-
nificance. The Floquet topological invariants are numerically
evaluated. The technical details of calculation are provided
in the appendices. The paper is written in a self-contained
manner, so that it can also be read by beginners as an
introduction to both Floquet systems and topological defects.

II. THE SCHEME OF CONSTRUCTING
TOPOLOGICAL INVARIANTS

In this section, we will introduce a few basic concepts of
Floquet systems and topological defects, which are indispens-
able for understanding the rest parts of this paper. We will
also briefly introduce the scheme of constructing topological
invariants.

In a periodically driven or Floquet system, the Hamiltonian
is time-periodic by definition, namely,

Ĥ (t) = Ĥ (t + τ ), (1)

with a period τ and angular frequency ω = 2π/τ . If the
system has translational symmetry, then the Bloch wave
vector k is a good quantum number,2 and we may take the
time-dependent Bloch Hamiltonian H (k,t) as a starting point
of investigation. In this paper, we would like to formulate
topological invariants not only for homogeneous systems (i.e.,
systems with translational symmetry), but also for topological
defects; therefore, we will focus on the general problem
of topological defects, and treat homogeneous systems as
their special cases, to which the general formulation is also
applicable.

In the presence of a topological defect (several examples
of defects are shown in Fig. 1), the translational symmetry is
broken, and the wave vector k is not a good quantum number.
Fortunately, the robust topological properties of a defect can
be fully determined by the information far away from the
defect. For instance, the Burgers vector of a dislocation can
be read from a large contour around the dislocation, which
is independent of the details in the vicinity of defect. In
the region sufficiently far away from a defect, translational
symmetry is asymptotically restored, and the description in
terms of the wave vector k and the time-dependent Bloch

2In this paper, we take the unit that h̄ = 1, therefore, the wave vector
is equivalent to the crystal momentum (or Bloch momentum).
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(d)

FIG. 1. Illustrations of defects. Here, d stands for the spatial
dimension, and D stands for the dimension of the surrounding
surface (shown in blue) of defect. (a) Point defect in two dimensional
space. (b) Point defect in three-dimensional space. (c) Line defect in
two-dimensional space. (d) Line defect in three-dimensional space.
The red points and lines stand for the defect, and the blue points,
circles, and sphere denote the D-dimensional surrounding surface.

Hamiltonian becomes valid. To describe the topology of a
defect, we can take a sufficiently large surface surrounding the
defect [29,107,108], and seek topological classification and
topological invariant based on information on this surface.
Let d, ddef, and D stand for the dimension of the entire
space in which the defect lives, the dimension of defect, and
the dimension of the surrounding surface, respectively. They
automatically satisfy ddef + D + 1 = d [see Fig. 1 for a few
examples]. We shall take the surrounding surface to be a D-
dimensional sphere SD . We remark that SD=0 consists of two
points ({+1,−1}), as shown in Fig. 1(c). The defect topological
invariants for the D = 0 cases are simply the difference
between two bulk topological invariants of homogeneous
systems (on the +1 side and −1 side, respectively). Thus
the bulk topological invariants are essentially the special cases
(D = 0) of defect topological invariants.

On the surrounding sphere SD , the Bloch Hamiltonian is
a slowly varying function of the position r. Thus we have a
time-dependent Bloch Hamiltonian H (k,r,t) defined on the
(d + D + 1)-dimensional parameter space with coordinates
(k,r,t), where r stands for the position on SD . It satisfies the
periodicity

H (k,r,t) = H (k,r,t + τ ). (2)

For the static topological defects, one may take the Bloch
Hamiltonian H (k,r) (without t dependence) as the starting
point to define topological invariants [29]. For Floquet topo-
logical defects, we will adopt a refined version of the time

evolution operator as the generator of topological invariants.
The time-evolution-operator-based approach was pioneered
by Rudner et al. [71] and has proved useful in a few cases
[71,72,103] of bulk Floquet topological insulators.

When ta > tb, the time evolution operator from tb to ta is
defined as

U (k,r; ta,tb) = T exp

[
−i

∫ ta

tb

dt ′H (k,r,t ′)
]
, (3)

where T stands for the time ordering; when ta < tb, we define

U (k,r; ta,tb) = U−1(k,r; tb,ta). (4)

With this definition, U (k,r; ta,tb)U (k,r; tb,ta) = I is satisfied.
In most parts of this paper, we will fix tb = 0, and take the
more concise notation

U (k,r,t) ≡ U (k,r; ta = t,tb = 0). (5)

One can check that it satisfies the differential equation
i∂tU (k,r,t) = H (k,r,t)U (k,r,t). For Floquet systems, a use-
ful quantity is the full-period time evolution operator U (k,r,τ ),
which we can expand as

U (k,r,τ ) =
N∑

n=1

λn(k,r)|ψn(k,r)〉〈ψn(k,r)|, (6)

where N is the rank of U , namely, the number of bands. It
is customary to define an effective Hamiltonian H eff(k,r) =
(i/τ ) ln(U (k,r,τ )), whose eigenvalues are known as the
quasienergies. In this paper, the quasienergy will be denoted as
ε. We also define a dimensionless quasienergy ε = ετ , which
will be used extensively in this paper. Since the effective
Hamiltonian involves a logarithm, the branch cut has to be
carefully defined. A rigorous and unambiguous definition of
the effective Hamiltonian is given as

H eff
ε (k,r) = i

τ

∑
n

ln−ε(λn)|ψn(k,r)〉〈ψn(k,r)|, (7)

or more compactly,

H eff
ε (k,r) = i

τ
ln−ε (U (k,r,τ )). (8)

The subscript −ε has been introduced to specify the branch
cut. In this paper, lnα eiφ stands for the logarithm with the
branch cut located at exp(iα), namely, we take

lnα eiφ = iφ for α − 2π < φ < α. (9)

It follows from this definition that, when α − 2π < φ < α,
we have lnα ei(φ+2πl) = lnα eiφ = iφ for any integer l. It also
follows that

ln−ε eiφ = iφ for −ε − 2π < φ < −ε, (10)

which has been adopted in Eq. (7). Apparently, the effective
Hamiltonian H eff

ε (k,r) is a Hermitian matrix, and we have

U (k,r,τ ) = exp
[−iτH eff

ε (k,r)
]
. (11)

The branch cut in H eff
ε (k,r) will be an essential ingredient in

the construction of topological invariants for Floquet systems.
We mention in advance that, to properly define topological
invariants, ε must be in the bulk (dimensionless) quasienergy
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gap, namely, λn(k,r) �= e−iε must be satisfied for all k, r, and
n; otherwise, due to the branch cut, H eff

ε (k,r) is not a smooth
function of (k,r).

The effective Hamiltonian does not, however, contain
complete information for topological invariants. The effective
Hamiltonian captures only the stroboscopic evolution at
integer multiples of τ , losing key information of the evolu-
tion within each period. As such, the effective Hamiltonian
should only play an auxiliary role in constructing topological
invariants. Let us define the periodized time evolution operator
[71,72]

Uε(k,r,t) = U (k,r,t) exp
[
iH eff

ε (k,r)t
]
, (12)

which satisfies

Uε(k,r,t) = Uε(k,r,t + τ ). (13)

To see this periodic property, we notice that U (k,r,t + τ ) =
U (k,r,t)U (k,r,τ ) = U (k,r,t) exp[−iH eff

ε (k,r)τ ]. Equation
(13) is a crucial property. In fact, one cannot define topo-
logical invariants directly in terms of U (k,r,t), which is
generally not time-periodic: U (k,r,t) �= U (k,r,t + τ ). Due
to the periodicity, Uε(k,r,t) is defined essentially on the
compact parameter space T d+1 × SD , where T d+1 stands for
the (d + 1)-dimensional torus. Here, T d+1 = T d × T 1, T d

being the Brillouin zone, and T 1 ≡ S1 being the circle with
length τ along the t direction. We can define all the topological
invariants as certain mathematically natural winding numbers
on the (k,r,t) or (k,r) parameter space in the cases of integer
(Z or 2Z) topological invariants, or on certain extended
parameter spaces in the cases of Z2 topological invariants (to
be introduced in the following sections). As we will show in the
following sections, the tenfold way symmetries, cooperating
with topology, impose powerful constraints on the forms and
values of the topological invariants. The combination δ =
d − D enters as a key number in a natural manner. Notably,
the Z2 topological invariants take the forms of Wess-Zumino-
Witten (WZW) terms, and their definitions crucially rely on
the symmetries. Furthermore, the topological properties of the
unitary groups, as manifested in their homotopy groups, dic-
tates that each Z topological invariant has two and only twoZ2

descendants.
Compared to the static cases [7,29], the Floquet topological

invariants to be formulated will take quite different forms. This
is understandable because they should be able to describe
various “anomalous topological modes” [71], which are
intrinsic to Floquet systems and have no static counterpart.
The definitions [such as Eqs. (29) and (95)] and properties
of the topological invariants will be given in the following
sections. All the topological invariants are given in explicit
and plain formulas rather than more formal languages such as
the K-theory, so that they can be used directly in analytical and
numerical calculations.

III. SYMMETRIES OF FLOQUET SYSTEMS

Since symmetries play important roles, let us first introduce
them in this section as a preparation for topological invariants.
It should be mentioned that some of the symmetry identities
to be presented below, with the spatial variable r removed,
have been discussed in Refs. [95,103]. We will focus on the

symmetries in the tenfold-way classifications [7,11,12,14]. In
this framework, there is the time-reversal symmetry (TRS), the
particle-hole symmetry (PHS), which is sometimes called the
charge conjugation symmetry, and the sublattice symmetry,
which is also called the “chiral symmetry”(CS).

The particle-hole or charge conjugation symmetry is de-
fined as


H (k,r,t)
−1 = −H (−k,r,t), (14)

where 
 = CK, C is a unitary matrix, and K is the complex
conjugation operator. Equivalently, the PHS can be written as

C−1H (k,r,t)C = −H ∗(−k,r,t). (15)

Note that the symmetry operation does not change the spatial
coordinate r.

The time-reversal symmetry takes the form of

�H (k,r,t)�−1 = H (−k,r,−t), (16)

where � = TK, T is the unitary TRS matrix. It can be written
equivalently as

T −1H (k,r,t)T = H ∗(−k,r,−t), (17)

Note that the time t is reversed under the time-reversal
operation.

The chiral symmetry is defined by

S−1H (k,r,t)S = −H (k,r,−t). (18)

There is no complex conjugation for the chiral symmetry.
There are three possibilities [7,12] for the TRS: TRS

with T ∗T = 1, TRS with T ∗T = −1, or no TRS; similarly,
PHS has three possibilities: C∗C = 1, C∗C = −1, or no
PHS. Therefore there are 3 × 3 = 9 possibilities coming from
the TRS and PHS. The product of TRS and PHS is a CS,
which cannot be freely assigned when the TRS and PHS are
specified. This is true for eight of the nine cases. The only
exception is the case that both PHS and TRS are absent. In this
case, the CS can be present or absent, yielding two choices.
Therefore there are (3 × 3 − 1) + 2 = 10 symmetry classes
[7,12] (“tenfold way”). Eight of them contain one or two anti-
unitary symmetries (PHS or TRS), and the other two do not.
They are called real classes and complex classes, respectively.
In the context of random matrices, these symmetry classes are
known as the Altland-Zirnbauer [109] (AZ) symmetry classes.

One may wonder whether there are other possibilities.
For instance, what happens if there are two TRS op-
erations, denoted by T −1

1 H (k,r,t)T1 = H ∗(−k,r,−t) and
T −1

2 H (k,r,t)T2 = H ∗(−k,r,−t)? In this case, we have
T2T

−1
1 H (k,r,t)T1T

−1
2 = H (k,r,t), therefore, H (k,r,t) com-

mutes with T2T
−1

1 , thus H (k,r,t) can be written in block-
diagonal form, T2T

−1
1 being a constant in each block. Within

each block, T2 is determined by T1; only one of them is
independent.

From the symmetries of the time-dependent Hamiltonian,
we can derive symmetry properties of the time evolution op-
erator, and more importantly, of the periodized time evolution
operator Uε(k,r,t). To derive them, we divide [0,t] into N

small intervals, each of which has length �t = t/N (we take
t > 0 for concreteness; the t < 0 case can be done similarly),
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TABLE I. The periodic table of Floquet topological defects. TRS with �2 = ±1 (or T ∗T = ±1) is shown compactly as “±1”, and the
absence of TRS is shown as “0”. The same notation is taken for the PHS. For the CS, “1” and “0” stands for its presence and absence,
respectively. The integer n is the number of quasienergy gaps.

Symmetry δ = d − D

s AZ T C S 0 1 2 3 4 5 6 7

0 A 0 0 0 Zn 0 Zn 0 Zn 0 Zn 0

1 AIII 0 0 1 0 Z2 0 Z2 0 Z2 0 Z2

0 AI +1 0 0 Zn 0 0 0 2Zn 0 Zn
2 Zn

2

1 BDI +1 +1 1 Z2
2 Z2 0 0 0 2Z2 0 Z2

2

2 D 0 +1 0 Z2
2 Z2

2 Z2 0 0 0 2Z2 0

3 DIII −1 +1 1 0 Z2
2 Z2

2 Z2 0 0 0 2Z2

4 AII −1 0 0 2Zn 0 Zn
2 Zn

2 Zn 0 0 0

5 CII −1 −1 1 0 2Z2 0 Z2
2 Z2

2 Z2 0 0

6 C 0 −1 0 0 0 2Z2 0 Z2
2 Z2

2 Z2 0

7 CI +1 −1 1 0 0 0 2Z2 0 Z2
2 Z2

2 Z2

and then expand the time evolution operator as a continued
product:

U (k,r,t) = [1 − i�tH (k,r,t)][1 − i�tH (k,r,t − �t)] · · ·
[1 − i�tH (k,r,2�t)][1 − i�tH (k,r,�t)],

(19)

which is accurate in the �t → 0 limit. Using this expansion,
we can derive the actions of symmetry operators on the time
evolution operator. Leaving technical details to Appendix A 1,
we summarize the main results as follows. For the PHS, we
have

C−1U (k,r,t)C = U ∗(−k,r,t); (20)

for the TRS, we have

T −1U (k,r,t)T = U ∗(−k,r,−t); (21)

and finally, for the CS, we have

S−1U (k,r,t)S = U (k,r,−t). (22)

The topological invariant will be defined in terms of the
periodized time evolution operator Uε, whose symmetry
properties should be addressed. To this end, let us first
study the symmetry operations on the effective Hamiltonian
H eff

ε (k,r) = i
τ

ln−ε(U (k,r,τ )). Again, we summarize the main
results here, leaving details to Appendix A 2. They read

C−1H eff
ε (k,r)C = −H eff∗

−ε (−k,r) + 2π

τ
, (23)

T −1H eff
ε (k,r)T = H eff∗

ε (−k,r), (24)

S−1H eff
ε (k,r)S = −H eff

−ε(k,r) + 2π

τ
. (25)

With these preparations, we can finally obtain the symmetry
properties of the peroidized time evolution operator, which are

listed as

C−1Uε(k,r,t)C = U ∗
−ε(−k,r,t) exp

(
i
2πt

τ

)
, (26)

T −1Uε(k,r,t)T = U ∗
ε (−k,r,−t), (27)

S−1Uε(k,r,t)S = U−ε(k,r,−t) exp

(
i
2πt

τ

)
. (28)

The details of calculations are provided in Appendix A 3. The
symmetry properties of the periodized time evolution operator
will be most useful in the study of topological invariants.

IV. THE PERIODIC TABLE OF FLOQUET TOPOLOGICAL
DEFECTS

In static systems, the classification of topological insulators
shows a highly regular pattern, which is summarized in
Kitaev’s periodic table [11]. Remarkably, topological defects
also display a regular pattern in a periodic table [29]. It is
notable that the topological classification depends only on
δ = d − D, thus the shift (d,D) → (d + 1,D + 1) does not
alter the classification [29].

Before giving derivations, we present the periodic table of
Floquet topological defects in Table I. For Floquet topological
insulators and superconductors with translational symmetry,
which are special cases of our formulation, we only need to
take δ = d (i.e., D = 0) in the table. As shown in the table,
the topological classification of Floquet defects shares the
feature of static systems that d and D enter as δ = d − D. This
feature will be explained in a natural way in the formulation
of topological invariants.

For Floquet topological insulators with translational sym-
metry, a periodic table has been obtained in an interesting
recent work [95]. It is worthwhile to compare it with ours. First,
the periodic table of Ref. [95] is obtained in an economical
way via the K-theory, which does not rely on topological
invariants. As such, Ref. [95] does not provide explicit
topological invariants. In the present work, the focuses are
topological invariants, which are constructed and then taken
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as the main tools, and the periodic table is obtained as one of the
consequences of topological invariants. Second, the periodic
table in Ref. [95] is that of Floquet topological insulators with
translational symmetry, while Table I here is more general in
that it also includes Floquet topological defects. The periodic
table of Floquet topological insulators is a special case of
Table I (the D = 0 case).

Compared to the periodic table of static topological defects
[29], a few notable differences should be mentioned. In static
systems, the integer topological invariant of the system comes
from a summation over all the valence bands (or occupied
bands), whose energies are below the Fermi level. For instance,
the topological invariant of a two-dimensional homogeneous
insulator in class A is the sum of the Chern numbers of
all the valence bands. In Floquet systems, the concept of
valence band in general is problematic because the quasienergy
is periodically defined modulo the driving frequency, and
consequently, we cannot unambiguously say that a certain
band has a higher or lower energy than another one. The
Floquet topological invariants are attached to quasienergy gaps
(admittedly, Floquet band topological invariants can also be
defined, however, as we will explain later, they are not as
informative as the gap topological invariants). Suppose that
there are n quasienergy gaps to be preserved, each of which
enjoys an integer topological invariant, we will have the Zn

classification (here, Zn ≡ Z × Z · · · × Z︸ ︷︷ ︸
n

). This is the origin

of “Zn” in Table I.
In the presence of particle-hole symmetry or chiral sym-

metry (or both), we have “Z2 ≡ Z × Z” or “Z2
2 ≡ Z2 × Z2”

classification in Table I, in contrast to “Z” or “Z2” of
static systems with the same symmetries. The reason is
that, in Floquet systems, there are two special dimensionless
quasienergies satisfying ε = −ε (mod 2π ), namely, ε = 0 or
π (mod 2π ). These two quasienergies are both analogous
to the zero-energy point of static systems. If we would like
to preserve the quasienergy gaps open at both ε = 0 and π ,
then there is a topological invariant for each one of these two
gaps, and the classification is Z2 or Z2

2. On the other hand,
if one is concerned only with one of these two dimensionless
quasienergies (0 or π ), ignoring the gapped/gapless nature of
the other one, then the classification is Z or Z2.

More than deriving the periodic table of Floquet topological
defects, we would like to obtain a complete list of topological
invariants, which contains more information than the periodic
table, and is directly applicable to analytic and numerical
calculations. The periodic table will be obtained entirely as
a byproduct of topological invariants, which will be explained
in the following sections.

V. TOPOLOGICAL INVARIANTS
FOR COMPLEX CLASSES

In this section, we introduce topological invariants of
the two complex classes, class A and class AIII, for both
homogeneous Floquet systems (i.e., Floquet systems with
translational symmetry) and Floquet topological defects.

Before moving on, let us add a general remark about the
physical meaning of the topological invariants. This remark
applies to all the symmetry classes, including the eight real

classes to be studied in the next section. The bulk-boundary
or bulk-defect correspondence, which has been widely tested
in static systems, is expected to hold in Floquet systems as
well. It suggests that the value of an appropriate topological
invariant is equal to the net number of boundary modes or
defect modes. In the cases of integer (Z or 2Z) topological
invariants, each boundary or defect mode has a “chirality”3

(e.g., for one-dimensional modes, the chirality is simply the
direction of mode propagation), and the net number of modes
is the difference between the number of positive-chirality
modes and that of negative-chirality modes. The only subtle
point is that, for the chiral classes (AIII, BDI, DIII, CII, and
CI), the net number of mode in the ε = π gap is equal to
the value of topological invariant with a minus sign (we will
discuss this point in detail in Sec. IX B). In the cases of Z2

topological invariants, there is no concept of chirality of the
boundary or defect modes, and the topological invariant just
gives the number of modes modulo two.

A. Topological invariants for class A

When δ = d − D is an even integer (thus d + D is also an
even integer), we can define a winding number

W (Uε(k,r,t))

= Kd+D+1

∫
T d×SD×S1

ddkdDrdt

× Tr
[
εα1α2···αd+D+1

(
U−1

ε ∂α1Uε

) · · · (U−1
ε ∂αd+D+1Uε

)]
,

(29)

where α1,α2, . . . ,αd+D+1 run through all the coordinates
(k,r,t) of the parameter space, and εα1α2···αd+D+1 stands for the
Levi-Civita symbol (the sign of permutation). The integration
range of time t can be taken as any interval of length τ ; in this
paper, we take it as [−τ/2,τ/2]. This choice of integration
range facilitates the discussion of symmetries later on. The
periodic property Uε(k,r,t) = Uε(k,r,t + τ ) tells us that this
interval can be regard as a circle S1. The coefficient

Kd+D+1 = (−1)
d+D

2
(

d+D
2

)
!

(d + D + 1)!

(
i

2π

) d+D
2 +1

(30)

ensures that the topological invariant W (Uε) is quantized
as integers [12,110–113]. The i

d+D
2 +1 factor guarantees the

reality of the winding number density w(Uε) = Kd+D+1

Tr[εα1α2···αd+D+1 (U−1
ε ∂α1Uε) · · · (U−1

ε ∂αd+D+1Uε)], namely,

w∗(Uε) = w(Uε), (31)

which is proved in Appendix C 1.
As illustrated in Fig. 1(c), when D = 0, the sur-

rounding sphere SD consists of just two signed
points ({+1,−1}), therefore, the integral on SD be-
comes a two-point summation:

∫
T d×SD×S1 ddkdDrdt =∫

T d×{+1}×S1 ddkdt − ∫
T d×{−1}×S1 ddkdt , and the defect topo-

logical invariant in Eq. (29) is the difference between two
winding numbers:

W (Uε(k,r,t)) = W (Uε(k,+1,t)) − W (Uε(k,−1,t)), (32)

3This “chirality” has no direct relation to the “chiral symmetry.”
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where W (Uε(k,±1,t)) is the bulk topological invariant at the
±1 side of the defect:

W (Uε(k,±1,t))

= Kd+1

∫
T d×S1

ddkdt

× Tr
[
εα1α2···αd+1

(
U−1

ε ∂α1Uε

) · · · (U−1
ε ∂αd+1Uε

)]
. (33)

Apparently, the bulk topological invariant is defined in the (k,t)
space. The bulk topological invariant of 2d Floquet systems
in class A, corresponding to the (d,D) = (2,0) case here, was
first studied by Rudner et al in Ref. [71]. Generalizations of
Ref. [71] to higher-dimensional homogenous Floquet systems
can be found in Ref. [103], which correspond to the (d >

2,D = 0) cases. When D �= 0, Eq. (29) generalizes the bulk
topological invariants of class A to Floquet topological defects
in the same symmetry class. One of the applications of Eq. (29)
in low dimensions is to determine the number of Floquet chiral
modes along a line defect in 3d space, namely, (d,D) = (3,1),
for which a concrete lattice model will be put forward in
Sec. VIII A.

Equation (29) seems to be the only natural topological
invariant that one can write down using the periodized time
evolution operator Uε for class A. Due to its dependence on
ε, it is naturally taken as the topological invariant for the
quasienergy gap of ε. This topological invariant can be defined
only when d + D is an even integer (equivalently, δ = d − D

is an even integer). When δ is odd, Eq. (29) is zero by
definition, as can be proved using the invariance of the trace of
a matrix under cyclic permutations. This is consistent with the
topological fact that the stable homotopy groups [112,114,115]
(“stable” here means that N is sufficiently large) of the unitary
groups have the following periodicity:

πp(U (N )) =
{
Z, p = odd integer,
0, p = even integer. (34)

In this sense, the topology of U (N ) groups completely
determines the topological classifications and topological
invariants of class A. We should note that, because we are
concerned about strong topological invariants, ignoring the
weak ones [17], the homotopy group πd+D+1(U (N )) is able
to capture the relevant topological classes of the mappings
from T d+1 × SD to U (N ). Thus we can simply take the
integer-valued winding number as the definition of homotopy
class.

Equation (29) can be defined for any value of ε in the
quasienergy gap. If n quasienergy gaps are maintained, there
are n integer topological invariants, one for each gap. Thus
the topological invariant in Eq. (29) leads to the first row of
Table I.

To gain more confidence in Eq. (29), we should check that
this topological invariant reduces, in the static limit, to the
previously known topological invariant of static defects. Since
all static Bloch Hamiltonian can be smoothly deformed to
flat-band ones, we consider a general static flat-band Bloch
Hamiltonian

H0(k,r) = −E0P (k,r) + E0[1 − P (k,r)], (35)

where P is the occupied-band projection operator satisfying
P 2(k,r) = P (k,r), and −E0 is the occupied-band energy

(E0 > 0). The static Hamiltonian can be regarded as a
time-periodic Hamiltonian with an arbitrary periodicity τ

or frequency ω, the driving term being infinitesimal. By a
straightforward calculation (see Appendix B 1), we can prove
that, for sufficiently large ω (for this flat-band case, ω > E0

suffices), the time-independent limit of winding number is

W (Uε=0) = C(d+D)/2(P (k,r)), (36)

where

C(d+D)/2(P ) = K̃d+D

∫
T d×SD

ddkdDr

×Tr
[
εα1α2···αd+DP ∂α1P · · · ∂αd+D

P
]
, (37)

whose numerical coefficient K̃d+D is

K̃d+D = iω(d + D + 1)
2π

ω

(D + d)!(
d+D

2

)
!
(

d+D
2

)
!
(−1)

d+D
2 Kd+D+1

= −
(

i

2π

) d+D
2 1(

d+D
2

)
!
. (38)

The expression of C(d+D)/2(P ) is exactly the ((d + D)/2)-th
Chern number of the occupied bands in the (k,r) parameter
space.

For a general frequency, we find that the winding number
reduces to the Chern number with an integer coefficient:

W (Uε=0) = (2	E0/ω
 + 1)C(d+D)/2(P (k,r)), (39)

where 	E0/ω
 is the floor function, which stands for
the greatest integer smaller than E0/ω (e.g., 	1.25
 = 1).
The derivation of Eq. (39) is given in Appendix B 2, in which
the branch cutoff logarithm plays a crucial role. Eq. (39) may
look somewhat unexpected at first sight, nevertheless, it is
quite intuitive. As a simplest example, let us consider the
(d,D) = (2,0) case, namely, the chiral edge states of a static
Chern insulator. Suppose that the Chern insulator has two
flat bands whose Chern numbers are ±1, respectively. When
ω > E0, the quasienergy dispersion of the chiral edge states
only crosses ω = 0 [Fig. 2(a)]; in contrast, when 1 < E0/ω <

2 (with 	E0/ω
 = 1), the quasienergy dispersion crosses 0
and ±ω [see Fig. 2(b)]. Since ±ω should be identified as 0 in
the Floquet theory, we have three ε = 0 points with the same
chirality (right-moving). This is consistent with the coefficient
2	E0/ω
 + 1 = 3 in Eq. (39). Put simply, folding the static
energy bands into the quasienergy bands increases the number
of chiral modes crossing the zero energy [Fig. 2(b)].

The Floquet topological invariant in Eq. (29) is attached to
a quasienergy gap ε. This is the primary topological invariant
for topological defects of class A (the special case D = 0
gives a bulk topological invariant for homogeneous systems).
In addition to this quasienergy gap topological invariant, we
can also define Floquet band topological invariants. In fact,
for two quasienergies ε and ε′ satisfying 0 � ε < ε′ < 2π , we
can prove that

H eff
ε′ − H eff

ε = ωPε,ε′ , (40)

in which Pε,ε′ = ∑
ε<εn<ε′ |ψn(k,r)〉〈ψn(k,r)| is the projection

operator of the Floquet bands with quasienergy εn ∈ [ε,ε′],
or equivalently, arg(λ−1

n ) ∈ [ε,ε′]. To prove Eq. (40), we
notice that when ε < εn < ε′, we have ln−ε e−iεn = −iεn and
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FIG. 2. The quasienergy bands of a static two-dimensional Chern
insulator with a semi-infinite geometry under an infinitesimal driving
with frequency ω. The wave vector k is parallel to the edge. (a) The
case E0/ω < 1. (b) The case 1 < E0/ω < 2. The number of Floquet
chiral modes at ε = 0 is 1 and 3 for (a) and (b), respectively, which is
consistent with the value of Floquet topological invariant attached
to the ε = 0 gap (2	E0/ω
 + 1, see text). In (b), three repeated
frequency zones are shown for a better illustration, though the
[−ω/2,ω/2] zone contains complete information of the quasienergy
bands.

ln−ε′ e−iεn = −iεn − 2πi (see the definition of branch cut),
thus we have (i/τ )[ln−ε′ (λn) − ln−ε(λn)] = 2π/τ ≡ ω; when
εn < ε or εn > ε′, we have (i/τ )[ln−ε′ (λn) − ln−ε(λn)] = 0 by
similar calculations, thus Eq. (40) is proved.

For the Floquet bands in [ε,ε′], a band Chern number can
be defined as

C(d+D)/2(Pε,ε′ )

= K̃d+D

∫
T d×SD

ddkdDr

× Tr
[
εα1α2···αd+DPε,ε′∂α1Pε,ε′ · · · ∂αd+D

Pε,ε′
]
, (41)

in which K̃d+D is the same coefficient as given in Eq. (38).
Now we can prove a general relation between the band Chern
number in Eq. (41) and the gap topological invariant in
Eq. (29). It is a straightforward generalization of a relation in
Ref. [71,103]. Due to the additive property of winding number,
we have

W (Uε′ ) − W (Uε) = W
(
U−1

ε Uε′
)
, (42)

in which U−1
ε Uε′ can be simplified to

U−1
ε Uε′ = exp

(−iH eff
ε t

)
U−1U exp

(
iH eff

ε′ t
)

= exp(iωtPε,ε′ ) = Pε,ε′ (eiωt − 1) + 1. (43)

Since it takes the same form as Eq. (B4), we can follow the
calculations in Appendix B 1 and obtain that

W
(
U−1

ε Uε′
) = C(d+D)/2(Pε,ε′ ), (44)

from which it follows that

W (Uε′ ) − W (Uε) = C(d+D)/2(Pε,ε′ ). (45)

Therefore the Floquet band Chern numbers C(d+D)/2(Pε,ε′ )’s
can be obtained from W (Uε)’s. In contrast, even if one
knows all the Chern numbers of Floquet bands, one cannot

completely determine the values of W (Uε)’s. As such, the
gap topological invariant W (Uε) is more fundamental than the
band topological invariant C(d+D)/2(Pε,ε′ ). In the case (d,D) =
(2,0), concrete models with nonzero W (Uε)’s but vanishing
C1(Pε,ε′ )’s are known, whose edge modes associated with the
nonzero W (Uε)’s are dubbed “anomalous edge states” [71].
These anomalous modes have been experimentally observed
in photonic lattices [69,70].

Concluding this section, we mention that there is yet another
band topological invariant, which is defined in terms of the
frequency-domain Hamiltonian H (“Floquet Hamiltonian”).
We leave its definition to Appendix E. The effective Hamil-
tonian H eff contains information of only the full-period time
evolution U (k,r,τ ), while the Floquet HamiltonianH contains
complete information of time evolution. From their definitions,
it is not obvious whether the frequency-domain Chern number
(see Appendix E) is equal to the effective-Hamiltonian-based
Chern number given in Eq. (41) or not. A proof of their being
equal is provided in Appendix E.

B. Topological invariants for class AIII

In the presence of chiral symmetry, the periodized time
evolution operator satisfies Eq. (28), which relates Uε and
U−ε. Only when ε = 0 or π , we can obtain from it a symmetry
constraint on Uε for a fixed ε.

For ε = 0, Eq. (28) implies that [103]

S−1Uε=0

(
k,r,

τ

2

)
S = −Uε=0

(
k,r,−τ

2

)
, (46)

which, together with the periodicity of evolution operator,

Uε

(
k,r,−τ

2

)
= Uε

(
k,r,−τ

2
+ τ

)
= Uε

(
k,r,

τ

2

)
, (47)

imposes the following symmetry constraint on Uε=0(k,r, τ
2 ):

S−1Uε=0

(
k,r,

τ

2

)
S = −Uε=0

(
k,r,

τ

2

)
. (48)

The ε = π case is slightly more complicated due to the dif-
ference in the branch cut involved in H eff

ε=−π and H eff
ε=π , which

appears in the definition of Uε=−π (k,r, τ
2 ) and Uε=π (k,r, τ

2 ),
respectively. In fact, it follows from the relation

ln−ε+2π eiφ = ln−ε eiφ + 2πi (49)

that

Uε=−π

(
k,r,

τ

2

)
= −Uε=π

(
k,r,

τ

2

)
. (50)

With this equation as an input, Eq. (28) leads to

S−1Uε=π

(
k,r,

τ

2

)
S = Uε=π

(
k,r,

τ

2

)
. (51)

It is convenient to take the chiral basis, in which

S =
(

I

−I

)
. (52)

Now Eq. (48) tells us that Uε=0 takes the form of

Uε=0

(
k,r,

τ

2

)
=
(

U+
ε=0(k,r)

U−
ε=0(k,r)

)
, (53)
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where both U+
ε=0 and U−

ε=0 are unitary matrices. Similarly,
Eq. (51) implies that

Uε=π

(
k,r,

τ

2

)
=
(

U+
ε=π (k,r)

U−
ε=π (k,r)

)
, (54)

Again, both U+
ε=π and U−

ε=π are unitary matrices. With either
ε = 0 or ε = π , we can define a natural winding number when
δ = d − D is an odd integer (therefore d + D is also an odd
integer):

W (U+
ε (k,r))

= Kd+D

∫
T d×SD

ddkdDr

× Tr
{
εα1α2···αd+D

[
(U+

ε )−1∂α1U
+
ε

] · · · [(U+
ε )−1∂αd+D

U+
ε

]}
,

(55)

where the coefficient Kd+D is the same as given in the previous
section (but remember that d + D is an even integer there,
while it is an odd integer here):

Kd+D = (−1)
d+D−1

2
(

d+D−1
2

)
!

(d + D)!

(
i

2π

) d+D+1
2

. (56)

The homogeneous (namely, D = 0) cases of class AIII have
been investigated in Ref. [103], from which the present
section benefits considerably. We emphasize that there is no
integration over t in the winding number given in Eq. (55), in
contrast to the class A. Putting together the integer-valued
topological invariants W (U+

ε=0) and W (U+
ε=π ), we get the

second line of Table I.
It should be mentioned that W (U−

ε (k,r)) does not generate
an additional topological invariant, which can be explained as
follows. We start from the winding number of U (k,r,t) at a
fixed t , which is given by

W (Uε(k,r,t))

= Kd+D

∫
T d×SD

ddkdDr

× Tr
[
εα1α2···αd+D

(
U−1

ε ∂α1Uε

) · · · (U−1
ε ∂αd+D

Uε

)]
. (57)

We emphasize that t here is viewed as a fixed parameter, which
is not integrated over, unlike the cases in Sec. V A. Since
the time evolution operators Uε(k,r,t) at different moments
(i.e., different t’s) can be smoothly connected as t varies, this
winding number cannot change as we tune t . On the other
hand, when t = 0, Uε(k,r,0) = I , thus the winding number
W (Uε(k,r,t)) vanishes at t = 0. Therefore the winding number
satisfies

W (Uε(k,r,t)) = 0 (58)

for any value of t , including the particular time we are
focusing on, t = τ/2. In the chiral basis, the winding number
W (Uε(k,r,t)) splits into the sum of two parts, which leads to

0 = W

(
Uε

(
k,r,

τ

2

))
= W (U+

ε (k,r)) + W (U−
ε (k,r)),

(59)

where ε = 0 or π . Therefore W (U−
ε (k,r)) is not an indepen-

dent topological invariant.

We remark that Eq. (55) can be written in a basis-
independent form:

W (Uε(k,r,τ/2))

= eiεKd+D

∫
T d×SD

ddkdDr

× Tr
{
εα1α2···αd+D [(I − S)/2]

[
(Uε)−1∂α1Uε

] · · ·[
(Uε)−1∂αd+D

Uε

]}
. (60)

Note that the (I − S)/2 factor has been inserted, I being the
identity matrix. The factor eiε = ±1 is included so that this
definition is consistent with Eq. (55). The basis-independent
Eq. (60) is more convenient when nonchiral basis is used (i.e.,
the chiral matrix S is not diagonal).

Now we prove that this topological invariant reduces to
the static topological invariant of Ref. [29] in the time-
independent limit. We consider a generic time-independent
flat-band Hamiltonian

H0(k,r) = −E0P (k,r) + E0[1 − P (k,r)]

= E0Q(k,r), (61)

where P is the projection operator of the valence bands with
energy −E0, and Q = 1 − 2P . In the chiral basis, due to the
chiral symmetry {H0(k,r),S} = 0, it takes the off-diagonal
form

Q =
(

q

q†

)
. (62)

In the static limit, we only need to consider the ε = 0 gap.
Borrowing the calculation in Eq. (B4), we can transform the
periodized time evolution operator into

Uε=0

(
k,r,

τ

2

)
= P (eiωτ/2 − 1) + 1 = 1 − 2P = Q, (63)

therefore, Uε=0(k,r, τ
2 ) is simply proportional to the static

Hamiltonian. More explicitly, we have(
U+

ε=0
U−

ε=0

)
=
(

q

q†

)
. (64)

The winding number (55) becomes

W (U+
ε=0(k,r))

= Kd+D

∫
T d×SD

ddkdDr

× Tr
[
εα1α2···αd+D

(
q−1∂α1q

) · · · (q−1∂αd+D
q
)]

, (65)

which is exactly the topological invariant for static topological
defects in class AIII [29].

For the case (d,D) = (2,1), namely, a point defect in a
two-dimensional system, we study a concrete lattice model
(see Sec. IX B), for which the topological invariant is numer-
ically evaluated, and the topological defect modes are also
numerically calculated. The numbers of topological modes in
both the ε = 0 and the ε = π quasienergy gaps are exactly
determined by the topological invariants.

The correspondence between the values of topological
invariant and the chirality of topological modes is somewhat
subtle for the chiral class. We will discuss this point in
Sec. IX B in terms of a concrete model.
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VI. TOPOLOGICAL INVARIANTS OF REAL CLASSES

Now we turn to the eight real classes, which have at least
one anti-unitary symmetry, 
 or �, or both. Due to the special
role played by the chiral symmetry, we will first study classes
D, C, AI, and AII, which have no chiral symmetry, and then
classes BDI, DIII, CII, and CI, which have the chiral symmetry.
The topological invariants take quite different forms for the
nonchiral classes and the chiral classes. Although all these
topological invariants are winding numbers, they are defined
on different parameter spaces.

A. Topological invariants of the nonchiral classes:
D, C, AI, and AII

1. The winding number

For classes D, C, AI, and AII without chiral symmetry, we
can define an integer winding number when δ = d − D is an
even integer:

W (Uε(k,r,t))

= Kd+D+1

∫
T d×SD×S1

ddkdDrdt

× Tr
[
εα1α2···αd+D+1

(
U−1

ε ∂α1Uε

) · · · (U−1
ε ∂αd+D+1Uε

)]
,

(66)

where the coefficient Kd+D+1 is the same as defined above,

namely Kd+D+1 = (−1)
d+D

2 ( d+D
2 )!

(d+D+1)! ( i
2π

)
d+D

2 +1
. The spatial dimen-

sions in which this topological invariant is applicable depend
on the symmetry, which will be discussed in Secs. VI A 2 and
VI A 3 below. It should also be mentioned that Eq. (66) is
the expression only for the integer topological invariant;4 the
Z2 topological invariants will be studied in Secs. VI A 5 and
VI A 6.

For bulk systems with translational symmetry, the topolog-
ical invariant can be simply obtained from Eq. (66) by taking
D = 0, and accordingly, eliminating SD and r:

W (Uε(k,t))

= Kd+1

∫
T d×S1

ddkdt

× Tr
[
εα1α2···αd+1

(
U−1

ε ∂α1Uε

) · · · (U−1
ε ∂αd+1Uε

)]
. (67)

The same is true for other symmetry classes, and we will not
mention this D = 0 case repeatedly.

By similar calculations as Appendix B 1, we can find that,
for a static Hamiltonian as given by Eq. (35), the winding
number reduces to

W (Uε=0) = K̃d+D

∫
T d×SD

ddkdDr

× Tr
[
εα1α2···αd+DP ∂α1P · · · ∂αd+D

P
]
, (68)

in which K̃d+D is given in Eq. (38). This is the Chern number
C(d+D)/2 of the valence bands.

4Recently, we were informed that, for the homogeneous case (D =
0 case), existence of Z topological invariant in the presence of an
antiunitary symmetry is independently considered in Ref. [195].

Although the winding number takes the same form as that
of class A, the symmetries impose certain constraints on its
possible values, which depend on spatial dimensions. Now we
discuss these features.

2. Particle-hole symmetry: class D and class C

Let us recall the effects of symmetries, which we have
discussed in Sec. III. In particular, the symmetries of the
periodized time evolution operator are immediately relevant
now. For the class D and class C, which have the PHS, the
periodized time evolution operator with branch cut at ε = 0
satisfies [see Eq. (26)]:

C−1Uε=0(k,r,t)C = U ∗
ε=0(−k,r,t) exp

(
i
2πt

τ

)
. (69)

Now we would like to obtain its constraints on
the topological invariants. By a quite lengthy
calculation given in Appendix C 2 a, we obtain the
symmetry of the winding number density w(Uε=0) =
Kd+D+1Tr[εα1α2···αd+D+1 (U−1

ε=0∂α1Uε=0) · · · (U−1
ε=0∂αd+D+1Uε=0)],

which is

w(Uε=0)(k,r,t) = w(Uε=0)(−k,r,t)(−1)1−δ/2. (70)

Therefore, when δ = 4n (n is an integer), we have

w(Uε=0)(k,r,t) = −w(Uε=0)(−k,r,t), (71)

and the winding number, which is the integral of
w(Uε=0)(k,r,t) on T d × SD × S1, must vanish. This fact
indicates the absence of integer topological classification in
these dimensions. Only when δ = 4n + 2 (n is an integer),
namely, δ = 2,6,10, . . . , the winding number can be nonzero,
indicating the presence of integer classification. This is an
example of how topological invariants tell us about topological
classifications.

Similarly, for ε = π , the PHS implies (see Appendix C 2 a)

C−1Uε=π (k,r,t)C = U ∗
ε=π (−k,r,t) exp

(
i
4πt

τ

)
, (72)

which is slightly different from Eq. (69) in that 2πt/τ is
replaced by 4πt/τ . It follows from Eq. (72) that

w(Uε=π )(k,r,t) = w(Uε=π )(−k,r,t)(−1)1−δ/2. (73)

Again, only when δ = 4n + 2, the winding number can be
nonzero.

Before moving on, we would like to emphasize two salient
features in Eqs. (70) and (73), which are shared by the
topological invariants of other real symmetry classes to be
discussed below. First, the symmetry constraints of Eqs. (70)
and (73) depend only on δ ≡ d − D, but not on d or D

separately. Thus the symmetry of the time evolution operator
automatically leads to the combination δ = d − D, though the
winding number is defined on the (d + D + 1)-dimensional
space. Going from (d,D) to (d + 1,D + 1) or (d − 1,D − 1)
does not change the symmetry constraint. As a result, the
classification in Table I depends only on δ. In static systems, a
similar conclusion is reached via the K-theory [29]. Compared
to the situation in static systems, the combination δ = d − D

enters more automatically by Floquet topological invariants.
Second, δ enters as (−1)δ/2, therefore, if the necessary
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condition for the existence of integer winding number, namely
(−1)1−δ/2 = 1, is satisfied by a given δ, the next δ satisfying it
would be δ + 4, which means that the dimensional periodicity
of integer winding numbers should be 4. This periodicity can
be appreciated in Table I. For classes D and C, integer winding
numbers exist when δ = 2 (mod 4) (the difference between Z
and 2Z will be discussed shortly).

3. Time-reversal symmetry: class AI and class AII

In the presence of TRS, Eq. (27) tells us that

T −1Uε(k,r,t)T = U ∗
ε (−k,r,−t). (74)

Taking advantage of this symmetry, we find that the winding
number density satisfies (see Appendix C 2 b)

w(Uε)(k,r,t) = w(Uε)(−k,r,−t)(−1)2−δ/2. (75)

Compared with Eq. (70), there is an additional −1 factor
in the right-hand side of Eq. (75), which originates from
the fact that TRS reverses t (see Appendix C 2 b for more
details). Therefore, when δ = 4n + 2 (n is an integer), we have
w(Uε)(k,r,t) = −w(Uε)(−k,r,−t), and the winding number
must vanish, indicating the absence of integer classification in
these dimensions; only when δ = 4n, the winding number can
be nonzero, indicating integer classifications.

It is interesting to compare the cases of TRS and PHS. In
Eqs. (75) and (70), we have the (−1)2−δ/2 and the (−1)1−δ/2

factor, respectively. Due to the 1/2 factor of δ, if one of these
two factors is +1 for a δ, the other factor is +1 for δ ± 2. This
causes the difference between 4n (TRS) and 4n + 2 (PHS).

4. Even-integer (2Z) topological invariants

In addition to the constraints we have discussed, symmetries
also imposes one more constraint, which is that the winding
number has to take even-integer values when δ − s = 4
(mod 8), or equivalently, d − D − s = 4 (mod 8) (here,
s = 0,1,2, . . . ,7 labels the eight real symmetry classes, as
indicated in the first row of Table I). It is not straightforward
to see this fact directly from the definition of winding number,
nevertheless, we can reach this conclusion from Eq. (45). In
fact, it is known [7,12,29] that all the band Chern numbers
are even integers when δ − s = 4 (mod 8) (an intuitive
understanding of this fact is to construct minimal Dirac
Hamiltonians with given symmetries and spatial dimensions
[12]). In the Floquet systems, the same derivation tells us that
all the Floquet band Chern numbers C(d+D)/2(Pε,ε′ ) are even
integers, where Pε,ε′ is the Floquet band projection operator
previously defined. When δ − s = 4 (mod 8), Eq. (45) implies
that the differences between W (Uε) and W (Uε′ ) for any pair
of ε,ε′ is always an even integer. Therefore all W ’s must have
the same (even/odd) parity. If one of the quasienergy gaps
is closed and then reopened as we tune certain Hamiltonian
parameters, the change of its W must be an even integer, so
that the parity of W remains the same. To ensure that W = 0
(i.e., the topologically trivial class) can appear somewhere in
the phase diagram (which is a natural expectation), we have to
take the scenario that the parity of W is always even.

A more rigorous proof of the 2Z topological invariants
for δ − s = 4 (mod 8), which does not involve the Floquet
band Chern numbers, relies on the representative Dirac

Hamiltonians constructed in Appendix D. This proof is given
in Appendix D.

The 2Z topological invariants for δ − s = 4 (mod 8) are
related to the absence of Z2 topological classification for
δ − s = 3 (mod 8), while the Z topological invariants for
δ − s = 0 (mod 8) are related to the presence ofZ2 topological
classification for δ − s = −1 or 7 (mod 8), which will be
studied in more details in due time below. For the moment, let
us simply take the fact that there is noZ orZ2 classification for
δ − s = 3 (mod 8) (i.e., all phases are topologically trivial).
Given this fact, for δ − s = 4 (mod 8), we can smoothly
deform the periodized time evolution operator Uε(k,r,t) to a
new function Ūε(k,r,t) such that Ūε(k1 = 0,k2, . . . ,kd,r,t) =
Ūε(k1 = π,k2, . . . ,kd,r,t), which is always possible because
fixing k1 = 0 and fixing k1 = π yield topologically equivalent
time evolution operator at δ − s = 3 (mod 8) [due to the
absence of Z2 and Z classifications at δ − s = 3 (mod 8),
there is only one topological class, namely, the topologically
trivial class; therefore, any two time evolution operators can
be smoothly deformed to each other]. Now the deformed
periodized time evolution operator Ūε(k,r,t) at δ − s = 4
(mod 8) has periodic boundary condition in the half Brillouin
zones(k1 ∈ [0,π ] or k1 ∈ [−π,0]), and the winding number
split into the sum of the two winding numbers, one of which
is defined on the k1 ∈ [0,π ] half, the other defined on the k1 ∈
[−π,0] half. Moreover, these two winding numbers are equal
due to the symmetry of winding number density between k and
−k [for instance, see Eq. (70) with δ = 4n + 2], therefore, the
winding number on the entire Brillouin zone must be an even
integer. As such, the absence of Z2 classification for δ − s = 3
(mod 8) implies the 2Z (instead of Z) topological invariants
for δ − s = 4 (mod 8).

5. Z2 topological invariants of Wess-Zumino-Witten
form for classes D and C

As we have discussed, for classes D and C with PHS, we
can define an integer topological invariant when δ = 4n + 2
(when δ = 4n, the same topological invariant would always
yield zero, which is not useful). For δ = 4n + 1 or 4n, there is
no such an integer topological invariant, whereas we can use
the construction of Wess-Zumino-Witten term [111–113,116]
to define a Z2 topological invariant. It is the purpose of this
subsection to do so.

When δ ≡ d − D = 4n + 1, the (k,r,t) parameter space of
Uε(k,r,t) is even-dimensional, however, a winding number has
definition only in an odd-dimensional space, which excludes
the possibility of defining a winding number in the (k,r,t)
space. Nevertheless, we can extend the parameter space
by adding one more momentumlike dimension, so that the
winding number can be defined. However, only the parity
(even/odd) of the winding number is well defined, which leads
to a Z2 topological invariant in the initial dimensions. It is the
purpose of this subsection to explain this construction.

First, we define a relative Z2 topological invariant, which
is constructed as follows. Let us consider two Floquet systems
(a and b) with PHS, both having a nonzero quasienergy gap at
ε (due to the PHS, we will take ε = 0 or π below). The time
evolution operator is denoted as Ua(k,r,t) and Ub(k,r,t), re-
spectively. We can construct a smooth interpolation U (k,r,t,λ)
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(λ ∈ [0,π ]) between them such that

U (k,r,t,0) = Ua(k,r,t), U (k,r,t,π ) = Ub(k,r,t). (76)

We also require that, like Ua(k,r,t) and Ub(k,r,t), the
interpolation U (k,r,t,λ) has a nonzero quasienergy gap at
ε. The interpolation U (k,r,t,λ) induces an interpolation
between Ua

ε (k,r,t) and Ub
ε (k,r,t), namely Uε(k,r,t,λ) =

U (k,r,t,λ) exp[iH eff
ε (k,r,λ)t], which satisfies Uε(k,r,t,0) =

Ua
ε (k,r,t) and Uε(k,r,t,π ) = Ub

ε (k,r,t). It is always possible
to find an interpolation because the trivial homotopy group
πd+D+1(U (N )) = 0 (note that d − D = 4n + 1; therefore,
d + D + 1 is an even integer here). Hereafter, when we
talk about an interpolation Uε(k,r,t,λ) between Ua

ε (k,r,t)
and Ub

ε (k,r,t), we always implicitly refer to an interpola-
tion U (k,r,t,λ) between Ua(k,r,t) and Ub(k,r,t), and take
Uε(k,r,t,λ) as the periodized version of this U (k,r,t,λ).

When λ �= 0,π , U (k,r,t,λ) does not necessarily have the
PHS. To apply the PHS, let us introduce a mirror interpo-
lation in [−π,0], which is fully determined by the original
interpolation in [0,π ]: for λ ∈ [−π,0], we take U (k,r,t,λ) =
CU ∗(−k,r,t,−λ)C−1. Equivalently, it can be written as

C−1U (k,r,t,λ)C = U ∗(−k,r,t,−λ), (77)

which takes the same form as Eq. (20) if we regard λ as a
momentumlike variable. This equation is consistent with the
PHS of U (k,r,t,λ) at λ = 0 and π . Accordingly, the periodized
time evolution operator satisfies

C−1Uε(k,r,t,λ)C = U ∗
−ε(−k,r,t,−λ) exp

(
i
2πt

τ

)
, (78)

which takes the same form as Eq. (26), λ being a momentum-
like variable.

In particular, when ε = 0, we have

U ∗
ε=0(k,r,t,λ) = C−1Uε=0(−k,r,t,−λ)C exp

(
−i

2πt

τ

)
,

(79)

while for ε = π , as a result of the relation between Uε=π and
Uε=−π (see Appendix C 2 a), we have

U ∗
ε=π (k,r,t,λ) = C−1Uε=π (−k,r,t,−λ)C exp

(
−i

4πt

τ

)
,

(80)

which is reminiscent of Eq. (72). With the parameter λ

included, a winding number can be defined on the (d + D +
2)-dimensional (k,r,λ,t) parameter space:

W (Uε(k,r,t,λ))

= Kd+D+2

∫
T d+1×SD×S1

ddkdDrdtdλ

× Tr
[
εα1α2···αd+D+2

(
U−1

ε ∂α1Uε

) · · · (U−1
ε ∂αd+D+2Uε

)]
,

(81)

where ε = 0 or π . The coefficient Kd+D+2 =
(−1)

d+D+1
2 ( d+D+1

2 )!
(d+D+2)! ( i

2π
)

d+D+1
2 +1

.

Given Ua
ε (k,r,t) and Ub

ε (k,r,t), there exist infinitely many
ways to interpolate them. For two different interpolations,

FIG. 3. The interpolations U I(k,r,t,λ) and U II(k,r,t,λ) are con-
structed from U (k,r,t,λ) and U ′(k,r,t,λ); accordingly, the periodized
time evolution operators U I

ε(k,r,t,λ) and U II
ε (k,r,t,λ) are constructed

from Uε(k,r,t,λ) and U ′
ε(k,r,t,λ).

Uε(k,r,t,λ) and U ′
ε(k,r,t,λ), the winding number can be dif-

ferent. Nevertheless, we will show below that their difference
is always an even integer, namely,

W (Uε(k,r,t,λ)) − W (U ′
ε(k,r,t,λ)) = 0 (mod 2), (82)

therefore, W (Uε) (mod 2) is independent of the interpolation
and is well defined.

When W (Uε) = 0 (mod 2), Ua
ε (k,r,t) and Ub

ε (k,r,t) are
regarded to be in the same topological class; alternatively,
when W (Uε) = 1 (mod 2), they belong to different classes.
Moreover, if Ua

ε (k,r,t) and Ub
ε (k,r,t) can be interpolated by

some Uε(k,r,t,λ) with winding number W (Uε(k,r,t,λ)) ≡
Wab (mod 2), while Ub

ε (k,r,t) and Uc
ε (k,r,t) can be connected

by another interpolation whose winding number is Wbc

(mod 2), then the combination of these two interpolations
yields an interpolation between Ua

ε (k,r,t) and Uc
ε (k,r,t),

whose winding number is

Wac = Wab + Wbc (mod 2). (83)

As such, our construction yields a Z2 classification, and
W (Uε(k,r,t,λ)) (mod 2) is the relativeZ2 topological invariant
of Ua

ε (k,r,t) and Ub
ε (k,r,t). We emphasize that the validness of

Z2 classification crucially relies on Eq. (82), which guarantees
that W (Uε) (mod 2) does not depend on the choice of interpo-
lation. Similar mechanisms of Z2 topological invariants can
be found in the contexts of static gapped Hamiltonian [117]
and Green’s function [112].

Now it remains to prove that Eq. (82) is true. To this end,
let us define two new interpolations, which are reorganizations
of U (k,r,t,λ) and U ′(k,r,t,λ):

U I(k,r,t,λ) =
{
U (k,r,t,λ), −π < λ < 0,

U ′(k,r,t,−λ), 0 < λ < π,
(84)

and

U II(k,r,t,λ) =
{
U ′(k,r,t,−λ), −π < λ < 0,

U (k,r,t,λ), 0 < λ < π.
(85)

A pictorial illustration of the construction of U I(k,r,t,λ)
and U II(k,r,t,λ) from U (k,r,t,λ) and U ′(k,r,t,λ) is given
in Fig. 3. As a consequence, we have the following two
interpolations of the periodized time evolution operators:

U I
ε(k,r,t,λ) =

{
Uε(k,r,t,λ), −π < λ < 0,

U ′
ε(k,r,t,−λ), 0 < λ < π,

(86)
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and

U II
ε (k,r,t,λ) =

{
U ′

ε(k,r,t,−λ), −π < λ < 0,

Uε(k,r,t,λ), 0 < λ < π.
(87)

From Fig. 3, it is now quite clear that

W (Uε) − W (U ′
ε) = W

(
U I

ε

)+ W
(
U II

ε

)
. (88)

From the definition of U I
ε(k,r,t,λ) and U II

ε (k,r,t,λ), it is also
clear that, for ε = 0,

C−1U I
ε=0(k,r,t,λ)C = U II∗

ε=0(−k,r,t,−λ) exp

(
i
2πt

τ

)
,

(89)

and, for ε = π ,

C−1U I
ε=π (k,r,t,λ)C = U II∗

ε=π (−k,r,t,−λ) exp

(
i
4πt

τ

)
.

(90)

For the ε = π case, the relation between Uε=π and Uε=−π (see
Appendix C 2 a) has been used.

By a somewhat lengthy calculation, we have (see Ap-
pendix C 2 c for details)

w
(
U I

ε=0

)
(k,r,t,λ) = w

(
U II

ε=0

)
(−k,r,t,−λ)(−1)2−(δ−1)/2

(91)

and

w
(
U I

ε=π

)
(k,r,t,λ) = w

(
U II

ε=π

)
(−k,r,t,−λ)(−1)2−(δ−1)/2.

(92)

Therefore, when δ ≡ d − D = 4n + 1, the winding numbers
for the two interpolations U I

ε and U II
ε are equal:

W
(
U I

ε

) =
∫

T d+1×SD×S1
w
(
U I

ε

)
(k,r,t,λ)

=
∫

T d+1×SD×S1
w
(
U II

ε

)
(−k,r,t,−λ)(−1)2−(δ−1)/2

= W
(
U II

ε

)
. (93)

It follows that

W (Uε) − W (U ′
ε) = W

(
U I

ε

)+ W
(
U II

ε

) = 2W
(
U I

ε

)
, (94)

which is always an even integer.
So far, W (Uε(k,r,t,λ)) is defined as a relative Z2 topolog-

ical invariant between Ua
ε (k,r,t) and Ub

ε (k,r,t). If we choose
Ua

ε (k,r,t) = Uε(k,r,t), and Ub
ε (k,r,t) as a trivial time evolu-

tion operator, i.e., Ub
ε (k,r,t) does not depend on (k,r) (constant

function), then we can take W (Uε(k,r,t,λ)) (mod 2) as the Z2

topological invariant of Uε(k,r,t). Alternatively, we can define

ν(Uε(k,r,t)) = (−1)W (Uε(k,r,t,λ)) = ±1, (95)

as the Z2 topological invariant.
Now, let us briefly discuss the static limit. Similar to Ap-

pendix B 1, for a flat-band Hamiltonian under an infinitesimal
driving with a sufficiently large frequency, the static limit of the
winding number defined on the extended (k,r,t,λ) parameter
space can be reduced to

W (Uε=0) = K̃d+D+1

∫
T d+1×SD

ddkdDrdλ

× Tr
[
εα1α2···αd+D+1P∂α1P · · · ∂αd+D+1P

]
, (96)

where K̃d+D+1 is given by Eq. (38). This is exactly the Chern
number defined on the (d + D + 1)-dimensional parameter
space. It is indeed the topological invariant of static topological
defects [29].

The Chern character ch d+D+1
2

≡ K̃d+D+1Tr[εα1α2···αd+D+1

P∂α1P · · · ∂αd+D+1P ] is the exterior derivative of the Chern-
Simons form, namely, ch d+D+1

2
= dQd+D , in which the Chern-

Simons form [12,114]

Qd+D = 1(
d+D−1

2

)
!

(
i

2π

) d+D+1
2

×
∫ 1

0
dtTr

[
A(tdA+ t2A2)

d+D−1
2
]

(97)

is defined in terms of the Berry connection A, whose entries
are Aαβ(k,r,λ) = 〈uα(k,r,λ)|duβ(k,r,λ)〉 (the notation of
differential form is used here [114]). Integration over λ leads
to

W (Uε=0) =
∫

T d+1×SD

dQd+D = 2
∫

T d×SD

Qd+D. (98)

For δ ≡ d − D = 4n, similar construction of Z2 topologi-
cal invariant is still possible. In these cases, we need two WZW
extension parameters λ and μ, both in [−π,π ]. We define
an extension of U (k,r,t) to U (k,r,t,λ,μ), which satisfies
U (k,r,t,0,0) = U (k,r,t). In addition, U (k,r,t,±π,μ) and
U (k,r,t,λ,±π ) are trivial time evolution operators (i.e., they
are independent of k and r). As an extension of the PHS
relation given in Eq. (20), we require that

C−1U (k,r,t,λ,μ)C = U ∗(−k,r,t,−λ,−μ); (99)

accordingly,

C−1Uε(k,r,t,λ,μ)C

= U ∗
−ε(−k,r,t,−λ,−μ) exp

(
i
2πt

τ

)
. (100)

In particular, for the most relevant cases ε = 0 and ε = π , we
have

U ∗
ε=0(k,r,t,λ,μ)

= C−1Uε=0(−k,r,t,−λ,−μ)C exp

(
−i

2πt

τ

)
(101)

and

U ∗
ε=π (k,r,t,λ,μ)

= C−1Uε=π (−k,r,t,−λ,−μ)C exp

(
−i

4πt

τ

)
. (102)

Now we can define a winding number on the (d + D + 3)-
dimensional (k,r,t,λ,μ) parameter space:

W (Uε(k,r,t,λ,μ))

= Kd+D+3

∫
T d+2×SD×S1

ddkdDrdtdλdμ

×Tr
[
εα1α2···αd+D+3

(
U−1

ε ∂α1Uε

) · · · (U−1
ε ∂αd+D+3Uε

)]
,

(103)

where the coefficient Kd+D+3 = (−1)
d+D+2

2 ( d+D+2
2 )!

(d+D+3)! ( i
2π

)
d+D+2

2 +1
.
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By the same derivation as the case δ = 4n + 1, we can
see that W (Uε(k,r,t,λ,μ)) (mod 2) defines a Z2 invariant for
Uε(k,r,t):

ν(Uε(k,r,t)) = (−1)W (Uε(k,r,t,λ,μ)) = ±1. (104)

In the above construction, we have taken Uε(k,r,t,±π,μ)
and Uε(k,r,t,λ,±π ) to be trivial time evolution operators (i.e.,
they do not depend on k and r), so that the Z2 topological
invariant yields the topological class of Uε(k,r,t,0,0) ≡
Uε(k,r,t). If we do not impose this “boundary triviality”
requirement, then Uε(k,r,t,λ,μ) can be regarded as an interpo-
lation among the time evolution operators of the four Floquet
systems (a,b,c,d), whose periodized time evolution operators
are Ua

ε (k,r,t) ≡ Uε(k,r,t,0,0), Ub
ε (k,r,t) ≡ Uε(k,r,t,0,π ),

Uc
ε (k,r,t) ≡ Uε(k,r,t,π,0), and Ud

ε (k,r,t) ≡ Uε(k,r,t,π,π ),
respectively. Each of them satisfies the PHS. The winding
number W (Uε(k,r,t,λ,μ)) (mod 2) can be defined as the
relative Z2 topological invariant of the four Floquet systems
(a,b,c,d). For instance, if W (Uε(k,r,t,λ,μ)) = 1 (mod 2), we
can conclude that one or three of the four Floquet systems are
in the Z2 nontrivial class.

It is important to note that δ taking the values of 4n + 1
or 4n does not necessarily guarantee the existence of a
Z2 topological invariant. The Z2 topological classification
cannot be constructed in the above way if W (Uε(k,r,t,λ))
can only take even-integer values, since a “nontrivial class”
with W (Uε(k,r,t,λ)) = 1 (mod 2) can never be obtained.
As has been discussed in the previous section, we have
the 2Z topological invariants when δ − s = 4 (mod 8), or
equivalently, d − D − s = 4 (mod 8). For the class D, which
is labeled as s = 2, the winding number takes even integer
values when δ = 6 (mod 8), therefore, the Z2 topological
invariants cannot be defined for δ = 5 or δ = 4. They can only
be defined when δ = 1 or δ = 0, which are the descendants
of the integer topological invariants of δ = 2. For the class
C, which is labeled as s = 6, we can define Z2 topological
invariants for δ = 5 and δ = 4, which are descendants of the
integer winding number of δ = 6. Since the winding number
of class C is always an even integer when δ = 2, we cannot
define Z2 topological invariants for δ = 1 or δ = 0.

In the rest part of this section, let us explain the reason why
the above procedures of defining Z2 topological invariants in
δ = 4n + 1 and δ = 4n dimensions cannot be applied to δ �
4n − 1. The underlying reason lies in the homotopy groups
πp(U (N )), which isZwhen p is odd, and 0 when p is even (we
assume that N � p, namely the stable regime of homotopy
group).

In the δ = 4n + 1 case, Uε(k,r,t,λ) defines a homotopy
class in πd+D+2(U (N )), which can be nontrivial (since d +
D + 2 is an odd integer). As such, two given interpolations
Uε(k,r,t,λ) and U ′

ε(k,r,t,λ) in general cannot be smoothly
connected; nevertheless, our derivation above, as pictorially
illustrated by Fig. 3, shows that in any case, different
interpolations yield winding numbers with the same parity
(even/odd), even though these interpolations can be in different
topological classes. This fact enables the definition of Z2

topological invariant in the dimension δ = 4n + 1.
When δ = 4n, the parity of the winding number is still

unambiguous, and the Z2 topological invariant is well defined.

To arrive at this conclusion, suppose that we have four Floquet
systems (a,b,c,d), whose periodized time evolution operator is
Ua

ε (k,r,t), Ub
ε (k,r,t), Uc

ε (k,r,t), and Ud
ε (k,r,t), respectively.

Let us consider two interpolations, denoted as Uε(k,r,t,λ,μ)
and U ′

ε(k,r,t,λ,μ), which satisfy Uε(k,r,t,0/π,0/π ) =
U ′

ε(k,r,t,0/π,0/π ) = U
a/b/c/d
ε (k,r,t). At fixed μ = 0, it is

always possible to smoothly deform one of the interpola-
tions, U ′

ε(k,r,t,λ,0), which is a function of (k,r,t,λ), to the
other interpolation Uε(k,r,t,λ,0), thanks to the trivialness
of πd+D+2(U (N )) (note that d + D + 2 is an even integer
when δ = 4n). Similarly, at fixed μ = π , U ′

ε(k,r,t,λ,π ) can
be smoothly deformed to Uε(k,r,t,λ,π ). Rephrased more
precisely, we can smoothly deform U ′

ε(k,r,t,λ,μ) to another
function Ū ′

ε(k,r,t,λ,μ), so that it satisfies Ū ′
ε(k,r,t,λ,0) =

Uε(k,r,t,λ,0), and Ū ′
ε(k,r,t,λ,π ) = Uε(k,r,t,λ,π ). Because

a smooth deformation cannot change the value of a topological
invariant, the winding number W (Ū ′

ε) is equal to W (U ′
ε).

With Uε(k,r,t,λ,0) and Uε(k,r,t,λ,π ) playing the roles of
Ua

ε and Ub
ε in Fig. 3, we can take the same construction

of Fig. 3 (i.e., defining two new interpolations U I
ε and

U II
ε ) to show that W (Ū ′

ε) and W (Uε) have the same parity.
Thus the parity of the winding number does not depend on
the specific choice of interpolation, and it can be defined
as the relative Z2 topological invariant of the four time
evolution operators, Ua

ε (k,r,t), Ub
ε (k,r,t), Uc

ε (k,r,t), and
Ud

ε (k,r,t).
The same construction would not work if we move

down to δ = 4n − 1, because different interpolations can
yield winding numbers with opposite parity, which is
a consequence of the nontrivial homotopy groups of
U (N ). To see this, suppose that we have two matrix-
valued functions Uε(k,r,t,λ,μ,ν) and U ′

ε(k,r,t,λ,μ,ν),
which interpolate the eight time evolution opera-
tors Uε(k,r,t,0/π,0/π,0/π ) = U ′

ε(k,r,t,0/π,0/π,0/π ). We
would like to deform U ′

ε(k,r,t,λ,μ,ν) to a new function
Ū ′

ε(k,r,t,λ,μ,ν), such that we have Ū ′
ε(k,r,t,λ,μ,0/π ) =

Uε(k,r,t,λ,μ,0/π ), which, if possible, would enable the
application of the construction in Fig. 3. Simply put, we would
like to deform U ′

ε(k,r,t,λ,μ,0/π ) to Uε(k,r,t,λ,μ,0/π ).
As a prerequisite, we have to deform U ′

ε(k,r,t,λ,0/π,0/π )
to Uε(k,r,t,λ,0/π,0/π ). However, there are topological
obstructions in doing this, namely the nontrivial homo-
topy group πd+D+2(U (N )) = Z (note that there are d +
D + 2 parameters, k,r,t,λ, and that d − D = 4n − 1 is an
odd integer). Therefore it is not always possible to de-
form U ′

ε(k,r,t,λ,0/π,0/π ) to Uε(k,r,t,λ,0/π,0/π ). Conse-
quently, in general, we cannot deform U ′

ε(k,r,t,λ,μ,0/π ) to
Uε(k,r,t,λ,μ,0/π ). As such, the construction of Fig. 3 cannot
be applied to δ = 4n − 1. Similar phenomena also occur in all
other cases of Z2 topological invariants studied in this paper:
One-parameter and two-parameter interpolations are able
to produce Z2 topological invariants, while three-parameter
interpolations cannot.

Finally, let us mention that the special case of (d,D) = (2,1)
(δ = 1) in class D is particularly interesting. A point defect
such as a vortex in a two-dimensional superconductor falls
into this class. The topological Majorana modes have potential
applications in topological quantum computations. Based on
concrete models, we will study this case further in Sec. IX A.
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6. Z2 topological invariants of Wess-Zumino-Witten
form for classes AI and AII

For classes AI and AII with time reversal symmetry, we
have integer topological invariants (winding numbers) when
δ ≡ d − D = 4n. When δ = 4n − 1, the integer topological
invariant cannot be defined, nevertheless, we can still define a
Z2 topological invariant. The method is parallel to the previous
section of WZW term for classes D and C. Suppose that we
have two Floquet systems with TRS, whose time-evolution
operator is denoted as Ua(k,r,t) and Ub(k,r,t), respectively.
Given a nonzero quasienergy gap at ε, we can define the
periodized time evolution operators Ua

ε (k,r,t) and Ub
ε (k,r,t).

An interpolation U (k,r,t,λ) (λ ∈ [−π,π ]) between Ua(k,r,t)
and Ub(k,r,t) can be constructed such that U (k,r,t,0) =
Ua(k,r,t), and U (k,r,t,π ) = U (k,r,t,−π ) = Ub(k,r,t). This
interpolation is required to have the TRS: U ∗(k,r,t,λ) =
T −1U (−k,r,−t,−λ)T , which can be achieved by first finding
an interpolation for λ ∈ [0,π ], and take the mirror interpolation
U (k,r,t,λ) = [T −1U (−k,r,−t,−λ)T ]∗ for λ ∈ [−π,0].

Apparently, Uε(k,r,t,λ) is an interpolation between
Ua

ε (k,r,t) and Ub
ε (k,r,t). In terms of the periodized time

evolution operator, we have the symmetry

U ∗
ε (k,r,t,λ) = T −1Uε(−k,r,−t,−λ)T , (105)

which is consistent with Eq. (27). Now we can define a winding
number on the (d + D + 2)-dimensional (k,r,t,λ) parameter
space:

W (Uε(k,r,t,λ))

= Kd+D+2

∫
T d+1×SD×S1

ddkdDrdtdλ

×Tr
[
εα1α2···αd+D+2

(
U−1

ε ∂α1Uε

) · · · (U−1
ε ∂αd+D+2Uε

)]
,

(106)

where the coefficient Kd+D+2 = (−1)
d+D+1

2 ( d+D+1
2 )!

(d+D+2)! ( i
2π

)
d+D+1

2 +1
.

The value of winding number may depend on the interpolation
we choose. To define a meaningful Z2 topological invariant,
we have to show that any two different interpolations, denoted
as Uε(k,r,t,λ) and U ′

ε(k,r,t,λ), yield winding numbers with
the same parity (even/odd); in other words,

W (Uε) − W (U ′
ε) = 0 mod 2. (107)

To prove this, let us take the same Fig. 3 of the previous section
as a guide, and define two new interpolations,

U I
ε(k,r,t,λ) =

{
Uε(k,r,t,λ), −π < λ < 0,

U ′
ε(k,r,t,−λ), 0 < λ < π,

(108)

and

U II
ε (k,r,t,λ) =

{
U ′

ε(k,r,t,−λ), −π < λ < 0,

Uε(k,r,t,λ), 0 < λ < π.
(109)

From the definition, it is apparent that

W (Uε) − W (U ′
ε) = W

(
U I

ε

)+ W
(
U II

ε

)
, (110)

which can be readily seen from Fig. 3.
According to Eq. (105), the two interpolations U I

ε(k,r,t,λ)
and U II

ε (k,r,t,λ) satisfy the symmetry relation

T −1U I
ε(k,r,t,λ)T = U II∗

ε (−k,r,−t,−λ), (111)

from which it follows that (see Appendix C 2 d)

w
(
U I

ε

)
(k,r,t,λ) = w

(
U II

ε

)
(−k,r,−t,−λ)(−1)3−(δ−1)/2.

(112)

When δ = 4n − 1, we have

W
(
U I

ε

) =
∫

T d+1×SD×S1
w
(
U I

ε

)
(k,r,t,λ)

=
∫

T d+1×SD×S1
w
(
U II

ε

)
(−k,r,−t,−λ)(−1)3−(δ−1)/2

= W
(
U II

ε

)
, (113)

thus

W (Uε) − W (U ′
ε) = W

(
U I

ε

)+ W
(
U II

ε

) = 2W
(
U I

ε

)
, (114)

which is always an even integer.
When W (Uε(k,r,t,λ)) is an even integer, Ua

ε (k,r,t) and
Ub

ε (k,r,t) are regarded as belonging to the sameZ2 topological
class. This definition is unambiguous due to Eq. (114).
If Ub

ε (k,r,t) is taken to be a trivial evolution operator,
then W (Uε(k,r,t,λ)) defines a Z2 topological invariant for
Ua

ε (k,r,t) ≡ Uε(k,r,t):

ν(Uε(k,r,t)) = (−1)W (Uε(k,r,t,λ)) = ±1. (115)

The static limit of this WZW term is similar to that studied
in the previous section. If we consider a static flat-band
Hamiltonian, the winding number in the (k,r,t,λ) parameter
space can be reduced to

W (Uε=0) = K̃d+D+1

∫
T d+1×SD

ddkdDrdλ

× Tr
[
εα1α2···αd+D+1P∂α1P · · · ∂αd+D+1P

]
, (116)

where K̃d+D+1 is given by Eq. (38), and P is the valence-band
projection operator. This is exactly the Chern number defined
on the (k,r,t,λ) parameter space, which is the topological
invariant of static topological defects [29]. Analogous to the
previous section, this Chern number can be written as a Chern-
Simons form after integration over λ:

W (Uε=0) = 2
∫

T d×SD

Qd+D. (117)

The case δ ≡ d − D = 4n − 2 of classes AI and AII is
parallel to that of δ = 4n case of class D and class C,
which has been studied in the previous section. Given a time
evolution operator Uε(k,r,t), we can construct an extension
Uε(k,r,t,λ,μ), which satisfies Uε(k,r,t,0,0) = Uε(k,r,t). In
addition, Uε(k,r,t,±π,μ) and Uε(k,r,t,λ,±π ) are required to
be trivial evolution operators. The WZW extension has to be
consistent with the TRS, namely,

U ∗
ε (k,r,t,λ,μ) = T −1Uε(−k,r,−t,−λ,−μ)T . (118)

With the inclusion of two new parameters λ and μ, we can
define a winding number in the (d + D + 3)-dimensional
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parameter space:

W (Uε(k,r,t,λ,μ))

= Kd+D+3

∫
T d+2×SD×S1

ddkdDrdtdλdμ

× Tr
[
εα1α2···αd+D+3

(
U−1

ε ∂α1Uε

) · · · (U−1
ε ∂αd+D+3Uε

)]
,

(119)

where the coefficient Kd+D+3 = (−1)
d+D+2

2 ( d+D+2
2 )!

(d+D+3)! ( i
2π

)
d+D+2

2 +1
.

Similar to that discussed in the previous section, this
winding number is well defined mod 2, thus it is a Z2

topological invariant for Uε(k,r,t). Alternatively, we can write
the Z2 topological invariant as

ν(Uε(k,r,t)) = (−1)W (Uε(k,r,t,λ,μ)) = ±1. (120)

Similar to Eq. (45), we can show that W (Uε′ (k,r,t,λ,μ)) −
W (Uε(k,r,t,λ,μ)) = C(d+D)/2(Pε,ε′ (k,r,λ,μ)) (mod 2).

In the above construction, we have taken Uε(k,r,t,±π,μ)
and Uε(k,r,t,λ,±π ) to be trivial time evolution operators,
so that the Z2 topological invariant yields the topological
class of Uε(k,r,t,0,0) ≡ Uε(k,r,t). If this requirement is re-
moved, then Uε(k,r,t,λ,μ) is an interpolation among the time
evolution operators of the four (trivial or nontrivial) Floquet
systems (a,b,c,d), whose periodized time evolution operators
are Ua

ε (k,r,t) ≡ Uε(k,r,t,0,0), Ub
ε (k,r,t) ≡ Uε(k,r,t,0,π ),

Uc
ε (k,r,t) ≡ Uε(k,r,t,π,0), and Ud

ε (k,r,t) ≡ Uε(k,r,t,π,π ),
respectively. Each of them satisfies the TRS. The winding
number W (Uε(k,r,t,λ,μ)) (mod 2) is then defined as the
relative Z2 topological invariant of the four Floquet systems
(a,b,c,d).

In the special case of d = 2, D = 0, a different topological
invariant [72,118] for the class AII has been proposed by
Carpentier, et al from a quite different approach. According
to the dimensional reduction scheme [117,119], the sec-
ond Chern number of the Floquet bands in [ε,ε′], namely
C2(Pε,ε′ (k1,k2,λ,μ)) (mod 2), is equal to the Kane-Mele Z2

topological invariant [120] of these Floquet bands. Therefore
the difference W (Uε′(k,r,t,λ,μ)) − W (Uε(k,r,t,λ,μ)) (mod
2) is just the Kane-MeleZ2 topological invariant of the Floquet
bands in [ε,ε′]. The same key property is shared by Carpentier
et al’s topological invariant [72,118], therefore, we infer that
this topological invariant is equal to ours (this is a statement
only for d = 2 and D = 0 because, although our unified
formulation is directly applicable in higher spatial dimensions,
it is unclear how to generalize the topological invariant of
Ref. [72,118] to higher dimensions from their approach).

For the case (d,D) = (3,1), namely, a line defect in a three-
dimensional system, we will study a concrete lattice model in
class AII (see Sec. VIII C), which hosts Floquet helical modes.

B. Topological invariants of the chiral classes:
BDI, DIII, CII, and CI

In classes BDI, DIII, CII, and CI, both TRS and PHS are
present, and their product 
� is a CS. In fact, the PHS
in Eq. (20) and the TRS in Eq. (21) leads to U (k,r,t) =
S−1U (k,r,−t)S with S = T C−1, which is a CS. It will be
convenient to take the chiral basis, in which the CS matrix S

is diagonal [see Eq. (52)]. According to Eqs. (48) and (51) in

Sec.V B, the evolution operators at ε = 0 and ε = π take the
following forms:

Uε=0

(
k,r,

τ

2

)
=
(

U+
ε=0(k,r)

U−
ε=0(k,r)

)
(121)

and

Uε=π

(
k,r,

τ

2

)
=
(

U+
ε=π (k,r)

U−
ε=π (k,r)

)
. (122)

And the inverse matrices are

U−1
ε=0

(
k,r,

τ

2

)
=
(

(U−
ε=0)−1(k,r)

(U+
ε=0)−1(k,r)

)
(123)

and

U−1
ε=π

(
k,r,

τ

2

)
=
(

(U+
ε=π )−1(k,r)

(U−
ε=π )−1(k,r)

)
.

(124)

We can define an integer winding number in the same way as
we did in Sec.V B for class AIII:

W (U+
ε (k,r))

= Kd+D

∫
T d×SD

ddkdDr

× Tr
{
εα1α2···αd+D

[
(U+

ε )−1∂α1U
+
ε

] · · · [(U+
ε )−1∂αd+D

U+
ε

]}
,

(125)

in which ε = 0 or π . The coefficient reads Kd+D =
(−1)

d+D−1
2 ( d+D−1

2 )!
(d+D)! ( i

2π
)

d+D+1
2 .

The integrand w(U+
ε )(k,r) = Kd+DTr{εα1α2···αd+D [(U+

ε )−1

∂α1U
+
ε ] · · · [(U+

ε )−1∂αd+D
U+

ε ]} is referred to as the winding
number density. We also mention that the winding number
in Eq. (125) can be written in a basis-independent form
like Eq. (60). The constraints imposed by the symmetries
on Eq. (125) will be discussed in the following subsections.
We also mention in advance that the forms of Z2 topological
invariants will be studied in Secs. VI B 6 and VI B 7.

Apparently, δ ≡ d − D has to be an odd integer, otherwise
the winding number in Eq. (125) is automatically zero.
Compared to the winding numbers of nonchiral classes [see
Eq. (66)], Eq. (125) does not contain an integration over t . In
fact, the time t has been fixed as t = τ/2 in the definition of
winding number of the chiral classes.

Equation (125) is the general formula of the integer (not
including Z2) topological invariants for the chiral classes (i.e.,
classes with a chiral symmetry). Nevertheless, each class of
BDI, DIII, CII, and CI has its own symmetry constraints;
as a result, the possible values of winding numbers for each
symmetry class and for each spatial dimension are different,
leading to different topological classifications. Now we study
these features.

1. Symmetry constraints on the winding number of class CI

For the class CI, the time reversal operator (� = TK) and
particle-hole operator (
 = CK) satisfy �2 = 1 (T ∗T = 1)
and 
2 = −1 (C∗C = −1). Let choose the matrices T and C

as

T = τx (126)
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and

C = τy. (127)

The CS matrix S is proportional to T C−1, which can be taken
as τz. For ε = 0, Eq. (69) tells us that C−1Uε=0(k,r, τ

2 )C =
−U ∗

ε=0(−k,r, τ
2 ), which immediately implies that, under the

basis choice C = τy ,

U+
ε=0(k,r) = U−∗

ε=0(−k,r) (128)

and

(U+
ε=0(k,r))−1 = (U−∗

ε=0(−k,r))−1. (129)

We can obtain the same relations if we start from Eq. (27)
to obtain T −1Uε=0(k,r, τ

2 )T = U ∗
ε=0(−k,r, τ

2 ) [recall that
Uε(k,r,− τ

2 ) = Uε(k,r, τ
2 )].

The topological invariant is given by Eq. (125), however,
the symmetries impose constraints on the possible values it
can take. Using Eqs. (128) and (59), we can prove that the
winding number satisfies

W (U+
ε=0(k,r)) = W (U+

ε=0(k,r))(−1)1−(δ−1)/2. (130)

The details of calculation are given in Appendix C 3 a. We note
that this is an identity about the winding number, instead of the
winding number density. The symmetry constraint of Eq. (130)
depends only on δ, but not on d or D separately. Furthermore,
this dependence on δ has a dimensional periodicity of 4,
because (−1)δ/2 returns to the same value under δ → δ + 4.
The same features have been noted in Sec. VI A 2 for the
nonchiral classes. They are actually common features for all
the eight real classes.

Since δ ≡ d − D has to be an odd integer, it can be
δ = 4n + 1 or δ = 4n + 3 (n is an integer). For the case δ =
4n + 1, Eq. (130) implies that the winding number satisfies
W (U+

ε=0(k,r)) = −W (U+
ε=0(k,r)), thus the winding number

vanishes. Only when δ ≡ d − D = 4n + 3, the winding num-
ber can be nonzero.

For ε = π , it follows from Eq. (72) that
C−1Uε=π (k,r, τ

2 )C = U ∗
ε=π (−k,r, τ

2 ), therefore we have

U+
ε=π (k,r) = U−∗

ε=π (−k,r) (131)

and

(U+
ε=π (k,r))−1 = (U−∗

ε=π (−k,r))−1. (132)

Starting from the definition of topological invariant in
Eq. (125), and following the calculations in Appendix C 3 a,
we arrive at similar conclusion as the case of ε = 0:

W (U+
ε=π (k,r)) = W (U+

ε=π (k,r))(−1)1−(δ−1)/2, (133)

therefore, we conclude that when δ = 4n + 1, the winding
number is automatically zero; when δ = 4n + 3, the winding
number can be nonzero. This is reflected in the last line of
Table I. (Note that when δ = 8n + 3, the winding number has
to satisfy an even stronger constraint: it must be an even integer.
This will be discussed shortly.)

2. Symmetry constraints on the winding number of class DIII

For class DIII, the time reversal operation and the particle-
hole operation satisfy �2 = −1 (T ∗T = −1) and 
2 = 1

(C∗C = 1). Let us choose the time-reversal-symmetry matrix
and particle-hole-symmetry matrix as

T = τy (134)

and

C = τx. (135)

As a result, the CS matrix S = τz. For ε = 0, Eqs. (27) and (47)
imply that T −1Uε=0(k,r, τ

2 )T = U ∗
ε=0(−k,r, τ

2 ), therefore, we
have

U+
ε=0(k,r) = −U−∗

ε=0(−k,r) (136)

and

(U+
ε=0(k,r))−1 = −(U−∗

ε=0(−k,r))−1. (137)

According to the calculations given in Appendix C 3 b, we
have

W (U+
ε=0(k,r)) = W (U+

ε=0(k,r))(−1)1−(δ−1)/2. (138)

It follows that when δ ≡ d − D = 4n + 1 (n is an integer),
the winding number is automatically zero. Only when δ ≡
d − D = 4n + 3, the winding number can be nonzero.

For ε = π , we can still use Eqs. (27) and (47) to get
T −1Uε=π (k,r, τ

2 )T = U ∗
ε=π (−k,r, τ

2 ), therefore we have

U+
ε=π (k,r) = U−∗

ε=π (−k,r) (139)

and

(U+
ε=π (k,r))−1 = (U−∗

ε=π (−k,r))−1. (140)

Notice that there is an additional minus sign in Eq. (136) com-
pared to Eq. (139), which is due to the fact that Uε=0(k,r,τ/2)
is block off-diagonal, while Uε=π (k,r,τ/2) is block diagonal.

Starting from the formula of winding number in Eq. (125),
we can show that

W (U+
ε=π (k,r)) = W (U+

ε=π (k,r))(−1)1−(δ−1)/2. (141)

The details of calculations are given in Appendix C 3 b. It
follows that when δ = 4n + 1, the winding number is auto-
matically zero, indicating the absence of integer classification
in these dimensions. When δ = d − D = 4n + 3, the winding
number can be nonzero, indicating integer classification.

3. Symmetry constraints on the winding number of class BDI

For class BDI, the time-reversal-symmetry operation and
the particle-hole-symmetry operation satisfy �2 = 1 (T ∗T =
1) and 
2 = 1(C∗C = 1), thus we can choose the time-
reversal-symmetry matrix and particle-hole-symmetry matrix
as

T = τ0, (142)

which is simply the identity matrix, and

C = τz. (143)

Thus the CS matrix S = τz is diagonal (i.e., the chiral basis).
For ε = 0, Eqs. (27) and (47) imply that T −1Uε=0(k,r,
τ
2 )T = U ∗

ε=0(−k,r, τ
2 ), from which it follows that

U+
ε=0(k,r) = U+∗

ε=0(−k,r) (144)
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and

(U+
ε=0(k,r))−1 = (U+∗

ε=0(−k,r))−1. (145)

Therefore the winding number density satisfies

w(U+
ε=0)(k,r) = w(U+

ε=0)(−k,r)(−1)−(δ−1)/2. (146)

The calculation is given in Appendix C 3 c. After integration
over k and r, the winding number satisfies the same relation,
W (U+

ε=0(k,r)) = W (U+
ε=0(k,r))(−1)−(δ−1)/2. We can see that,

when δ ≡ d − D = 4n + 3, the winding number is automat-
ically zero; when δ ≡ d − D = 4n + 1, the winding number
can be nonzero.

For ε = π , Eqs. (27) and (47) again tell us that
T −1Uε=π (k,r, τ

2 )T = U ∗
ε=π (−k,r, τ

2 ), therefore, we have

U+
ε=π (k,r) = U+∗

ε=π (−k,r) (147)

and

(U+
ε=π (k,r))−1 = (U+∗

ε=π (−k,r))−1. (148)

According to the calculations provided in Appendix C 3 c, we
can see that, similar to the case of ε = 0, the winding number
density satisfies

w(U+
ε=π (k,r)) = w(U+

ε=π (k,r))(−1)−(δ−1)/2, (149)

which implies that when δ ≡ d − D = 4n + 3, the winding
number is zero; only when δ ≡ d − D = 4n + 1, the winding
number can be nonzero.

4. Symmetry constraints on the winding number of class CII

For class CII, the time-reversal operation and the particle-
hole operation satisfy �2 = −1 (T ∗T = −1) and 
2 = −1
(C∗C = −1), thus we can take the time-reversal-symmetry
matrix and the particle-hole-symmetry matrix as

T = τ0 ⊗ σy (150)

and

C = τz ⊗ σy. (151)

The CS matrix is S = τz.
For ε = 0, Eqs. (27) and (47) lead to T −1Uε=0(k,r, τ

2 )T =
U ∗

ε=0(−k,r, τ
2 ), from which it follows that

U+
ε=0(k,r) = σyU

+∗
ε=0(−k,r)σy (152)

and

(U+
ε=0(k,r))−1 = σy(U+∗

ε=0(−k,r))−1σy. (153)

Starting from these equations of symmetry, we can show that
the winding number density satisfies

w(U+
ε=0)(k,r) = w(U+

ε=0)(−k,r)(−1)−(δ−1)/2, (154)

whose derivation is given in Appendix C 3 d. After inte-
gration over k and r, the winding number satisfies the
same relation, W (U+

ε=0(k,r)) = W (U+
ε=0(k,r))(−1)−(δ−1)/2. It

follows that when δ ≡ d − D = 4n + 1, the winding number
can be nonzero; when δ ≡ d − D = 4n + 3, the winding
number is automatically zero, indicating the absence of integer
topological classifications in these dimensions.

For ε = π , Eqs. (27) and (47) lead to T −1Uε=π (k,r, τ
2 )T =

U ∗
ε=π (−k,r, τ

2 ), which implies

U+
ε=π (k,r) = σyU

+∗
ε=π (−k,r)σy, (155)

and

(U+
ε=π (k,r))−1 = σy(U+∗

ε=π (−k,r))−1σy. (156)

According to the calculations provided in Appendix C 3 d, we
can see that

w(U+
ε=π )(k,r) = w(U+

ε=π )(−k,r)(−1)−(δ−1)/2. (157)

It follows that the winding number can be nonzero only
when δ ≡ d − D = 4n + 1, indicating integer topological
classifications in these spatial dimensions. A concrete lattice
model of a point defect in a two-dimensional system, namely,
(d,D) = (2,1) and δ = 1, will be put forward in Sec. IX C, for
which both the topological invariant and the topological modes
are numerically found. The topological invariant accurately
counts the number of topological modes.

5. Even-integer (2Z) topological invariants

In Sec. VI A 4, we have shown that the winding numbers of
nonchiral classes have to be even integers when δ − s = 4
(mod 8), or equivalently, d − D − s = 4 (mod 8). In this
section, we will show that the same conclusion is also
true for the chiral classes, CI, DIII, BDI, and CII, namely,
when d − D − s = 4 (mod 8), the winding numbers of chiral
classes must take even integer values, though the definitions
of winding numbers take different forms compared to the
nonchiral classes (a prominent difference is that the winding
numbers of nonchiral classes contain an integration over t ,
while the chiral classes do not).

The argument leading to this result for the nonchiral classes,
which have been outlined in Sec. VI A 4, can be transferred
to the present section for the chiral classes, if a counterpart of
Eq. (45) can be obtained. Let us fix ε = 0 and ε′ = π for this
section. Let Pε=0,ε′=π be the projection operator for the Floquet
bands in [0,π ] (accordingly, 1 − Pε=0,ε′=π is the projection
operator of the Floquet bands in [−π,0]). It is readily found
that

U−1
ε=0

(
k,r,

τ

2

)
Uε′=π

(
k,r,

τ

2

)

= exp

[
i
(
H eff

ε′=π − H eff
ε=0

)τ
2

]
= exp(iπPε=0,ε′=π )

= 1 − 2Pε=0,ε′=π ≡ Qε=0,ε′=π . (158)

The projection operator satisfies S−1Pε=0,ε′=πS = 1 −
Pε=0,ε′=π , which can be readily verified by Eq. (25) or by
taking t = τ in Eq. (22) [and remember that U (k,r,−τ ) =
U−1(k,r,τ )]. Equivalently, we have S−1Qε=0,ε′=πS =
−Qε=0,ε′=π . In the chiral basis, the chiral matrix is S = τz,
therefore, Q0,π must take the form of

Q0,π =
(

q0,π

q
†
0,π

)
. (159)
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On the other hand, under the chiral basis, Eqs. (53) and (54)
tell us that U−1

ε=0Uε′=π can be written as

U−1
ε=0

(
k,r,

τ

2

)
Uε′=π

(
k,r,

τ

2

)

=
(

(U−
ε=0)−1U−

ε′=π

(U+
ε=0)−1U+

ε′=π

)
, (160)

which means that q
†
ε=0,ε′=π = (U+

ε=0)−1U+
ε′=π . Due to the

additive property of the winding number, we have

W (U+
ε′=π ) − W (U+

ε=0) = W ((U+
ε=0)−1U+

ε′=π )

= W (q†
ε=0,ε′=π ). (161)

Equation (161) is the chiral-class counterpart of Eq. (45),
which we have used to argue that the winding numbers
take even integer values for the nonchiral classes when
d − D − s = 4 (mod 8).

From the knowledge of static Hamiltonian [7,12,13,29],
we know that W (q†

ε=0,ε′=π ) must be an even integer when
d − D − s = 4 (mod 8). The rest of the argument will be the
same as Sec. VI A 4, which we do not need to repeat here. The
conclusion is that, when d − D − s = 4 (mod 8), the winding
numbers must be even integers for the chiral classes. A more
rigorous proof of the fact that the topological invariants take
even-integer values for d − D − s = 4 (mod 8) is given in
Appendix D.

6. Z2 topological invariants of Wess-Zumino-Witten
form for the symmetry classes DIII and CI

For the symmetry classes DIII and CI, there are integer
topological invariants for δ ≡ d − D = 4n + 3 (n is an in-
teger). Following similar approach as the nonchiral classes,
we can define Z2 topological invariants for δ = 4n + 2 and
δ = 4n + 1. Just like the nonchiral classes (see the discussion
in Sec. VI A 5), these definitions will be meaningless if the
integer winding number taken as the starting point is always
even-integer valued. To define Z2 topological invariants for
δ = 4n + 2 and δ = 4n + 1, we must have (4n + 3) − s �= 4
(mod 8) (see the previous section on even-integer topological
invariants). Therefore, for the class DIII with s = 3, n must be
an even integer; for the class CI with s = 7, n must be an odd
integer.

Let us work on the δ = 4n + 2 case first. We will follow
the same scheme as in Sec. VI A 5, namely, we would like
to establish a topological equivalence/nonequivalence relation
between the time evolution operators of two systems, denoted
as Ua(k,r,t) and Ub(k,r,t), based on the parity (even/odd) of
winding number defined on a higher-dimensional parameter
space. We first find an interpolation U (k,r,t,λ) (λ ∈ [−π,π ])
between Ua(k,r,t) and Ub(k,r,t), such that U (k,r,t,0) =
Ua(k,r,t), U (k,r,t,π ) = U (k,r,t,−π ) = Ub(k,r,t). The in-
terpolation is required to satisfy the PHS constraint
C−1U (k,r,t,λ)C = U ∗(−k,r,t,−λ), or expressed in terms of
the periodized time evolution operator,

C−1Uε(k,r,t,λ)C = U ∗
−ε(−k,r,t,−λ) exp

(
i
2πt

τ

)
. (162)

This equation is consistent with the particle-hole symmetry
at λ = 0 and π [Eq. (26)], as it should be. Meanwhile, the

interpolation is also required to satisfy the TRS constraint
T −1U (k,r,t,λ)T = U ∗(−k,r,−t,−λ), or

T −1Uε(k,r,t,λ)T = U ∗
ε (−k,r,−t,−λ), (163)

which is consistent with Eq. (27). Given these two constraints,
a CS constraint is automatically satisfied because the product
of TRS and PHS necessarily gives rise to a CS. In fact,
it follows from the PHS and TRS that S−1U (k,r,t,λ)S =
U (k,r,−t,λ), with S = T C−1. An interpolation with the
symmetries given in Eqs. (162) and (163) can be obtained
by first finding an interpolation for λ ∈ [0,π ], and then taking
the interpolation for λ ∈ [−π,0] as the mirror interpolation
of [0,π ]. In other words, for λ ∈ [−π,0], we simply take the
T -mirror U (k,r,t,λ) = [T −1U (−k,r,−t,−λ)T ]∗, or the C-
mirror U (k,r,t,λ) = [C−1U (−k,r,t,−λ)C]∗, as the definition
of the interpolation. Thanks to the chiral symmetry with
S = T C−1, taking the T -mirror interpolation and taking the
C-mirror one lead to the same result.

At the particular time t = τ/2, we have

T −1Uε

(
k,r,

τ

2
,λ

)
T = U ∗

ε

(
−k,r,−τ

2
,−λ

)

= U ∗
ε

(
−k,r,

τ

2
,−λ

)
. (164)

We also have

U ∗
ε=0

(
k,r,

τ

2
,λ

)
= −C−1Uε=0

(
−k,r,

τ

2
,−λ

)
C (165)

and

U ∗
ε=π

(
k,r,

τ

2
,λ

)
= C−1Uε=π

(
−k,r,

τ

2
,−λ

)
C, (166)

which are consistent with Eqs. (69) and (72).
It follows that, under the chiral basis used in Sec. VI B 1,

the interpolation used for the class CI satisfies

U+
ε=0

(
k,r,

τ

2
,λ

)
= U−∗

ε=0

(
−k,r,

τ

2
,−λ

)
,

U+
ε=π

(
k,r,

τ

2
,λ

)
= U−∗

ε=π

(
−k,r,

τ

2
,−λ

)
; (167)

similarly, again in the chiral basis (used in Sec. VI B 2), the
interpolation used for the class DIII satisfies

U+
ε=0

(
k,r,

τ

2
,λ

)
= −U−∗

ε=0

(
−k,r,

τ

2
,−λ

)
,

U+
ε=π

(
k,r,

τ

2
,λ

)
= U−∗

ε=π

(
−k,r,

τ

2
,−λ

)
. (168)

Given the interpolation Uε(k,r,t,λ) defined on the (k,r,t,λ)
parameter space, we can define a winding number

W

(
U+

ε

(
k,r,

τ

2
,λ

))
= Kd+D+1

∫
T d+1×SD

ddkdDrdλ

× Tr
[
εα1α2···αd+D+1

(
(U+

ε )−1∂α1U
+
ε

)
· · · ((U+

ε )−1∂αd+D+1U
+
ε

)]
(169)

for ε = 0 or ε = π , where the coefficient Kd+D+1 reads

Kd+D+1 = (−1)
d+D

2 ( d+D
2 )!

(d+D+1)! ( i
2π

)
d+D

2 +1
.
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Just like in Sec. VI A 5, we have to show that any two
different interpolations lead to the same winding number
modulo 2. Suppose that we have two interpolations Uε(k,r,t,λ)
and U ′

ε(k,r,t,λ). We need to show that, for ε = 0 or ε = π ,
the difference between the two winding numbers satisfies

W

(
U+

ε

(
k,r,

τ

2
,λ

))
− W

(
U ′+

ε

(
k,r,

τ

2
,λ

))
= 0 (mod 2).

(170)

Let us study class DIII first. We will follow the same
approach as Sec. VI A 5. Let us define two new interpolations
(Fig. 3 in Sec. VI A 5 is still a useful pictorial illustration for
the present problem):

U I
ε(k,r,t,λ) =

{
Uε(k,r,t,λ), −π < λ < 0,

U ′
ε(k,r,t,−λ), 0 < λ < π,

(171)

and

U II
ε (k,r,t,λ) =

{
U ′

ε(k,r,t,−λ), −π < λ < 0,

Uε(k,r,t,λ), 0 < λ < π.
(172)

As obvious consequences, we have

U I±
ε

(
k,r,

τ

2
,λ

)
=
{

U±
ε

(
k,r, τ

2 ,λ
)
, −π < λ < 0,

U ′±
ε

(
k,r, τ

2 ,−λ
)
, 0 < λ < π,

(173)

and

U II±
ε

(
k,r,

τ

2
,λ

)
=
{

U ′±
ε

(
k,r, τ

2 ,−λ
)
, −π < λ < 0,

U±
ε

(
k,r, τ

2 ,λ
)
, 0 < λ < π.

(174)
It can be readily seen that

U I+
ε=0

(
k,r,

τ

2
,λ

)
= −U II−∗

ε=0

(
−k,r,

τ

2
,−λ

)
, (175)

and

U I+
ε=π

(
k,r,

τ

2
,λ

)
= U II−∗

ε=π

(
−k,r,

τ

2
,−λ

)
. (176)

Taking Fig. 3 as a pictorial illustration, it is not difficult to see
that

W (U+
ε ) − W (U ′+

ε ) = W
(
U I+

ε

)+ W
(
U II+

ε

)
. (177)

Now the two terms at the right-hand side, W (U I+
ε ) and

W (U II+
ε ), are not independent. In fact, for δ = 4n + 2, we

have (this calculation resembles that of Appendix C 3 b)

W

(
U I+

ε

(
k,r,

τ

2
,λ

))

=
∫

T d+1×SD

ddkdDrdλ w
(
U I+

ε

)(
k,r,

τ

2
,λ

)

=
∫

ddkdDrdλ w∗(U II−
ε

)(−k,r,
τ

2
,−λ

)
× (−1)(d+D)/2+1(−1)d+1

= W

(
U II−

ε

(
k,r,

τ

2
,λ

))
(−1)2d+2−δ/2

= W

(
U II+

ε

(
k,r,

τ

2
,λ

))
(−1)2d+3−δ/2

= W

(
U II+

ε

(
k,r,

τ

2
,λ

))
, (178)

where Eq. (175) [or Eq. (176)], Eq. (59), and the reality of
winding number density (w∗ = w), have been used. Needless
to mention that ε = 0 or π in Eq. (178).

Now we can see that

W (U+
ε ) − W (U ′+

ε ) = W
(
U I+

ε

)+ W
(
U II+

ε

) = 2W
(
U I+

ε

)
,

(179)

which is always an even integer. This fact essentially es-
tablishes the Z2 classification, as has been discussed in
Sec. VI A 5. When W (U+

ε (k,r, τ
2 ,λ)) = 0 or 1 (mod 2),

Ua
ε (k,r,t) and Ub

ε (k,r,t) are regarded as in the same or
different Z2 topological class. In particular, when Ub

ε (k,r,t)
is taken to be a fixed topologically trivial evolution operator
and Ua

ε (k,r,t) = Uε(k,r,t), W (U+
ε (k,r, τ

2 ,λ)) defines a Z2

topological invariant for Uε(k,r,t). It can also be written as

ν(U+
ε (k,r,t)) = (−1)W (U+

ε (k,r,τ/2,λ)) = ±1. (180)

The case of class CI is almost the same as class DIII, which
we will not repeat here.

When δ = 4n + 1, we have similar construction of Z2

topological invariant. Again, let us study the class DIII for
concreteness (the class CI is similar). For δ = 4n + 1, we
need two WZW extension parameters λ and μ, both of which
take values in [−π,π ]. We define an extension of Uε(k,r,t)
to Uε(k,r,t,λ,μ), which satisfies Uε(k,r,t,0,0) = Uε(k,r,t).
In addition, Uε(k,r,t,±π,μ) and Uε(k,r,t,λ,±π ) are trivial
time evolution operators. As an extension of the PHS relation
Eq. (26) and the TRS relation Eq. (27), we require that

C−1Uε(k,r,t,λ,μ)C = U ∗
−ε(−k,r,t,−λ,−μ) exp

(
i
2πt

τ

)
,

(181)

and that

T −1Uε(k,r,t,λ,μ)T = U ∗
ε (−k,r,−t,−λ,−μ). (182)

Apply these symmetry constraints to the half-period t = τ/2,
we have

T −1Uε

(
k,r,

τ

2
,λ,μ

)
T = U ∗

ε

(
−k,r,−τ

2
,−λ,−μ

)

= U ∗
ε

(
−k,r,

τ

2
,−λ,−μ

)
, (183)

which is valid for both ε = 0 and ε = π . About the PHS, we
have

U ∗
ε=0

(
k,r,

τ

2
,λ,μ

)
= −C−1Uε=0

(
−k,r,

τ

2
,−λ,−μ

)
C

(184)

for ε = 0, and

U ∗
ε=π

(
k,r,

τ

2
,λ,μ

)
= C−1Uε=π

(
−k,r,

τ

2
,−λ,−μ

)
C

(185)
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for ε = π , which is consistent with Eqs. (69) and (72),
respectively.

Now we can define a winding number on the (d + D + 2)-
dimensional (k,r,λ,μ) parameter space:

W

(
U+

ε

(
k,r,

τ

2
,λ,μ

))

= Kd+D+2

∫
T d+2×SD

ddkdDrdλdμ

× Tr
[
εα1α2···αd+D+2

(
(U+

ε )−1∂α1U
+
ε

) · · ·(
(U+

ε )−1∂αd+D+2U
+
ε

)]
, (186)

where ε = 0 or π , and the coefficient is Kd+D+2 =
(−1)

d+D+1
2 ( d+D+1

2 )!
(d+D+2)! ( i

2π
)

d+D+1
2 +1

.
By similar derivation as in the case of δ = 4n + 2, the parity

(even/odd) of the winding number depends only on Uε(k,r,t),
therefore, it serves as a Z2 topological invariant. It can also be
written as

ν(U+
ε (k,r,t)) = (−1)W (U+

ε (k,r,τ/2,λ,μ)) = ±1. (187)

7. Z2 topological invariants of Wess-Zumino-Witten form
for the symmetry classes BDI and CII

Now we study the Z2 topological invariants of classes BDI
and CII. When δ ≡ d − D = 4n + 1, one can define an integer
topological invariant, therefore, Z2 topological invariant can
be defined for δ = 4n and δ = 4n − 1, provided that the integer
topological invariant is Z (not 2Z). For the class BDI, Z
topological invariants occur at δ = 4n + 1 when n is an even
integer; for the class CII, they occur when n is an odd integer.
These choices of n will be assumed in the following study.

Let us work on the δ = 4n case first. Parallel to the
argument in Sec. VI B 6, we would like to establish a
topological equivalence/nonequivalence relation between the
time evolution operators of two Floquet systems, denoted as
Ua(k,r,t) and Ub(k,r,t), based on the parity (even/odd) of
winding number, which is defined not on the (k,r) space,
but on a higher-dimensional parameter space, in accordance
with the picture of Wess-Zumino-Witten term. We first find
an interpolation Uε(k,r,t,λ) (λ ∈ [−π,π ]) between Ua

ε (k,r,t)
and Ub

ε (k,r,t), in other words, Uε(k,r,t,0) = Ua
ε (k,r,t),

Uε(k,r,t,π ) = Uε(k,r,t,−π ) = Ub
ε (k,r,t). The interpolation

is required to satisfy the symmetry constraints

C−1Uε(k,r,t,λ)C = U ∗
−ε(−k,r,t,−λ) exp

(
i
2πt

τ

)
, (188)

and

T −1Uε(k,r,t,λ)T = U ∗
ε (−k,r,−t,−λ), (189)

whose forms resemble Eqs. (26) and (27). For the half period
t = τ/2, we can readily see that

T −1Uε

(
k,r,

τ

2
,λ

)
T = U ∗

ε

(
−k,r,−τ

2
,−λ

)

= U ∗
ε

(
−k,r,

τ

2
,−λ

)
, (190)

which is valid for both ε = 0 or π , and that

U ∗
ε=0

(
k,r,

τ

2
,λ

)
= −C−1Uε=0

(
−k,r,

τ

2
,−λ

)
C, (191)

and also that

U ∗
ε=π

(
k,r,

τ

2
,λ

)
= C−1Uε=π

(
−k,r,

τ

2
,−λ

)
C, (192)

which are consistent with Eqs. (69) and (72). As the product
of PHS and TRS, a chiral symmetry is also satisfied. For the
class BDI, under the chiral basis (see Sec. VI B 3) we have

U+
ε=0

(
k,r,

τ

2
,λ

)
= U+∗

ε=0

(
−k,r,

τ

2
,−λ

)
,

U+
ε=π

(
k,r,

τ

2
,λ

)
= U+∗

ε=π

(
−k,r,

τ

2
,−λ

)
. (193)

Similarly, for the class CII, under the chiral basis (see
Sec. VI B 4), we have

U+
ε=0

(
k,r,

τ

2
,λ

)
= σyU

+∗
ε=0

(
−k,r,

τ

2
,−λ

)
σy,

U+
ε=π

(
k,r,

τ

2
,λ

)
= σyU

+∗
ε=π

(
−k,r,

τ

2
,−λ

)
σy. (194)

This symmetry constraints will be useful shortly.
We can define a winding number on the (d + D + 1)-

dimensional (k,r,λ) parameter space:

W

(
U+

ε

(
k,r,

τ

2
,λ

))

= Kd+D+1

∫
T d+1×SD

ddkdDrdλ

× Tr
[
εα1α2···αd+D+1

(
(U+

ε )−1∂α1U
+
ε

) · · ·(
(U+

ε )−1∂αd+D+1U
+
ε

)]
, (195)

where the coefficient is Kd+D+1 = (−1)
d+D

2 ( d+D
2 )!

(d+D+1)! ( i
2π

)
d+D

2 +1
.

Parallel to the previous section, before we are able to define
a Z2 topological invariant, we need to prove that

W (U+
ε (k,r,τ/2,λ)) − W (U ′+

ε (k,r,τ/2,λ)) = 0 (mod 2),

(196)

for any two pairs of interpolations of Ua
ε (k,r,t) and Ub

ε (k,r,t),
denoted as U+

ε (k,r,τ/2,λ) and U ′+
ε (k,r,τ/2,λ).

Let us focus on the class CII first. We define two new
interpolations from Uε(k,r,τ/2,λ) and U ′

ε(k,r,τ/2,λ), which
are their reorganizations (we may still take Fig. 3 as a pictorial
illustration):

U I
ε(k,r,t,λ) =

{
Uε(k,r,t,λ), −π < λ < 0,

U ′
ε(k,r,t,−λ), 0 < λ < π,

(197)

and

U II
ε (k,r,t,λ) =

{
U ′

ε(k,r,t,−λ), −π < λ < 0,

Uε(k,r,t,λ), 0 < λ < π.
(198)

It follows as apparent results that

U I+
ε

(
k,r,

τ

2
,λ

)
=
{

U+
ε

(
k,r, τ

2 ,λ
)
, −π < λ < 0,

U ′+
ε

(
k,r, τ

2 ,−λ
)
, 0 < λ < π.

(199)
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and

U II+
ε

(
k,r,

τ

2
,λ

)
=
{

U ′+
ε

(
k,r, τ

2 ,−λ
)
, −π < λ < 0,

U+
ε

(
k,r, τ

2 ,λ
)
, 0 < λ < π.

(200)

Given these inputs, it is clear that

U I+
ε

(
k,r,

τ

2
,λ

)
= σyU

II+∗
ε

(
−k,r,

τ

2
,−λ

)
σy. (201)

As has been illustrated by Fig. 3, which is also useful in the
present problem, one can readily see that

W (U+
ε ) − W (U ′+

ε ) = W
(
U I+

ε

)+ W
(
U II+

ε

)
. (202)

When δ = 4n, we have (the calculation in Appendix C 3 d is a
useful reference here)

W

(
U I+

ε

(
k,r,

τ

2
,λ

))

=
∫

T d+1×SD

ddkdDrdλ w
(
U I+

ε

)(
k,r,

τ

2
,λ

)

=
∫

ddkdDrdλ w∗(σyU
II+
ε σy

)(−k,r,
τ

2
,−λ

)
× (−1)(d+D)/2+1(−1)d+1

=
∫

ddkdDrdλ w∗(U II+
ε

)(−k,r,
τ

2
,−λ

)
(−1)2d+2−δ/2

= W

(
U II+

ε

(
k,r,

τ

2
,λ

))
(−1)2d+2−δ/2

= W

(
U II+

ε

(
k,r,

τ

2
,λ

))
, (203)

in which ε = 0 or π . In this calculation, Eq. (201) and the
reality of winding number have been used. Therefore we have

W (U+
ε ) − W (U ′+

ε ) = W
(
U I+

ε

)+ W
(
U II+

ε

) = 2W
(
U I+

ε

)
,

(204)

which is exactly what we need to formulate the Z2 topo-
logical invariants. Now W (U+

ε (k,r,τ/2,λ)) (mod 2) can
be taken as a Z2 topological invariant to determine the
relative triviality/nontriviality of Ua

ε (k,r,t) and Ub
ε (k,r,t).

When W (U+
ε (k,r,τ/2,λ)) = 0 or 1 (mod 2), Ua

ε (k,r,t) and
Ub

ε (k,r,t) are relatively trivial or nontrivial. If one of them
(say Ub

ε (k,r,t)) is fixed as a trivial time evolution operator,
then W (U+

ε (k,r,τ/2,λ)) (mod 2) is a Z2 topological invariant
for the other one (Ua

ε (k,r,t) ≡ Uε(k,r,t)). Written in an
equivalent way, it is

ν(U+
ε (k,r,t)) = (−1)W (U+

ε (k,r,τ/2,λ)) = ±1. (205)

For class BDI, the formulation is the same as class CII, which
we will not repeat here.

Now we move on to δ = 4n − 1, the formulation will be
parallel to Sec.VI B 6. We define a two-parameter extension
Uε(k,r,t,λ,μ) of the original time evolution operator Uε(k,r,t)
(with λ,μ ∈ [−π,π ]). It satisfies Uε(k,r,t,0,0) = Uε(k,r,t),
moreover, Uε(k,r,t,±π,μ) and Uε(k,r,t,λ,±π ) are trivial
time evolution operators. As an extension of the PHS relation

Eq. (26) and the TRS relation Eq. (27), we require that

C−1Uε(k,r,t,λ,μ)C = U ∗
−ε(−k,r,t,−λ,−μ) exp

(
i
2πt

τ

)
(206)

and

T −1Uε(k,r,t,λ,μ)T = U ∗
ε (−k,r,−t,−λ,−μ). (207)

For the half period t = τ/2, the TRS relation becomes

T −1Uε

(
k,r,

τ

2
,λ,μ

)
T = U ∗

ε

(
−k,r,−τ

2
,−λ,−μ

)

= U ∗
ε

(
−k,r,

τ

2
,−λ,−μ

)
, (208)

for ε = 0 or π . The PHS becomes, for ε = 0,

U ∗
ε=0

(
k,r,

τ

2
,λ,μ

)
= −C−1Uε=0

(
−k,r,

τ

2
,−λ,−μ

)
C;

(209)

and for ε = π ,

U ∗
ε=π

(
k,r,

τ

2
,λ,μ

)
= C−1Uε=π

(
−k,r,

τ

2
,−λ,−μ

)
C.

(210)

We can define a winding number on the (d + D + 2)-
dimensional (k,r,λ,μ) parameter space:

W

(
U+

ε

(
k,r,

τ

2
,λ,μ

))

= Kd+D+2

∫
T d+2×SD

ddkdDrdλdμ

× Tr
[
εα1α2···αd+D+2

(
(U+

ε )−1∂α1U
+
ε

) · · ·(
(U+

ε )−1∂αd+D+2U
+
ε

)]
, (211)

where the coefficient is Kd+D+2 = (−1)
d+D+1

2 ( d+D+1
2 )!

(d+D+2)!

( i
2π

)
d+D+1

2 +1
.

Taking advantage of the symmetry constraints discussed
above, we can show that the parity (even/odd) of this winding
number depends only on Uε(k,r,t), not on the specific
interpolation used. Therefore it yields a Z2 invariant for
Uε(k,r,t). The Z2 topological invariant can be written as

ν(U+
ε (k,r,t)) = (−1)W (U+

ε (k,r,τ/2,λ,μ)) = ±1. (212)

VII. FREQUENCY-DOMAIN NUMERICAL ALGORITHM
OF TOPOLOGICAL INVARIANTS

The above topological invariants expressed in terms of
the time evolution operator can be calculated numerically,
and this straightforward approach will be taken to study a
few Floquet systems (see Sec. IX). However, sometimes the
computational load becomes high. In this section, we will
describe a different numerical algorithm, which is based on
the truncated frequency-domain Hamiltonian. This approach
circumvents the integration over t , though at the price of
dealing with matrices of high ranks. We first introduce this
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scheme for the class A [71], and then discuss the generalization
to the cases with symmetries.

In Appendix E, the standard frequency-domain Floquet
Hamiltonian is reviewed. It reads

H =

⎛
⎜⎜⎜⎝

· · ·
H0 + ω H1 H2

H−1 H0 H1

H−2 H−1 H0 − ω

· · ·

⎞
⎟⎟⎟⎠, (213)

in which Hm’s are the Fourier components of H (t). In practice,
H is truncated to M2 blocks, and the eigenvalues are located
approximately in the interval [−Mω/2,Mω/2] (M is a large
integer). For sufficiently large M , the topological defect modes
can be faithfully obtained from the truncated H, which takes
the mathematical form of a static Hamiltonian. Therefore,
according to the bulk-defect correspondence, the truncated
H(k,r) should be able to produce meaningful topological
invariants of the defect. For class A, we can add up the
Chern numbers of all the bands (of the truncated H) below
certain energy ε0, which is denoted as C(d+D)/2(Pε<ε0 ) in
the notation of Appendix E, as the topological invariant of
the gap ε0. This algorithm has been adopted in Ref. [71] for
two-dimensional Floquet insulators. It is not a trivial problem
to prove by brute force that this “truncated Chern number”
coincides with the winding number defined in Eq. (29),
nevertheless, there are a few justifications. In particular, if
we take two quasienergy gaps ε0 and ε1 (0 � ε0 < ε1 < ω),
then it is apparent that C(d+D)/2(Pε<ε1 ) − C(d+D)/2(Pε<ε0 ) =
C(d+D)/2(Pε0,ε1 ), namely, the difference between the two
truncated Chern numbers is the Chern number of the bands
within [ε0,ε1]. In Appendix E, it is proved that C(d+D)/2(Pε0,ε1 )
is equal to the band Chern number calculated from H eff [see
Eq. (E14)], namely C(d+D)/2(Pε,ε′ ). Since the winding number
satisfies the same relation [see Eq. (45)], it is consistent to take
C(d+D)/2(Pε<ε0 ) as being equal to the winding number.

For other symmetry classes, we have to study the symme-
tries of H before talking about possible H-based topological
invariants. We can readily check that the TRS requires that

T −1Hm(k,r)T = H ∗
m(−k,r), (214)

which leads to

T−1H(k,r)T = H∗(−k,r), (215)

where

T =

⎛
⎜⎜⎜⎝

· · ·
T

T

T

· · ·

⎞
⎟⎟⎟⎠. (216)

Similarly, we have

C−1H(k,r)C = −H∗(−k,r) (217)

and

S−1H(k,r)S = −H(k,r), (218)

however, unlike the frequency-domain TRS matrix T, the
frequency-domain PHS and CS matrices C and S do not take

the block-diagonal form, instead, they read

C =

⎛
⎜⎜⎜⎝

· · ·
C

C

C

· · ·

⎞
⎟⎟⎟⎠,

S =

⎛
⎜⎜⎜⎝

· · ·
S

S

S

· · ·

⎞
⎟⎟⎟⎠. (219)

These symmetry equations show that the symmetry operations
are quite simple on H: They take similar form as in the
cases of static Hamiltonian. Thus, given a gap ε0, the familiar
static topological invariants can be defined for the truncated
“static Hamiltonian” H(k,r), and these topological numbers
are effective provided that M is sufficiently large. In practice,
being “sufficiently large” means that M � E0/ω, where E0 is
a typical energy of the time-dependent Hamiltonian.

In thisH-based algorithm, the integration over t involved in
the topological invariants of nonchiral classes is circumvented,
which is an advantage. In addition, it is not necessary to
calculate H eff in this approach. On the other hand, the rank
of the truncated H has to be large, especially for small
frequencies, which is a shortcoming.

As an application of this truncated H algorithm, let
us consider the following toy model of a two-dimensional
Floquet system in class AII (d = 2,D = 0), namely, a Floquet
topological insulator [31]. The Bloch Hamiltonian is given as

H (k,t) = 2t(sin kxσxsz + sin kyσy) + 2t ′(sin kx + sin ky)σxsx

+ [m(t) − 2B(cos kx + cos ky)]σz, (220)

where m(t) = m0 + md cos(ωt). This Bloch Hamiltonian is
time-reversal-symmetric with T = isy . If we take md =
t ′ = 0, the model is just the Bernevig-Hughes-Zhang model
of two-dimensional topological insulators (“quantum spin Hall
insulators”) in the HgTe quantum well [121]. With the periodic
driving included, the model is essentially a prototype model
of Floquet topological insulator [31]. We have deliberately
added the t ′ term so that the Bloch Hamiltonian cannot
be decoupled as two (sz = ±1) blocks, otherwise the Z2

topological invariant is merely the parity of the winding
number [71] of each block. This model has the inversion
symmetry σzH (k,t)σz = H (−k,t). From the time-dependent
Bloch Hamiltonian, we can obtain the Floquet Hamiltonian
H(k). Due to the symmetry of Eq. (215), we can use the Z2

Pfaffian topological invariant of Fu and Kane [122]. Taking
advantage of the inversion symmetry, the Z2 topological
invariant reduces to the product of parity eigenvalues at the four
time-reversal-invariant momenta [123]. For instance, let us
take the parameters to be t = 1.0, m0 = −5.5, md = 4.0, B =
0.5, t ′ = 0.2, and ω = 14.0. The values of Z2 topological
invariant are found to be νε=0 = 1 and νε=ω/2 = −1, which are
obtained as the product of parity eigenvalues of the eigenvec-
tors ofH(k) with eigenvalues below 0 or ω/2, at the four time-
reversal-invariant momenta (0,0), (0,π ), (π,0), and (π,π ).
The values of topological invariant are consistent with the
quasienergy dispersions of a ribbon system, which are shown
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FIG. 4. The quasienergy dispersions of a ribbon of Floquet
topological insulator along the x direction. The width of ribbon is
60 unit cells. The blue and red lines (each consists of two almost
degenerate lines) are the helical modes along the two edges. The
parameters used are t = 1.0, m0 = −5.5 ,md = 4.0, B = 0.5, t ′ =
0.2, and ω = 14.0 [see Eq. (220)].

in Fig. 4 (only the dispersions near ω/2 are shown; there is no
edge mode at ε = 0).

VIII. LINE DEFECTS

Experimentally, the most relevant topological defects are
low-dimensional ones: line defects and point defects. In this
section, we will focus on line defects, which have ddef = 1,
and δ = d − D = ddef + 1 = 2. Point defects will be left to
the next section. According to our formulations of topological
invariants, line defects in classes A, D, DIII, AII, and C
can have topologically protected Floquet modes. In this
section, we study a number of important examples. In the
numerical calculations of quasienergy spectra, we will use
the quasienergy ε instead of the dimensionless quasienergy
ε ≡ ετ , which has been used extensively above. As has been
mentioned, the dimensionless quasienergy ε has periodicity
2π , while the quasienergy ε has periodicity ω or 2π/τ .

A. Class A: Floquet chiral modes along a line defect

First, we recall that static line defects in the class A have
been studied in several contexts. The number of chiral modes
along the line defect is equal to the second Chern number of the
occupied bands, defined in the (kx,ky,kz,θ ) parameter space
[29,117,124], where θ is the angular coordinate in the cylindri-
cal coordinate systems (the z axis is taken to be coincident with
the line defect). These chiral modes have deep field-theoretical
origin in the continuum field theory [125,126]. It has been

pointed out that the dislocations in the charge density wave in
Weyl semimetals carry chiral modes [127–131], which brings
this conception closer to potential experimental realization.
The photonic analog has also been proposed [124].

In this section we study Floquet chiral modes along driven
line defects in three-dimensional space. To be concrete,
let us first study a lattice model, which is constructed as
follows. Before discussing topological defects, let us consider
a four-band Bloch Hamiltonian parameterized by λ for a
homogeneous crystal:

H (k,t) = 2t1(sin kxσx + sin kyσy + sin kzσz)τz

+ 2t1 sin λ σ0τy + [m(t) − 2t2(cos kx

+ cos ky + cos kz + cos λ)]σ0τx, (221)

where σi’s and τi’s (i = x,y,z) are Pauli matrices (σ0 = τ0 ≡
I ), and

m(t) = m0 + md cos ωt (222)

provides a periodic driving. The hopping parameters t1,2 will
be fixed as t1 = 1.0,t2 = 0.5. When λ = 0 or π , this Bloch
Hamiltonian has time-reversal symmetry T −1H (k,t)T =
H ∗(−k,−t), with T = σy . In certain parameter regimes, it is a
lattice model of 3d Floquet topological insulators. Apparently,
λ �= 0,π entails time-reversal-symmetry breaking.

Now let us discuss the line defect [Fig. 1(d)]. Suppose that
the line defect is parallel to the z axis, with an x−y plane
coordinate (x0,y0). We can use the cylindrical coordinates, in
which the angular coordinate θ = arctan[(y − y0)/(x − x0)].
As has been explained in Sec. II, in the regions sufficiently far
away from the line defect, translational symmetry is restored
and one can talk about the Bloch Hamiltonian H (k,θ,t),
which is a smooth function of θ . A simplest construction of
H (k,θ,t) is to take

λ = nθ (223)

in Eq. (221), where n is an arbitrary integer. We shall focus
on the n = 1 case for simplicity. Sufficiently far away from
the line defect, the Bloch Hamiltonian reads

H (k,θ,t) = 2t1(sin kxσx + sin kyσy + sin kzσz)τz

+ 2t1 sin θ σ0τy + [m(t) − 2t2(cos kx + cos ky

+ cos kz + cos θ )]σ0τx. (224)

If the driving term md cos ωt σ0τx is removed from the
Hamiltonian, static line defects with chiral modes [29,128] can
be constructed in certain regimes of (t1,t2,m0), provided that
the second Chern number in the (kx,ky,kz,θ ) parameter space
is nonzero. In this work, we are more interested in the effects of
nonzero md , which is responsible for the Floquet chiral modes.

The real-space Hamiltonian of this line defect is (being
real-space only in the x,y directions, while the good quantum
number kz remains)

Ĥ (kz,t) =
∑
x,y,kz

{[−it1
(
c
†
x,y;kz

σxτzcx+1,y;kz
+ c

†
x,y;kz

σyτzcx,y+1;kz

)+ H.c.
]+ 2t1 sin kzc

†
x,y;kz

σzτzcx,y;kz

+ 2t1 sin θx,yc
†
x,y;kz

σ0τycx,y;kz
− (

t2c
†
x,y;kz

σ0τxcx+1,y;kz
+ t2c

†
x,y;kz

σ0τxcx,y+1;kz
+ H.c.

)
+ [m(t) − 2t2(cos kz + cos θx,y)]cx,y;kz

σ0τxcx,y;kz

}
, (225)
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in which (x,y) are integer-valued lattice coordinates (labelling the unit cell), and c,c† stand for particle annihilation/creation oper-
ators. As has been defined above, the polar angle θx,y = arctan[(y − y0)/(x − x0)]. For sufficiently large

√
(x − x0)2 + (y − y0)2,

the polar angle θx,y can be regarded as a constant locally (denoted as θ ), and the Fourier transformation of Eq. (225) is just
Eq. (224). The real-space Hamiltonian will be useful in the numerical calculations of quasienergies and wave functions. We also
mention that modifying this real-space Hamiltonian in the vicinity of line defect core does not change the robust topological
properties of the line defect (e.g., the number of chiral modes).

In the numerical calculations of quasienergy spectrum, we use the frequency-domain (repeated zone) formulation, which is
now a standard method in Floquet theory (for example, see Ref. [71]). This method is quite simple to practice. With the current
model in mind, we briefly introduce this formulation as follows. Let us start from the time-dependent Schrödinger equation,

i∂t |ψ(kz,t)〉 = H (kz,t)|ψ(kz,t)〉, (226)

in which we have kept the (x,y) coordinates implicit. The rank of H (kz,t) is proportional to the size of the system in the (x,y)
plane, i.e., Lx × Ly . In the presence of time periodicity of H (kz,t), the Floquet theory tells us that the time-dependent solutions
of the Schrödinger equation can be expressed as

|ψn(kz,t)〉 = exp[−iεn(kz)t]|φn(kz,t)〉, (227)

where |φn〉 satisfies |φ(t + τ )〉 = |φ(t)〉. The periodicity of |φn(t)〉 enables the Fourier expansion

|φn(kz,t)〉 =
∑
m

eimωt
∣∣φ(m)

n (kz,t)
〉
. (228)

As a result, the time-dependent Schrödinger equation is equivalent to∑
m′
Hmm

′ (kz)
∣∣φ(m′)

n (kz)
〉 = εn(kz)

∣∣φ(m)
n (kz)

〉
, (229)

whereHmm′ (kz) = mωδmm′I + Hm−m′ (kz), in which Hm(kz)’s are the Fourier transformation of H (kz,t):

Hm(kz) = 1

τ

∫ τ

0
dtH (kz,t)e

−imωt . (230)

More explicitly, the “Floquet Hamiltonian”H(kz) appearing in Eq. (229) is a matrix of infinite rank,

H(kz) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

· · ·
H0 + 2ω H1 H2 H3 · · ·

H−1 H0 + ω H1 H2 H3

H−2 H−1 H0 H1 H2

H−3 H−2 H−1 H0 − ω H1

· · · H−3 H−2 H−1 H0 − 2ω

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

In practical calculations, we have to truncate this infinite-
rank matrix, keeping M2 blocks (M of them are diagonal
blocks). This truncation procedure is valid because the Floquet
Hamiltonian takes the form of a “Wannier-Stark ladder”
[132], whose eigenstates are exponentially localized in the
m direction [71].

Given the form of H (kz,t) in our model, we can now solve
the spectrum by diagonalizing the Floquet HamiltonianH(kz).
We consider two illustrative cases. In the case (i), we take
m0 = −3.5, for which the static defects without the driving
term (md = 0) already have chiral modes in the ε = 0 gap. Let
us add a driving with ω = 14 and md = 4 (the magnitude of
driving is exaggerated for a better illustration, yet the physics
is qualitatively the same for smaller md ). The numerical results
are shown in Fig. 5. An additional quasienergy gap is generated
at ε = ω/2 by the driving. There is a chiral mode localized
around the defect in each one of the two gaps, ε = 0 and
ω/2, indicated by the thick blue lines. The thin green lines
stand for the back-propagating chiral modes at the system
boundary. These boundary modes are localized around certain

polar angle θ instead of extending over the whole boundary, as
can be seen from Figs. 5(c) and 5(f). This is due to the absence
of rotational symmetry in this model (similar localization of
boundary modes near certain polar angle is also common for
static defects [133]).

In case (ii), we take m0 = −4.5, for which the static defect
without driving has no chiral modes at ε = 0. Under a driving
with ω = 16.0 and md = 4.0, a chiral mode is generated in the
ε = ω/2 gap. The numerical results are shown in Fig. 6.

We note that in the static heterostructures considered in
Ref. [29], topological insulators are used to yield a nontrivial
second Chern number of the line defects (in general, topolog-
ical insulators are fruitful platforms of topological defects; for
example, see Refs. [108,134–137]). In our model, even if the
static second Chern number is zero, there can still be Floquet
chiral modes (not at ε = 0, but at ε = ω/2), as illustrated
by the case (ii). Topological insulators are not necessary to
generate these chiral modes.

Finally, let us discuss the topological invariant of line defect.
For line defects of class A in 3d space, the winding number is
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FIG. 5. Quasienergy dispersions and chiral mode profiles [case (i) in the text]. The parameters used here are t1 = 1.0, t2 = 0.5, m0 = −3.5,
ω = 14.0, md = 4.0, and Lx × Ly × Lz = 18 × 18 × ∞. The Floquet Hamiltonian truncation is M = 5 in the numerical calculations (namely,
52 = 25 blocks). (a) Quasienergy dispersion close to ε = ω/2. (b) Chiral mode profiles at the quasienergy marked by the blue circle in (a).
(c) Chiral mode profile at the energy marked by the green circle in (a). The momentum for the blue and green circles in (a) is kz = 0.1π . (d)
Quasienergy dispersion close to ε = 0. (e) Chiral mode profile at the energy marked by the blue circle in (d). (f) Chiral mode profile at the
energy marked by the green circle in (d). The momentum for the blue and green circles in (d) is kz = 0.9π .

the (d,D) = (3,1) case of Eq. (29), which reads

W (Uε) = K5

∫
T 3×S1×S1

d3kdθdtTr
[
εα1α2···α5

(
U−1

ε ∂α1Uε

)
× (

U−1
ε ∂α2Uε

) · · · (U−1
ε ∂α5Uε

)]
. (231)

Although this winding number can be calculated numerically
in principle, we will follow a different approach. Since the
topology is not sensitive to the magnitude of md , let us take it
to be small and treat it as a perturbation. Let us take the message
of Eq. (45): W (Uε=π ) − W (Uε=0) = C2(P0,π ). The effect of
a small md is negligible near ε = 0, thus W (Uε=0) can be
inferred from the static limit with md = 0, which is the second
Chern number of a static line defect [see Eq. (36)]. For a Dirac-
type Hamiltonian H0(k) = ∑5

μ=1 dμ(k)�μ with {�μ,�ν} =
2δμν [in our problem, � = (σxτz,σyτz,σzτz,σ0τy,σ0τx), and
d can be read from Eq. (224) with md = 0], the second Chern
number can be reduced to the form of [117]

W (Uε=0) = 3

8π2

∫
dθd3kεμνρστ dμ∂θdν∂kx

dρ∂ky
dσ ∂kz

dτ ,

(232)

from which we find that, for the case (i) and (ii), W (Uε=0) =
−1 and 0, respectively.

Now we proceed to calculate C2(P0,π ), namely, the Chern
number of the Floquet bands with quasienergy ε ∈ [0,ω/2] (or
dimensionless quasienergy ε ∈ [0,π ]). Thanks to Eq. (E14) in

Appendix E, we do not need to derive the form of H eff ; instead,
we can calculate C2(P0,π ) usingH, which is easier in practice.
Near ε = π or ε = ω/2, only four of the Floquet bands of
H are important, which can be well described by a four-band
Hamiltonian

HR(k,θ ) = dR · � + ω/2, (233)

where

dR = (|d| − ω/2)d̂ + d̃⊥, (234)

in which d̂ ≡ d/|d| is the unit vector of d =
(2t1 sin kx,2t1 sin ky,2t1 sin kz,2t1 sin θ,m0 − 2t2(

∑
i cos ki +

cos θ )). The symbol d̃⊥ ≡ d̃ − (d̃ · d̂)d̂ denotes the
perpendicular part of the vector d̃, which comes
from the periodic driving. In the Fourier series
H (k,θ,t) = ∑

m eimωtHm(k,θ ), the first component is
denoted as H1(k,θ ) = d̃ · �, which defines the vector d̃. In
our problem, one can readily find that d̃ = (0,0,0,0,md/2).
This form of HR can be derived by inspecting H near
ω/2 (omitting all bands far away from ω/2), or by the
rotating-wave approximation [31] (a two-band counterpart of
Eq. (234) can be found in Ref. [71], to which the interested
readers may refer). Now we calculate C2(P0,π ) numerically
by replacing d in Eq. (232) by dR, which yields C2(P0,π ) = 2
and C2(P0,π ) = 1 for cases (i) and (ii), respectively. The
relation W (Uε=π ) = W (Uε=0) + C2(P0,π ) then tells us that
W (Uε=π ) = −1 + 2 = +1 and 0 + 1 = +1 for cases (i) and
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FIG. 6. Quasienergy dispersions and the wave-function profiles
of the Floquet chiral modes [case (ii) in the text]. The parameters used
here are t1 = 1.0, t2 = 0.5, m0 = −4.5, ω = 16.0, md = 4.0, and
Lx × Ly × Lz = 18 × 18 × ∞. The Floquet Hamiltonian truncation
is M = 5. (a) Quasienergy dispersions close to ε = ω/2. (b) Wave-
function profile of the Floquet chiral modes at the energy labeled by
the blue circle in (a). (c) Wave-function profile of the Floquet chiral
mode at the energy labeled by the green circle in (a). The momentum
for the blue and green circle is kz = 0.1π .

(ii), respectively, which is consistent with the number of
Floquet chiral mode in the ε = ω/2 quasienergy gap.

Our model suggests a way of creating Floquet chiral
modes in a driven line defect, which is topologically trivial
if the driving is removed. Before concluding this section, it
is useful to mention that, even if the static system itself is
defect-free, a Floquet line defect can be created solely by
the periodic driving [106]. To this end, the driving must have
spatial modulations [104,106,138]. A possible platform is a
Dirac semimetal under spatially modulated driving, which
was recently suggested in Ref. [106].

B. Class D: Floquet chiral Majorana modes

Floquet chiral Majorana modes along a line defect in a
3d superconductor can be modeled by the following defect
Hamiltonian (the notations follow the previous section):

HBdG(k,θ,t) =
[
μ(t) −

∑
i

cos ki − sin θ

]
σ0τz

+�p

∑
i

sin ki σiτx + �s sin θ σ0τy, (235)

with

μ(t) = μ0 + μd cos ωt. (236)

It satisfies the symmetry

σyτyH
∗
BdG(k,θ,t)σyτy = −HBdG(−k,θ,t), (237)

with (σyτy)∗(σyτy) = 1, therefore, the Hamiltonian belongs to
class D.

The structure of this Hamiltonian is essentially the same
as Eq. (224), therefore, Floquet chiral modes should also
be present in the model of Eq. (235). The new ingredient,
compared to the previous section, is the physical interpretation.
We may interpret it as a Bogoliubov-de Gennes (BdG)
equation, τz = ±1 being the particle/hole subspace. The �p

and �s term is the p-wave and s-wave Cooper pairing,
respectively. The μ(t) term is then interpreted as a time-
dependent chemical potential. Thus the Hamiltonian describes
a superconductor with spatially modulated pairings and a
time-dependent chemical potential. In principle, it may be
imitated by superconductor heterostructures containing both
s-wave superconductors and p-wave superconductors, which
will be left for future investigations.

C. Class AII: Floquet helical modes

Helical modes along line defects have been studied in
static systems [139–141]. It has been pointed out that the
screw dislocations in a weak topological insulator carry
helical modes [139]. Helical modes have also been proposed
to exist along the lattice dislocations in three-dimensional
double-Dirac semimetals with an energy gap generated by
symmetry breaking [142]. These helical modes belong to static
topological defect modes in the AII class [29].

Here, we study a model of Floquet helical modes along line
defects. The Bloch Hamiltonian far from the defect takes the
form of

H (k,θ,t) = 2t1(sin kx�1 + sin ky�2 + sin kz�3) + 2t1 sin θ�4

+ [m(t) − 2t2(cos kx + cos ky + cos kz

+ cos θ )]�5, (238)

where �1,2,3 = szτzσx,y,z, �4 = szτxσ0, �5 = sxτ0σ0, m(t) =
m0 + md cos ωt , and θ is the polar angle (see Sec. VIII A).
This model belongs to class AII because it satisfies

T −1H (k,θ,t)T = H ∗(−k,θ,−t), (239)

with T = σy . It may be useful to compare this model with
Eq. (224) without the TRS.

The numerical scheme for the defect modes will be similar
to Sec. VIII A, which we shall not repeat. We take the
static parameter m0 = −4.5, for which the static system has
no helical mode at zero energy. With the periodic driving
added (md �= 0), we find helical modes at ε = ω/2, whose
quasienergy dispersion is shown in Fig. 7(a). There are in fact
two helical modes, one of which is localized at the system
center, the other at the boundary. The helical mode profiles at
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FIG. 7. Helical modes along a line defect in class AII [Eq. (238)]. Parameters used here are t1 = 1.0, t2 = 0.5, m0 = −4.5, ω = 16.0,
md = 4.0, and the system size is Lx × Ly × Lz = 14 × 14 × ∞. Floquet Hamiltonian truncation is M = 5. (a) Quasienergy dispersion near
ε = ω/2. Both the blue and red lines are (almost) doubly degenerate. (b) and (c) The helical mode profiles at kz = 0.1π [marked by a red circle
in (a)]. One of the modes is localized at the sample center, the other is localized at the boundary.

kz = 0.1π are shown in Figs. 7(b) and 7(c). Their time-reversal
partners at kz = −0.1π have the same profiles (thus no need to
show repeatedly). The Floquet helical mode at ε = ω/2 does
not require the presence of static helical mode at zero energy,
thus it may be realized in the dislocations of trivial insulators,
not necessarily of weak topological insulators [139].

IX. POINT DEFECTS

Point defects have ddef = 0 and δ ≡ d − D = 1. According
to Table I, topologically nontrivial point defects can exist in
classes AIII, BDI, D, DIII, and CII.

A. Class D: Floquet MZMs and MPMs in vortices
of topologically trivial superconductors

MZMs in static systems have attracted wide attentions
in recent years due to their potential applications in topo-
logical quantum computations (there are many excellent
review articles, for instance, Refs. [143–149]). Here, we are
concerned with Floquet MZMs, which may also be useful
in topological quantum computations [150]. We mention that
Floquet MZMs at the ends of one-dimensional wires have
been investigated before [37,150–157]. To enable braiding
operations, which are crucial in topological quantum compu-
tations, two-dimensional systems are more advantageous. In
this paper, we study Floquet Majorana modes in the vortex of
topologically trivial superconductors under periodic driving.

A simple model of driven homogeneous superconductors
is given by the following BdG equation:

H (k,t) = [t(cos kx + cos ky) − μ(t)]τz

+�(sin kxτx + sin kyτy), (240)

where � is a p-wave Cooper pairing, and

μ(t) = μ0 + μd cos ωt (241)

stands for a time-dependent fermion energy or chemical
potential. In a cold-atom setup, it can be implemented by
periodically varying the trap potential of the optical lattice.
We will fix t = 1.0, � = 1.0, and ω = 6.0 below.

Let us consider two representative cases. Case (i) is μ0 =
−2.5, for which the Chern numbers are 0 for the static bands,
thus the superconductor is topologically trivial. In fact, the
band bottom of E(k) = t(cos kx + cos ky) is E(π,π ) = −2.0,
and the regime μ0 < −2.0 corresponds to the trivial “strong-
pairing phase” [20]. Under the driving of a nonzero μd , a
quasienergy gap opens at ε = ω/2. The bulk Floquet bands
are shown in Fig. 8(a). The Floquet band Chern numbers are
also marked in Fig. 8(a). These Chern numbers are calculated
numerically using the Floquet Hamiltonian H, which have
been proved equivalent to the Chern numbers calculated from
the effective Hamiltonian H eff [see Eq. (E14)].

We are most interested in the quasienergy spectra in
the presence of a vortex, for which the Bloch Hamiltonian
sufficiently far away from the vortex reads

H (k,θ,t) =
(

t(cos kx + cos ky) − μ(t) �e−iθ (sin kx − i sin ky)

�eiθ (sin kx + i sin ky) −[t(cos kx + cos ky) − μ(t)]

)
,

where θ is the polar angle viewed from the vortex core.
In numerical implementation, we consider a finite size
sample with two vortices (more precisely, a vortex and an
antivortex). We can do a gauge transformation to eliminate the
angle-dependent phase factor exp(iθ ) in the Cooper pairing.
Accordingly, the periodic boundary condition of fermions
around the vortex becomes the anti-periodic boundary

condition, namely, all the hoppings across the straight line
connecting the two vortices are multiplied by a −1 factor. We
find two localized Majorana modes at ε = ω/2 (equivalently,
ε = π ), as shown in Fig. 8(b). These Majorana modes are
Floquet versions of the MZMs of static systems, which are
also protected by the particle-hole symmetry. They are dubbed
the Majorana Pi modes (MPMs) [158]. No MZM is found in
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FIG. 8. Bulk Floquet bands and Floquet MPMs for the case (i).
Parameters used here are t = 1.0, μ0 = −2.5, � = 1.0, ω = 6.0, and
μd = 2.0. (a) The solid blue lines stand for the bulk Floquet bands
plotted along the line ky = kx . The μd = 0 bands are shown in dashed
lines as a comparison (m stands for the Floquet index). (b) Two MPMs
in the presence of two vortices at (x,y) = (9.5,10.5) and (27.5,10.5),
respectively. The system size is Lx × Ly = 36 × 20 with periodic
boundary condition. The inset shows the quasienergy spectra near
ε = ω/2. The two quasienergies of MPMs are colored red. Floquet
Hamiltonian truncation M = 5 is taken in the calculation.

this case, which is consistent with the static system being a
topologically trivial superconductor.

Now we consider case (ii) with μ0 = −1.5, for which the
Chern numbers of the static bands are ±1. Without driving,
it corresponds to the topologically nontrivial “weak-pairing
phase” [20]. The Floquet bands are shown in Fig. 9(a), with
their Chern numbers marked. The profiles of the MPMs and
MZMs are shown in Figs. 9(b) and 9(c), respectively. We
note that the Floquet band topological invariants are all Z2

trivial in the case (ii), namely, the band Chern numbers are all
even integers. In static systems, an even-integer Chern number
implies that a vortex carries no robust MZM. In fact, the static
Z2 topological invariant of point defects of class D is just the
product of the Chern number and the vorticity (which is unity
here) [29]. In the sense that all Floquet bands are Z2 trivial, the
MPMs and MZMs here are anomalous (in the terminology of
Ref. [71]). To summarize, in case (i), we found MPMs in the
vortex of topologically trivial superconductors; in case (ii), we

found both MZMs and MPMs, though all the Floquet bands
are Z2 trivial (with even-integer Chern numbers).

A few remarks before concluding this section. First, the
Floquet MZMs and MPMs may be detected experimentally
by a quantized conductance sum rule [151] or heat transfer
[159]. Second, possible Floquet MZMs and MPMs located
in driven disclinations, whose static counterparts have been
studied [160,161], will also be interesting to study. Third,
the potential applications of MPMs in topological quantum
computation calls for further investigations.

B. Class AIII: Point defects carrying zero modes and Pi modes

Let us consider a lattice model of point defect of class AIII
in two-dimensional space. Sufficiently far away from the point
defect, the translational symmetry is restored and the Bloch
Hamiltonian is given as

H (k,θ,t) =
(

0 q(k,θ,t)
q†(k,θ,t) 0

)
, (242)

where θ is the polar angle viewed from the defect center,
i.e., θ = arctan[(y − y0)/(x − x0)] (here, (x0,y0) is the defect
center location), and

q(k,θ,t) = −i(m(t) − cos kx − cos ky − cos θ )σ0

+ (sin kx + δ)σx + sin ky σy + sin θ σz, (243)

with m(t) = m0 + md cos ωt . This model belongs to class AIII
as it satisfies

S−1H (k,θ,t)S = −H (k,θ,−t), (244)

with

S =
(

I

−I

)
. (245)

While preserving the chiral symmetry, the δ term is included to
break other symmetries. Without the δ term, the Hamiltonian
also has the time reversal symmetry. We mention that a
mathematically similar Hamiltonian has been studied as a
model of three-dimensional Floquet topological insulators in
class AIII [103], though the purpose there was unrelated to
topological defects. Other aspects of bulk Floquet systems in
class AIII have also been investigated in Refs. [102,162].

In terms of Dirac matrices, the model can be written as

H (k,θ ) = (sin kx + δ)�1 + sin ky�2 + sin θ�3

+ (m(t) − cos kx − cos ky − cos θ )�4, (246)

where �1,2,3 = σx,y,zτx , �4 = τy . After a Fourier transforma-
tion to real space, we have

Ĥ =
∑
x,y

{
c†x,y[δ �1 + sin θx,y�3 + (m(t) − cos θx,y)�4]cx,y

−
(

i

2
c†x,y�1cx+1,y + i

2
c†x,y�2cx,y+1 + H.c.

)

−
(

1

2
c†x,y�4cx+1,y + 1

2
c†x,y�4cx,y+1 + H.c.

)}
, (247)

where (x,y) are integer-valued real space coordinates. In fact,
this real-space Hamiltonian is just one of the many realizations
of the point defect described by Eq. (246), since we only

195303-29



SHUNYU YAO, ZHONGBO YAN, AND ZHONG WANG PHYSICAL REVIEW B 96, 195303 (2017)

FIG. 9. Bulk Floquet bands and Floquet Majorana modes for the case (ii). Parameters used here are t = 1.0, μ0 = −1.5, � = 1.0, and
ω = 6.0. (a) The solid blue lines stand for the bulk Floquet bands plotted along the line ky = kx (with μd = 2.0). The μd = 0 bands are shown
in dashed lines (m stands for the Floquet index). [(b) and (c)] Profiles of the two MPMs (b) and two MZMs (c) in the presence of two vortices
at (x,y) = (9.5,10.5) and (27.5,10.5). The system size is Lx × Ly = 36 × 20, with periodic boundary condition. In this calculation, μd = 1.0,
and Floquet Hamiltonian truncation is M = 5.

require that the Bloch Hamiltonian approaches Eq. (246) far
away from the defect, therefore, modifying the real-space
Hamiltonian in the vicinity of defect does not change the
topological classification.

For a set of parameters, we plot the bulk Floquet bands in
Fig. 10(a). Floquet Pi modes and Floquet zero modes are found
in the presence of a point defect, as shown in Figs. 10(b) and
10(c). Closer inspection of the mode wave functions shows
that both the zero mode and the Pi mode have sublattice index
(or “chirality”) S = −1. For both zero and Pi modes at the
defect center, there is a partner mode at the system boundary,
whose chirality is S = +1.

Now let us calculate the topological invariant of this point
defect. The topological invariant of class AIII has been given
in Eq. (55), in which we should take d = 2 and D = 1 here.
We have numerically calculated this topological invariant,
obtaining W (U+

ε=π ) = 1 and W (U+
ε=0) = −1 (see Fig. 11).

These topological numbers are indeed consistent with the
presence of one Floquet Pi mode and one zero mode in the
defect.

There is nevertheless an important yet subtle point about the
sign, which we now explain. Let n0 and nπ be the net number

of modes at ε = 0 and ω/2, respectively, namely, n0/π is the
number of zero (or Pi) modes with S = +1 minus that of modes
with S = −1. By analog with class A in two dimensions,
for which the band Chern number measures the difference
between the numbers of chiral edge modes above and below
the bands, one may tempted to guess that nπ − n0 = W (q†

0,π ),

where W (q†
0,π ) stands for the winding number of the Floquet

bands with ε ∈ [0,π ] (or equivalently, ε ∈ [0,ω/2]) [for the
notation of q

†
0,π , see Eq. (159)], however, this expectation

is incorrect. In fact, the same analog would also suggest
that n0 − n−π = W (q†

−π,0), but it is not difficult to check

the relation q
†
−π,0 = −q

†
0,π , and consequently, W (q†

0,π ) =
W (q†

−π,0). Now the relation nπ − n0 = W (q†
0,π ) is inconsistent

with n0 − n−π = W (q†
−π,0) because nπ = n−π . We find that

the correct relation should be

−nπ − n0 = W (q†
0,π ), (248)

which is consistent with −n0 − n−π = W (q†
−π,0). This relation

has been corroborated by our numerical results: n0 = nπ =
−1 and W (q†

0,π ) = W (q†
−π,0) = 2. We have also taken other

FIG. 10. (a) Bulk Floquet bands plotted along the line ky = kx (with θ = 0 fixed). Parameters used here are m0 = −2.5, ω = 8.0, δ = 0.2,
and md = 5.0. The Floquet bands of md = 0 are shown in dashed lines, with Floquet index m marked. (b) Floquet Pi modes profiles in a system
with size Lx × Ly = 24 × 16 (open boundary condition). The point defect center is (x0,y0) = (12.5,8.5). Floquet Hamiltonian truncation is
M = 5. The inset shows quasienergies close to ω/2. (c) Floquet zero modes profiles and quasienergies close to 0.
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FIG. 11. Numerical evaluation of the topological invariant of the
point defect in class AIII. Parameters used here are the same as in
Fig. 10. We use N 3

k grid points in the integral domain of (k,θ ). The
numerical topological invariant converges rapidly to integers as the
grid becomes finer. For Nk = 26, we get W (U+

ε=π ) = 1.000024 and
W (U+

ε=0) = −1.000026. The grid point number in the t direction is
fixed as 800 in calculating H eff

ε , which is needed in the definition
of U+

ε .

Hamiltonian parameters so that the values of n0,nπ and
W (q†

0,π ) are different, yet the relation remains valid. Because
we also have

W (U+
ε=π ) − W (U+

ε=0) = W (q†
0,π ), (249)

it is natural to postulate that

W (U+
ε=π ) = −nπ, W (U+

ε=0) = n0. (250)

Note the minus sign in the first equation. These relations
have indeed been verified in our numerical results for various
Hamiltonian parameters. Alternatively, one may redefine the
topological invariant by adding a minus sign to W (U+

ε=π )
so that W (U+

ε=π ) = nπ , however, this would modify the
desirable relation in Eq. (249) to the less illuminating one:
−W (U+

ε=π ) − W (U+
ε=0) = W (q†

0,π ). Therefore we do not take
this alternative definition.

From the derivation given above, we can see that Eq. (250)
should be a general relation for all chiral classes (AIII, BDI,
DIII, CII, and CI) in all spatial dimensions. We have indeed
verified this in a few models (to control the length of this paper,
we will not discuss them here).

C. Class CII: Pairs of Pi modes in a point defect

For a point defect in class CII (δ = 1), the topological
invariant is always an even integer (see Sec. VI B), therefore,
we expect that there are even numbers of zero and Pi modes in
the defect. We put forward a model of point defect as follows.
Sufficiently far away from the defect, where the translational
symmetry is restored, the Bloch Hamiltonian reads

H (k,θ,t) = 2t1μzτx(sin kxσx + sin kyσy) + 2t1 sin θμxτyσz

+ [m(t) − 2t2(cos kx + cos ky + cos θ )]μxτx,

(251)

FIG. 12. Profiles of localized Pi modes in a point defect in class
CII. The parameters used here are t1 = 1.0, t2 = 0.5, m0 = −3.5,
md = 4.0, and ω = 10.0. The system size is Lx × Ly = 12 × 16,
with a point defect at (x0,y0) = (4.5,8.5). The inset shows the
quasienergies close to 0 and ω/2. Two of the four Pi modes are
shown (the other two have the same profiles).

where θ is the polar angle viewed from the defect core. The
reason of considering 8 × 8 Dirac matrices can be understood
by Appendix D, to which the interested readers may refer. The
Hamiltonian satisfies the following defining symmetries:

T −1H (k,θ,t)T = H ∗(−k,θ,−t),

C−1H (k,θ,t)C = −H ∗(−k,θ,t), (252)

where T = τ0σy and C = τzσy . Since T ∗T = C∗C = −I , this
model belongs to the class CII.

A real space form of the above Hamiltonian is

Ĥ =
∑
x,y

{c†x,y[2t1 sin θx,yμxτyσz + (m(t)

− 2t2 cos θx,y)μxτx]cx,y − (it1c
†
x,yμzτxσxcx+1,y

+ it1c
†
x,yμzτxσycx,y+1 + H.c.)

− (t2c
†
x,yμxτxcx+1,y + t2c

†
x,yμxτxcx,y+1 + H.c.)}.

(253)

At sufficiently large distance from the defect center, θx,y can
be taken as a constant locally, and the Fourier transformation
of Eq. (253) is just Eq. (251).

We have calculated the quasienergy spectra of a finite size
system with open boundary conditions, and find four Pi modes
(Fig. 12), two of which are localized at the defect center, while
the other two are localized at the system boundary. No zero
mode is found for the parameters we choose here.

The topological invariant for this point defect is the (d,D) =
(2,1) case of the general formula of winding number given in
Eq. (125), whose explicit form is

W (U+
ε (k,θ )) = K3

∫
T 2×S1

d2kdθ Tr
{
εα1α2α3

[
(U+

ε )−1∂α1U
+
ε

]
× [

(U+
ε )−1∂α2U

+
ε

][
(U+

ε )−1∂α3U
+
ε

]}
. (254)

We have numerically calculated this topological invariant,
which yields W (U+

ε=π ) = −2 and W (U+
ε=0) = 0 to high
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FIG. 13. Numerical evaluation of the topological invariant of the
point defect in class CII [Eq. (254)]. Parameters used here are the same
as those used in Fig. 12. We use N 3

k grid points in the integral domain
of (k,θ ). The numerical topological invariant converges rapidly to
integers as the number of grid points increases. For Nk = 26, we
get W (U+

ε=π ) = −2.000062 and W (U+
ε=0) = −0.0049. The grid point

number in the t direction is fixed as 800 in calculating H eff
ε , which is

needed in the definition of U+
ε .

accuracy, as illustrated in Fig. 13. Apparently, the values of
topological invariant are consistent with the numbers of zero
and Pi modes found numerically.

X. CONCLUSIONS

In conclusion, we have formulated topological invariants
of Floquet systems in all spatial dimensions based on the
cooperation of topology and symmetries of the time evo-
lution operators. All these topological invariants take the
forms of (the usual or the Wess-Zumino-Witten) winding
numbers, though the relevant parameter spaces depend on the
symmetries and spatial dimensions. The simple combination
δ = d − D, the periodicity, the Z2 topological invariants, and
many other results, are obtained in an explicit and natural
way. This unified framework of Floquet topological invariants
will be useful in future investigations of Floquet systems. In
addition, we have raised and clarified several notable issues
about topological invariants (such as the equivalence between
different approaches to Floquet band topological invariants).

In some sense, the effects of symmetries are more trans-
parent in the Floquet topological invariants than in static
topological invariants such as Chern numbers, which are
generally expressed in terms of the eigenvectors of the
Hamiltonian, instead of the Hamiltonian itself. The way

Hamiltonian enters the Floquet topological invariants is more
straightforward.

Our formulations of topological invariants are applicable
to both homogeneous systems and topological defects. Based
on these topological invariants, we have developed a general
theory of Floquet topological defects in the tenfold way. This
part can be regarded as a Floquet generalization of Ref. [29],
which is a comprehensive study of topological defects in static
systems.

Taking lattice models as tools, we have studied a variety
of possible approaches of realizing low-dimensional Floquet
topological defects, which are experimentally most relevant.
In particular, we show that Majorana Pi modes (the Floquet
version of MZMs) can be realized in vortices of topologically
trivial superconductors under periodic driving, which suggests
an interesting platform for the MZMs and MPMs. Let us also
mention that the higher-dimensional topological invariants are
not merely of theoretical interests; they are useful to the physics
of quasicrystals [163–166] and synthetic dimensions [167–
171], which can be experimentally studied in low dimensions.

Finally, we should mention that the many-body effects
in Floquet systems have been under active investigations
[158,172–183]. Although we have not taken into account the
interaction effects, we hope that this systematic symmetry-
based study of topological Floquet bands may provide some
useful pieces of groundwork for investigation of topology
in many-body Floquet systems. In many-body systems with
a high driving frequency, the heating time is exponentially
long [184–188], possibly allowing many-body generalizations
of our topological invariants to this regime. In some other
notable regimes of many-body Floquet systems with a modest
driving frequency, such as the universal chiral quasi-steady
states [189], the interband scattering can be exponentially
suppressed, creating a long time window in which only a single
or a few Floquet bands are populated. In such regimes, our
topological invariants can be directly related to the physical
responses. Another interesting future direction is to generalize
the present formulation to disordered Floquet systems, which
is interesting in its own right, and also valuable in light of
the important roles played by disorders in creating Floquet
many-body localized states immune to heating up to infinite
temperature [172,173,176,190–192].
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APPENDIX A: CALCULATIONS RELATED TO SYMMETRIES OF FLOQUET SYSTEMS

1. Symmetries of the time evolution operator

Taking advantages of the particle-hole symmetry of Eq. (15), and the expansion of time evolution operator as given in Eq. (19),
we can derive (taking t > 0 for concreteness)

C−1U (k,r,t)C = [1 − i�tC−1H (k,r,t)C][1 − i�tC−1H (k,r,t − �t)C] · · · [1 − i�tC−1H (k,r,�t)C]

= [1 + i�tH ∗(−k,r,t)][1 + i�tH ∗(−k,r,t−�t)] · · · [1 + i�tH ∗(−k,r,�t)] = U ∗(−k,r,t), (A1)

which is Eq. (20) in the main text.
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Taking advantage of the time reversal symmetry in Eq. (17), and the expansion of time evolution operator in Eq. (19), we can
derive (again taking t > 0 for concreteness)

T −1U (k,r,t)T = [1 − i�tT −1H (k,r,t)T ][1 − i�tT −1H (k,r,t − �t)T ] · · · [1 − i�tT −1H (k,r,�t)T ]

= [1 − i�tH ∗(−k,r,−t)][1 − i�tH ∗(−k,r,−t + �t)] · · · [1 − i�tH ∗(−k,r,−�t)]

= {[1 + i�tH ∗(−k,r,−�t)] · · · [1 + i�tH ∗(−k,r,−t + �t)][1 + i�tH ∗(−k,r,−t)]}−1

= U ∗−1(−k,r; 0,−t) = U ∗(−k,r,−t), (A2)

which is Eq. (21) in the main text. In this calculation, we have used the notation of U (k,r; ta,tb), which has been defined in the
main text (see Sec. II).

Using the chiral symmetry of Eq. (18), and the expansion of time evolution operator as given in Eq. (19), we can derive the
constraint of the chiral symmetry on the time evolution operator:

S−1U (k,r,t)S = [1 − i�tS−1H (k,r,t)S][1 − i�tS−1H (k,r,t − �t)S] · · · [1 − i�tS−1H (k,r,�t)S]

= [1 + i�tH (k,r,−t)][1 + i�tH (k,r,−t + �t)] · · · [1 + i�tH (k,r,−�t)]

= {[1 − i�tH (k,r,−�t)] · · · [1 − i�tH (k,r,−t + �t)][1 − i�tH (k,r,−t)]}−1

= U−1(k,r; 0,−t) = U (k,r,−t), (A3)

which is Eq. (22) in the main text. Again, we have used the notation of U (k,r; ta,tb) defined in the main text.

2. Symmetries of the effective Hamiltonian

In this section, we will derive the symmetry properties of the effective Hamiltonian. It is apparent that
exp[−iC−1H eff

ε (k,r)Cτ ] = C−1 exp[−iH eff
ε (k,r)τ ]C = C−1U (k,r,τ )C, thus we have

C−1H eff
ε (k,r)C = i

τ
ln−ε[C−1U (k,r,τ )C] = i

τ
ln−ε[(U ∗(−k,r,τ ))] = i

τ
ln−ε[(U †(−k,r,τ ))T ]

= i

τ

∑
n

[
ln−ε

(
λ−1

n (−k,r)
)|ψn(−k,r)〉〈ψn(−k,r)|]T

= i

τ

∑
n

{[− lnε(λn(−k,r)) − 2πi]|ψn(−k,r)〉〈ψn(−k,r)|}T

= −[H eff
−ε(−k,r)

]T + 2π

τ
= −H eff∗

−ε (−k,r) + 2π

τ
, (A4)

where the PHS of time evolution operator, given by Eq. (20), has been used. In rewriting ln−ε(λ−1
n ), we have used the mathematical

identity

ln−ε(e−iφ) = − lnε(eiφ) − 2πi, (A5)

which can be proved as follows. We can always choose φ to satisfy −ε − 2π < −φ < −ε (given the value of e−iφ , there is one
and only one φ located in this interval), thus we have ln−ε(e−iφ) = −iφ according to our definition of branch cut (see the main
text). Now we also have ε < φ < ε + 2π , and equivalently, ε − 2π < φ − 2π < ε, therefore, we have lnε(eiφ) = lnε(ei(φ−2π)) =
i(φ − 2π ), from which Eq. (A5) follows. Thus Eq. (23) in the main text has been established.

Now let us proceed to proving Eq. (24). The calculations go as

T −1H eff
ε (k,r)T = i

τ
ln−ε(T −1U (k,r,τ )T ) = i

τ
ln−ε[U ∗(−k,r,−τ )] = i

τ
ln−ε[(U ∗(−k,r,τ ))−1]

= i

τ
[ln−ε(U (−k,r,τ ))]T = i

τ

∑
n

[ln−ε(λn(−k,r))|ψn(−k,r)〉〈ψn(−k,r)|]T = [
H eff

ε (−k,r)
]T = H eff∗

ε (−k,r),

(A6)

in which Eq. (21) has been used.
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Finally, we would like to prove Eq. (25). The calculation is

S−1H eff
ε (k,r)S = i

τ
ln−ε(S−1U (k,r,τ )S) = i

τ
ln−ε(U (k,r,−τ )) = i

τ
ln−ε(U−1(k,r,τ ))

= i

τ

∑
n

ln−ε

(
λ−1

n (k,r)
)|ψn(k)〉〈ψn(k)| = i

τ

∑
n

[− lnε(λn(k,r)) − 2πi]|ψn(k,r)〉〈ψn(k,r)|

= −H eff
−ε(k,r) + 2π

τ
, (A7)

in which Eqs. (22) and (A5) have been used.

3. Symmetries of the periodized time evolution operator

In this section, we will derive symmetry properties of the periodized time evolution operators. The derivations are based on
the symmetry properties of the time evolution operators and the effective Hamiltonian, which have been studied in the previous
two Appendices.

Taking advantage of Eqs. (20) and (23), we can find that

C−1Uε(k,r,t)C = C−1U (k,r,t)C exp
[
iC−1H eff

ε (k,r)Ct
] = U ∗(−k,r,t) exp

[
−iH eff∗

−ε (−k,r)t + i
2π

τ
t

]

= U ∗
−ε(−k,r,t) exp

(
i
2πt

τ

)
, (A8)

which is Eq. (26) in the main text.
Taking advantage of Eqs. (21) and (24), we have, for the time reversal symmetry,

T −1Uε(k,r,t)T = T −1U (k,r,t)T exp
[
iT −1H eff

ε (k,r)T t
] = U ∗(−k,r,−t) exp

[
iH eff∗

ε (−k,r)t
] = U ∗

ε (−k,r,−t), (A9)

which is Eq. (27) in the main text.
Finally, taking advantage of Eqs. (22) and (25), we have, for the chiral symmetry,

S−1Uε(k,r,t)S = S−1U (k,r,t)S exp
(
iS−1H eff

ε (k,r)St
) = U (k,r,−t) exp

{
i

[
−H eff

−ε(k,r) + 2π

τ

]
t

}

= U−ε(k,r,−t) exp

(
i
2πt

τ

)
, (A10)

which is Eq. (28) in the main text.

APPENDIX B: THE STATIC LIMIT OF THE TOPOLOGICAL INVARIANTS OF CLASS A

In this Appendix, we will show that the winding number of class A reduces to the Chern number of Teo and Kane in the static
limit [29]. Since all static Hamiltonians can be smoothly deformed to flat-band ones, we will focus on the flat-band cases. The
Hamiltonian takes the general form of Eq. (35), which is reproduced as

H0(k,r) = −E0P (k,r) + E0[1 − P (k,r)], (B1)

where P (k,r) is the occupied-bands projection operator, which depends on both k and r. It satisfies P 2(k,r) = P (k,r). The
conduction band projection operator 1 − P (k,r) must also satisfy [1 − P (k,r)]2 = 1 − P (k,r). The constant E0 > 0.

When an infinitesimal driving with frequency ω is added, the system is naturally described by the Floquet theory. The Floquet
topological invariants should be consistent with the static topological invariants. We will show that, for sufficiently large ω,
the winding number is equal to the Chern number of the static system; for small ω, the winding number is the Chern number
multiplied by an integer. This result is consistent with the folding of static energy bands into quasienergy bands, as explained in
the main text (see Fig. 2).

1. Large frequency: The winding number reduces to the Chern number

For reasons to become clear shortly, let us focus on the ω > E0 (or 2π > E0τ ) case in this section. It is readily found that

U (k,r,τ ) = e−iE0τ [1 − P (k,r)] + eiE0τP (k,r), (B2)
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from which it follows that

H eff
ε=0(k,r) = i

τ
ln−ε=0 U (k,r,τ ) = i

τ
ln−ε=0(e−iE0τ )(1 − P ) + i

τ
ln−ε=0(eiE0τ )P = i

τ
(−iE0τ )(1 − P ) + i

τ
i(E0τ − 2π )P

= E0(1 − P ) +
(

−E0 + 2π

τ

)
P, (B3)

where we have used the fact that ln−ε=0 eiE0τ = ln−ε=0 eiE0τ−2πi = i(E0τ − 2π ), because −2π < E0τ − 2π < 0 (see the main
text for the definition of branch cut).

Therefore the periodized time evolution operator with branch cut at −ε = 0 can be obtained as

Uε=0(k,r,t) = U (k,r,t) exp
[
iH eff

ε=0(k,r)t
] = (1 − P )e−iE0teiE0t + P eiE0te−i(E0−2π/τ )t = (1 − P ) + P eiωt = P (eiωt − 1) + 1,

(B4)

in which ω ≡ 2π/τ . Its inverse matrix is

U−1
ε=0(k,r,t) = P (e−iωt − 1) + 1. (B5)

The calculation presented below resembles that of Refs. [71,103] (with some minor improvements made). By a straightforward
calculation, we have

U−1
ε=0∂tUε=0 = iωP (B6)

and

U−1
ε=0∂iUε=0 = u(t)P∂iP + v(t)∂iP , (B7)

where we have defined the shorthand notations [71,103]

u(t) = 2[1 − cos(ωt)], v(t) = eiωt − 1. (B8)

Inserting them into the definition of winding number, as given by Eq. (29) in the main text, we have

W (Uε=0) = (d + D + 1)Kd+D+1

∫
T d×SD×S1

ddkdDrdt × Tr
[
εα1α2···αd+D iωP

(
uP∂α1P + v∂α1P

) · · · (uP∂αd+D
P + v∂αd+D

P
)]

.

(B9)

To further simplify this expression, we notice the mathematical fact

P (∂iP )P = P∂i(PP ) − PP∂iP = 0, (B10)

from which it follows that the product of two adjacent factors in the expression of winding number can be simplified as(
uP∂α1P + v∂α1P

)(
uP∂α2P + v∂α2P

) = u2P∂α1PP∂α2P + uvP∂α1P∂α2P + uv∂α1PP∂α2P + v2∂α1P∂α2P

= uvP∂α1P∂α2P + uv∂α1 (PP )∂α2P − uvP∂α1P∂α2P + v2∂α1P∂α2P

= uv∂α1P∂α2P + v2∂α1P∂α2P

= (u + v)v∂α1P∂α2P. (B11)

The products of any other two adjacent factors, (uP∂α3P + v∂α3P )(uP∂α4P + v∂α4P ) · · · , can be calculated in the same way,
therefore, the winding number simplifies as follows:

W (Uε=0) = (d + D + 1)Kd+D+1

∫
T d×SD×S1

ddkdDrdtTr
[
εα1α2···αd+D iωP

(
uP∂α1P + v∂α1P

) · · · (uP∂αd+D
P + v∂αd+D

P
)]

= iω(d + D + 1)Kd+D+1

∫
T d×SD×S1

ddkdDrdtTr
{
εα1α2···αd+D [(u + v)v]

d+D
2 P∂α1P∂α2P · · · ∂αd+D−1P∂αd+D

P
}
.

(B12)

The integral of time t can be done as∫ π/ω

−π/ω

dt(u + v)
d+D

2 v
d+D

2 = 1

ω

∫ π

−π

dφ(1 − e−iφ)
d+D

2 (eiφ − 1)
d+D

2 (with φ ≡ ωt) = 2π

ω

(D + d)!(
d+D

2

)
!
(

d+D
2

)
!
(−1)

d+D
2 . (B13)

Therefore Eq. (B12) is simplified to

W (Uε=0) = K̃d+D

∫
T d×SD

ddkdDrTr
[
εα1α2···αd+DP ∂α1P · · · ∂αd+D

P
]
, (B14)
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in which K̃d+D is

K̃d+D = iω(d + D + 1)
2π

ω

(D + d)!(
d+D

2

)
!
(

d+D
2

)
!
(−1)

d+D
2 Kd+D+1 = −

(
i

2π

) d+D
2 1(

d+D
2

)
!
, (B15)

which is exactly the (d + D)/2-th Chern number.

2. Small frequency: The winding number reduces to the Chern number multiplied by an integer

To have a quasienergy gap at ε = 0, E0/ω cannot be an integer. Let us define the floor function q = 	E0/ω
, which denotes the
greatest integer below E0/ω. In other words, ω satisfies qω < E0 < (q + 1)ω. In terms of τ , it reads 2πq < E0τ < 2π (q + 1).

The full-period evolution operator is the same as Eq. (B2), while the effective Hamiltonian is now replaced by

H eff
ε=0(k,r) = i

τ
ln−ε=0 U (k,r,τ ) = i

τ
ln−ε=0(e−iE0τ )(1 − P ) + i

τ
ln−ε=0(eiE0τ )P

= i

τ
i(−E0τ + 2qπ )(1 − P ) + i

τ
i[E0τ − 2(q + 1)π ]P =

(
E0 − 2qπ

τ

)
(1 − P ) +

[
−E0 + 2(q + 1)π

τ

]
P,

(B16)

where we have used the fact that ln−ε=0 eiE0τ = ln−ε=0 ei[E0τ−2(q+1)π] = i[E0τ − 2(q + 1)π ], which is a consequence of −2π <

E0τ − 2(q + 1)π < 0 (see the main text for the definition of branch cut). Similarly, we can see that ln−ε=0 e−iE0τ = i(−E0τ +
2qπ ). Therefore the periodized time evolution operator with branch cut at −ε = 0 can be obtained as

Uε=0(k,r,t) = U (k,r,t) exp
[
iH eff

ε=0(k,r)t
] = (1 − P )e−iE0tei(E0−2qπ/τ )t + P eiE0tei[−E0+2(q+1)π/τ ]t

= (1 − P )e−iqωt + P ei(q+1)ωt . (B17)

Its inverse matrix is

U−1
ε=0(k,r,t) = (1 − P )eiqωt + P e−i(q+1)ωt . (B18)

Straightforwardly, we have

U−1
ε=0∂tUε=0 = −iqω + i(2q + 1)ωP (B19)

and

U−1
ε=0∂iUε=0 = uq(t)P∂iP + vq(t)∂iP , (B20)

where we have defined the shorthand notations

uq(t) = 2{1 − cos[(2q + 1)ωt]}, vq(t) = ei(2q+1)ωt − 1. (B21)

Inserting them into Eq. (29), we have

W (Uε=0) = (d + D + 1)Kd+D+1

∫
T d×SD×S1

ddkdDrdtTr
{
εα1α2···αd+D [−iqω + i(2q + 1)ωP ]

(
uqP∂α1P + vq∂α1P

) · · ·(
uqP∂αd+D

P + vq∂αd+D
P
)}

. (B22)

Due to the Levi-Civita symbol, the −iqω term in “[−iqω + i(2q + 1)ωP ]” can be discarded.
The rest part of the calculation is similar to Appendix B 1, and the final result can be obtained as

W (Uε=0) = (2q + 1)K̃d+D

∫
T d×SD

ddkdDrTr
[
εα1α2···αd+DP ∂α1P · · · ∂αd+D

P
]
, (B23)

which is Eq. (39) in the main text. This result is consistent with the illustrative Fig. 2. As can be appreciated from the above
calculations, the branch cut of logarithm plays a key role. All the differences among different ω’s come from the location of the
branch cut.

APPENDIX C: DERIVATIONS OF USEFUL PROPERTIES OF WINDING NUMBER AND WINDING NUMBER DENSITY

1. The winding number density is real

The winding number density w(Uε) is real [see Sec. V A for the definition of w(Uε)]. Although this should be a well
established mathematical fact, we give an explicit derivation here because this calculation can serve as a warm up exercise for
later calculations.
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To be transparent in the complex conjugation, we extract the “i” factors in the expression of the winding number density
w(Uε), writing it as

w(Uε) = K ′
d+D+1(i)

d+D
2 +1Tr

[
εα1α2···αd+D+1

(
U−1

ε ∂α1Uε

) · · · (U−1
ε ∂αd+D+1Uε

)]
, (C1)

where K ′
d+D+1 is a real number:

K ′
d+D+1 = (−1)

d+D
2
(

d+D
2

)
!

(d + D + 1)!

(
1

2π

) d+D
2 +1

. (C2)

The expression in Eq. (C1) will be useful in keeping track of the signs in the complex conjugation (for example, see the
calculations below and Appendix C 2 a).

The complex conjugate of the winding number density can be calculated as follows:

w∗(Uε) = K ′
d+D+1(i)

d+D
2 +1(−1)

d+D
2 +1Tr

[
εα1α2···αd+D+1

(
UT

ε ∂α1U
∗
ε

) · · · (UT
ε ∂αd+D+1U

∗
ε

)]
= K ′

d+D+1(i)
d+D

2 +1(−1)
d+D

2 +1Tr
{
εα1α2···αd+D+1

[(
∂αd+D+1U

†
ε

)
Uε

] · · · [(∂α1U
†
ε

)
Uε

]}
= K ′

d+D+1(i)
d+D

2 +1(−1)
d+D

2 +1Tr
{
εα1α2···αd+D+1

[(
∂αd+D+1U

−1
ε

)
Uε

] · · · [(∂α1U
−1
ε

)
Uε

]}
= K ′

d+D+1(i)
d+D

2 +1(−1)
d+D

2 +1Tr
[
εα1α2···αd+D+1

(−U−1
ε ∂αd+D+1Uε

) · · · (−U−1
ε ∂α1Uε

)]
= K ′

d+D+1(i)
d+D

2 +1(−1)
d+D

2 +1(−1)
(d+D)(d+D+1)

2 (−1)d+D+1Tr
[
εαd+D+1αd+D ···α1

(
U−1

ε ∂αd+D+1Uε

) · · · (U−1
ε ∂α1Uε

)]
= K ′

d+D+1(i)
d+D

2 +1(−1)
(d+D+2)2

2 Tr
[
εαd+D+1αd+D ···α1

(
U−1

ε ∂αd+D+1Uε

) · · · (U−1
ε ∂α1Uε

)]
= K ′

d+D+1(i)
d+D

2 +1Tr
[
εαd+D+1αd+D ···α1

(
U−1

ε ∂αd+D+1Uε

) · · · (U−1
ε ∂α1Uε

)] = w(Uε), (C3)

in which we have used the fact that (−1)(d+D+2)2/2 = 1 because d + D is an even integer. In fact, the winding number makes
sense only when d + D is an even integer, otherwise its expression would yield zero by definition.

2. Symmetry properties of the winding number density of the nonchiral classes

a. Symmetry properties of winding number density of class D and class C

In this Appendix, we would like to establish Eqs. (70) and (73) in the main text. Equation (26) is a symmetry relation between
periodized time evolution operators with opposite branch cut, ε and −ε. At the special point ε = 0, the branch cut becomes the
same at the left hand side and the right hand side, and the symmetry becomes

C−1Uε=0(k,r,t)C = U ∗
ε=0(−k,r,t) exp

(
i
2πt

τ

)
. (C4)

The winding number density can be written in the form of Eq. (C1):

w(Uε) = K ′
d+D+1(i)

d+D
2 +1Tr

[
εα1α2···αd+D+1

(
U−1

ε ∂α1Uε

) · · · (U−1
ε ∂αd+D+1Uε

)]
, (C5)

where K ′
d+D+1 is a real number as defined in Eq. (C2). The factors containing “i” are explicit in this expression.

To establish the PHS relation, given by Eq. (70), of the winding number density at ε = 0, we do the following somewhat
lengthy calculations:

w(Uε=0)(k,r,t) = K ′
d+D+1(i)

d+D
2 +1Tr

{
εα1α2···αd+D+1

[(
C−1U−1

ε=0C
)
∂α1

(
C−1Uε=0C

)] · · · [(C−1U−1
ε=0C

)
∂αd+D+1 (C−1Uε=0C)

]}
= K ′

d+D+1(i)
d+D

2 +1Tr

{
εα1α2···αd+D+1

[
exp

(
−i

2πt

τ

)
U−1∗

ε=0 (−k,r,t)∂α1

(
U ∗

ε=0(−k,r,t) exp

(
i
2πt

τ

))]
· · ·[

exp

(
−i

2πt

τ

)
U−1∗

ε=0 (−k,r,t)∂αd+D+1

(
U ∗

ε=0(−k,r,t) exp

(
i
2πt

τ

))]}
= K ′

d+D+1(i)
d+D

2 +1Tr
{
εα1α2···αd+D+1

[
U−1∗

ε=0 (−k,r,t)∂α1U
∗
ε=0(−k,r,t)

] · · · [U−1∗
ε=0 (−k,r,t)∂αd+D+1U

∗
ε=0(−k,r,t)

]}
+ (d + D + 1)K ′

d+D+1(i)
d+D

2 +1Tr

{
εα1α2···αd+D

[
exp

(
−i

2πt

τ

)
U−1∗

ε=0 (−k,r,t)∂α1U
∗
ε=0(−k,r,t)

]
· · ·

[
U−1∗

ε=0 (−k,r,t)∂αd+D−1U
∗
ε=0(−k,r,t)

][
U−1∗

ε=0 (−k,r,t)∂αd+D
U ∗

ε=0(−k,r,t)
][

∂t exp

(
i
2πt

τ

)]}
, (C6)
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where we have inserted a number of identity matrix CC−1 in the first line. In the last expression, the last term (d + D +
1)K ′

d+D+1(i)
d+D

2 +1Tr{εα1α2···αd+D · · · } is actually zero due to the Levi-Civita symbol εα1α2···αd+D . Therefore the winding number
becomes

w(Uε=0)(k,r,t) = K ′
d+D+1(i)

d+D
2 +1Tr

{
εα1α2···αd+D+1

[
U−1∗

ε=0 (−k,r,t)∂α1U
∗
ε=0(−k,r,t)

] · · · [U−1∗
ε=0 (−k,r,t)∂αd+D+1U

∗
ε=0(−k,r,t)

]}
= w∗(Uε=0)(−k,r,t)(−1)(d+D)/2+1(−1)d = w∗(Uε=0)(−k,r,t)(−1)2d+1−δ/2

= w(Uε=0)(−k,r,t)(−1)2d+1−δ/2 = w(Uε=0)(−k,r,t)(−1)1−δ/2, (C7)

which is Eq. (70) in the main paper. In this calculation, the factor (−1)(d+D)/2+1 and (−1)d comes from the complex conjugation
of (i)

d+D
2 +1 and the inversion of k (i.e., ∂

∂kj
= − ∂

∂(−kj ) , for j = 1,2, . . . ,d), respectively. The simple fact that the complex

conjugation of (i)(d+D)/2+1 generates a (−1)(d+D)/2+1 factor plays an interesting role.
Now we turn to Eq. (26) with ε = π , which is a symmetry relation between the periodized time evolution operator with branch

cut at ε = π and −π . It is not yet an apparent symmetry relation of Uε=π , nevertheless, we can derive such a relation. It follows
from Eq. (26) that

C−1Uε=π (k,r,t)C = U ∗
ε=−π (−k,r,t) exp

(
i
2πt

τ

)
, (C8)

where the right-hand side can be transformed to

U ∗
ε=−π (−k,r,t) exp

(
i
2πt

τ

)
= U ∗(−k,r,t) exp

(−iH eff*
ε=−π t

)
exp

(
i
2πt

τ

)

= U ∗(−k,r,t) exp

{
−i

[
i

τ
ln−ε=π (U (−k,r,τ ))

]∗
t

}
exp

(
i
2πt

τ

)

= U ∗(−k,r,t) exp

{
−i

[
i

τ
ln−ε=−π (U (−k,r,τ )) + i

τ
2πi

]∗
t

}
exp

(
i
2πt

τ

)

= U ∗
ε=π (−k,r,t) exp

(
i
4πt

τ

)
, (C9)

which, after insertion into Eq. (C8), leads to Eq. (72) in the main text. In this calculation, we have used the mathematical identity

ln−ε+2π (eiφ) = ln−ε(eiφ) + 2πi, (C10)

which is readily seen by taking φ ∈ [−ε − 2π,−ε], thus, we have ln−ε eiφ = iφ; on the other hand, it means that φ + 2π ∈
[−ε,−ε + 2π ], therefore, ln−ε+2π eiφ = ln−ε+2π ei(φ+2π) = i(φ + 2π ), which establishes the desired identity, Eq. (C10).

After these preparations, Eq. (73) in the main text can be derived. In fact, we have

w(Uε=π )(k,r,t) = K ′
d+D+1(i)

d+D
2 +1Tr

{
εα1α2···αd+D+1

[(
C−1U−1

ε=π (k,r,t)C
)
∂α1 (C−1Uε=π (k,r,t)C)

] · · ·[(
C−1U−1

ε=π (k,r,t)C
)
∂αd+D+1 (C−1Uε=π (k,r,t)C)

]}
= K ′

d+D+1(i)
d+D

2 +1 × Tr

{
εα1α2···αd+D+1

[
exp

(
−i

4πt

τ

)
U−1∗

ε=π (−k,r,t)∂α1

(
U ∗

ε=π (−k,r,t) exp

(
i
4πt

τ

))]
· · ·[

exp

(
−i

4πt

τ

)
U−1∗

ε=π (−k,r,t)∂αd+D+1

(
U ∗

ε=π (−k,r,t) exp

(
i
4πt

τ

))]}
, (C11)

which resembles the situation of Eq. (C6). In fact, it is almost the same except that 2πt/τ is replaced by 4πt/τ . The same
calculation below Eq. (C6) leads to

w(Uε=π )(k,r,t) = w∗(Uε=π )(−k,r,t)(−1)(d+D)/2+1(−1)d = w∗(Uε=π )(−k,r,t)(−1)2d+1−δ/2

= w(Uε=π )(−k,r,t)(−1)2d+1−δ/2 = w(Uε=π )(−k,r,t)(−1)1−δ/2, (C12)

which is Eq. (73) in the main text.
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b. Symmetry properties of winding number density of class AI and class AII

In this Appendix, we would like to establish Eq. (75) in the main text. Taking advantage of Eq. (27), the winding number
density in Eq. (C1) can be transformed to

w(Uε)(k,r,t)

= K ′
d+D+1(i)

d+D
2 +1Tr

{
εα1α2···αd+D+1T −1U−1

ε (k,r,t)T ∂α1 [T −1Uε(k,r,t)T ] · · · T −1U−1
ε (k,r,t)T ∂αd+D+1 [T −1Uε(k,r,t)T ]

}
= K ′

d+D+1(i)
d+D

2 +1Tr
{
εα1α2···αd+D+1U−1∗

ε (−k,r,−t)∂α1U
∗
ε (−k,r,−t) · · · U−1∗

ε (−k,r,−t)∂αd+D+1U
∗
ε (−k,r,−t)

}
= w∗(Uε)(−k,r,−t)(−1)(d+D)/2+1(−1)d+1 = w∗(Uε)(−k,r,−t)(−1)2d+2−δ/2 = w(Uε)(−k,r,−t)(−1)2−δ/2, (C13)

which is Eq. (75) in the main text. Again, the simple mathematical fact [(i)(d+D)/2+1]∗ = (−1)(d+D)/2+1(i)(d+D)/2+1 plays an
interesting role in the calculation.

Compared to the case of PHS [see Eqs. (70) and (73)], there is an additional −1 factor at the right hand side of Eq. (75). It
is clear in the above calculation that this −1 factor originates from the inversion of t , which is absent in the PHS case (see the
calculation in Appendix C 2 a).

c. Symmetry of the Wess-Zumino-Witten terms of classes D and C

Taking Eq. (89) as an input, we have

w
(
U I

ε=0

)
(k,r,t,λ)

= K ′
d+D+2(i)

d+D+1
2 +1Tr

{
εα1α2···αd+D+2

[
C−1UI−1

ε=0 (k,r,t,λ)C∂α1

(
C−1U I

ε=0(k,r,t,λ)C
)] · · ·[

C−1UI−1
ε=0 (k,r,t,λ)C∂αd+D+2

(
C−1U I

ε=0(k,r,t,λ)C
)]}

= K ′
d+D+2(i)

d+D+1
2 +1Tr

{
εα1α2···αd+D+2

[
exp

(
−i

2πt

τ

)
U II−1∗

ε=0 (−k,r,t,−λ)∂α1

(
U II∗

ε=0(−k,r,t,−λ) exp

(
i
2πt

τ

))]
· · ·[

exp

(
−i

2πt

τ

)
U II−1∗

ε=0 (−k,r,t,−λ)∂αd+D+2

(
U II∗

ε=0(−k,r,t,−λ) exp

(
i
2πt

τ

))]}
= K ′

d+D+2(i)
d+D+1

2 +1Tr
[
εα1α2···αd+D+2U II−1∗

ε=0 (−k,r,t,−λ)∂α1U
II∗
ε=0(−k,r,t,−λ) · · ·

U II−1∗
ε=0 (−k,r,t,−λ)∂αd+D+2U

II∗
ε=0(−k,r,t,−λ)

]
+ (d + D + 2)K ′

d+D+2(i)
d+D+1

2 +1Tr

{
εα1α2···αd+D+1 exp

(
−i

2πt

τ

)[
U II−1∗

ε=0 (−k,r,t,−λ)∂α1U
II∗
ε=0(−k,r,t,−λ)

] · · ·
[
U II−1∗

ε=0 (−k,r,t,−λ)∂αd+D+1U
II∗
ε=0(−k,r,t,−λ)

][
∂t exp

(
i
2πt

τ

)]}
. (C14)

The last term proportional to d + D + 2 automatically vanishes due to the Levi-Civita symbol εα1α2···αd+D+1 (remember that
d + D + 1 here is an even integer), therefore,

w
(
U I

ε=0

)
(k,r,t,λ) = K ′

d+D+2(i)
d+D+1

2 +1Tr
[
εα1α2···αd+D+2U II−1∗

ε=0 (−k,r,t,−λ)∂α1U
II∗
ε=0(−k,r,t,−λ) · · ·

U II−1∗
ε=0 (−k,r,t,−λ)∂αd+D+2U

II∗
ε=0(−k,r,t,−λ)

]
= w∗(U II

ε=0

)
(−k,r,t,−λ)(−1)(d+D+1)/2+1(−1)d+1 = w∗(U II

ε=0

)
(−k,r,t,−λ)(−1)2d+2−(δ−1)/2

= w
(
U II

ε=0

)
(−k,r,t,−λ)(−1)2d+2−(δ−1)/2 = w

(
U II

ε=0

)
(−k,r,t,−λ)(−1)2−(δ−1)/2, (C15)

which is Eq. (91) in the main text. For ε = π , we can take Eq. (90) as input, and do similar calculations to obtain Eq. (92) in the
main text (except that the e2πit/τ factor involved in the calculation is replaced by e4πit/τ ).

d. Symmetry of the Wess-Zumino-Witten terms of classes AI and AII

Taking Eq. (111) as an input, we have

w
(
U I

ε

)
(k,r,t,λ) = w

(
T −1U I

εT
)
(k,r,t,λ) = K ′

d+D+2(i)
d+D+1

2 +1Tr
[
εα1α2···αd+D+2U II−1∗

ε (−k,r,−t,−λ)∂α1U
II∗
ε (−k,r,−t,−λ) · · ·

U II−1∗
ε (−k,r,−t,−λ)∂αd+D+2U

II∗
ε (−k,r,−t,−λ)

]
= w∗(U II

ε

)
(−k,r,−t,−λ)(−1)(d+D+1)/2+1(−1)d+2 = w∗(U II

ε

)
(−k,r,−t,−λ)(−1)2d+3−(δ−1)/2

= w
(
U II

ε

)
(−k,r,−t,−λ)(−1)3−(δ−1)/2, (C16)

which is Eq. (112) in the main text.
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3. Symmetry properties of winding number density or winding number of chiral classes

a. Class CI

In this Appendix, we would like to prove Eq. (130) in the main text. Taking advantage of Eqs. (128) and (129), we see that
the winding number satisfies

W (U+
ε=0(k,r))

= K ′
d+D(i)

d+D+1
2

∫
T d×SD

ddkdDrTr
{
εα1α2···αd+D

[
(U+

ε=0(k,r))−1∂α1U
+
ε=0(k,r)

] · · · [(U+
ε=0(k,r))−1∂αd+D

U+
ε=0(k,r)

]}
= K ′

d+D(i)
d+D+1

2

∫
T d×SD

ddkdDrTr
{
εα1α2···αd+D

[
(U−

ε=0(−k,r))−1∂α1U
−
ε=0(−k,r)

]∗ · · · [(U−
ε=0(−k,r))−1∂αd+D

U−
ε=0(−k,r)

]∗}
=
∫

ddkdDr w∗(U−
ε=0)(−k,r)(−1)(d+D+1)/2(−1)d = W (U−

ε=0(k,r))(−1)(d+D+1)/2(−1)d

= −W (U+
ε=0(k,r))(−1)2d−(δ−1)/2 = W (U+

ε=0(k,r))(−1)1−(δ−1)/2, (C17)

where the real coefficient K ′
d+D is defined by Eq. (C2). In the above calculation, we have used Eq. (59), namely W (U−

ε=0(k,r)) =
−W (U+

ε=0(k,r)). Thus Eq. (130) in the main text has been proved. We emphasize that Eq. (59) is an identity of the winding
numbers instead of the winding number density, therefore, Eq. (130) is also a symmetry relation of winding numbers, not the
winding number densities.

b. Class DIII

In this section, we would like to prove Eq. (138) in the main text. Taking advantage of Eqs. (136) and (137), the winding
numbers satisfy

W (U+
ε=0(k,r)) = K ′

d+D(i)
d+D+1

2

∫
ddkdDr Tr

{
εα1α2···αd+D

[
(U+

ε=0(k,r))−1∂α1U
+
ε=0(k,r)

] · · · [(U+
ε=0(k,r))−1∂αd+D

U+
ε=0(k,r)

]}
= K ′

d+D(i)
d+D+1

2

∫
ddkdDr Tr

{
εα1α2···αd+D

[
(−U−

ε=0(−k,r))−1∂α1 (−U−
ε=0(−k,r))

]∗ · · ·[
(−U−

ε=0(−k,r))−1∂αd+D
(−U−

ε=0(−k,r))
]∗}

=
∫

ddkdDr w∗(U−
ε=0)(−k,r)(−1)(d+D+1)/2(−1)d = W (U−

ε=0(k,r))(−1)(d+D+1)/2(−1)d

= −W (U+
ε=0(k,r))(−1)2d−(δ−1)/2 = W (U+

ε=0(k,r))(−1)1−(δ−1)/2, (C18)

which is Eq. (138) in the main text. Just like the case of class CI studied in Appendix C 3 a, we have used Eq. (59) in this
calculation. Therefore, the resultant Eq. (138) is a statement about the winding numbers instead of winding number densities.

c. Class BDI

In this Appendix, we would like to prove Eq. (146) in the main text. Unlike Eqs. (130) and (138), which are only statements
about winding numbers, Eq. (146) is a statement of winding number density.

Taking Eqs. (144) and (145) as inputs, we can show that the winding number density satisfies

w(U+
ε=0)(k,r) = K ′

d+D(i)
d+D+1

2 Tr
{
εα1α2···αd+D

[
(U+

ε=0(k,r))−1∂α1U
+
ε=0(k,r)

] · · · [(U+
ε=0(k,r))−1∂αd+D

U+
ε=0(k,r)

]}
= K ′

d+D(i)
d+D+1

2 Tr
{
εα1α2···αd+D

[
(U+

ε=0(−k,r))−1∂α1 (U+
ε=0(−k,r))

]∗ · · · [(U+
ε=0(−k,r))−1∂αd+D

(U+
ε=0(−k,r))

]∗}
= w∗(U+

ε=0)(−k,r)(−1)(d+D+1)/2(−1)d = w∗(U+
ε=0)(−k,r)(−1)2d−(δ−1)/2 = w(U+

ε=0)(−k,r)(−1)−(δ−1)/2, (C19)

where the real coefficient K ′
d+D is defined by Eq. (C2). Thus Eq. (146) in the main text has been established.

d. Class CII

In this Appendix, we would like to prove Eqs. (154) and (157). Taking Eqs. (152) and (153) as inputs, we can show that

w(U+
ε=0)(k,r) = K ′

d+D(i)
d+D+1

2 Tr
{
εα1α2···αd+D

[
(U+

ε=0(k,r))−1∂α1U
+
ε=0(k,r)

] · · · [(U+
ε=0(k,r))−1∂αd+D

U+
ε=0(k,r)

]}
= K ′

d+D(i)
d+D+1

2 Tr
{
εα1α2···αd+D

[
σy(U+

ε=0(−k,r))−1∗σy∂α1 (σy(U+
ε=0(−k,r))∗σy)

] · · ·[
σy(U+

ε=0(−k,r))−1∗σy∂αd+D
(σy(U+

ε=0(−k,r))∗σy)
]}

= w∗(U+
ε=0)(−k,r)(−1)(d+D+1)/2(−1)d = w(U+

ε=0)(−k,r)(−1)2d−(δ−1)/2 = w(U+
ε=0)(−k,r)(−1)−(δ−1)/2. (C20)

Thus Eq. (154) in the main text has been proved. Equation (157) can be proved similarly.
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APPENDIX D: REPRESENTATIVE DIRAC
HAMILTONIANS AND A PROOF OF 2Z

TOPOLOGICAL INVARIANTS

In this Appendix, we study representative Dirac Hamil-
tonians for all symmetry classes, which are useful in model
constructions of Floquet topological insulators and Floquet
topological defects. We also take these representative Dirac
Hamiltonians to explain the reason why the topological
invariants always take even-integer values when d − D − s =
4 (mod 8). Again, the combination δ = d − D naturally comes
out.

To proceed, we define the following Dirac matrices for a
pair of non-negative integers l and m (l + m is an even integer):

�1
(l+m+1) = σ1 ⊗ σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸

(l+m)/2−1

,

�2
(l+m+1) = σ2 ⊗ σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸

(l+m)/2−1

,

�3
(l+m+1) = σ0 ⊗ σ1 ⊗ σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸

(l+m)/2−2

,

�4
(l+m+1) = σ0 ⊗ σ2 ⊗ σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸

(l+m)/2−2

,

· · ·
�l+m−1

(l+m+1) = σ0 ⊗ · · · ⊗ σ0︸ ︷︷ ︸
(l+m)/2−1

⊗σ1,

�l+m
(l+m+1) = σ0 ⊗ · · · ⊗ σ0︸ ︷︷ ︸

(l+m)/2−1

⊗σ2,

�l+m+1
(l+m+1) = σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸

(l+m)/2

. (D1)

Note that �a
(l+m+1) is real when a is odd, and purely imaginary

when a is even. These expressions of Dirac matrices are
standard (for instance, see Ref. [12]), though the notation
“l + m” is specific to the present study of topological defects.
Because the combination l − m will appear frequently, let us
define the shorthand notation

η = l − m, (D2)

which is always an even integer.
Let us introduce two important matrices, which are crucial

in studying the symmetries of Dirac Hamiltonians. They are
given as

B1
(l+m+1) =

∏
even a�m

�a
(l+m+1)

∏
m<odd a�m+l

�a
(l+m+1), (D3)

B2
(l+m+1) =

∏
odd a�m

�a
(l+m+1)

∏
m<even a�m+l

�a
(l+m+1). (D4)

To be more explicit, when l and m are odd integers (recall
that l + m is always an even integer), these two matrices

read

B1
(l+m+1) = �2

(l+m+1)�
4
(l+m+1) · · ·

�m−1
(l+m+1)�

m+2
(l+m+1)�

m+4
(l+m+1) · · ·�l+m−1

(l+m+1),

B2
(l+m+1) = �1

(l+m+1)�
3
(l+m+1) · · ·

�m
(l+m+1)�

m+1
(l+m+1)�

m+3
(l+m+1) · · ·�l+m

(l+m+1), (D5)

in which the number of Dirac matrices at the right hand side
is m+l

2 − 1 and m+l
2 + 1, respectively; when l and m are even

integers, the B
1,2
(l+m+1) matrices are

B1
(l+m+1) = �2

(l+m+1)�
4
(l+m+1) · · ·

�m
(l+m+1)�

m+1
(l+m+1)�

m+3
(l+m+1) · · ·�l+m−1

(l+m+1),

B2
(l+m+1) = �1

(l+m+1)�
3
(l+m+1) · · ·

�m−1
(l+m+1)�

m+2
(l+m+1)�

m+4
(l+m+1) · · ·�l+m

(l+m+1), (D6)

in which the number of Dirac matrices at the right hand side
is m+l

2 . These two matrices are generalizations of the ones of
Ref. [12], which are useful in constructing Dirac Hamiltonians
of topological insulators with symmetries. Our generalizations
here are useful in model construction of topological defects.
The introduction of the two integers l and m, instead of a single
integer like Ref. [12], is to accommodate both momentumlike
and spacelike coefficients (This will become clear shortly).
When m = 0, the definition of B

1,2
(l+m+1) reduces to that of

Ref. [12].
The construction of B

1,2
(l+m+1) is motivated by the following

useful mathematical relations, which will be exploited soon.
The first relation is(

B1
(l+m+1)

)−1
�a

(l+m+1)B
1
(l+m+1)

=
{

(−1)−η/2�a∗
(l+m+1), a � m ,

(−1)−η/2−1�a∗
(l+m+1), m < a � l + m .

(D7)

The additional “−1” sign for m < a � l + m will be crucial
shortly. Eq. (D7) can be verified as follows. For odd-integer l

and m, we have(
B1

(l+m+1)

)−1
�a

(l+m+1)B
1
(l+m+1)

=
{

(−1)l−η/2−1�a∗
(l+m+1), a � m ,

(−1)l−η/2−2�a∗
(l+m+1), m < a � l + m ;

(D8)

while for even-integer l and m, we have(
B1

(l+m+1)

)−1
�a

(l+m+1)B
1
(l+m+1)

=
{

(−1)l−η/2�a∗
(l+m+1), a � m ,

(−1)l−η/2−1�a∗
(l+m+1), m < a � l + m .

(D9)

Thus Eq. (D7) is proved. Similarly, for B2
(l+m+1), we have(

B2
(l+m+1)

)−1
�a

(l+m+1)B
2
(l+m+1)

=
{

(−1)−η/2+1�a∗
(l+m+1), a � m ,

(−1)−η/2�a∗
(l+m+1), m < a � l + m .

(D10)

We emphasize that the coefficients at the right hand side, such
as (−1)−η/2, depend only on η = l − m (not on l + m), which
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heralds the fact that the topological classifications depend only
on δ = d − D (not on d + D).

The matrices B
1,2
(l+m+1) have the following important prop-

erties. For odd-integer l and m,

B1∗
(l+m+1)B

1
(l+m+1) = (−1)(m−1)/2(−1)

[(l+m−2)/2−1](l+m−2)/2
2

= (−1)(l−η−1)/2(−1)
(l−η/2−2)(l−η/2−1)

2

= (−1)−η/4(−1)
(l−η/2−1)2

2 ; (D11)

similarly, for even-integer l and m,

B1∗
(l+m+1)B

1
(l+m+1) = (−1)m/2(−1)

[(l+m−2)/2](l+m)/2
2

= (−1)(l−η)/2(−1)
(l−η/2)(l−η/2−1)

2

= (−1)−η/4(−1)
(l−η/2)2

2 . (D12)

It follows that, irrespective of the parity of l and m,

B1∗
(l+m+1)B

1
(l+m+1) =

{
(−1)−η/4, η = 8n/8n + 4,

(−1)−(η−2)/4, η = 8n + 2/8n + 6,

(D13)

where n stands for an integer. Equivalently, we have

B1∗
(l+m+1)B

1
(l+m+1) =

{
1, η = 8n/8n + 2,

−1, η = 8n + 4/8n + 6.
(D14)

Similarly, for odd-integer l and m, we have

B2∗
(l+m+1)B

2
(l+m+1) = (−1)η/4(−1)

(m+η/2+1)2

2 , (D15)

while for even-integer l and m, we have

B2∗
(l+m+1)B

2
(l+m+1) = (−1)η/4(−1)

(m+η/2)2

2 . (D16)

Therefore we have, irrespective of the parity of l and m,

B2∗
(l+m+1)B

2
(l+m+1) =

{
(−1)η/4, η = 8n/8n + 4,

(−1)(η+2)/4, η = 8n + 2/8n + 6.

(D17)

In other words, we have

B2∗
(l+m+1)B

2
(l+m+1) =

{
1, η = 8n/8n + 6,

−1, η = 8n + 2/8n + 4.
(D18)

Two more useful matrices are defined as

B̃1
(l+m+1) = B1

(l+m+1)�
l+m
(l+m+1),

B̃2
(l+m+1) = B2

(l+m+1)�
l+m−2
(l+m+1), (D19)

which satisfy

B̃1∗
(l+m+1)B̃

1
(l+m+1) =

{
(−1)−(η−4)/4, η = 8n/8n + 4,

(−1)−(η−2)/4, η = 8n + 2/8n + 6,

(D20)

and

B̃2∗
(l+m+1)B̃

2
(l+m+1) =

{
(−1)η/4, η = 8n/8n + 4,

(−1)(η−2)/4, η = 8n + 2/8n + 6.

(D21)

Equivalently, we have

B̃1∗
(l+m+1)B̃

1
(l+m+1) =

{
1, η = 8n + 2/8n + 4,

−1, η = 8n/8n + 6,
(D22)

and

B̃2∗
(l+m+1)B̃

2
(l+m+1) =

{
1, η = 8n/8n + 2,

−1, η = 8n + 4/8n + 6.
(D23)

Following the scheme of dimensional reduction of static
topological insulators without topological defects [12,117], we
construct four generations of representative Dirac Hamiltoni-
ans for Floquet topological defects. The Bloch Hamiltonian of
the first generation is

(i) Hl+m
(l+m+1)(k,r,t) =

l+m∑
a=1

da(k,r)�a
(l+m+1) + m(t)�l+m+1

(l+m+1),

(D24)

in which the coefficients da(k,r)’s satisfy

da(k,r) =
{
da(−k,r), a � m,

−da(−k,r), m < a � l + m,
(D25)

in other words, da’s (1 � a � m) are spacelike, and da’s (m <

a � l + m) are momentumlike. For simplicity, we take m(t)
to be an even function of t , namely m(t) = m(−t). In this
generation, we have d = l,D = m, and δ = η. In the treatment
of static systems [12,117], the momentumlike coefficients are
simply taken as ki (i = 1,2, · · · ,d), nevertheless, we keep the
more general form here. We can also take m(t) as a function
of k and r, with the property m(k,r,t) = m(−k,r,t). Most of
the model Hamiltonians we use in the main text take the Dirac
forms. For example, the Dirac Hamiltonians in Eqs. (224) and
(235) describe Floquet line defects in the three-dimensional
space. In these two cases, we have l = 3,m = 1, therefore the
rank of Dirac matrices is 2(l+m)/2 = 4.

According to Eq. (D7), this Hamiltonian satisfies the
symmetry (

B1
(l+m+1)

)−1
Hl+m

(l+m+1)(k,r,t)B1
(l+m+1)

= (−1)−δ/2Hl+m∗
(l+m+1)(−k,r,±t). (D26)

The symmetry matrix B1
(l+m+1) satisfies Eq. (D14), in which

we can replace η by δ. We emphasize that replacing B1
(l+m+1)

by B2
(l+m+1) at the left hand side of Eq. (D26) does not produce

a simple relation, because the mass term would acquire an
opposite sign compared to all other terms at the right-hand
side.

When δ = 4n, the system satisfies the time-reversal sym-
metry, therefore we can write B1

(l+m+1) = T ; while when
δ = 4n + 2, the system satisfies the particle-hole symmetry,
and we can write B1

(l+m+1) = C. When δ = 8n, we have
T ∗T = 1, therefore the Bloch Hamiltonian belongs to the
AI class. When δ = 8n + 4, we have T ∗T = −1, therefore
the Hamiltonian belong to the AII class. Similarly, when
δ = 8n + 2, we have C∗C = 1 and the Hamiltonian belongs
to class D, while when δ = 8n + 6, we have C∗C = −1 and
the Hamiltonian belongs to the class C (see Table II).
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TABLE II. Symmetry classes of representative Dirac Hamiltonians.

Symmetry δ = d − D

AZ
0 1 2 3 4 5 6 7

AI i iii

BDI ii iv

D i iii

DIII ii iv

AII iii i

CII iv ii

C iii i

CI iv ii

The second generation is obtained from the first generation
by removing one of the momentumlike term dl+m:

(ii) Hl+m−1
(l+m+1)(k,r,t)

=
l+m−1∑

a=1

da(k,r)�a
(l+m+1) + m(t)�l+m+1

(l+m+1). (D27)

Now we have d = l − 1 and D = m, and δ = η − 1. Ac-
cording to Eqs. (D7) and (D19), the Hamiltonian has the
symmetries (

B1
(l+m+1)

)−1
Hl+m−1

(l+m+1)(k,r,t)B1
(l+m+1)

= (−1)−(δ+1)/2Hl+m−1∗
(l+m+1)(−k,r,±t) (D28)

and (
B̃1

(l+m+1)

)−1
Hl+m−1

(l+m+1)(k,r,t)B̃1
(l+m+1)

= (−1)−(δ+1)/2−1Hl+m−1∗
(l+m+1)(−k,r,±t). (D29)

Apparently, the Hamiltonian enjoys a chiral symmetry with
S = �l+m

(l+m+1). The symmetry matrices B1
(l+m+1) and B̃1

(l+m+1)
satisfy Eqs. (D14) and (D22), which are re-expressed in terms
of δ as

B1∗
(l+m+1)B

1
(l+m+1) =

{
1, δ = 8n − 1/8n + 1,

−1, δ = 8n + 3/8n + 5,
(D30)

and

B̃1∗
(l+m+1)B̃

1
(l+m+1) =

{
1, δ = 8n + 1/8n + 3,

−1, δ = 8n − 1/8n + 5.
(D31)

As an example, when δ = 8n + 1, the Hamiltonian enjoys both
the time-reversal symmetry and particle-hole symmetry with
T ∗T = 1 and C∗C = 1, which indicates that it belongs to the
class BDI. Similarly, when δ = 8n + 3, one can check that the
Hamiltonian belongs to the class DIII. The symmetry classes
of other values of δ are listed in Table II.

We remark that the representative Dirac Hamiltonians for
Z2 topological classes can be obtained from the Hamiltonians
(i) and (ii) by removing one or two momentumlike terms (thus
reducing δ by 1 or 2), while keeping the same symmetries. For
example, the representative Dirac Hamiltonian for class AII
in the dimension δ = 3 can be obtained from the Hamiltonian
(i) by removing a momentumlike term, which is simply the
Hamiltonian (ii). We have seen that the Hamiltonian (ii) also
serves as a representative for the class DIII in dimension δ = 3.

This is not a problem; the same Dirac Hamiltonian can be
taken as the representative of more than one symmetry classes,
though the symmetry operation is different for each class.
This is also true for static systems. In fact, for the case of
d = 3,D = 0, the BdG Hamiltonian of 3He-B phase (class
DIII) and the model Hamiltonian of the topological insulator
Bi2Se3 (class AII) indeed take the same form (up to a basis
change) [6].

Apparently, the Hamiltonians (i) and (ii) can also be taken
as the representative Dirac Hamiltonians of class A and class
AIII, respectively, though we focus on the eight real classes in
this Appendix.

The third generation of Bloch Hamiltonian is given as

(iii) Hl+m−2
(l+m+1)(k,r,t)

=
l+m−2∑

a=1

da(k,r)�a
(l+m+1) + im(t)�l+m+1

(l+m+1)�
l+m
(l+m+1)�

l+m−1
(l+m+1).

(D32)

Now we have d = l − 2, D = m, and δ = η − 2. We
emphasize that the mass term has been chosen as
im(t)�l+m+1

(l+m+1)�
l+m
(l+m+1)�

l+m−1
(l+m+1). The m(t)�l+m+1

(l+m+1) term is not
qualified as a mass term because the resultant Hamiltonian
would have two chiral symmetries with chiral matrices S1 =
�l+m

(l+m+1) and S2 = �l+m−1
(l+m+1), which is not in the framework of

the tenfold way classes.
According to Eq. (D10), the Hamiltonian (iii) satisfies the

symmetry (
B2

(l+m+1)

)−1
Hl+m−2

(l+m+1)(k,r,t)B2
(l+m+1)

= (−1)−δ/2Hl+m−2∗
(l+m+1)(−k,r,±t), (D33)

in which the symmetry matrix satisfies

B2∗
(l+m+1)B

2
(l+m+1) =

{
1, δ = 8n + 4/8n + 6,

−1, δ = 8n/8n + 2.
(D34)

As an example, when δ = 8n, the Hamiltonian has the time-
reversal symmetry with T ∗T = −1 (T = B2

(l+m+1)), which
belongs to class AII.

The last generation of Dirac Hamiltonian is

(iv)Hl+m−3
(l+m+1)(k,r,t)

=
l+m−3∑

a=1

da(k,r)�a
(l+m+1) + im(t)�l+m+1

(l+m+1)�
l+m
(l+m+1)�

l+m−1
(l+m+1),

(D35)

which has d = l − 3, D = m, and δ = η − 3. Taking advan-
tage of Eqs. (D10) and (D19), we can see that this Hamiltonian
has the symmetries(

B2
(l+m+1)

)−1
Hl+m−3

(l+m+1)(k,r,t)B2
(l+m+1)

= (−1)−(δ+1)/2Hl+m−3∗
(l+m+1)(−k,r,±t) (D36)

and (
B̃2

(l+m+1)

)−1
Hl+m−3

(l+m+1)(k,r,t)B̃2
(l+m+1)

= (−1)−(δ+3)/2Hl+m−3∗
(l+m+1)(−k,r,±t). (D37)
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Apparently, the Hamiltonian also has a chiral symmetry with
S = �l+m−2

(l+m+1), which is proportional to B̃2
(l+m+1)(B

2
(l+m+1))

−1.
The symmetry matrices satisfy Eqs. (D18) and (D23), which
are

B2∗
(l+m+1)B

2
(l+m+1) =

{
1, δ = 8n + 3/8n + 5,

−1, δ = 8n + 1/8n + 7,
(D38)

and

B̃2∗
(l+m+1)B̃

2
(l+m+1) =

{
1, δ = 8n + 5/8n + 7,

−1, δ = 8n + 1/8n + 3.
(D39)

As an example, when δ = 8n + 7, the Hamiltonian has both
time-reversal symmetry and particle-hole symmetry with
T ∗T = −1 (T = B2

(l+m+1)) and C∗C = 1 (C = B̃2
(l+m+1)),

which belongs to class DIII. As another example, when δ =
8n + 1, it has time-reversal symmetry and particle-hole sym-
metry with T ∗T = C∗C = −1 (C = B2

(l+m+1), T = B̃2
(l+m+1)),

which indicates that the Hamiltonian is in class CII. The
model Hamiltonian in Eq. (251) belongs to this class. In that
specific case, we should take l = 5 and m = 1 (d = l − 3 = 2,
D = m = 1) as the starting point, therefore, the Dirac matrices
are 8 × 8 ones.

Let us reemphasize that all the symmetry properties depend
only on δ = d − D, not on d + D, which is consistent with
the approach from topological invariants discussed in the main
text.

Finally, let us explain the 2Z topological invari-
ants from the perspective of Dirac Hamiltonian. We
will show that the representative Hamiltonians (iii) and
(iv) have 2Z winding numbers. Let us focus on (iii)
first. It is readily seen that Hl+m−2

(l+m+1)(k,r,t) satisfies

[Hl+m−2
(l+m+1)(k,r,t),�i

(l+m+1)�
j

(l+m+1)] = 0, in which (i,j ) =
{(l + m−1,l+m),(l + m,l + m + 1),(l + m + 1,l + m−1)},
which implies that the Hamiltonian can be made
block-diagonal. In our basis of Dirac matrices in Eq. (D1), the
Hamiltonian reads

Hl+m−2
(l+m+1)(k,r,t)

=
l+m−2∑

a=1

da(k,r)�a
(l+m−1) ⊗ σ3 + m(t)�l+m−1

(l+m−1) ⊗ σ0.

(D40)

It can also be rewritten as

Hl+m−2
(l+m+1)(k,r,t) =

(
Hl+m−2

(l+m−1)(k,r,t)

−H̄ l+m−2
(l+m−1)(k,r,t)

)
,

(D41)

in which H̄ l+m−2
(l+m−1)(k,r,t) stands for the expression obtained

from Hl+m−2
(l+m−1)(k,r,t) by replacing m(t) by −m(t):

H̄ l+m−2
(l+m−1)(k,r,t) =

l+m−2∑
a=1

da(k,r)�a
(l+m−1) − m(t)�l+m−1

(l+m−1).

(D42)

Let us introduce the matrix

D(l+m+1) =
(

I

�l+m−1
(l+m−1)

)
, (D43)

so that

D−1
(l+m+1)H

l+m−2
(l+m+1)(k,r,t)D(l+m+1) =

(
Hl+m−2

(l+m−1)(k,r,t)

Hl+m−2
(l+m−1)(k,r,t)

)
. (D44)

Now let us consider the time evolution operator. In our basis, it takes a block-diagonal form:

Ul+m−2
(l+m+1)(k,r,t)

= [
1 − i�tH l+m−2

(l+m+1)(k,r,t − �t)
][

1 − i�tH l+m−2
(l+m+1)(k,r,t − 2�t)

] · · · [1 − i�tH l+m−2
(l+m+1)(k,r,0)

]

=

⎛
⎜⎜⎜⎜⎝

[
1 − i�tH l+m−2

(l+m−1)(k,r,t − �t)
][

1 − i�tH l+m−2
(l+m−1)(k,r,t − 2�t)

]
· · · [1 − i�tH l+m−2

(l+m−1)(k,r,0)
] [

1 + i�tH̄ l+m−2
(l+m−1)(k,r,t − �t)

][
1 + i�tH̄ l+m−2

(l+m−1)(k,r,t − 2�t)
]

· · · [1 + i�tH̄ l+m−2
(l+m−1)(k,r,0)

]

⎞
⎟⎟⎟⎟⎠, (D45)

which satisfies

D−1
(l+m+1)U

l+m−2
(l+m+1)(k,r,t)D(l+m+1) =

(
Ul+m−2

(l+m−1)(k,r,t)
Ul+m−2

(l+m−1)(k,r,t)

)
. (D46)

In this way, we can further show that the periodized time evolution operator (with branch cut at ε) satisfies

D−1
(l+m+1)U

l+m−2
ε,(l+m+1)(k,r,t)D(l+m+1) =

(
Ul+m−2

ε,(l+m−1)(k,r,t)
Ul+m−2

ε,(l+m−1)(k,r,t)

)
. (D47)

Therefore the winding number becomes the sum of the
contributions from two identical blocks:

W
[
Ul+m−2

ε(l+m+1)(k,r,t)
] = 2W

[
Ul+m−2

ε(l+m−1)(k,r,t)
]
, (D48)

which is always an even integer. Similar analysis is applicable
to the (iv) generation. Therefore the winding numbers always
take even-integer values for (iii) and (iv) in Table II. Under the
assumption that any Hamiltonian can be smoothly deformed
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to a Dirac representative in the same topological class (this
assumption is quite natural because we have found a Dirac
representative for each tenfold-way class), we can see that all
the (iii)’s and (iv)’s in Table II have 2Z topological invariants.

APPENDIX E: EQUIVALENCE OF THE
EFFECTIVE-HAMILTONIAN-BASED BAND

TOPOLOGICAL INVARIANTS AND THE
FREQUENCY-DOMAIN BAND
TOPOLOGICAL INVARIANTS

As we have mentioned in the main text, there are two natural
Chern numbers of Floquet bands. The first one is defined
in terms of the effective Hamiltonian H eff , while the second
one is defined in terms of the Floquet Hamiltonian H in the
frequency-domain formulation. Let us recall their definitions
and study their relation.

The first band Chern number has been defined in the main
text [Eq. (41)]. In line with the frequency-domain formulation
to be discussed shortly, we will use the quasienergy ε instead
of the dimensionles quasienergy ε = ετ in this appendix.
Accordingly, we reproduce Eq. (41) here using the notation
of ε. For the Floquet bands with quasienergy in [ε,ε′] (0 �
ε < ε′ < ω), the band Chern number reads

C(d+D)/2(Pε,ε′)

= K̃d+D

∫
T d×SD

ddkdDr

× Tr
[
εα1α2···αd+DPε,ε′∂α1Pε,ε′ · · · ∂αd+D

Pε,ε′
]
, (E1)

in which the Floquet band projection operator Pε,ε′ =∑
ε<εn<ε′ |ψn(k,r)〉〈ψn(k,r)|, where |ψn(k,r)〉’s are the eigen-

vectors of U (k,r,τ ), or equivalently, eigenvectors of the effec-
tive Hamiltonian H eff(k,r), which is given by the logarithm of
U (k,r,τ ). The numerical coefficient K̃d+D has been defined
in Eq. (38). The simple property of Eq. (45) indicates that this
Chern number is a very natural band topological invariant,
because it is exactly the difference between the winding
numbers defined at ε′ and ε. Since Pε,ε′ is determined by
the full-period time evolution operator U (k,r,τ ), or by the
effective Hamiltonian H eff(k,r), the Chern number in Eq. (E1)
may be called the “effective-Hamiltonian-based band Chern
number”.

Nevertheless, there is yet another very natural band Chern
number, which is based on the frequency-domain formulation.
Since the frequency-domain formulation is widely used in
numerical calculations of Floquet systems, this Chern number
is also a valuable one (indeed, it has been used in the main text
of this paper). To define it, let us start from the time-dependent
Schrödinger equation

i∂t |ψn(k,r,t)〉 = H (k,r,t)|ψn(k,r,t)〉 (E2)

and take the standard Fourier transformation to the frequency
domain,

|ψn(k,r,t)〉 = exp[−iεn(k,r)t]
∑
m

exp(imωt)
∣∣φ(m)

n (k,r)
〉
,

(E3)
where εn(k,r) is the quasienergy, and |φ(m)

n (k,r)〉’s are N -
component column vectors (N is the number of static bands

if the driving is removed). In this frequency domain, the
Schrödinger equation becomes∑

m′
Hmm

′ (k,r)
∣∣φ(m′)

n (k,r)
〉 = εn(k,r)

∣∣φ(m)
n (k,r)

〉
, (E4)

where

Hmm
′ (k,r) = mωδmm′I + Hm−m′ (k,r), (E5)

in which Hm−m′ (k,r)’s are the Fourier components of
H (k,r,t), namely,

Hm(k,r) = 1

τ

∫ τ

0
dtH (k,r,t) exp(−imωt), (E6)

and Hm−m′ is obtained by the replacement m → m − m′ in
this expression. The matrix H is referred to as the “Floquet
Hamiltonian”, whose rank is infinite. In practice, we may take
a truncation, keeping M2 Floquet blocks with a sufficiently
large M (i.e., the Floquet index m is restricted to m ∈
[−M/2,M/2]). To be more explicit, Eq. (E4) reads⎛

⎜⎜⎜⎜⎜⎝

· · ·
H0 + ω H1 H2

H−1 H0 H1

H−2 H−1 H0 − ω

· · ·

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

· · ·
φ(1)

n

φ(0)
n

φ(−1)
n

· · ·

⎞
⎟⎟⎟⎟⎟⎠

= εn

⎛
⎜⎜⎜⎜⎜⎝

· · ·
φ(1)

n

φ(0)
n

φ(−1)
n

· · ·

⎞
⎟⎟⎟⎟⎟⎠. (E7)

The column eigenvector (· · · ,φ(1)
n ,φ(0)

n ,φ(−1)
n , · · · )T here will

be denoted as |�n〉 for brevity. As long as ω is nonzero, the
wave function profile of |�n〉 is localized in the m space
(mathematically, the problem resembles the Wannier-Stark
ladder, for which the localization in the m direction has been
studied before [132]).

A notable property of this eigenvalue problem is the
periodicity in the Floquet m space. It can be readily checked
that ⎛

⎜⎜⎜⎜⎜⎝

· · ·
H0 + ω H1 H2

H−1 H0 H1

H−2 H−1 H0 − ω

· · ·

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

· · ·
φ(1−m)

n

φ(−m)
n

φ(−1−m)
n

· · ·

⎞
⎟⎟⎟⎟⎟⎠

= (εn + mω)

⎛
⎜⎜⎜⎜⎜⎝

· · ·
φ(1−m)

n

φ(−m)
n

φ(−1−m)
n

· · ·

⎞
⎟⎟⎟⎟⎟⎠, (E8)

in other words, shifting of the eigenvectors in the m space are
also eigenvectors, with eigenvalues increased or decreased by
multiples of ω.

Having explained the above background knowledge, let us
define the frequency-domain Chern number. It is defined in

195303-45



SHUNYU YAO, ZHONGBO YAN, AND ZHONG WANG PHYSICAL REVIEW B 96, 195303 (2017)

the same way as the usual Chern number of static systems,
taking H(k,r) as the “static Hamiltonian.” For the Floquet
bands with quasienergy in [ε,ε′], the Chern number can be
defined in terms of the projection operator

Pε,ε′(k,r) =
∑

ε<εn<ε′
|�n(k,r)〉〈�n(k,r)|, (E9)

where |�n(k,r)〉 is the eigenvector of H with eigen-
value εn(k,r), as mentioned above. Here, |�n(k,r)〉’s
form an orthonormal basis, namely, 〈�n(k,r)|�n′ (k,r)〉 =∑

m〈φ(m)
n (k,r)|φ(m)

n′ (k,r)〉 = δnn′ . The frequency-domain band
Chern number is defined as

C(d+D)/2(Pε,ε′) = K̃d+D

∫
T d×SD

ddkdDrTr
[
εα1α2···αd+DPε,ε′∂α1Pε,ε′ · · · ∂αd+D

Pε,ε′
]
, (E10)

where the coefficient K̃d+D is the same as in Eq. (E1).
What is the relation between this frequency-domain Chern number in Eq. (E10) and the effective-Hamiltonian-based Chern

number in Eq. (E1)? They look quite different: Eq. (E1) uses the N -component vectors |ψn(k,r)〉’s, while Eq. (E10) uses the
MN -component vectors |�n(k,r)〉’s.

Let us first have a closer inspection. In the definition of C(d+D)/2(Pε,ε′) in Eq. (E10), the derivative always look like
〈φ(m)

n |∂αi
φ

(m)
n′ 〉 or 〈∂αi

φ(m)
n |φ(m)

n′ 〉. There is no mixing of m and m′ for m �= m′. This fact can be seen from the more explicit
expression of the projection operator

Pε,ε′ =
∑

ε<εn<ε′

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

· · ·∣∣φ(1)
n

〉
∣∣φ(0)

n

〉
∣∣φ(−1)

n

〉
· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(· · · ,

〈
φ(1)

n

∣∣, 〈
φ(0)

n

∣∣, 〈
φ(−1)

n

∣∣, · · ·)

=
∑

ε<εn<ε′

⎛
⎜⎜⎜⎜⎜⎜⎝

· · · ∣∣φ(1)
n

〉〈
φ(1)

n

∣∣ ∣∣φ(1)
n

〉〈
φ(0)

n

∣∣ ∣∣φ(1)
n

〉〈
φ(−1)

n

∣∣∣∣φ(0)
n

〉〈
φ(1)

n

∣∣ ∣∣φ(0)
n

〉〈
φ(0)

n

∣∣ ∣∣φ(0)
n

〉〈
φ(−1)

n

∣∣∣∣φ(−1)
n

〉〈
φ(1)

n

∣∣ ∣∣φ(−1)
n

〉〈
φ(0)

n

∣∣ ∣∣φ(−1)
n

〉〈
φ(−1)

n

∣∣
· · ·

⎞
⎟⎟⎟⎟⎟⎟⎠. (E11)

On the other hand, in Eq. (E1), we used the
effective-Hamiltonian-based projection operator Pε,ε′ =∑

ε<εn<ε′ |ψn(k,r)〉〈ψn(k,r)|. It is not difficult to see that
|ψn(k,r)〉’s here are simply |ψn(k,r,t = 0)〉’s, where
|ψn(k,r,t)〉’s are the solutions to the time-dependent
Schrödinger equation given by Eq. (E3), which justifies
using similar notation “ψn” for the two vectors, |ψn(k,r)〉
and |ψn(k,r,t)〉. In fact, we have U (k,r,τ )|ψn(k,r,t = 0)〉 =
exp[−iεn(k,r)τ )|ψn(k,r,t = 0)〉.

It follows from Eq. (E3) that

|ψn(k,r)〉 = |ψn(k,r,t = 0)〉 =
∑
m

∣∣φ(m)
n (k,r)

〉
. (E12)

Now we can see that the N -component vector |ψn(k,r)〉,
which is used in Eq. (E1), comes from the m-summation
of the MN components of |�n(k,r)〉. Given the orthonor-
mal condition of |�n(k,r)〉, namely, 〈�n(k,r)|�n′ (k,r)〉 =∑

m〈φ(m)
n (k,r)|φ(m)

n′ (k,r)〉 = δnn′ , we can show that |ψn(k,r)〉’s
are also orthonormal. In fact, 〈ψn(k,r)|ψn′ (k,r)〉 =∑

m

∑
m′ 〈φ(m)

n (k,r)|φ(m′)
n′ (k,r)〉 = ∑

l(
∑

m〈φ(m)
n (k,r)|φ(m+l)

n′
(k,r)〉), in which the l �= 0 terms all vanish due to the fact
that the eigenvectors of the Hermitian matrixH with different
eigenvalues are orthogonal [let us also recall Eq. (E8)].
Therefore we have 〈ψn(k,r)|ψn′ (k,r)〉 = 〈�n(k,r)|�n′ (k,r)〉.

Given Eq. (E12), the effective-Hamiltonian-based projec-
tion operator reads

Pε,ε′ =
∑

ε<εn<ε′

∑
m1,m2

∣∣φ(m1)
n (k,r)

〉〈
φ(m2)

n (k,r)
∣∣, (E13)

therefore, the expression of Eq. (E1) in terms of |φ(m)
n (k,r)〉

involves 〈φ(m)
n |∂αi

φ
(m′)
n′ 〉 with m �= m′, which is unlike the case

of Eq. (E10), whose expression only involves 〈φ(m)
n |∂αi

φ
(m)
n′ 〉.

If one of the m components of |�n(k,r)〉, say |φ(m0)
n (k,r)〉,

dominates over all other components, then |ψn(k,r)〉 =∑
m |φ(m)

n (k,r)〉 ≈ |φ(m0)
n (k,r)〉, and we can expect that

Eqs. (E10) and (E1) yield the same integer. However, in
the most interesting cases, the profile of |�n〉 can be quite
extended in the m direction, with several m components having
comparable weights, then there seems to be no straightfor-
ward relation between the Chern number calculated from
the MN -component vectors |�n(k,r)〉’s and that calculated
from the N -component vecotr |ψn(k,r)〉’s. At this stage,
one may wonder whether Eqs. (E10) and (E1) are equal or
not. Although the bulk-defect correspondence suggests an
affirmative answer (both topological invariants are expected to
count the topological defect modes), a straightforward proof
is desirable.
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In this Appendix, we are able to prove the general result:

C(d+D)/2(Pε,ε′) = C(d+D)/2(Pε,ε′), (E14)

namely, the Chern numbers in Eqs. (E1) and (E10) are equivalent. This is the main result of this appendix.
To prove Eq. (E14), we observe that the Floquet bands ofH have periodicity of ω, as manifested in Eq. (E8). The eigenvectors

with eigenvalues in [ε + mω,ε′ + mω] are the same as in [ε,ε′], except for a shifting. The Chern number for Pε+mω,ε′+mω must
be the same as that of Pε,ε′ :

C(d+D)/2(Pε+mω,ε′+mω) = C(d+D)/2(Pε,ε′), (E15)

which, combined with the summation property of Chern number, tells us that

C(d+D)/2

(∑
m

Pε+mω,ε′+mω

)
=
∑
m

C(d+D)/2(Pε+mω,ε′+mω) = M C(d+D)/2(Pε,ε′). (E16)

Strictly speaking, the Chern numbers of the bands near the truncation, namely, m ≈ ±M/2, may be different from C(d+D)/2(Pε,ε′)
due to the truncation error, therefore, the “=” in Eq. (E16) is accurate only to the order of M , which nevertheless suffices our
purpose as we take sufficiently large M . The strategy of proving Eq. (E14) is to calculate the left hand side of Eq. (E16),
C(d+D)/2(

∑
m Pε+mω,ε′+mω), and then divide it by M , hoping that the result can be related to Eq. (E1).

To be explicit, the projection operator of the bands in [ε + mω,ε′ + mω] reads

Pε+mω,ε′+mω =
∑

ε<εn<ε′

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

· · ·∣∣φ(1−m)
n

〉
∣∣φ(−m)

n

〉
∣∣φ(−1−m)

n

〉
· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(· · · ,

〈
φ(1−m)

n

∣∣, 〈
φ(−m)

n

∣∣, 〈
φ(−1−m)

n

∣∣, · · ·)

=
∑

ε<εn<ε′

⎛
⎜⎜⎜⎜⎜⎜⎝

· · · ∣∣φ(1−m)
n

〉 〈
φ(1−m)

n

∣∣ ∣∣φ(1−m)
n

〉 〈
φ(−m)

n

∣∣ ∣∣φ(1−m)
n

〉 〈
φ(−1−m)

n

∣∣∣∣φ(−m)
n

〉 〈
φ(1−m)

n

∣∣ ∣∣φ(−m)
n

〉 〈
φ(−m)

n

∣∣ ∣∣φ(−m)
n

〉 〈
φ(−1−m)

n

∣∣∣∣φ(−1−m)
n

〉 〈
φ(1−m)

n

∣∣ ∣∣φ(−1−m)
n

〉 〈
φ(−m)

n

∣∣ ∣∣φ(−1−m)
n

〉 〈
φ(−1−m)

n

∣∣
· · ·

⎞
⎟⎟⎟⎟⎟⎟⎠, (E17)

therefore, the sum is

∑
m

Pε+mω,ε′+mω =
∑

ε<εn<ε′

⎛
⎜⎜⎜⎜⎜⎜⎝

· · · ∑
m

∣∣φ(1−m)
n

〉 〈
φ(1−m)

n

∣∣ ∑
m

∣∣φ(1−m)
n

〉 〈
φ(−m)

n

∣∣ ∑
m

∣∣φ(1−m)
n

〉 〈
φ(−1−m)

n

∣∣∑
m

∣∣φ(−m)
n

〉 〈
φ(1−m)

n

∣∣ ∑
m

∣∣φ(−m)
n

〉 〈
φ(−m)

n

∣∣ ∑
m

∣∣φ(−m)
n

〉 〈
φ(−1−m)

n

∣∣∑
m

∣∣φ(−1−m)
n

〉 〈
φ(1−m)

n

∣∣ ∑
m

∣∣φ(−1−m)
n

〉 〈
φ(−m)

n

∣∣ ∑
m

∣∣φ(−1−m)
n

〉 〈
φ(−1−m)

n

∣∣
· · ·

⎞
⎟⎟⎟⎟⎟⎟⎠. (E18)

To simplify the expression, let us introduce the shorthand notation

P(m) =
∑

ε<εn<ε′

∑
m1

∑
m2

∣∣φ(m1)
n

〉 〈
φ(m2)

n

∣∣δm1−m2−m =
∑

ε<εn<ε′

∑
m′

∣∣φ(m′+m)
n

〉 〈
φ(m′)

n

∣∣, (E19)

where the subscript “(m)” here indicates that the Floquet index (or the sum of indices) of the ket-vectors minus that of the
bra-vectors is m, and the quasienergies ε,ε′ are implicit. The same notation will be used below. Apparently, we have

Pε,ε′ =
∑
m

P(m). (E20)

195303-47



SHUNYU YAO, ZHONGBO YAN, AND ZHONG WANG PHYSICAL REVIEW B 96, 195303 (2017)

With the shorthand notations, the projection operator
∑

m Pε+mω,ε′+mω reads

∑
m

Pε+mω,ε′+mω =

⎛
⎜⎜⎜⎜⎜⎝

· · ·
P(0) P(1) P(2)

P(−1) P(0) P(1)

P(−2) P(−1) P(0)

· · ·

⎞
⎟⎟⎟⎟⎟⎠. (E21)

Note that all the diagonal blocks are the same, which is an advantage of summation over m. Similarly, we have

∂α1

(∑
m

Pε+mω,ε′+mω

)
=

⎛
⎜⎜⎜⎜⎜⎝

· · · (
∂α1P

)
(0)

(
∂α1P

)
(1)

(
∂α1P

)
(2)(

∂α1P
)

(−1)

(
∂α1P

)
(0)

(
∂α1P

)
(1)(

∂α1P
)

(−2)

(
∂α1P

)
(−1)

(
∂α1P

)
(0)

· · ·

⎞
⎟⎟⎟⎟⎟⎠, (E22)

in which (
∂α1P

)
(m) =

∑
ε<εn<ε′

∑
m3

∑
m4

∂α1

(∣∣φ(m3)
n

〉 〈
φ(m4)

n

∣∣)δm3−m4−m. (E23)

One can readily check that ∑
m′

P(m′)
(
∂α1P

)
(m−m′) = (

P∂α1P
)

(m), (E24)

from which it follows that

(∑
m

Pε+mω,ε′+mω

)
∂α1

(∑
m

Pε+mω,ε′+mω

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

· · · (
P∂α1P

)
(0)

(
P∂α1P

)
(1)

(
P∂α1P

)
(2)(

P∂α1P
)

(−1)

(
P∂α1P

)
(0)

(
P∂α1P

)
(1)(

P∂α1P
)

(−2)

(
P∂α1P

)
(−1)

(
P∂α1P

)
(0)

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎠, (E25)

in which (
P∂α1P

)
(m) =

∑
n1,n2

∑
m1,m2,m3,m4

(∣∣φ(m1)
n1

〉 〈
φ(m2)

n1

∣∣)∂α1

(∣∣φ(m3)
n2

〉 〈
φ(m4)

n2

∣∣)δm1−m2+m3−m4−m, (E26)

namely, the sum of the indices of ket-vectors minus that of the bra-vectors is m. The summation of ni is done within ε < εni
< ε′.

In the same way, we have(∑
m

Pε+mω,ε′+mω

)
∂α1

(∑
m

Pε+mω,ε′+mω

)
· · · ∂αd+D

(∑
m

Pε+mω,ε′+mω

)

=

⎛
⎜⎜⎜⎜⎜⎝

· · · (
P∂α1P · · · ∂αd+D

P
)

(0)

(
P∂α1P · · · ∂αd+D

P
)

(1)

(
P∂α1P · · · ∂αd+D

P
)

(2)(
P∂α1P · · · ∂αd+D

P
)

(−1)

(
P∂α1P · · · ∂αd+D

P
)

(0)

(
P∂α1P · · · ∂αd+D

P
)

(1)(
P∂α1P · · · ∂αd+D

P
)

(−2)

(
P∂α1P · · · ∂αd+D

P
)

(−1)

(
P∂α1P · · · ∂αd+D

P
)

(0)
· · ·

⎞
⎟⎟⎟⎟⎟⎠. (E27)

Taking Eq. (E27) as an input, the frequency-domain Chern number of
∑

m Pε+mω,ε′+mω, according to the definition in Eq. (E10),
is given by

C(d+D)/2

(∑
m

Pε+mω,ε′+mω

)

= K̃d+D

∫
T d×SD

ddkdDrTr

[
εα1α2···αd+D

(∑
m

Pε+mω,ε′+mω

)
∂α1

(∑
m

Pε+mω,ε′+mω

)
· · · ∂αd+D

(∑
m

Pε+mω,ε′+mω

)]

= MK̃d+D

∫
T d×SD

ddkdDrTr
[
εα1α2···αd+D

(
P∂α1P · · · ∂αd+D

P
)

(0)

]
.
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Note that all the off-diagonal blocks in Eq. (E27) do not contribute to the trace, therefore, only (P∂α1P · · · ∂αd+D
P )(0) remains in

the last line.
Due to Eq. (E16), the band Chern number of Pε,ε′ is

C(d+D)/2(Pε,ε′) = 1

M
C(d+D)/2

(∑
m

Pε+mω,ε′+mω

)
= K̃d+D

∫
T d×SD

ddkdDrTr
[
εα1α2···αd+D

(
P∂α1P · · · ∂αd+D

P
)

(0)

]
. (E28)

Compared to the original frequency-domain Chern number in Eq. (E10), the above expression looks much closer to the
effective-Hamiltonian-based band Chern number in Eq. (E1), yet it is not exactly the same.

The proof of Eq. (E14) will be completed if we can also transform Eqs. (E1) to (E28). This is indeed the case. To this end, let
us define a time-dependent projection operator

Pε,ε′(k,r,t) =
∑

ε<εn<ε′
|ψn(k,r,t)〉〈ψn(k,r,t)|. (E29)

Apparently, Pε,ε′(k,r,t = 0) is simply the original projection operator Pε,ε′(k,r). More explicitly, we have

Pε,ε′(k,r,t) =
∑

ε<εn<ε′

∑
m1,m2

ei(m1−m2)ωt
∣∣φ(m1)

n (k,r)
〉 〈

φ(m2)
n (k,r)

∣∣.
In terms of our shorthand notation of “(m)” in Eq. (E19), Pε,ε′(k,r,t) reads

Pε,ε′(k,r,t) =
∑
m

eimωtP(m). (E30)

Since |ψn(k,r,t)〉’s are smooth functions of t , the Chern number defined in terms of Pε,ε′(t) cannot change as a function of t ,
i.e.,

C(d+D)/2(Pε,ε′(t)) = C(d+D)/2(Pε,ε′(t = 0)) ≡ C(d+D)/2(Pε,ε′),

therefore, C(d+D)/2(Pε,ε′) can be calculated as the time average of C(d+D)/2(Pε,ε′(t)):

C(d+D)/2(Pε,ε′) = 1

τ

∫ τ

0
dt C(d+D)/2(Pε,ε′(t)) = 1

τ
K̃d+D

∫ τ

0
dt

∫
T d×SD

ddkdDrTr
[
εα1α2···αd+DPε,ε′(t)∂α1Pε,ε′(t) · · · ∂αd+D

Pε,ε′(t)
]
.

(E31)
It can be readily found that

Pε,ε′(t)∂α1Pε,ε′(t) · · · ∂αd+D
Pε,ε′(t) =

∑
m

(
P∂α1P · · · ∂αd+D

P
)

(m)e
imωt , (E32)

where the shorthand notation of the subscript “(m)” is used in the same way as defined above. Inserting it into Eq. (E31), we have

C(d+D)/2(Pε,ε′) = 1

τ
K̃d+D

∫ τ

0
dt

∫
T d×SD

ddkdDrTr

[
εα1α2···αd+D

∑
m

(
P∂α1P · · · ∂αd+D

P
)

(m)e
imωt

]
. (E33)

The integration over t can be straightforwardly done, which keeps only the m = 0 Fourier component:

C(d+D)/2(Pε,ε′) = K̃d+D

∫
T d×SD

ddkdDrTr
[
εα1α2···αd+D

(
P∂α1P · · · ∂αd+D

P
)

(0)

]
. (E34)

Since we have already transformed the frequency-domain band Chern number in Eq. (E10) to the same formula [see Eq. (E28)],
we have proved Eq. (E14), which states that the effective-Hamiltonian-based Chern number (H eff-based Chern number) is equal
to the frequency-domain Chern number (H-based Chern number).
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